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A system for private stream searching, introduced by Ostrovsky and Skeith, allows a client to
provide an untrusted server with an encrypted search query. The server uses the query on a
stream of documents and returns the matching documents to the client while learning nothing
about the nature of the query. We present a new scheme for conducting private keyword search
on streaming data which requires O(m) server to client communication complexity to return the
content of the matching documents, where m is an upper bound on the size of the documents. The
required storage on the server conducting the search is also O(m). The previous best scheme for
private stream searching was shown to have O(mlogm) communication and storage complexity.
Our solution employs a novel construction in which the user reconstructs the matching files by
solving a system of linear equations. This allows the matching documents to be stored in a compact
buffer rather than relying on redundancies to avoid collisions in the storage buffer as in previous
work. This technique requires a small amount of metadata to be returned in addition to the
documents; for this the original scheme of Ostrovsky and Skeith may be employed with O (mlogm)
communication and storage complexity. We also present an alternative method for returning the
necessary metadata based on a unique encrypted Bloom filter construction. This method requires
O(mlog(t/m)) communication and storage complexity, where ¢ is the number of documents in the
stream. In this article we describe our scheme, prove it secure, analyze its asymptotic performance,
and describe a number of extensions. We also provide an experimental analysis of its scalability
in practice. Specifically, we consider its performance in the demanding scenario of providing a
privacy preserving version of the Google News Alerts service.
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1. INTRODUCTION

The Internet currently has several different types of sources of information.
These include conventional Web sites, time sensitive Web pages such as news
articles and blog posts, newsgroup posts, online auctions, and Web-based fo-
rums or classified ads. One common link between all of these sources is that
searching mechanisms are vital for a user to be able to distill the information
relevant to him.

Most search mechanisms involve a client sending a set of search criteria
(e.g., a textual keyword) to a server and the server performing the search over
some large data set. However, for some applications a client would like to hide
their search criteria, that is, which data they are interested in. A client might
want to protect the privacy of their search queries for a variety of reasons rang-
ing from personal privacy to protection of commercial interests. Such privacy
issues were brought into the spotlight in 2005 when the U.S. Department of
Justice subpoenaed records of search terms from popular Web search engines.

The sensitivity of search terms was highlighted again in 2006 when AOL
Research released a database of about 20 million search queries on the Inter-
net, revealing a great deal of compromising information about 658,000 AOL
users [Arrington 2006]. Although the database had been anonymized by re-
placing each username with a unique integer, in many cases it was possible
to completely determine the real world identity of a user based on the content
of their queries. Note that other privacy preserving technologies such as mix-
based anonymizers [Dingledine et al. 2004] do not solve this problem, since the
search terms alone are enough to compromise the user’s privacy.

A naive method for allowing private searches is to download the entire re-
source to the client machine and perform the search locally. This is typically
infeasible due to the large size of the data set to be searched, the limited band-
width between the client and the remote host, or to the unwillingness of the
other party to disclose the entire resource to the client.

In many scenarios the documents to be searched are being continually gen-
erated and are already being processed as a stream by remote servers. In
these cases it is advantageous to allow clients to establish persistent searches
with the servers where they can be efficiently processed. Content matching
the searches can then be periodically returned to the clients. For example, the
Google News Alerts system emails users whenever Web news articles crawled
by Google match their registered search keywords. As in the case of the AOL
search data, it is not hard to imagine queries which could be privacy sensitive.
For example, a high-ranking government staff person may wish to be immedi-
ately notified if certain information has leaked and is being publicly reported.
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However, the search terms they register with the Google News Alerts service
may hint at or reveal the very information they sought to protect. Again,
anonymizing systems such as Tor [Dingledine et al. 2004] do nothing to solve
this problem.

In this article we develop an efficient cryptographic system which allows
services of this type while provably maintaining the secrecy of the search cri-
teria. We go on to evaluate its practical applicability using a private version of
the Google News Alerts service as an example application.

1.0.1 Private Stream Searching. Recently, Ostrovsky and Skeith defined
the problem of “private filtering,” which corresponds to the type of scenario
described above [Ostrovsky and Skeith 2005]. In the same article, they gave
a scheme based on the homomorphism of the Paillier cryptosystem [Paillier
1999; Damgard and Jurik 2001] providing this capability. First, a public dic-
tionary of keywords D is fixed. To construct a query for the disjunction® of
some keywords K C D, the user produces an array of ciphertexts, one for
each w € D. If w € K, a one is encrypted; otherwise a zero is encrypted. A
server processing a document in its stream may then compute the product of
the query array entries corresponding to the keywords found in the document.
This will result in the encryption of some value ¢, which, by the homomor-
phism, is nonzero if and only if the document matches the query. The server
may then in turn compute E (¢)’ = E (cf), where f is the content of the doc-
ument, obtaining either an encryption of (a multiple of) the document or an
encryption of zero.

Ostrovsky and Skeith propose the server keep a large array of ciphertexts
as a buffer to accumulate matching documents; each E (cf) value is multiplied
into a number of random locations in the buffer. If the document matches the
query then c is nonzero and copies of that document will be placed into these
random locations; otherwise, ¢ = 0 and this step will add an encryption of 0 to
each location, having no effect on the corresponding plaintexts. A fundamental
property of their solution is that if two different matching documents are ever
added to the same buffer location, a collision will result and both copies will be
lost. If all copies of a particular matching document are lost due to collisions
then that document is lost, and when the buffer is returned to the client, they
will not be able to recover it.

To avoid the loss of data in this approach one must make the buffer suffi-
ciently large so that this event does not happen. This requires that the buffer
be much larger than the expected number of required documents. In particu-
lar, Ostrovsky and Skeith show that a given probability of successfully obtain-
ing all matching documents may be obtained with a buffer of size O(mlogm),?
where m is an upper bound on the number of matching documents. While
effective, this scheme results in inefficiency due to the fact that a significant

IThey also mention an extension allowing a single conjunction; this extension may also be ap-
plied to the scheme presented in this article. However, support for general logical formulas is not
possible without doubly homomorphic encryption (see Ostrovsky and Skeith [2007] Corollary 3.6).
2Specifically, they define a correctness parameter y and use a buffer of size O(ym). They show
that a given success probability may be achieved with a y that is O(logm).
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Table I. For m Matches in a Stream of ¢ Documents, the New Scheme Retrieves the Bulk

Content of the Documents with Linear Overhead. Two Alternatives Are Available for Retrieving

the Necessary Metadata. Both Incur Communication Depending Only on the Number of
Documents and Not Their Lengths

Private Stream Storage and Comm. | Storage and Comm. Client Recon-
Searching Scheme (For Bulk Content) (For Metadata) struction Time
Ostrovsky-Skeith 2005 O(mlogm) O(mlogm) O(mlogm)
Our scheme (simple metadata) O(m) O(mlogm) O(m?37%)

Our scheme (Bloom filter) O(m) O(mlog(t/m)) O(m?378 +tlog(t/m))

portion of the buffer returned to the user consists of empty locations and docu-
ment collisions.

1.0.2 Our Approach. In this article we present a new private stream
searching scheme which achieves the optimal O(m) communication from the
server to the client and server storage overhead in returning the content of the
matching documents. Some metadata must be returned, for which we may use
the original scheme with O(mlogm) communication and storage. When con-
sidering unit length (i.e., one 1024-bit group element) documents, our scheme
therefore shares the same overall O(mlogm) communication complexity as
Ostrovsky-Skeith. However, because our scheme decouples the logarithmic
communication factor from the document length, we strictly improve the com-
munication complexity for longer documents.

We also present an alternative technique for returning the metadata requir-
ing O(mlog(t/m)) communication and storage, where ¢ is the total number of
documents searched. This latter technique results in the optimal O(m) over-
all complexity with near optimal constant factors in applications where each
document matches the query with some probability, independent of the other
documents. One disadvantage of the latter technique is a step in reconstruct-
ing the matching documents on the client with O(¢log(¢/m)) time complexity,
introducing a dependency on the overall stream length. However, this step
consists only of computing a series of hash values, which is greatly outweighed
by other costs in practice. These efficiency improvements and trade-offs are
summarized in Table I.

The new results are based on the combination of several novel techniques.
Like the approach of Ostrovsky and Skeith we use an encrypted dictionary, and
non-matching documents have no effect on the encrypted contents. However,
rather than using a large buffer and attempting to avoid collisions, each match-
ing document in our system is copied randomly over approximately half of the
locations across the buffer. A pseudorandom function, g, the key of which is
shared by the client and server, will determine pseudorandomly with probabil-
ity % whether the document is copied into a given location, where the function
takes as inputs the document number (document number i is the ith document
seen by the server) and buffer location. While any one particular buffer loca-
tion will not likely contain sufficient information to reconstruct any one match-
ing document, with high probability all the information from all the matching
documents can be retrieved from the whole system by the client given that
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the client knows the number of matching documents and that the number of
matching documents is less than the buffer size. The client can do this by de-
crypting the buffer and then solving a linear system to retrieve the original
documents.

