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New techniques for simulating crystals 

Martin B. Sweatman 

Department of Chemical and Process Engineering, University of Strathclyde, 

Glasgow, G1 1XJ 

 

ABSTRACT 

 

Methods for simulating solid crystalline phases are generally not as straightforward as those for 

fluids. This work discusses the reason for this and reviews some recently developed Monte-Carlo 

techniques for simulating crystalline phases. The self-referential method for calculating crystal free 

energies is described first. This technique is particularly straightforward and it is expected to be very 

versatile. Next, a novel kind of Gibbs ensemble method adapted to treat crystalline solid – fluid 

coexistence is described. This technique requires free energy calculations of the crystalline phase as 

input, and of course these can be provided by the SR method. 

 

1 Introduction 

1.1 Background 

The crystalline state is fundamental in nature, and molecular simulation is increasingly used to 

understand and predict the properties of matter. Yet, despite this, molecular simulation techniques for 

molecular crystals are in general not as satisfactory as those for fluids, and there is some debate about 

how confined crystals can be simulated correctly. This paper reviews some recent work that has made 

some progress in this area
1-4
 and which aims to make simulation of crystals, especially confined 

crystals, easier. 

 

Crystal phase diagrams are usually much more complex than those of the corresponding fluid phases. 

This complexity increases when one considers molecular crystals, compared to atomic (spherical) 

species, and is likely to increase further under confinement, such as within a slit-pore, due to the 
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shifting of bulk transitions and the potential introduction of surface induced transitions. The precise 

knowledge of a molecular crystal phase diagram can be of tremendous practical and economical 

interest, for instance in the pharmaceutical industry, where the impact of crystal polymorph can be 

almost as important as the choice of chemical compound on its possible prescription as a drug. And 

the prediction of freezing in confined environments, e.g. within porous materials, can be useful for 

many engineering processes that involve adsorption of fluids. Moreover, crystal phase diagrams can 

be sensitive to the choice of molecular model
5
, and so crystal phase diagram prediction can be used as 

another mechanism for fine-tuning molecular models. So it is important to be able to easily and 

straightforwardly map the phase diagrams of both bulk and confined molecular crystals via molecular 

simulation. 

 

Central to the problem of simulating crystals is calculation of free energy. It is even more important to 

know the free energy for crystals than for fluids. This is not just because phase transitions involving 

crystalline solids are often strongly first-order and associated with significant hysteresis – a particular 

problem with simulations. It is also because we cannot impose or measure the bulk (i.e. experimental) 

pressure when simulating confined crystals, unless an impractically large system is simulated that 

includes the confined system – bulk system interface. Instead, it is essential that the chemical potential 

of the confined crystal is known (imposed or measured), because this quantity is the same in the 

confined and bulk systems at equilibrium. Unfortunately, we cannot impose the chemical potential on 

simulated crystals by performing grand-canonical ensemble simulations. The reasons for this are 

explained in detail in section 1.2 below. Instead, we should perform simulations that allow the crystal 

to relax to an equilibrium state, and then seek to measure the chemical potential of the crystal. For 

bulk crystals the isothermal-isobaric (NPT) ensemble
6
 is an obvious choice, while for crystals 

confined in uniform slit-pores, for example, simulations at constant interfacial tension (NσT) are 

appropriate (Figure 1 shows a sketch of this ensemble). For a pure system the chemical potential is 

then simply the Gibbs free energy per particle. So for simulation studies of confined crystals 

calculation of the Gibbs free energy is essential if conditions inside the pore are to be related to 

experimental (or bulk) conditions, regardless of whether phase behaviour is of interest or not. In 
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 3 

section 2 of this paper I summarize an approach for performing such free energy calculations, the self-

referential (SR) method, developed in recent years
1-3
, which is significantly more straightforward than 

other methods. Although the most recent version of this technique (which incorporates a kind of 

thermodynamic integration) has so far only been applied to bulk crystals, it is expected that it can also 

be applied unchanged to confined crystals.  

 

The Gibbs ensemble
6-8
 is a convenient and popular Monte-Carlo method for simulating phase 

coexistence. Its main advantages are that coexisting states are generated spontaneously during a single 

simulation (given reasonable initial conditions) and that relatively small systems can be simulated 

because a phase interface is not required. Unfortunately, this method can fail if one or both of the 

coexisting phases are either very dense or solid. For dense liquid phases the method can fail if the 

acceptance rate for particle transfers between phases becomes too low, although specialised algorithms 

should improve transfer acceptance rates for certain cases
9
. However, the method fails when one or 

more of the phases are crystalline for a more fundamental reason, which is again discussed in section 

1.2. However, it is possible to apply the Gibbs simulation technique to crystalline solid phases in an 

indirect way, and Section 3 summarizes work that shows how this can be achieved. This technique
4
 

relies on generation of an accurate canonical Helmholtz free-energy model for the crystal phase. In 

turn, this free energy model relies on calculation of the Gibbs free energy for a trial crystalline state 

not too far from coexistence, which in turn can be calculated via the SR approach just discussed. So 

we see, once again, the importance of free energy calculations for simulations of crystalline solids. 

 

This work summarizes both the SR method (section 2) and the Gibbs ensemble method applied to 

solid-fluid coexistence (section 3). But first in section 1.2 we discuss the reason why crystals are not as 

easy to simulate as fluids, namely because of conflict in symmetry requirements. 
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 4 

1.2 A conflict of symmetry requirements 

We know that for specified thermodynamic conditions (temperature and chemical potential or 

pressure) only one lattice site density corresponds to the equilibrium state. So, a simulated crystal 

must be able to adjust its lattice site density (provided it is not somehow initiated in the equilibrium 

state) in response to these external conditions. With grand-canonical simulations volume is fixed, so 

equilibrium is achieved by fluctuations in particle number in response to an applied chemical 

potential. However, when simulating a space-filling crystal with periodic boundary conditions this 

kind of fluctuation does not lead to a change in the lattice site density. Instead, it can lead only to 

changes in the number and kind of defects; it leads to the wrong kind of fluctuation. So in principle, 

regardless of the how well particle number fluctuations are sampled, equilibrium simulations of 

crystals cannot be performed with the grand canonical ensemble and periodic boundaries. Of course, 

for a space filling crystal fluctuations in lattice spacing in different directions can be achieved at fixed 

volume by shortening one box length while simultaneously lengthening another or by adjusting vertex 

angles. However, in this case spacing in one direction is traded against another, and although the 

crystal might be able to relax somewhat, this will still not allow full relaxation to the equilibrium 

lattice site density which is fixed because the overall volume and number of lattice sites is fixed. One 

might argue that it might be possible to develop Monte-Carlo moves that allow an entire slice of unit 

cells to be added or removed from one side of the crystal simulation box, or to adapt Tilwani and 

Wu’s
10
 re-tiling algorithm to 3-D crystals. But if this is achieved then in general this would not 

correspond to the grand canonical ensemble which requires molecule-by-molecule fluctuations rather 

than fluctuations in the number of unit cells. This problem is a matter of principle, and not concerned 

with clever insertion/deletion strategies. 