To do so, the client must obtain a list of the indices of the documents in
the stream which matched the query. The first method for accomplishing this
(hereafter termed the simple metadata construction) is based on the original
Ostrovsky-Skeith construction. To employ the alternative method (hereafter
termed the Bloom filter construction), the server maintains a separate en-
crypted Bloom filter that efficiently keeps track of which document numbers
were matched. The Bloom filter construction provides a compact way of rep-
resenting the set indices of matching documents and normally requires much
less space than the simple metadata construction.

1.1 Related Work

Private searching may be viewed as the flip side of searching on encrypted
data [Song et al. 2000; Boneh et al. 2004; Goh 2003], in this case the data
is unencrypted and the query is encrypted. Goh applied Bloom filters in a
way that allows a server to store encrypted-searchable data in a more efficient
manner.

However, searching on encrypted data is quite different from private search-
ing. In the problem of searching on encrypted data the data is hidden from
the server, while in private searching the data is known to the server and
the client’s queries must remain hidden. Private searching is actually most
closely related to the topics of single-database private information retrieval
(PIR) [Chor et al. 1995; Kushilevitz and Ostrovsky 1997; Cachin et al. 1999;
Chang 2004] and oblivious transfer [Naor and Pinkas 1999; Lipmaa 2005].
One incompatibility between previously proposed PIR schemes and the present
problem is that PIR schemes have thus far required communication dependent
on the size of the entire database rather than the size of the portion retrieved.
In some streaming settings, a private searching scheme with communications
independent of the size of the stream or database is desirable. Another differ-
ence between the PIR and private search settings is that most PIR construc-
tions model the database to be searched as a long bitstring and the queries as
indices of bits to be retrieved. In contrast, both the system proposed in this
article and that of Ostrovsky and Skeith allow queries based on a search for
keywords within text. Both these schemes may also retrieve pieces of data
by index, however. The text associated with a block of data in the data-
base against which queries are matched is arbitrary, so by simply including
strings of the form “blocknumber:1”, “blocknumber:2”, ... in the text associ-
ated with each block of data, they may be explicitly retrieved by appropriate
queries. There has been some consideration of constructions supporting re-
trieval by keyword rather than block index in the PIR literature [Chor et al.
1997; Kurosawa and Ogata 2004; Freedman et al. 2005], but none of these
systems has communication dependent only on the size of the data retrieved
rather than some function of the length of the database or stream.
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Portions of the work presented in this article have previously appeared as an
extended abstract [Bethencourt 2006a] and tech report [Bethencourt 2006b].

2. DEFINITIONS AND PRELIMINARIES

In this section we describe the problem of private searching and make appro-
priate definitions. We also briefly review Paillier’s cryptosystem, the definition
of a pseudorandom function family, and Bloom filters. Appendix A provides a
reference for the terms and variables defined throughout this section and the
rest of the article; the reader is encouraged to consult it if unclear.

2.1 Problem Definition

In a private searching scheme a client will create an encrypted query for the
set of keywords that they are interested in. The client will give this encrypted
query to the server. The server will then run a search algorithm on a stream
of files® while keeping an encrypted buffer storing information about files for
which there is a keyword match. The encrypted buffer will then be returned
to the client (periodically) to enable the client to reconstruct the files that have
matched its query keywords. We call a file a matching file if it matches at least
one keyword in the set of keywords that the client is interested in. The key
aspect of a private searching scheme is that a server is capable of conducting
the search even though it does not know which set of keywords the client is
interested in or which files match those keywords. We now formally describe
a private stream searching scheme. A scheme for private stream searching
consists of the following three algorithms.

2.1.1 QueryConstruction(r,e,m, K). The QueryConstructionalgorithm is
run by a client to prepare an encrypted list of keywords that they would like
the server to search for. The algorithm takes as input a security parameter A,
a correctness parameter ¢, an upper bound on the number of files to retrieve m,
and an unencrypted set of strings K that are to be used as the search keywords.
The algorithm outputs a public key K., a private key K ;,, and an encrypted
query Q. The client then sends K,,;, € to the server. The correctness para-
meter ¢ may be used to select various algorithm parameters to ensure that up
to m files will be correctly retrieved with high probability. These additional
parameters are also sent to the server.

2.1.2 StreamSearch(Kpuw, Q. fi..... ft. Wi,..., Wy). The StreamSearch al-
gorithm is run by a server to perform a private keyword search on behalf of the
client on a stream of files. The algorithm takes as input an encrypted query
@, a public key K., and a stream of files f = (f1, f2, ..., f;) and correspond-
ing sets of keywords that describe each file W = (Wq,..., Wy). Normally each
set W; is derived from the corresponding file f; as a preprocessing step. The

3We use the name “file” as a general term for the data chunk that is to be returned. The type of
data will vary by application. Also, when presenting our scheme we initially consider fixed length
files; an extension in Section 5.3 relaxes this restriction without affecting the scheme’s complexity.
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algorithm updates a buffer of encrypted results R after processing each file
and eventually sends it back to the client.

2.1.3 FileReconstruction (K, R). The FileReconstruction algorithm
is used to extract the set of matching files from the returned encrypted buffer.
The algorithm FileReconstruction takes as input the private key K, and
a buffer of encrypted results R. It outputs the set of matching files { f; | [KN
W, >0}.

To define privacy for a private stream searching scheme, consider the fol-
lowing game between a challenger and an adversary. The adversary gives the
challenger two sets of keyword strings Ky, K1. The challenger then flips a coin
B, runs the QueryConstruction (1, €, m, Kg), and gives the public key and the
encrypted query @ to the adversary. The adversary then outputs a guess j'.
We say that an adversary has advantage ¢ if |P (,3 =p') — %| > e.

Definition 1. We say that a private searching scheme is semantically secure
if for all probabilistic, polynomial time (PPT) adversaries A, the advantage of
A is negligible in the security parameter, 1.

We establish that the proposed system satisfies this definition in Section 4.4.
Note that the security definition for private stream searching necessitates
that the server return the same amount of data regardless of how many files
matched the query. If this were not the case, the server could easily mount
a dictionary attack using the StreamSearch algorithm to determine the exact
query keywords. As a result, like all other proposals for private stream search-
ing, our scheme requires an a priori upper bound m on the number of files to
retrieve (or the total length of the files when using the extension of Section 5.3).

2.2 Preliminaries

2.2.1 Paillier’s cryptosystem. We now provide a brief review of the most
important features of the Paillier cryptosystem. The Paillier cryptosystem is a
public key cryptosystem; as in RSA the public key K, = n is the product of
two large primes. The factorization of n is the private key. In this article the
encryption of a plaintext m with the public key (there is only one public key in
use in this article, the one generated by the client when constructing a private
search) is denoted E (m), and the decryption of a ciphertext ¢ with the private
key is denoted D (c). Plaintexts are represented by elements of the group 7Z,
and ciphertexts are represented by elements of the group Z,, so E : Z,, — Z7,
and D : Z;, — Z,. Note that ciphertexts are twice as large as plaintexts.*

The key property of the Paillier cryptosystem upon which the entire sys-
tem is based is its homomorphism. For any a,b € Z,, it is the case that

4This property of inflating messages by encrypting them is improved in a generalization of the
Paillier cryptosystem [Damgard and Jurik 2001]. In their scheme the plaintext and ciphertext
spaces are Z,s and Z:m for any s € {1, 2, ...}. However, the constraints in this article are likely to
make the original situation of s = 1 preferable in practice.
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D (E(a)- E (b)) = a+b. That is, multiplying ciphertexts has the effect of adding
the corresponding plaintexts. This allows one to perform rudimentary com-
putations on encrypted values. Our construction may be adapted to use any
public key, homomorphic cryptosystem, but for concreteness, we assume the
use of the Paillier cryptosystem throughout the rest of the article.