 

Let us consider why this is the case. If instead the system was fluid, or even if it was a liquid crystal, 

i.e. if it did not possess crystalline translational symmetry in at least one direction, then the right kind 

of fluctuations could occur, even with periodic boundaries, in response to an applied chemical 

potential. So the fluid could adjust its average density perfectly in response to any change in chemical 
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potential. Also, if the crystal simulation, somehow, did not employ periodic boundaries then, again, 

the correct kind of fluctuation could be simulated and the crystal could adjust its average density 

perfectly in response to any change in chemical potential. But when we have both crystalline 

symmetry and periodic boundaries simultaneously we encounter this problem. So the problem occurs 

because of a conflict in symmetry requirements between crystalline translational symmetry and 

periodic boundary conditions. 

 

Note that this is not a finite-size effect, i.e. this problem is not automatically resolved by simulating a 

sufficiently large system, because no matter how large the system one cannot guarantee that it will be 

initiated with the correct lattice site density, and in general molecule-by-molecule fluctuations in the 

lattice site density cannot occur at fixed volume. 

 

The same problem would arise if one attempted a standard Gibbs simulation involving a crystalline 

solid phase. Once again, the crystalline phase must be able to adjust its average lattice site density so 

that the chemical potentials of the coexisting phases are equilibrated. Although the lattice spacing can 

adjust so that pressure is equilibrated, it cannot adjust in response to particle exchanges which are 

responsible for equilibrating chemical potential. Any particle exchanges that do occur must result in 

creation or annihilation of defects, which by themselves do not create any change in the average 

lattice spacing. 

 

Because of these problems it is standard practice to perform simulations of crystals with periodic 

boundary conditions using the isothermal-isobaric ensemble, or the equivalent ensemble for confined 

crystals where the interfacial tension (the negative of the average of the transverse component of the 

pressure tensor for a crystal confined within slit-pore for example) is fixed. Although the number of 

particles is fixed, the simulation cell volume can fluctuate with these simulations, and so the lattice 

site density can relax to its equilibrium value. 
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 6 

Despite this, there are a rapidly growing number of examples
11-33

 in the literature where the grand 

canonical ensemble is used to simulate space-filling crystalline solids, particularly confined crystals. 

All this work should be considered carefully, because in every case these are not equilibrium 

simulations and each result is subject to systematic error. So the precise location of fluid-crystal phase 

transitions for bulk and confined systems are in doubt. In particular, Gubbins and colleagues
12-33

 have 

performed many studies of bulk and confined crystals using the grand canonical ensemble together 

with a kind of Landau free energy technique, which is essentially a non-Boltzmann or biased 

sampling method. The aim in these studies is to measure the (grand) free energy difference between a 

liquid and crystalline state. This is achieved by starting with one state (liquid or crystal) and traversing 

a path, along an order parameter that measures the system’s degree of crystalline order, to the other 

state. The free energy difference is integrated along this path. The problem with this technique in this 

case is that the crystal end point of this path does not correspond to an equilibrium crystal at the 

specified chemical potential for the reasons given above, i.e. the volume is fixed in advance. If the 

simulation cell volume is large and the process is initiated with a liquid state, then as the path towards 

the crystal state is taken the system might adopt a lattice site density close to the equilibrium value. 

But this is not guaranteed, and the difference between the final lattice site density and the actual 

equilibrium lattice site density corresponding to the applied chemical potential will depend on the 

initial choice of volume. Despite this problem, results obtained using this method are in broad 

agreement with experiment, so it is likely that systematic are not large. Nevertheless, it is always 

preferable to formulate simulation strategies that are in principle exact so that the only error is 

statistical. 

 

The above arguments also apply to quasi 2-dimensional crystals that form on the inner surface of a 

slit-pore where the pore width is fixed and fluid fills the middle of the pore. Once again, they key 

issue is whether the crystal can adjust its lattice site density to reach equilibrium in response to an 

applied chemical potential. If the pore width is fixed then the lattice site density is determined by the 

area of the slit-pore, which is fixed in advance with a grand canonical simulation. So simulations of 

crystals on the surface of slit-pores with fixed pore width using the grand canonical ensemble are also 
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not equilibrium simulations, unless the correct pore area (or lattice site density) is known in advance. 

Once again, the work of Gubbins and colleagues
12-33

 in this area must be viewed with caution because 

all their results will exhibit systematic errors that depend on the difference in the true equilibrium 

lattice site density corresponding to the applied chemical potential and the lattice site density that 

actually develops spontaneously in their simulations, which is influenced by the initial choice of pore 

area. 

 

2 The self-referential method 

As explained above in the introduction, methods for calculating the free energy are important for 

crystals, particularly confined crystals for which the chemical potential must be calculated if the 

corresponding bulk or reservoir state is to be determined. Several methods
34-42

 have been developed 

for calculating the canonical Helmholtz free energy of crystals, which are also sufficient for 

calculating the chemical potential provided the pressure is known or can be calculated (either the bulk 

pressure or the interfacial tension for a confined crystal). Probably the most popular such free energy 

methods are those based on an Einstein crystal reference state
34,37,38,40-42

, for which comprehensive 

texts
5,6,43,44

 have been published. 

 

However, the Einstein crystal route is not a very convenient method for confined crystals because the 

pore walls need to be ‘integrated away’ to make a path from the confined crystal to the Einstein 

crystal (the Einstein crystal is a non-interacting state, and so there cannot be any pore walls in this 

state). Additional simulations are needed to achieve this, and it is not clear that this is a 

straightforward procedure. For example, the precise path chosen might depend on the molecule – wall 

interaction type, i.e. hard or continuous potentials, and on the possible existence of any surface 

induced phase transitions. The aim of work that lead to the self-referential method
3
 (at least, the 

version of the self-referential method described here) was to develop a method that is able to treat 

bulk and confined crystals on an equal footing. That is, to develop a method that did not require the 

pore walls to be integrated away. So far, the version of the self-referential method described in the 

next section has been applied successfully only to bulk crystals
1-3
. Work aimed at applying it to 
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 8 

confined crystals is ongoing, although it should be noted that the original version
45
 of the self-

referential method was applied in the context of hard rods on a line, which can be considered an 

extreme case of confinement for hard spheres in a cylindrical pore. 

 

The self-referential (SR) method calculates the free energy difference between two crystalline solid 

systems that are identical except for their size (see Figure 2). If the free energy corresponding to the 

ensemble used is extensive, and if the large system is twice the size of the small system, then this free 

energy difference is also the free energy of the small system. So the small system is a kind of 

reference state, hence the name of this method. In early work Barnes and Kofke
45
 developed and 

applied the self-referential method to 1-D hard-rods on a line using the canonical ensemble and a 

technique based on sampling vibrational modes. They obtained good agreement with exact grand 

canonical results indicating that their system was sufficiently large. They coined the phrase ‘self-

referential’ for this general idea. Later, this idea was re-invented
3
 in the context of 3-dimensional 

crystals and applied to hard sphere and Lennard-Jones crystals using the isothermal-isobaric ensemble 

and a kind of ‘parameter hopping’ Monte-Carlo technique. Once again, comparison with reference 

literature results showed that the self-referential method was feasible and correct. However, this early 

version of the method is not efficient. The reason for this is that the free energy difference between 

the large and small system is actually relatively large, and so many parameter hops, typically several 

thousand – each requiring a single simulation, are needed to traverse the path between the large and 

small systems. Note that this particular technique is not an essential part of the SR method. Recent 

work
1,2
 has shown how the efficiency of the SR method can be improved dramatically by 

implementing a kind of thermodynamic integration (SR-TI), to the point where the SR method can 

now be considered useful, and it is this version of the method that is summarized next. The latest 

version
1
 also employs the canonical ensemble, which is considered slightly more convenient for bulk 

crystals, and has been extended and applied to crystals composed of rigid linear molecules 

(specifically homonuclear hard and Lennard-Jones dumbbells), and validated once more against 

reference literature data. This latest work also stated (but did not prove) that the method could be 
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applied to arbitrary space-filling crystals, and provided a general formula for the reduced canonical 

Helmholtz free energy difference per particle that is also presented in the next section. 

 

2.1 Theory 

This section briefly summarizes the derivation of the main equations of the SR-TI technique
1,2
. As 

described above, it is more convenient to formulate the method using the canonical ensemble and this 

is how it will be described next, although a discussion of how to use it with the isothermal-isobaric 

ensemble will also be given later. This technique uses two steps, ‘replication’ and ‘relaxation’, to 

compute the free energy difference between the large and small systems. Starting with the small 

system, the replication step computes the free energy difference between the small system and a 

double-size system that is constrained so that it is self-similar, i.e. the two halves of the system are 

almost identical in terms of particle degrees of freedom, except of course that the replicated half is 

translated with respect to the original half (see Figure 2). Note that there are always periodic boundary 

conditions; the small and large systems are not isolated. The relaxation step computes the free energy 

difference between this self-similar double-size system and the normal, fully-relaxed double-size 

system. Adding these two steps together gives the total free energy difference between the small 

system and the double-size system, which is the (negative of) the free energy difference we seek. 

 

2.1.1 Replication 

The replication step can be calculated analytically. To see this we first have to define the partition 

functions for the small, constrained double-size, and relaxed double-size systems. If we focus on 

particles with only positional coordinates initially for convenience, a canonical ensemble partition 

function for a system of N such molecules is in general given by 

 

∫ −Λ
=Φ

V

VHN
N

t
N

ed
N

),(
3

!

r
r

β
 (1) 
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where ri is the position of particle i, dr
N
 indicates the volume element corresponding to the 3N 

positional coordinates of all the particles, 
2/2 hTmkBt π=Λ  is the translational contribution 

obtained by integrating over momenta, H is the configurational contribution to the Hamiltonian and 

TkB=−1β (kB is Boltzmann’s constant and T is temperature). Note that the momentum contribution 

to the free energy is not important because it is the same for all phases, so it is dropped from here on. 

Only the configuration contribution is important in the context of phase behaviour. More complex 

particles with other degrees of freedom will be considered later. 

 

Of course, we know that identical microstates must only be counted once, and this issue needs careful 

consideration
5,46,47

. The factor of N! in (1) arises because normally there are no restrictions on the 

positions of molecules relative to each other. So each microstate has N! permutations, obtained by 

repeatedly swapping labels on pairs of molecules. However, if with a simulated crystal we restrict the 

positions of each molecule relative to each other, then only N such permutations are possible. These N 

permutations are obtained by translating the entire system (remember we have periodic boundary 

conditions), with fixed relative molecular positions, so that molecule 1 visits the position of each of 

the other lattice sites. So, provided our simulations only sample one permutation of relative molecular 

positions (this constraint is indicated by the symbol V′), the partition function can be written as 

(without the momentum contributions now) 

 

∫ ′

−=Φ
V

VHN N

ed
N

),(1 r
r

β
 (2) 

 

Finally, by clamping molecule 1 at a particular position we can write this as 

 

∫ ′

−−=Φ
V

VHN N

ed
N

V ),(1 r
r

β
 (3) 
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Our aim, then, is to calculate the sum of the replication and relaxation free energy differences which 

are 

 

( ) ( ) ( ) 










Φ

Φ
−









Φ

Φ
−=∆+∆=∆

1

1 lnln
α

αβββ d

s

relrep FFF  (4) 

 

where the subscripts stand for the single-size system (s), the highly constrained self-similar double-

size system (α1), and the normal double-size system (d). This subscript notation is used throughout. 