2.2.2 PseudoRandom functions. In our construction we use a pseudoran-
dom function family G : Kg x Z x Z — {0, 1}. Roughly speaking, G will take in
a key k£ and two integers and output a pseudorandom bit. We let g = G, where

kL K.
The security of a pseudorandom function family G : Kg x Z x Z — {0, 1}
is defined by the following game between a challenger and an adversary A. A

challenger chooses a random key % & Kg and lets g = Gj. The challenger
then flips a binary coin 8. At this point the adversary submits to make oracle
queries to the challenger over the domain. If 8 = 0 the challenger will respond
by evaluating the function g on the input, whereas if § = 1 it will respond
with random bit to all new queries, while giving the same response if the same
query is asked twice. Finally, the adversary outputs a guess p’. We define the
adversary’s advantage in this game as:

1
Adva=[p(s=#) - 3

We say that a pseudorandom function is (@, wq, €)-secure if no w; time adver-
sary, that makes at most w, oracle queries, has advantage greater than ¢. As
explained in Section 4, the “security” of the pseudorandom function family em-
ployed in our scheme is actually only necessary to prove correctness properties.
Privacy is unaffected.

2.2.3 Bloom filters. A Bloom filter [Bloom 1970] is a space-efficient data
structure for storing a set of keys that has several unique features. First,
rather than allowing direct enumeration of the keys stored, a Bloom filter only
supports querying to determine if a given key is present. Second, while queries
for a key that has been previously stored will always succeed, a query for a
key which has not been previously stored will also succeed with some small,
configurable probability. This false-positive inducing “lossiness” allows Bloom
filters to achieve extremely compact storage.

A Bloom filter may be implemented as a vector of ¢ bits vy, vg, ... v, € {0, 1},
all initially zero, and a collection of 2 hash functions A; : {0, 1}* — {1,2,...¢},
i€ {1,2,...k}). Toinsert a key x € {0, 1}*, we set va,(x) = Uhy(x) = * Unpx) = 1. TO
query for a key y, we check whether v;,) = 1 for alli € {1,2,...%} and return
true if so. If vy = 0 for some i € {1,2,...k}, we return false. Based on the
number of keys one expects to store and a desired false positive rate, optimal
values for ¢ and £ may be selected [Broder and Mitzenmacher 2005].

3. NEW CONSTRUCTIONS

We now describe the algorithms of the new private search scheme and give an
analysis of complexity and security properties. For ease of exposition, we first
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Algorithm: QueryConstruction
Input: Set of keywords K.
Output: Query array Q = (E(q1),E (g2),-..,E (qp)), public key n.

Generate a Paillier key pair n, Kprio.

for i:=1,2,...,|D| :
if w; € K :
g =1
else :
q =0
Qli] == E(q:)

Fig. 1. The algorithm for setting up an encrypted query.

describe the version of the scheme using the Bloom filter construction, then
give the modifications necessary to employ the simple metadata construction.
Additionally, we defer discussion of several special failure cases to the next
section.

3.1 Client’s QueryConstruction Procedure

Figure 1 gives the algorithm for producing the encrypted query,
QueryConstruction. A public dictionary of potential keywords

D = {wl, wo, ..., w|D‘}

is assumed to be available. Constructing the encrypted query for some dis-
junction of keywords K C D then proceeds as in the scheme of Ostrovsky and
Skeith, regardless of whether the simple metadata construction or Bloom fil-
ter construction will be used. The client generates a key pair, then for each
i €1,...,|D|, defines q; = 1 if w; € K and q; = 0 if w; ¢ K. The values
q1.92, - ..,qp are encrypted (independently randomizing each encryption) and
put in the array @ = (E(q1).E(q2). ..., E(qp|)), which forms the final en-
crypted query. In Section 5.2 we give an alternative form for the encrypted
queries which eliminates the public dictionary D. The client then sends @ and
the public key n to the server.

3.2 Server’s StreamSearch Procedure (Bloom Filter Construction)

Figure 2 gives the full algorithm run by the server, StreamSearch. In addition
to the public key and @, the client may provide the server with the parame-
ters ¢, ¢;, and k, which affect correctness and performance (see below and
Section 4).

3.2.1 State. The server must maintain three buffers as it processes
the files in its stream. These buffers are hereafter referred to as the data
buffer, the c-buffer, and the matching-indices buffer and denoted F, C, and [
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Algorithm: StreamSearch
Input: @, n, sequence of files fi,..., fi with corresponding
keyword sets Wi, ... W, size of data buffer £, size of
matching indices buffer ¢;, number of hash functions k,
pseudo-random function g : Z x Z — {0, 1}.
Output: Data buffer F, coefficients buffer C'; matching indices buffer I.

Initialize F' and C as £ element arrays and [ as an ¢; element array of
members of Z,. Initialize each element of F', C, and I to E (0).

for 1:=1,2,...,t
/* Step 1 */
c:=E(0)
for w; € W; :
c:= c- Q[j] mod n?

/* Steps 2 and 3 (in parallel) */
e:=climodn? /* now ¢c=E(c;) and e = E (cifi) */
for j:=1,2,...,0p :

if g(i,j) =1 :
F[j] := F[j] - e mod n?
C[j] := C[j] - ¢ mod n?
/* Step 4 */
for j =1,2,...,k :
(1) mod £;

= hy (i
[] = I[{] - ¢ mod n?

Fig. 2. The algorithm for running the private search, using the Bloom filter construction.

respectively. Each of these is an array of elements from the ciphertext space
Z7,, with F and C of length ¢ and I of length ¢;. For simplified notation here
and in subsequent explanations, we assume that each document is at most
[logy ] bits and therefore fits within a single plaintext in Z,. For longer doc-
uments requiring s elements of Z,, we would let F' be an {r x s array and
subsequent operations involving a file updating F are performed blockwise.

The data buffer will store the matching files in an encrypted form which can
then be used by the client to reconstruct the matching files. In particular, the
data buffer will contain a system of linear equations in terms of the content of
the matching files in an encrypted form. This system of equations will later be
solved by the client to obtain the matching files.

The c-buffer stores in an encrypted form the number of keywords matched
by each matching file. We call the number of keywords matched for a file the
c-value of the file. The c-buffer will be used during reconstruction of the match-
ing files from the data buffer by the client. As in the case of the data buffer, the
c-buffer stores its information in the form of a system of linear equations. The
client will later solve the system of linear equations to reconstruct the c-values.
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The matching-indices buffer is an encrypted Bloom filter that keeps track
of the indices of matching files in an encrypted form. More precisely, the
matching-indices buffer will be an encrypted representation of some set of in-
dices {a1,...,a,} where {a1,...,a-} € {1,...,t}. Here r is the number of files
which end up matching the query.

Each of these buffers begins with all its elements initialized to encryptions
of zero, which may be computed by the server using the client’s public key.>? We
now detail how they are updated as each file is processed.

3.2.2 Processing steps. 'To process the ith file f;, the server takes the
following steps.

Step 1: Compute encrypted c-value. First, the server looks up the query array
entry @[l corresponding to each word w; found in the file. The product of these
entries is then computed. Due to the homomorphic property of the Paillier
cryptosystem, this product is an encryption of the c-value of the file, that is,
the number of distinct members of K found in the file. That is,

[[ Qui=E (ijewi qj) = E (ci)

wjeWi

where W; is the set of distinct words in the ith file and ¢; is defined to be
|K N W;|. Note in particular that ¢; # 0 if and only if the file matches the query.

Step 2: Update data buffer. The server computes E (¢; f;) using the homomor-
phic property of the Paillier cryptosystem.

E) = E(cif) = Ef) iff; ma'tches the query

E(0) otherwise.
The server multiplies the value E (¢; f;) into a subset of the locations in the data
buffer according to the following procedure. Let G be a family of pseudoran-

dom functions that map Z x Z to {0, 1}. Randomly select g i (this should
be done once upon initialization and the same g used for all files). The algo-
rithm multiplies E (c; f;) into each location jin the data buffer where g(i, j) = 1.
Suppose for example we are updating the third location in the data buffer with
the second file. Assume that the first file was also multiplied into this location,
that is, g(1, 3) = g(2, 3) = 1. Each of the two files may or may not match the
query. Suppose in this example that f; matches the query, but f; does not. Be-
fore processing f> we have D (F[S]) = ¢1 f1 mod n. After multiplying in E (cs f2),
D (F[S]) =c¢1 f1+cg fo mod n. But ¢g = 0 since f2 does not match, so it is still the
case that D (F[3]) = c¢1f1 mod n and the data buffer is effectively unmodified.

5Since these values need not be individually randomized, it actually suffices to initialize each to
the value one, which is a valid Paillier encryption of zero under any public key.
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This mechanism causes the data buffer to accumulate linear combinations of
matching files while discarding all nonmatching files.

Note that, as shown in Figure 2, the server multiplies ciphertexts modulo
n?; this results in the underlying plaintexts being added modulo n. Naturally,
when several files are added modulo n, the result will “wrap around” and be
mapped back into Z,. It is important to realize that this does not result in
a loss of essential information or pose any problem to the scheme. Provided
there are as many (independent) linear equations as file blocks, the value
of each file block will be uniquely determined, and the client will be able to
correctly recover each of the files using the FileReconstruction algorithm.