Self-similarity of the double-size system is enforced via a constraint term in the configurational part 

of the Hamiltonian 

 

( )∑
=

−+=
s

dd

N

i

id

N

d

N
rVrHVrH

1

0 ),(),( αφα  (5) 

 

where ixNii s
r rLr −−= + , H0 is the Hamiltonian for an unconstrained system of particles, and where 

the constraint function is the infinite step-function, 

 





≤

>∞
=

0;0

0;
)(

r

r
rφ   (6) 

 

Note that the nature of the interaction between the particles has not been specified. It could be defined 

by a pair potential, or even a higher order multi-body potential. At present the only requirement is that 

the particles only have positional degrees of freedom, and so any pair potential is necessarily 

spherically symmetric. In equation (5) Ns is the number of particles in the small system, Lx is the 

‘replication vector’ equal to half the double-size simulation box side (assumed to be in the x-direction 

here) and α controls the degree of self-similarity, or equivalently the degree of relaxation. That is, 

when α is very small the double-size system is almost perfectly self-similar and when α is very large 
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the double-size system is perfectly relaxed. Indeed, when α = α1 the self-similarity constraint is so 

severe that we can perform the integrals over the replicated particles degrees of freedom immediately 

because the Hamiltonian is essentially constant over the phase space accessible to each replicated 

particle. We obtain a contribution 3/4 3

11
παα =V  per replicated particle, i.e. the phase space volume 

available to each replicated particle. At the same time, because the double-size system is self-similar, 

we can write ),(2),( 01 s

N

d

N
VrHVrH sd ≅α , and so the replication term is 

 

( )
( )

( )




















−

−

−≅∆

∫

∫

′

−

′

−

s

s

s

s

s

V
sss

N

s

s

V
ss

N

d

d

N

rep

VNHd
N

V

VNHd
N

VV

F

),(exp

),(2exp

ln

0

1

0

1

1

1

β

β
β

α
α

r

r

  (7) 

 

Notice that the temperature of the double-size system when α = α1, denoted βα1, is allowed to be 

different to the temperature of the system we are interested in, βs. By setting sββα =
1

2  we obtain 

 

( ) ( )
1

ln αβ VNF srep −≅∆  (8) 

 

which is exact in the limit 01 →α . 

 

2.1.2 Relaxation 

The relaxation free energy difference is conveniently calculated using a kind of thermodynamic 

integration 

 

( ) ∫=∆
m

d

Fd
dFrel

α

α

αα

α
β

αβ
1

)(
 (9) 
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where αααβ Φ−= lnF  and αm is so large that it has no effect on the system. The differential can be 

written as 

 

αα
β α

α

αα

d

d

d

Fd Φ
Φ

−=
1)(

  (10) 

 

The partition function depends on α through both the temperature and the Hamiltonian as follows. As 

α increases the temperature must decrease so that βα = βs when α = αm. Also, as α increases the self-

similarity constraint relaxes until it no longer has any effect. By the chain rule we obtain 

 

α
β

α
β

α
β α

α
α

α
αα

∂
∂

+
∂

∂
= H

H

d

Fd )(
  (11) 

 

where Hα is the Hamiltonian corresponding to Φα and hence Fα, and where the angle brackets denote 

an ensemble average. So we have two contributions to ∆(βFrel); one due to changes in temperature 

 

( ) ∫=∆
s

s

dHFT

β

β
αα ββ

2/

  (12) 

 

and another due to changes in the self-similarity constraint, 

 

( )
α

α

α

α
αα α

βαβ ∫ 







∂

∂
=∆

m H
dF

1

  (13) 

 

The first contribution, ∆(βFT), can be evaluated using numerical quadrature. To calculate contribution 

(13) we must first differentiate the Hamiltonian with respect to α. This is not so straightforward, and 

rather than repeating the derivation in earlier work the result is simply stated 

Page 13 of 37

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 14 

 

( ) ∫ =−=∆
m

rgdNF s

α

α
αα αααπβ

1

2
)(4   (14) 

 

Here, gα(r) is the average ‘partner’ distribution function ∑ == −

i iis rrgNrg )()( 1

αα  , where gαi(ri) is 

the individual partner distribution function for the separation xiNii s
r Lrr −−= +  of any particle – 

replicated particle pair when the self-similarity constraint is α and the temperature is βα. In (14) this 

distribution function is evaluated at its ‘edge’ when r = α. 

 

However, in the limit 01 →α , we find that ααπ α /13/)(4 2 ≅rg , and so greater numerical 

accuracy is achieved by integrating with respect to ln(α). This transforms (14) to 

 

( ) ∫ =−=∆
)ln(

)ln(

3

1

)()ln(4
m

rgdNF s

α

α
αα αααπβ  (15) 

 

Putting (8), (12), and (15) together gives our final result for the configurational contribution, which in 

terms of a length scale λ is 

 

( )
∫ ∫ =−+








−≅

∆ s

s

m

rgdHd
N

V

N

F

ss

β

β

α

α
αα

α αααπβ
λ

β

2/

)ln(

)ln(

3

3

1

1 )()ln(4
1

ln  (16) 

 

which is exact in the limits 01 →α  and ∞→mα . Obviously, for computer calculations finite limits 

need to be chosen for ln(α1) and ln(αm). For the upper limit, αm is large enough when 

0~)( mrg
m

αα = . For a crystal there will always exist αm < l for which this occurs, where l is the 

maximum lattice spacing in any direction. On the other hand, in general it is not known in advance 

how small α1 needs to be for a desired level of accuracy. However, it is known that in the limit  
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01 →α , we find 3)(4 3 →= ααπ α rg . A sensible strategy then is to start with αm = l and to reduce 

ln(α) in a sequence of steps until this limit is reached with sufficient accuracy, i.e. until equation (16) 

has converged. Figure 3 shows how 
3)(4 ααπ α =rg  depends on α for a hard sphere face-centred-

cubic crystal with reduced density ρ* = ρσ3
 = 1.04086, where σ is the hard sphere diameter. 

 

To calculate the integrals in (16) a series of simulations for a range of values of α must be performed. 