Step 3: Update c-buffer. The value E (¢;) is multiplied into each of the locations
in the c-buffer in a similar fashion as E (c;f;) was used to update the data
buffer. In particular, the server multiplies the value E (c;) into each location j
in the c-buffer where g(, j) = 1.

Step 4: Update matching-indices buffer. The server then multiplies E (c;)
further into a fixed number of locations in the matching-indices buffer.
This is done using essentially the standard procedure for updating a Bloom
filter. Specifically, we use & hash functions A, ..., h; to select the & locations
where E (c;) will be added. For optimal efficiency, the client should select the
parameter k as Lm%zj , where m is the number of files they expect to retrieve
[Broder and Mitzenmacher 2005]. The locations of the matching-indices buffer
that a matching file i is multiplied into are take to be hi(i), ho(i), ..., hp(i).
Again, if f; does not match, ¢; = 0 so the matching-indices buffer is effectively
unmodified.

After completing the aforementioned steps for a fixed number of files ¢ in its
stream, the server sends its three buffers back to the client. Also, the server
should return the function g.

3.3 Client's FileReconstruction Procedure (Bloom Filter Construction)

Figure 3 gives the FileReconstruction algorithm, which is run by the client
upon completion of the private search and receipt of the three buffers F, C,
and I.

Step 1: Decrypt buffers. The client first decrypts the values in the three buffers
using the Paillier decryption algorithm with its private key K, obtaining
decrypted buffers F’, C’, and I'.

Step 2: Reconstruct matching indices. For each of the indices i € {1,2,...,%},
the client computes 21(i), h2(D), . . ., ht(i) and checks the corresponding locations
in the decrypted matching-indices buffer; if all these locations are nonzero,
then i is added to the list oy, a9, ..., ap of potential matching indices. Note
that if ¢; # 0, then i will be added to this list. However, due to the false positive
feature of Bloom filters, we may obtain some additional indices. Now we may
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Algorithm: FileReconstruction
Input: F,C, 1, k.
Output: The matching files Sy fags - far.-

/* Step 1 */

for i:=1,2,...,4p
F'[i] := D (Fli))
C'lil = D (C)

for i:=1,2,...,¢;1
I'i) = D (1f)

/* Step 2 */

6:=0

for ¢:=1,2,...,t :
for j:=1,2,...,k :
£:= h;(i) mod ¢;
if I'l]=0 : next i
B:=p0+1
og =1
if B> /{p
output “Error, overflow.”, exit
while B </{p
B:=p8+1
ag = piCk({l., . ,t} \ {al,az, ey aﬁ_l})

/* Step 3 */
A= [g(a,,])]L
h

output “Error, singular matrix.”, exit
g=A"1.C
{a,ab, ... a0} ={ai,az,...;ae, } \{ai|ca; =0}
for i€{ai|ca; =0} :

Ca; =1
/* Step 4 */
f=diag(&)"t ATt F
output fa'l , fa/z, oo far

Fig. 3. The algorithm for recovering the matching files after the completion of a private search
when using the Bloom filter construction.

check for overflow, which occurs when the number of false positives plus the
number of actual matches r exceeds ¢r. At this point if 8 < £, we continue to
add indices to the list until it is of length ¢z. Here the function pick denotes
the operation of selecting an arbitrary member of a set. Note that we will not
run out of indices since ¢ > {f.

Step 3: Reconstruct c-values of matching files. Given our superset of the
matching indices {o1,o2...,0,}, the client next solves for the values of
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Cay» Cags - - -+ Cayp, - This is accomplished by solving the following system of linear
equations for ¢,

A-¢=C (1)

where A is the matrix with the i, jth entry set to g(w;, j), C’ is the vector of
values stored in the decrypted c-buffer, and ¢ is the column vector (cy,)i=1... ¢5-°
Now the exact set of matching indices {o], @ . . ., &} may be computed by check-
ing whether ¢,, = 0 for each i € {1, ..., {r}. Before proceeding, we replace all
zeros in the vector ¢ with ones.

As an example of Step 3, suppose there are four spots in the decrypted
c-buffer (i.e., {r = 4), seven files have been processed (t = 7), and from
Step 2 we have established the following list of potentially matching indices:
{a1, ag, a3, a4} = {1,3,5,7}. Further suppose that the matrix induced by the
pseudorandom function g is

1010

1101

A=<g(ai,J))i:1,2 ..... ==11001
=12,..., 153 0110

Then if the c-buffer decrypts to the column vector C' = (2 3 1 3), we may
establish the following linear system, since A -¢ = C'.

Coy +Coy =2
Coy +Coy +Coy =3
Coay +Co, =1

Cay +Coy =3 .

Solving, we obtain

Cyy =C1 =
Coy =C3 =2
Coy =C5 =
Coy =c7=0

The seventh file is ignored since it only appeared due to a Bloom filter false
positive, so we see that there were three actual matching files (r = 3): f1, f3,
and f5.

6The possibility of the matrix A being singular is considered in the next section.
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Step 4: Reconstruct matching files. Continuing in our description of the general
algorithm with Step 4, the content of the matching files f,;, fu, ..., fo; may be
determined by solving the linear system

A -diag@) - f=F (2)

c1 0 -
diag@ = (f’ “ )

We directly compute f = diag(@)~!- A~1. F'. Note that diag() is never singular
because, at the end of Step 3, we replace all zeros in ¢ with ones. The content
of the matching files appears as f,, fu, ..., fu; the other entries in f will be
Zero.

Continuing the example started in the description of Step 3, suppose the
data buffer decrypts to F' = (32 32 10 44). Of course, these are artificially
small values; in reality they would typically be 1024 bits each. Then we may
solve the following system

where

fi+ f5 =32
fi+2fs+ fr =32
fi+ f7=10
2fs+ fs =44,

to determine that f; = 10, f3 = 11, and f5 = 22 (and f7 = 0, but this value is
ignored since c¢7 = 0).

Keep in mind that the linear equations for the file blocks and c-values are
modulo n; that is, the values appearing the decrypted buffers F' and C’ were
computed modulo n as explained in the description of the StreamSearch algo-
rithm. The above example was shown using standard arithmetic for simplicity,
but a system of linear equations modulo n may be solved in the same way. The
original values of each ¢; and f; will be recovered as expected.

3.4 Simple Metadata Construction

Now that we have defined the version of the scheme incorporating the (more
complex) Bloom filter construction, we may easily describe the differences be-
tween this version of the scheme and the variant using the simple metadata
construction. In applications where the expected number of matching docu-
ments is fixed and independent of the stream length, this latter variant is
preferable since it does not require communication and storage dependent on
the stream length. To produce this effect, we abandon the Bloom filter used
in the matching-indices buffer and instead use the Ostrovsky-Skeith construc-
tion to store the matching indices. We briefly describe this technique below;
for details (including an analysis of collision detection) refer to Ostrovsky and
Skeith [2005].

Let ¢; = ym, where y is selected based on the desired error bound ¢. Fix a
set of hash functions k1, Ao, ..., h,. Also, let each entry in the matching-indices
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buffer I be a pair of ciphertexts in Z*, rather than a single ciphertext. To
update I when processing the ith file in StreamSearch, compute the following.

for j:=1,2,...,y :
£ :=h(i) mod ¢;
I[¢1[1] := IT¢1[1] - ¢ mod n?
I[01[2] := I1¢1[2] - ¢ mod n?

To recover the set of matching indices in FileReconstruction, the client de-
crypts each pair of entries in I. When a pair I'[k][1] and I'[k][2], & € {1, ... ¢}
is non-zero (and not a collision), the client may recover the index of a matching
file as i = I'[k1[2]/I'[k][1]. When using this technique, the c-buffer is omitted.
We may set £y = m; otherwise, the data buffer is used as before. There are now
no false positives for streams of any length.

4. ANALYSIS

In this section, we analyze the correctness and complexity of both variants of
our scheme and prove their security.

4.1 Computational Complexity

The running time of the first client side algorithm, QueryConstruction, is
O(|D)). This is exactly the same as in Ostrovsky-Skeith, in which the encrypted
queries take the same form. More precisely, QueryConstruction requires |D|
exponentiations and |K| < |D| multiplications. For large dictionaries, this is a
significant cost in both our scheme and Ostrovsky-Skeith; Section 5.2 presents
an extension to our scheme which can greatly reduce this cost.