Each simulation is essentially an ordinary canonical ensemble Monte-Carlo simulation of the double-

size system, except that the constraint on the configurational Hamiltonian defined in (5), which 

depends on α, must be included. It is important to perform compound MC moves to ensure efficient 

sampling when α is small. These moves are described in the earlier work
1-3
 in detail, but briefly they 

consist of simultaneous trial moves for both particle i and its partner, i+Ns. A trial move consists of 

displacing both particles by the same (large) amount, and then displacing one of them a (small) 

amount more. Recall particle 1 is clamped and so is never displaced. Also, the temperature path from 

βs/2 to βs needs to be defined. In fact this path will depend on α. In paper 1 a suitable path is found to 

be one that keeps the total average configurational energy, αH , nearly constant as α changes. An 

algorithm for choosing βα that achieves this is defined in that work, although it is not unique and 

many other algorithms can be defined. This kind of path, i.e. one that keeps the configurational energy 

nearly constant, is thought to work well because it is important to avoid any potential phase 

transitions. A phase transition could occur if the pressure of the double-size constrained system for 

any particular value of α changes substantially from that of the unconstrained system. And this can 

happen if the average energy of the double-size constrained system changes substantially from that of 

the unconstrained system. So a temperature path that keeps the average configurational energy nearly 

constant appears to be suitable. 

 

2.2 Rigid linear molecules 
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Equation (16) is valid only for spherical particles, which include hard spheres and Lennard-Jones 

particles. In paper 1 it was shown how the SR method can be extended to rigid linear molecules, such 

as needles and dumbbell shaped molecules, and results obtained for hard and Lennard-Jones 

dumbbells compared well with reference data in the literature
48-50

. To make the extension to rigid 

linear molecules we first have to consider and describe the degrees of freedom of such a molecule. In 

addition to the position of the molecular centre, the direction of a rigid linear molecule can be 

described in terms of Euler angles, i.e. θ describes its polar angle (the angle between a molecule’s 

director and the z-Cartesian axis) and φ describes its azimuthal angle (the angle formed by the 

projection of the director onto the x-y plane and the x-axis). The z-axis and x-axis referred to here are 

fixed in space. However, when using the SR method it is convenient to express the orientational 

coordinates of each replicated molecule with respect to the coordinates of that molecules original 

partner molecule. So, for each replicated molecule τ is the angle between the directors of a replicated 

molecule and its partner, while ϕ is the azimuthal angle of a replicated particle with respect to 

coordinates fixed to the director of the original particle. Using this convention, which is described in 

detail in terms of rotation matrices in paper 1, the Hamiltonian for the constrained double-size system 

can now be written as 

 

( ) ( )∑∑
==

−+−+=
ss

dd

N

i

i

N

i

id

N

d

N
rVrHVrH

11

0
ˆ),(),( αα ηηφαφ  (17) 

 

where ηi =1 - cos(τi) and )(ˆˆ αηηα =  is the constraint on each ηi. Recall, this constraint is effectively 

on the angle τi between the directors of each replicated particle and its original partner. So each 

replicated particle’s director can point anywhere within a circle on the surface the unit sphere centred 

on the director of the original particle. These constraints are illustrated in Figure 4. Using this 

convention it is once more straightforward to derive the corresponding replication and relaxation 

terms following the same procedure as for positional degrees of freedom. The corresponding free 

energy expression for rigid linear molecules is 
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ααη

η

η
α

α

α

β

β
αα

ηα ηηηηαααπβ
λ

β
α

ˆ)ˆ()ˆln()()ln(4
1

ln
)(

ˆ

)ˆln(

)ˆln(

3

)ln(

)ln(2/

3

11

11 =−=−+







−=

∆
∫∫∫ gdrgdHd

N

VV

N

F mms

s
ss

 (18) 

 

where 1̂2
1

ηπη =V  is the phase space volume (solid angle) available to each replicated particle when 

fully constrained, and )(ˆ η
αηg  is the average ‘partner’ distribution function 

∑ == −

i is gNg )()( ˆ
1

ˆ ηηη
αα ηη , where )(ˆ ig η

αη  is the individual η partner distribution function for any 

particle – replicated particle pair when the constraint is αη̂  and the temperature is βα (see Figure 4). 

In (18) this distribution function is evaluated at its ‘edge’ when αηη ˆ= . 

 

The upper limit, mη̂ , depends on the kind of particle and crystal phase being studied. For molecules 

with an inversion centre (e.g. homonuclear dumbbells) the maximum value for mη̂  is 1, and for plastic 

crystals (these are crystals without long-range orientational order) it is important to use this maximum 

limit. However, for orientationally ordered crystals of these molecules mη̂  is large enough when 

0~)ˆ(ˆ mm
g ηηη = . On the other hand, for plastic crystals composed of molecules without an inversion 

centre (e.g. heteronuclear dumbbells) it is important to set mη̂  = 2. Finally, for orientationally ordered 

crystals composed of these molecules mη̂  is again large enough when 0~)ˆ(ˆ mm
g ηηη = . However, 

one also has to ensure that all the possible permutations for ‘up’ and ‘down’ molecules are properly 

sampled. This is similar to the problem of residual entropy for water ice
5
. If we now consider 1̂η , it is 

small enough when 1~ˆ)ˆ( 11ˆ1
ηηηη =g . Clearly, the functional form for )(ˆ αη  should be chosen to 

reproduce these limits, and in paper 1 a simple linear relationship is found to be sufficient. Figure 5 

shows how ααη ηηη
α

ˆ)ˆ(ˆ =g  depends on αη̂  for an α-N2 face-centred-cubic
1
 crystal of hard dumbbells 

with reduced bond length L* = L/σ = 0.3 and reduced molecular density ρ* = ρσ3
 = 0.883397, where 

σ is the diameter of one site of the dumbbell. 
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In paper 1 the (configurational) canonical Helmholtz free energy difference (18) for some face-

centred-cubic crystals composed of hard and Lennard-Jones dumbbells was evaluated for several 

different systems, including some orientationally ordered and plastic crystals, and in general the 

results compared well with values for the absolute canonical Helmholtz free energy obtained using an 

Einstein crystal (Frenkel-Ladd) based approach
48-50

. Serious disagreement between the SR and FL 

approaches was found only for one of the LJ dumbbell systems. 