When using the Bloom filter construction, the StreamSearch algorithm has
running time O(|W;| + s - m + log(¢/m)) when processing the ith file. Recall
that W; is the set of keywords associated with that file and s is the number
of plaintext blocks required to store the contents of a file. With the simple
metadata construction, the StreamSearch algorithm runs in time O(|W;| + s -
m + log(m)). In either case, however, only s exponentiations are required; the
rest of the computation results from multiplications.

The FileReconstruction algorithm runs in time O(s - m + m?376 + tlog(¢t/m))
when using the Bloom filter construction or O(s - m + m?376) with the simple
metadata construction. Note that the s- m term is necessary to simply output
the results. The m?37® term corresponds to solving a system of linear equa-
tions [Coppersmith and Winograd 1990], and the tlog(¢/m) term is the time
to check each possible document index against the Bloom filter. Asymptoti-
cally, these running times are neither strictly better nor strictly worse than
the O(s - mlogm) file reconstruction time with Ostrovsky-Skeith. In practice,
however, we find that file reconstruction is far faster using either of the new
schemes; this is considered in detail in Section 6.4.

4.2 Correctness and Communication Complexity (Bloom Filter Construction)

We now consider correctness and communication complexity, beginning with
the scheme employing the Bloom filter construction. In particular, we will
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show that given a desired success probability bound 1 — ¢, if the number of
matching documents is at most m, then by using communication and storage
overhead O(mlog(¢/m)), our scheme will enable the user to correctly recon-
struct all the matching documents from a stream of ¢ documents with proba-
bility at least 1 — ¢.

In order to perform the analysis to demonstrate the above point, we first
analyze the different failure cases where the user will fail to reconstruct the
matching documents. From the reconstruction procedure, we can see that the
client fails to reconstruct the matching files when the two systems of linear
equations A - ¢ = C' (Eq. 1) and A - diag(¢) - f = F' (Eq. 2) cannot be correctly
solved. This failure only happens in two cases:

(1) The matrix A is singular. In this case, we will not be able to compute A~!
and solve the system of linear equations.

(2) There are more than ¢z — r false positives when the set of matching in-
dices is computed using the Bloom filter. In particular, if in Step 2 in the
FileReconstruction procedure, the number of matching indices 8 recon-
structed from the Bloom filter I’ is greater than ¢z, then we have more
variables than the number of linear equations and thus we will not be able
to solve the system of linear equations A - ¢ = C..

We show below that by picking the parameters ¢r and ¢; correctly, we can
guarantee that the probability of the above two failure cases can be bounded
to be below €. We demonstrate this by proving the following three lemmas.

LEMMA 1. For a given 0 < € < 1, there exists n = o(log(1/¢)), such that
for any n’ > n, an n’ x n’ random (0, 1)-matrix is singular with probability at
most e.

PROOF. Note that an n x n, random (0,1)-matrix is singular with negligible
probability in n. This was first conjectured by Erdés and was proven in the
60’s [Komlos 1967]. The specific bound has since been improved several times,

recently reaching O ((% + o(1))n) [Kahn et al. 1995; Tao and Vu 2005, 2007].
Thus, it is easy to see that the above lemma holds. O

LEMMA 2. Let G : Kg xZxZ — {0, 1} be a (wr, wq. €/8)-secure pseudorandom
function family. Let g = Gy, where k & Kg. Let ¢r = o(log(1/¢)) such that an

g x Ly random (0, 1)-matrix is singular with probability at most € /4. Then the
matrix

A=[80) e g

.....

J=1,...lF
is singular with probability at most /2.
Intuitively, this lemma bounds the failure probability that the matrix A is

singular. We provide the proof in Appendix B. Additionally, we note that for a
given constant ¢ the size of the ¢r will be linear in m.

LEMMA 3. Given p > m+ 81In(2/¢), let £; = O(mlog(t/m)) and assume the
number of matching files is at most m out of a stream of t. Then the probability
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that the number of reconstructed matching indices B is greater than (p is at
most €/2.

Given the false positive rate of a Bloom filter, the proof is straightforward;
we provide it in Appendix C. Together, Lemma 2 and Lemma 3 provide the
primary result:

THEOREM 1. If¢r = 0(log(1/€))+O(m), Lr > m+81n(2/¢), £; = O(mlog(t/m)),
and G : Kg x Z x Z — {0,1} is a (o, wq, €/8)-secure pseudorandom function
family, then when the number of matching files is at most m in a stream of t, the
new scheme using the Bloom filter construction guarantees that the client can
correctly reconstruct all matching files with probability at least 1 — €.

PROOF. By Lemma 2, the probability that the matrix A is singular is at
most €/2. By Lemma 3, the probability that the reconstruction of the matching
indices will yield more than ¢ matching indices is at most ¢/2. Since these
are the only two failure cases as explained earlier, the total failure probability,
the probability that the client would fail to reconstruct the matching files, is at
most €. O

4.3 Correctness and Communication Complexity (Simple Metadata Construction)

We now consider the correctness and complexity in the case of using the simple
metadata construction.

THEOREM 2. If ¢r =o0(log(1/€))+ O(m), {r > m+ 8In(2/¢), £ = O(m(logm +
log(1/€)), and G : Kg x Z x Z — {0, 1} is a (wt, wq, €/8)-secure pseudorandom
function family, then when the number of matching files is at most m, the new
scheme using the simple metadata construction guarantees that the client can
correctly reconstruct all matching files with probability at least 1 — €.

PROOF. Briefly, the argument for Theorem 1 may be applied again, except
that we no longer need Lemma 3. Instead, we refer to the analysis in Ostrovsky
and Skeith [2005] that demonstrates that the probability of an overflow in
the alternative matching-indices buffer may be bounded below ¢ with ¢; = ym
where y = O(logm+log(1/¢)), producing an overall communication and storage
complexity of O(mlogm). O

Note that our scheme still produces a constant factor improvement over
Ostrovsky-Skeith in this case. If each file requires s plaintext blocks (i.e., is
of length at most s - [log, n] bits), then we reduce communication and storage
by a factor of approximately log(sm) for large files. This is accomplished by
retrieving the bulk of the content through the efficient data buffer and only
retrieving document indices through the less efficient matching-indices buffer.

4.4 Security

The security of the proposed scheme (in both variants) according to Defini-
tion 1 is straightforward. Intuitively, since the server is only provided with an
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array of encryptions of ones and zeros, the scheme should be as secure as the
underlying cryptosystem.

THEOREM 3. If the Paillier cryptosystem is semantically secure, then
the proposed private searching scheme is semantically secure according to
Definition 1.

In Appendix D we provide a proof. The proof is straightforward and proceeds
as in the case of Ostrovsky and Skeith. Since the proof depends only on the
form of the encrypted query, the variant of the scheme which will be used is
irrelevant. Note that this theorem establishes security based on the decisional
composite residuosity assumption (DCRA), since the Paillier cryptosystem has
been proven semantically secure based on that assumption [Paillier 1999].

5. EXTENSIONS

Here we describe a number of extensions to the proposed system which provide
additional features.

5.1 Bloom Filter Space Saving

For security it will generally be necessary to use a modulus n of at least 1024
bits (e.g., as required by the standards ANSI X9.30, X9.31, X9.42, and X9.44
and FIPS 186-2) [Silverman 2001]. If the Bloom filter construction is used, the
fact that the c-values will never approach 2192 reveals that most of its space is
wasted. A simple technique allows improved usage of this space. If we assume
that the sums of c-values appearing in each location in I will be less than 216,
for example, we may use each group element to represent {z array entries. In
the case of n = 1024, this reduces the size of I by a factor of 64. When we need
to multiply a value E (c) into the Bloom filter in the StreamSearch algorithm,
we use the following technique. To multiply it into the ith location in I, we let
i1 = | 7] and iz =i mod 64. Then we compute

Ili] = Ii1] - E (c)*™

which has the result of shifting ¢ into the isth 16-bit block within the group ele-
ment in I[i;]. After the client decrypts I, it may simply break up each element
into 64 regions of 16 bits. However, this space savings comes at an additional
computation cost. The server will need to perform % additional modular expo-
nentiations for each file it processes.

5.2 Hashing Keywords

In some applications, a predetermined set of possible keywords D may be un-
acceptable. Many of the strings a user may want to search for are obscure
(e.g., names of particular people or other proper nouns) and including them
in D would already reveal too much information. Since the size of encrypted
queries is proportional to |D|, it may not be feasible to fill D with, say, every
person’s name, much less all proper nouns.
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In such applications an alternative form of encrypted query may be used.
Eliminating D, we allow K to be any finite subset of ©*, where X is some
alphabet. Now in QueryConstruction, we pick a length ¢¢ for the array @ and
initialize each element to E (0). Then for each w € K, we use a hash function
h:X* — {1,...,£q} to select a location A(w) in @ and set Q[A(w)] := E(1). As
before we rerandomize each encryption. To process the ith file in StreamSearch,
the server may now compute E (¢;) = [[,,.w, @[2(w)]. The rest of the scheme is
unmodified. Using this extension, it is possible for a file f; to spuriously match
the query if there is some word w’ € W; such that A(w’) = A(w) for some w € K.
The possibility of such false positives is the key disadvantage of this approach.

An advantage of this alternative approach, however, is that it is possible to
extend the types of possible queries. Previously only disjunctions of keywords
in D were allowed, but in this case a limited sort of conjunction of strings may
be achieved. To support queries of the form “w; we” where wi, wy € X*, we
change the way each W, is derived from the corresponding file f;. In addition
to including each word found in the file f;, we include all adjacent pairs of
words in W; (note that this approximately doubles the size of W;). It is easy
to imagine further extensions along these lines. In particular, it is possible
to match against binary data by simply including blocks of the contents of f;
in Wi.

See Section 6.1 for a discussion of the size and computation time correspond-
ing to various query sizes in practical settings.

5.3 Arbitrary Length Files

In applications where the files are expected to vary significantly in length, an
unacceptable amount of space may be wasted by setting an upper bound on the
length of the files and padding smaller files to that length. Here we describe a
modification to the scheme which eliminates this source of inefficiency by stor-
ing each block of a file separately. For convenience, we describe it in terms of
the version of the scheme employing the Bloom filter; applying this technique
to the other variant is straightforward.

In this extension QueryConstruction takes two upper bounds on the match-
ing content. We let m; be an upper bound on the number of matching files and
mg be an upper bound on the total length of the matching files, expressed in
units of Paillier plaintext blocks. As before, the c-buffer is of length O(m;) and
the matching-indices buffer is of length O(m; log(t/m1)) (or, using the alterna-
tive construction given in Section 3.4, O(mlogm;)). The data buffer is now
set to length O(mg), and each entry in the data buffer is now a single cipher-
text rather than an array fixed to an upper bound on the length of each file.
We introduce a new buffer on the server called the length buffer, which is an
array L set to length O(my). Intuitively, the length buffer will be used to store
the length of each matching file, and the data buffer will now be used to store
linear combinations of individual blocks from each file rather than entire files.

We briefly describe how this is accomplished in more concrete terms. Re-
place the corresponding portion of StreamSearch with the following, where
¢ = O(my) is the length of the c-buffer and length buffer, ¢z = O(my) is the
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length of the data buffer, & : Z3 — {0, 1} is an additional pseudorandom func-
tion, d; is the length of the ith file in the stream, and the d; blocks of the file
are denoted fi1, fig, ..., fid.-

e := c% mod n?
for j:=1,2,...,4c
if g, =1

C[j] := CLj] - ¢ mod n?
L[j] := L[j]-e mod n?

for j12=1,2,...,di :
e := cfii mod n?
for p:=1,2,. EF :
if &G J1,Jz)
Flj.l —F[jg] emodn

The client may use a modified version of FileReconstruction to recover the
matching files. As before, the matching-indices buffer I is used to determine
a superset of the indices of matching files, and a matrix A of length ¢¢ is con-
structed based on these indices using g. The vector ¢ is again computed as
ci=A" L. C’. The client next computes the lengths of the matching files as
d := diag(@)'-A~1. L. If Y, d; > £r, the combined length of the files is greater
than the prescribed upper bound and the client aborts. Otherwise, the data
buffer now stores a system of £y > mg linear equations in terms of the in-
dividual blocks of the matching files. Briefly, the blocks may be recovered by
constructing a new matrix A, filling its entries by evaluating & over the indices
of the blocks of the matchlng files. The blocks of the matchmg files are then
computed as f = diag(¢’)"!1 - A1 . F', where ¢’ is as ¢ but with the ith entry
repeated d; times.

Using this extension, space may be saved if the matching files are expected
to vary in size. Some information about the number expected to match and
their total size is still needed to set up the query, but the available space may
now be distributed arbitrarily among the files.

5.4 Merging Parallel Searches

Another extension makes multiple server, distributed searches possible. Sup-
pose a collection of servers each have their own stream of files. The client
wishes to run a private search on each of them, but does not wish to sepa-
rately download and decipher a full size buffer of results from each. Instead,
the client wants the servers to remotely merge their results before returning
them.

This can be accomplished by simply having each server separately run the
search algorithm, then multiplying together (element by element) each of the
arrays of resulting ciphertexts. This merging step can take place on a single
collecting server, or in a hierarchical fashion. A careful investigation of the
algorithms reveals that the homomorphism ensures the result is the same as it
would be if a single server had searched the documents in all the streams. Care

ACM Transactions on Information and System Security, Vol. 12, No. 3, Article 16, Pub. date: January 2009.



16: 22 . J. Bethencourt et al.

must be taken, however, to ensure the uniqueness of the document indices
across multiple servers. This can be accomplished by, for example, having
servers prepend their IP address to each document index. Also, it is of course
necessary for the buffers on each server to be of the same length.

Note that if the client splits its query and sends it to each of the remote
servers, a different set of keywords may be used for each stream. Alternatively,
a server may split a query to be processed in parallel for efficiency without the
knowledge or participation of the client.

6. PRACTICAL PERFORMANCE ANALYSIS

To better assess the applicability of the new private stream searching scheme
in practical scenarios, we now give a detailed analysis of a realistic application.
Specifically, we consider the case of making a private version of Google’s News
Alerts service” using the new construction. According to the Google News Web
site, their Web crawlers continuously monitor approximately 4,500 news
Web sites. These include major news portals such as CNN along with many
Web sites of newspapers, local television stations, and magazines. In this set-
ting, we analyze four aspects of the resources necessary for a private search:
the size of the query sent to the server (s,), the size of the storage buffers kept
by the server while running the search and eventually transmitted back to the
client (sp), the time for the server to process a single file in its stream (¢,), and
the time for the client to decrypt and recover the original matching files from
the information it receives from the server (¢.). Due to the potential sensitivity
of search keywords, we will not use a public dictionary and we instead assume
the use of the hashing extension described in Section 5.2.

We assume that the client is able to estimate an upper bound m on the num-
ber of files in the stream of ¢ that will match the query. In situations where m
may be more difficult to estimate or bound, an alternative method for selecting
it may be used, at the expense of a small loss in privacy. Specifically, the server
may assist the client in selecting m by computing and returning encrypted
c-values for a series of files during some initial monitoring period. After de-
crypting the c-values, the client will know exactly how many files matched
their query during the monitoring period and use this information to select m
before beginning the normal stream search. While one iteration of this process
may provide the server with some information about possible keywords in the
query, a full dictionary attack will not be possible due to the required client
participation in decrypting any c-values.

6.1 Query Space

If we assume a 1024-bit Paillier key, then the encrypted query @ is 256¢¢
bytes, since each element from the set of ciphertexts Z*, is “"%Tz'ﬂ bytes, where
n is the public modulus. The smaller £ is, the more files will spuriously match

the query. Specifically, we obtain the following formula for the probability 6

7See http:/www.google.com/alerts.
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Table II. Size of the Encrypted Query Necessary to
Achieve a Given Spurious Match Rate Before and

After Optimizations
0 Sq optimized s,
0.1 1.3 MB 0.3 MB
0.01 13.1 MB 3.6 MB
0.001 132.8 MB 36.6 MB

that a nonmatching file f; will nevertheless result in a nonzero corresponding
E (c) (rearranged on the right to solve for £q).

Wi
o (B

1

1—(1—6)ym

We performed a sampling of the news articles linked by Google News and
found that the average distinct word count is about 540 per article. This pro-
duces the false positive rates for several query sizes listed in Table II. The first
column specifies a rate of spurious matches 6 and the second column gives the
size s; of the minimal @ necessary to achieve that rate for a single keyword
search. Additional keywords increase s, proportionally (e.g., |K| = 2 would
double the value of s;). It should be apparent that this is a significant cost; in
fact, it turns out that s, is the most significant component in the total resource
usage of the system under typical circumstances.

Two measures may be taken to reduce this cost. First, note that the majority
of distinct words occurring in the text of a news article are common English
words that are not likely to be useful search terms. Given this observation, the
client may specify that the server should ignore the most commonly occurring
words when processing each file. A cursory review of the 3000 most common
English words (based on data from the British National Corpus®) confirms that
none are likely to be useful search terms. Ignoring those words reduces the
average distinct word count in a news article to about 200.