 

2.3 Extension to other molecules and ensembles 

We see by comparing (16) and (18) how a general expression for the free energy of arbitrary space-

filling crystals can be developed. There is a contribution to the replication term from each degree of 

freedom corresponding to the phase space volume available to a replicated particle when the system is 

most constrained at α = α1. For rigid molecules there is a contribution due to the translational degrees 

of freedom of the molecular centre ( 3/4 3

11
παα =V ). For rigid linear molecules there is an additional 

contribution due to the solid angle described by a molecule’s director which, because only the relative 

polar angle needs to be constrained for these molecules (since the Hamiltonian is essentially 

independent of the relative azimuthal angle when the polar angle is very small), is 1ˆ
ˆ2

1
ηπη =V . For 

general rigid molecules without any internal symmetries we expect an additional contribution due to a 

constraint on internal molecular rotations about the major axis, described by πκπ ≤≤− , equal to 

1ˆ
ˆ2

1
κκ =V , where 1̂κ  is the initial constraint on |κ|. Once again, for the same reason given above, it 

should not be necessary to constrain the relative azimuthal angle, and so 
1η̂V  remains equal to 1̂2 ηπ . 

For non-rigid molecules there is some freedom in the description of the molecular degrees of freedom. 

For example, for a non-rigid homonuclear dumbbell molecule one could choose to describe a 

molecule either in terms of the position of the molecular centre, the orientation of the molecular 

director and the bond length, or alternatively in terms of the positions of the two sites. Because with 

the SR method it is convenient to express the coordinates of each replicated particle relative to those 
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of each corresponding original particle, a replicated particle could be described in terms of either ri, 

ηI, φi and the difference in bond length, or alternatively in terms of the positions of the two sites 

relative to those of the original molecule. Each choice will lead to different expressions for both the 

replication and relaxation terms, but of course the free energies calculated by either choice should be 

the same. 

 

In general, we can expect the replication term for a pure crystal to be given by the analytic expression 

 

( ) 






 Ψ
−=∆

dsrep NF
λ

β 1ln  (19) 

 

where ∏=Ψ
j

jj rf )ˆ(  is the phase-space available to a single particle (which is just the product of 

the phase space functions )ˆ( jj rf  for each degree of freedom rj, while ∏=Ψ
j

jj rf )ˆ( 11  is the phase-

space volume available to each replicated particle when the system is fully constrained, and d is the 

dimensionality of the crystal. 

 

By comparing (16) and (18) we see that for each degree of freedom relaxed during the relaxation step 

that there is an integral over its respective partner distribution function. Each corresponding integrand 

is multiplied by the rate of change of the phase space volume, so we expect the replication term can 

be generalised to  

 

( ) ∑ ∫∫
′

Ψ
=−=∆

j
rj

jjjr

r

r

jrel

j

j

jm

j

s

s
rd

d
rrrgrdHdF

α

α ααα

β

β
ααββ

ˆ

ˆ

)ˆln(

)ˆln(2/
ˆ

ˆ)ˆ()ˆln(

1

  (20) 
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where the sum need only be over those degrees of freedom that were constrained upon replication, 

indicated by j′ , and hence need to be relaxed. In addition, as with water ice, any kind of residual 

entropy would need to be accounted for. 

 

The sum of (19) and (20) gives a rather compact and simple expression for the Helmholtz free energy 

of crystals 

 

( ) ∑ ∫∫
′

Ψ
=−+







 Ψ
−=

∆

j
rj

jjjr

r

r

jd

s
j

j

jm

j

s

s
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d
rrrgrdHd
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F

α

α ααα

β

β
ααβ

λ
β

ˆ

ˆ

)ˆln(

)ˆln(2/

1

ˆ
ˆ)ˆ()ˆln(ln

1

 (21) 

 

Because the replication term is analytic only one kind of simulation is needed that measures the 

respective partner distribution functions at their ‘edges’, )ˆ(ˆ αα jjjr rrg = , and the average 

configurational energy, αH , for a suitable range of values of the relaxation parameter α, and for a 

suitable β-path. The corresponding generalised Hamiltonian for these constrained double-size 

simulations can be defined as 

 

( )∑∑
′ =

−+=
j

N

i

jijd

N

d

N
s

dd rrVHVH
1

0
ˆ),}({),}({ αα φrr  (22) 

 

where dN
}{r  indicates all particle coordinates (positions, orientations etc.), and rij is the jth 

constrained degree of freedom, corresponding to the constraint αjr̂ , which depends on the difference 

between the coordinates of an original particle i and its replicated partner i+Ns. 

 

At no point have any assumptions about the nature of molecule – molecule interactions or the 

presence of an external field been made (except that any external field should have the same 

translational symmetry as the single-size simulation cell in the replication direction), and so, without 
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any change in the technique, it is expected that the SR method can be applied to systems involving 

pairwise or higher body interactions and to systems involving external fields, such as pore walls, 

provided they have the required translational symmetry. Clearly, further work is needed to confirm 

these expectations. 

 

Another attractive feature of the SR method is that the centre of mass is not constrained, and so no 

centre of mass corrections
42
 are needed. Also, it was shown in paper 2 that the SR method can be used 

with the isothermal-isobaric ensemble. For these simulations all quantities become ensemble averaged 

with respect to volume fluctuations. The reduced Gibbs free energy difference, ∆(βG) for spherical 

particles was obtained as 

 

( ) { }∫ ∫ =−++−−≅
∆ s

s

m

xxds

ssss

LLrgdHVPd
NN

V

N

G
β

β

α

α
ααα

α αααπβ
λ

β

2/

)ln(

)ln(

33

3

1

1 )(ln4
1)2ln(

ln   (23) 

 

Here, there are several new terms and some new notation that require explanation. But first, an 

important difference between this isothermal-isobaric ensemble derivation and the canonical 

ensemble derivation must be described. This difference concerns the Hamiltonian for the constrained 

double-size system, which for spherical particles is now written 

 

( )∑
=

−+=
s

dd

N

i

xid

N

d

N
LrVrHVrH

1

0 ),(),( αφα   (24) 

 

Note the factor Lx. Although important, it is actually quite trivial to implement this constraint and 

clearly it is possible to define the constrained Hamiltonian is this way for the canonical version as 

well. So this can be considered a generalised form of the self-similarity constraint. Inclusion of this 

factor in (24) allows the self-similarity constraint to fluctuate in tandem with the volume. This 

difference ensures that volume fluctuations are not biased by the self-similarity constraint (actually, 

this form of the Hamiltonian assumes that volume fluctuations occur via Monte-Carlo moves that 
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uniformly scale the volume, which is acceptable provided the shape of the simulation cell is already 

consistent with the equilibrium shape of the crystal unit cell). Switching α for αLx also results in α3
 

becoming 
33

xLα  in the right most term in (23), and in 
1αV  becoming 3/4 33

xLπα . Also note the 

appearance of a ln(2) term and the term PsVd, where Ps is the pressure and Vd is the volume of the 

double-size system. The final difference is that each term on the right hand side of (23) is an ensemble 

average. The angle brackets denote an ensemble average with respect to all fluctuations. But because 

gα is already an ensemble average with respect to particle positions, the curly brackets denote a further 

ensemble average of gα only with respect to volume fluctuations. 

 

Another important practical difference in evaluating (23) compared to (16) concerns how the β-path is 

defined during relaxation, that is how temperature is adjusted during relaxation. The canonical 

ensemble version employs an algorithm that attempts to keep the average (configurational) energy of 

the double-size system nearly constant during relaxation. As explained earlier, the rationale for this is 

that if the average energy is roughly constant during relaxation then the pressure might also be nearly 

constant, and so the crystal should not undergo any change of phase. However, with the isothermal-

isobaric version an algorithm can be designed that works directly with the volume. That is, in paper 2 

an algorithm is employed that attempts to keep the average volume nearly constant during relaxation. 

It is not clear whether this choice for the β-path is important, or whether the nearly constant average 

energy algorithm would also be suitable for the isothermal-isobaric version. 

 

Following the same arguments that lead to (21), the general expression for the Gibbs free energy 

difference is  
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where for any positional degree of freedom we must let the self-similarity constraint fluctuate in 

tandem with the volume. Once again, this expression does not account for any residual entropy. 

Future work will aim to test this result. 

 

3 The Gibbs ensemble adapted to crystalline solid – fluid coexistence 

A fluid system with fixed volume at sub-critical temperature and density between the coexisting 

vapour and liquid densities will spontaneously phase separate to form the corresponding vapour and 

liquid phases because this macrostate has the lowest Helmholtz free energy. A state with even lower 

free energy is one without a vapour-liquid interface. While it is not possible to avoid the formation of 

an interface in nature under these circumstances, it is possible to do this in molecular simulations, and 

this is the basis of the NVT Gibbs ensemble simulation method
6-8
. The advantage this affords is that 

the uniform bulk phases at coexistence can be simulated, and this requires far fewer particles than a 

simulation with an interface if accurate bulk fluid properties are required. Since its invention this 

technique has become a very popular method
51
 for determining fluid-fluid coexistence. Unfortunately, 

for the reason outlined in section 1.2, it is, in principle, impossible to perform Gibbs ensemble 

simulations when one of the phases is a crystalline solid in a direct way. However, it is possible to 

perform these simulations in an indirect way, and this section summarizes work
4
 that demonstrates 

this. 

 

Once again, we start by considering the configurational partition function of a pure system, this time 

for a ‘two box’ simulation where box 1 contains crystalline solid and box 2 contains fluid, both with 

periodic boundaries 
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Here, r represents all molecular degrees of freedom, i.e. position, orientation etc., and for an NVT 

Gibbs simulation we have V = V1 + V2 and N = N1 + N2. The key idea of paper 4 is to replace the 

Page 23 of 37

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 24 

crystalline solid simulation box by a free energy model of the crystalline solid, i.e. to rewrite the 

partition function as 

 

( )∑ ∫∫
=

−−=Ψ
N

N

N
NV

VH
N

d
VNFdV

0

2

2

11

0

1

1

2

2

),(exp
!

)),(exp( r
r

ββ  (27) 

 

where F(N1,V1) is the canonical Helmholtz free energy for a system with N1 molecules in volume V1. 

Provided F is known accurately for all values of N1 and V1 that are sampled during a simulation, then 

ensemble averages can be calculated accurately for either phase, provided the fluid can be simulated 

in box 2. Mehta and Kofke
52
 used a similar idea in their application to vapour-liquid coexistence at 

low temperatures by employing a free energy model for a low density vapour phase in coexistence 

with a simulated liquid phase. 

 

To make progress, a free energy model of the crystalline solid phase is required for all values of N1 

and V1 likely to be sampled during a Gibbs simulation. Generally, a free energy model can be 

obtained as follows. First, a Taylor series expansion in inverse powers of the number of molecules, δ 

= 1/N, for the free energy per particle NNNFf /)/,( ρρ =  at a particular density ρ, can be written 

 

)()0()( 2

1

0

11 δ
δ

δδ
δ

ρ
ρρ O

f
ff +

∂

∂
+=

=

  (28) 

  

From this, it follows immediately that 
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and hence the canonical Helmholtz free energy for a system with N1 particles in volume V1 can be 

written in terms of the canonical Helmholtz free energy of a system with Nc molecules at the same 

density as 

 

0
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1
1

11 1),(),(
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∂
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δ

ρ

δ
f
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N

N

N
VNF
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N
VNF

c

c
c

c

  (30) 

 

which is accurate for sufficiently large N1 and Nc. This analysis has simplified the problem from that 

of knowing the free energy for each combination of N1 and V1 to instead just knowing the free energy 

for a fixed number of molecules, Nc, in a range of volumes, and the constant 0)/( =∂∂ δρ δf . In paper 2 

equation (30) is truncated at its first term resulting in a simple linear scaling approximation for F 

 

),(),(
1

1
1

11
N

N
VNF

N

N
VNF c

c

c

≈  (31) 

 

leaving just F(Nc, V) to be determined for a range of values of V. This function can be found from the 

volume probability distribution function, p(V), of an isothermal-isobaric (NPT) simulation with Nc 

particles at pressure P 

 

cBc NPVVpTkVNF µ+−−= )(ln),(   (32) 

 

where µ is the chemical potential corresponding to this pressure (note the sign error in equation (16) 

in paper 4). To use (31) a pressure should be chosen such that the range of densities sampled during 

the NPT simulation is similar to that sampled during the Gibbs simulation. The chemical potential at 

this pressure must also be known, and this can be determined by any free energy method for 

crystalline solids, including the SR method described in the preceding sections. In paper 4, for 

convenience, a pressure for which i) the chemical potential was already known, and ii) it was also 
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known that the appropriate range of densities would be sampled, was chosen. However, in general, an 

appropriate pressure is not usually known in advance, and so several iterations of this Gibbs 

simulation technique might be required to obtain convergent results. Future work will test this aspect 

of this method. 