The second consideration in reducing s, is that a smaller Paillier key may
be acceptable. While 1024 bits is generally accepted to be the minimum public
modulus secure for a moderate time frame (e.g., as required by the standards
ANSI X9.30, X9.31, X9.42, and X9.44 and FIPS 186-2) [Silverman 2001], in
some applications only short term guarantees of secrecy may be required. Also,
a compromise of the Paillier key would not immediately result in the revela-
tion of K. Instead, it would allow the adversary to mount a dictionary attack,
checking potential members of K against @ (which will also yield many false
positives). Given this consideration, if the client decides a smaller key length is
acceptable, s, will be reduced. The third column in Table II gives the size of the
encrypted query using a 768-bit key and pruning out the 3000 most common
English words from those searched.

Despite the significant cost of s, in our system, the cost to obtain a compara-
ble level of security is likely to be much greater in the system of Ostrovsky and

8Information available at http:/www.natcorp.ox.ac.uk.
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Skeith. In that case s, = 256|D|, where |D| is the set of all possible keywords
that could be searched. In order to reasonably hide K C D, |D| may have to be
quite large. For example, if we wish to include names of persons in K, in order
to keep them sufficiently hidden we must include many names with them in D.
If D consists of names from the U.S. population, s; will be over 70 GB. It is im-
portant to emphasize, however, that the system is not truly stream length inde-
pendent when using the keyword hashing technique. Checking longer streams
may result in more false positives, but when using a public dictionary as in
Ostrovsky and Skeith, no false positives are possible.

6.2 Storage Buffers Space

We now turn to the size of the buffers maintained by the server during the
search and then sent back to the client. This cost, sp, is both a storage require-
ment of the server conducting the search and a communication requirement at
the end of the search. We assume fixed length files for this application rather
than employing the extension of Section 5.3. In Bloom filter variant of the new
scheme, to store the data buffer F, the c-buffer C, and the matching-indices
buffer I, the server then uses

Sp = 256(slp + Lp + L)

bytes, where s is the number of number of plaintexts from Z, required to rep-
resent an article and we assume the use of a 1024-bit key.

The client will specify ¢r and ¢; based on the number of documents they
expect their search to match in one period and the desired correctness guar-
antees. In the case of Google news, we may estimate that each of the 4,500
crawled news sources produces an average of 30 articles per day. If the client
retrieves the current search results four times per day, then the number of files
processed in each period is ¢ = 33, 750. Now the client cannot know ahead of
time how many articles will match their query, so they instead estimate an
upper bound m. Based on this estimate, the analysis in Section 4 may be used
to select values for ¢r and ¢; that ensure the probability of an overflow is ac-
ceptably small. In these experiments, we determined the minimum values for
¢r and ¢; empirically.

A range of desired values of m were considered and the results are displayed
in Figure 4(b). In each case, £ and ¢; were selected so that the probability of
an overflow was less than 0.01. In computing this probability, we treated the
number of documents which actually match the query as a binomial random
variable with ¢ trials and rate parameter m/t, as would be the case if each
matches with some probability independent of the others. Also, the spurious
match rate 0 was taken to be 0.001, and the news articles were considered to
be 5 KB in size (text only, compressed). Note that s; is linear with respect to
the size of the matching files. More specifically, Figure 4(b) reveals that s; is
about 2.5 times the size of the matching files. We also show the result of using
the simple metadata construction with the new scheme, which performs about
as well as the Bloom filter construction for small searches but becomes less
efficient with larger numbers of documents. For comparison, the data stored
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Fig. 4. Server to client communication after a period of searching in the previous scheme and
in the proposed scheme, using both the Bloom filter construction (BFC) and simple metadata
construction (SMC). Note the difference in scale.

by the server and returned to the client using the Ostrovsky-Skeith scheme
for private searching in this scenario is shown in Figure 4(a).? Note that this
graph differs in scale from Figure 4(b) by a factor of 10.

To summarize, in the proposed system s, ranges from about 680 KB to about
7.3 MB when the expected number of matching files ranges from two to 512 and
the overflow rate is held below 0.01. In the Ostrovsky-Skeith scheme, s, would
range from approximately 280 KB to 110 MB.

9The article describing this system did not explicitly state a minimum buffer length for a given
number of files expected to be retrieved and a desired probability of success, but instead gave a
loose upper bound on the length. Rather than using the bound, we ran a series of simulations to
determine exactly how small the buffer could be made while maintaining an overflow rate below
0.05.
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Table III. The Time Necessary for the Server to Process a File

m tp with 768-bit key tp with 1024-bit key
2 359 ms 600 ms
8 362 ms 600 ms
32 373 ms 603 ms
128 420 ms 617 ms
512 593 ms 669 ms

6.3 File Stream Processing Time

Next we consider the time ¢, necessary for the server to process each file in
its stream. This is essentially determined by the time necessary for modular
multiplications in Z?, and modular exponentiations in Z}, with exponents in
Zn. To roughly estimate these times, benchmarks were run on a modern work-
station. The processor was a 64-bit, 3.2 GHz Pentium 4. We used the GNU
Multiple Precision Arithmetic Library (GMP), a library for arbitrary precision
arithmetic that is suitable for cryptographic applications. With 768-bit keys,
multiplications and exponentiations took 3.9us and 6.2 ms respectively. With
1024-bit keys, the times increased to 6.3us and 14.7 ms.

The first step in processing the ith file in the StreamSearch procedure is com-
puting E (c); this takes |W;| — 1 multiplications. We again use |W;| = 540 as de-
scribed in Section 6.1. Computing E (cf;) requires s modular exponentiations.
Updating the data buffer requires an average of s- %F modular multiplications,
updating the c-buffer requires another %F multiplications, and updating the
matching-indices buffer requires & = Le’l%gzj multiplications. The time neces-
sary for these steps is given for several values of m in Table III. The majority of
tp is due to the s modular exponentiations. Since the Ostrovsky-Skeith scheme
requires the same number of modular exponentiations, the processing time for
each file would be similar.

6.4 File Recovery Time

Finally, we consider the time necessary for the client to recover the original
matching files after a period of searching, ¢.. This time is composed of the time
to decrypt the returned buffers and the time to setup and solve a system of
linear equations, producing the matching documents. A decryption requires
1536 modular multiplications with a 1024-bit key and 1152 with a 768-bit key
[Damgard and Jurik 2001]. The times necessary to decrypt the buffers are
given in the third column of Table IV. This time is typically less than a minute,
but can take as long as five with many files.

The most straightforward way to solve the system of linear equations is by
performing LUP decomposition over Z,. Although LUP decomposition of an
n x n matrix is expensive (8(n?)), practical cases are quite feasible. A naive
implementation resulted in the benchmarks shown in the fourth column of
Table IV. The total time to recover the matching files is given in the final
column of Table IV.

Although the time spent in matrix inversions is a significant additional cost
of the new scheme over Ostrovsky-Skeith, it is more than offset by the reduced
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Table IV. Time (in Seconds and Minutes) Necessary to Recover the
Original Documents from the Returned Results

key length m decryption time | inversion time | total time
768 2 14 s <0.1s 14 s
768 8 15s <0.1s 15
768 32 23 s <0.1s 23 s
768 128 54s 14s 55 s
768 512 2.7Tm 1.8 m 4.5 m
1024 2 23 s <0.1s 23 s
1024 8 26 s <0.1s 26 s
1024 32 38s <0.1s 38 s
1024 128 1.4m 21s 1.8m
1024 512 4.4 m 29m 7.3 m

buffer size and resulting reduction in decryption time. In Ostrovsky-Skeith,
the times to decrypt the buffer returned to the client in this scenario range
from 6.79 seconds for m = 2 to 45.5 minutes for m = 512, using a 768-bit key.
With a 1024-bit key, the buffer decryption times range from 10.8 seconds to
1.21 hours.

7. CONCLUSION

The primary contribution of our scheme is achieving the optimal linear
overhead in returning the bulk content of matching files to the client. Our
scheme also requires either O(mlogm) or O(mlog(¢/m)) space to return some
metadata, depending on the variant used. In the common streaming case
of each document matching independently from other documents, the latter
variant results in the optimal O(m) complexity, with near optimal constant
factors. With the former variant, significant constant factor improvements
are made over the previous scheme of Ostrovsky and Skeith. Both versions
of our scheme achieve the increased efficiency through a novel technique for
efficiently spreading the matching documents throughout the buffer of results,
the latter also employing a unique encrypted Bloom filter construction. Finally,
we proved correctness and security results for the scheme and noted some
extensions.