 

In paper 4 a free energy model for the face centred cubic phase of a crystalline (shifted force) 

Lennard-Jones system was generated by combining (31) and (32) to obtain  

 

11

1

1
1

11 )(ln),( NPV
N

N
Vp

N

TNk
VNF c

c

B µ+−
−

=  (33) 

 

This free energy model, when combined with (27), enabled Gibbs ensemble simulations of both 

vapour – solid and liquid – solid coexistence at the triple point of this Lennard-Jones system. The 

known pressure and chemical potential at this point were used to generate the free energy for Nc = 256 

particles at this state. This data is shown in Figure 6, and is used as input to (31). Using this free 

energy model, good agreement was found for the density, pressure and chemical potential of the 

coexisting phases at the triple point between the indirect Gibbs simulations described here and from 

reference values in the literature
53
 (to within statistical error). 

 

Clearly, this approach is not as convenient as standard Gibbs simulations for gas-liquid coexistence 

because usually a suitable pressure and chemical potential at which to generate the canonical 

Helmholtz free energy model via NPT simulation is not known in advance. In paper 4 a state point for 

which this data was known in advance was specifically chosen for convenience to test the method. 

But usually this information will not be known. Also, this method is less convenient than standard 

Gibbs simulations of vapour-liquid coexistence because several types of simulation are needed to 

generate the free energy model, including a free energy calculation for the crystalline solid. Future 

work will aim to compare this indirect Gibbs ensemble strategy with the usual alternative strategy, 

which is calculation of the free energy along both solid and fluid branches near coexistence
5
. Also 
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note the work of Chen et.al.
54
 concerning simulation of fluid-solid coexistence. Their Gibbs 

simulation technique is designed to allow simulation of phase coexistence between liquid and solid 

phases. However, in their work equilibrium between the liquid phase and the solid phase is achieved 

via a liquid – solid interface. So, the title of their paper is not strictly accurate. Nevertheless, despite 

the fact that their method requires many more particles due to the presence of an interface, it could be 

quite convenient. 

 

Despite the initial success of the indirect Gibbs simulation technique summarized above, several 

problems with this method should be highlighted. First, as with any Gibbs simulation, it becomes very 

slow if the liquid phase is dense because the probability of a successful particle exchange between 

boxes becomes very low. In this case specialized ‘biasing’ techniques
9
 might be useful. Second, if the 

density difference between coexisting phases is small, which is often the case for coexisting liquid 

and solid phases, then large fluctuations in the number of particles in each box should occur. In this 

case very long simulations are needed to ensure sufficient sampling of these large fluctuations. In 

addition, a more accurate approximation than (33) for the free energy model might be needed. This 

model relies on the simple linear scaling approximation (31), which is expected to loose accuracy 

when either Nc or N1 are small. A more sophisticated approach could use both the first and second 

terms in (30), with at least two NPT simulations performed at the same pressure, but with 

significantly different numbers of particles, to determine 0)/( =∂∂ δρ δf . Finally, this approach has, so 

far, only been applied to pure crystals and it is not yet clear if crystalline mixtures can be simulated in 

this way. 
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Figures 

 

 

Figure 1. Sketch of the NσT ensemble for simulation of crystalline solid in a slit pore. Fluctuations in 

volume are allowed in the direction of the slit pore to equilibrate the interfacial tension, σ. Periodic 

boundaries are applied in directions parallel to the pore walls. 

 

 

 

Figure 2. Sketch of the basic idea behind the self-referential method; the Gibbs free energy of the 

double-size system is twice that of a single-size system. Note that these are not isolated systems; 

periodic boundaries are applied. 
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Figure 3. The variation of 
3)(4 ααπ α =rg  with α for a hard sphere fcc crystal with reduced density 

(average number of hard spheres per hard-sphere diameter cubed) 1.04086. Symbol sizes are larger 

than the standard error, and α is on a logarithmic scale. 
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Figure 4. Depiction of some terms used to describe the relative positions of the ith rigid linear 

molecule and its replicated partner. The red and blue dots are the centres of the original and replicated 

partner dumbbells respectively (after subtracting the replication vector Lx from the position of the 

replicated dumbbell), while the red and blue lines are the directors of the original and replicated 

partner dumbbells respectively. ri, the relative separation of their centres is constrained to be less than 

α, while τi, the angle between their directors, is constrained to be less than )ˆ1(cos 1

αη−−
. The 

relative azimuthal angle is not constrained, so the director of the replicated molecule can point 

anywhere within a circle on a sphere centred on the director or the original molecule. 

 

 

ri 

 

 

α 
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Figure 5. The variation of
αη̂g  with αη̂  for a hard face centred cubic hard dumbbell crystal with 

reduced bond length L* = L/σ = 0.3 and reduced molecular density ρ* = ρσ3
 = 0.883397, where σ is 

the diameter of one site of the dumbbell. 
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Figure 6. Reduced canonical Helmholtz free energy for the crystalline solid phase of a shifted-force 

Lennard-Jones system with 256 particles for a range of densities ρ at reduced temperature T* = (βε)-1 

= 0.56, reduced pressure P* = Pσ3
/ε = 0.00186, and reduced configurational chemical potential µ* = 

µ/ε = -3.23, where σ and ε are the Lennard-Jones length and energy parameters respectively. The 

symbols are simulation data, while the line is a cubic polynomial fit to this data and is used to 

generate the free energy model for use in the indirect Gibbs simulation described in the text. 
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