We have also given a detailed example demonstrating the new techniques
in applications not previously practical. In particular, we have considered the
case of conducting a private search on essentially all news articles on the Web
as they are generated, estimating this number to be 135,000 articles per day.
In order to establish the private search, the client has a one time cost of approx-
imately 10 MB to 100 MB in upload bandwidth. Several times per day, they
download approximately 500 KB to 7 MB of new search results, allowing up
to approximately 500 articles per time interval. After receiving the encrypted
results, the client’s PC spends under a minute recovering the original files, or
up to approximately seven minutes if many files are retrieved. To provide the
searching service, the server keeps approximately 500 KB to 7 MB of storage
for the client and spends roughly 500 ms processing each new article it encoun-
ters. In this scenario, the previous scheme would require up to twelve times
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the communication and take up to four times as long for the client to recover
the results.

APPENDIX A. TERMS AND NOTATION

For easy reference, we provide a single list of the terms and variables intro-
duced and defined throughout the text.

client. person or machine conducting a private search, that is, generating
a private query and eventually recovering the content that matched the query

server. person or machine carrying out the private search on the behalf of
the client

n. Paillier public key (n = p1 p2, where p; and pg are large, secret primes)

s. upper bound on the length of a file as a number of elements from Z,, that
is, if files are at most b bits, then s = (ﬁzrﬂ]

t. number of files processed by the server before returning buffers to the
client

p. false positive rate of the Bloom filter

D. global dictionary, that is, the set of keywords available for use in queries
K. set of keywords forming a query

w;. ith word in D

g;. ith entry in the query array (before encryption), associated with w;
fi. ith file processed by the server

W,. words present in or associated with the ith file!®

¢;. number of distinct keywords matched by the ith file, that is, |K N W;|
m. upper bound on the number of files which may be retrieved

r. number of files which actually match the query

Q. encrypted query, an array of | D| elements from Z7,

F. data buffer, an array of {r elements, each of which is an array of s ele-
ments from Z7,

C. coefficients buffer, an array of ¢ elements from Z7,
I. matching indices buffer, an array of ¢; elements from 77,

k. lnumber of hash functions to be used with the matching indices buffer, set
to | 1182 |

sq. size of the query sent to the server

sp. size of the storage buffers kept by the server while running the search
and eventually transmitted back to the client

10Tn the case of text documents, this is essentially the file itself; in the case of binary files, this set
of words may be metadata bundled with the file (e.g., the ID3 tag of an MP3 file).
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tp. time for the server to process a single file in its stream

t.. time for the client to decrypt and recover the original matching files from
the information it receives from the server

APPENDIX B. PROOF OF LEMMA 2
LEMMA 2. Let G : Kg xZxZ — {0, 1} be a (wr, wq. €/8)-secure pseudorandom

function family. Let g = Gy, where k & Kg. Let £r = 0(log(1/¢€)) such that an
g x Ly random (0, 1)-matrix is singular with probability at most € /4. Then the
matrix
A=[gGp]s,
=L e
is singular with probability at most €/2.

PROOF. We know that an ¢z x £ random (0, 1)-matrix is singular with prob-
ability at most €/4. However, in our scheme, A is not a random matrix, but a
matrix constructed using the pseudorandom function g. Thus, we need the ad-
ditional proof step to show that the matrix A we constructed using the pseudo-
random function g also satisfies the non-singular property with overwhelming
probability, otherwise, we could break the pseudorandom function. This proof
step is as follows.

Now assume for contradiction that the matrix A is singular with probabil-
ity greater than ¢/2. Then we show that we can construct an adversary B
(relative to the pseudorandom function family G) with Advi > ¢/8 with poly-
nomial number of queries and polynomial time, thus contradicting the original
assumptions of G.

To do so, we play the following game. We flip a coin 6 € {0, 1} with a half
and half probability, the adversary B is given one of two worlds in which it can
make a number of queries to a given oracle. If 9 = 1, B is given world one,

where g = G, k & Kg, and the oracle responds to a query (i, j) with g(, ).
If 6 = 0, the adversary B is given world two, where the oracle responds to a
query (i, j) by picking a random function R mapping (i, j) to {0, 1}, that is, by
flipping a coin b € {0, 1} with a half and half probability and returning & (using
a table of previous queries to ensure consistency). After a series of queries, the
adversary B guesses which world it is in. The adversary B makes its guess
using the following strategy: first, the adversary B constructs a matrix A by
querying the oracle for all (i, j)) wherei € {1,...,¢r} and j € {1, ... £Fr}; then the
adversary B checks if A is singular. If yes, it guesses that it is in world one. If
not, it guesses that it is in world two.
Thus, we can compute the advantage of such an adversary 5.

Advs = |[P(Bf=1) - P(Bf =1)|
= %P (A is singular|o = 1) — %P (A is singular| = 0)| .

From the above assumptions, P (A is singular|[f =1) > ¢/2, and P (A is
singular|0 = 0) < ¢/4, thus Advg > ¢/8, contradicting the original assumptions
of G. O
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APPENDIX C. PROOF OF LEMMA 3

LEMMA 3. Given Lp > m+ 81In(2/¢), let £; = O(mlog(t/m)) and assume the
number of matching files is at most m out of a stream of t. Then the probability
that the number of reconstructed matching indices B is greater than (p is at
most €/2.

PROOF. The number of reconstructed matching indices 8 equals the num-
ber of truly matching files plus the number of false positives from the recon-
struction using the Bloom filter. Thus, we need to bound this number of false
positives to be at most ¢y — m.

The false positive rate p of the Bloom filter storing m entries is as follows
[Broder and Mitzenmacher 2005].

1y e
p= ( 2) (3)

Thus, the expectation of the number of false positives is pt. For simplicity,
let’s set pt = (¢p — m)/2, which corresponds to the number of false positives
filling about half the extra space on average. This choice is somewhat arbitrary,
but it suffices to allow the proof to go through. So now ¢; = m(log 2)~2 log( Fz_tm).
Since {r is set to be linear in m, with ¢; = O(mlog(¢/m)) the expected number
of false positives can be bounded far from ¢g.

Moreover, we can model the number of false positives with a binomial
random variable X with rate parameter p and approximate it with a Gaussian
centered at the expected number of false positives. From Chernoff bounds,
we can derive that P(X > ¢p —m) < exp(—({p — m)/8). Thus, with (r >
m + 81In(2/¢), we can show that this probability is bounded by ¢/2. Thus, we
show that the above lemma holds. O

APPENDIX D. PROOF OF THEOREM 3

Here we provide a proof of the semantic security of the proposed private
searching system assuming the semantic security of the Paillier cryptosystem.
The proof is simple; in fact it proceeds in the same way as the proof of
semantic security in Ostrovsky and Skeith’s scheme [2005]. The same proof
applies whether we are using encrypted queries of the original form proposed
by Ostrovsky and Skeith or the hash table queries we propose as an extension
in Section 5.2.

THEOREM 3. If the Paillier cryptosystem is semantically secure, then
the proposed private searching scheme is semantically secure according to
Definition 1.

PROOF. We assume there is an adversary A that can play the game de-
scribed in Definition 1 with nonnegligible advantage ¢ in order to show that
we then have nonnegligible advantage in breaking the security of the Paillier
cryptosystem.

First we initiate a game with the Paillier challenger, receiving public key
n. We choose plaintexts mgy, m; € Z, to be simply my = 0 and m; = 1. We
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return them to the Paillier challenger who secretly flips a coin 8; and sends us
E (mﬁl)'

Now we initiate a game with A and send it the modulus n, challenging it
to break the semantic security of the private searching system. The adversary
sends us two sets of keywords, Ko and K;. We flip a coin B2 and construct
the query @, by passing Ky, to QueryConstruction. Next we replace all the
entries in @4, which are encryptions of one with E (mg, ), rerandomizing each
time by multiplying by a new encryption of zero. Note that with probability
one half, 81 = 0 and Qp, is a query that searches for nothing. In this case
B2 has no influence on @, since @, consists solely of uniformly distributed
encryptions of zero. Otherwise, @, searches for Kyg,.

Next we give @, to A. After investigation, A returns its guess g;. If g, = Be,
we let the guess for our challenge be f; = 1 and return it to the Paillier
challenger. Otherwise we let 8] = 0 and send it to the Paillier challenger.

Since A is able to break the semantic security of the private searching sys-
tem, if 1 = 1 the probability that g, = Bs is % + &, where ¢ is a non-negligible
function of the security parameter n. If 3; = 0, then P (ﬁé =fg) = %, since Bs
was chosen uniformly at random and it had no bearing on the choice of g;.
Now we may compute our advantage in our game with the Paillier challenger
as follows.

1 1
P(pi=p1)=P(Bi=1Up1=1) 5 +P (1 =01f1=0) 5
=(3+e)5+55
—\2 2 2 2
_L,e
T2 2
Since ¢ is nonnegligible, so is 5. O
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