
New Techniques for Speeding-up Fault-injection Campaigns

L. Berrojo, I. González F. Corno, M. Sonza Reorda,
G. Squillero

L. Entrena, C. Lopez

Alcatel Espacio, S.A.
Madrid, Spain

Politecnico di Torino
Dipartimento di Automatica e

Informatica
Torino, Italy

Universitad Carlos III
Area de Tecnologia

Electronica
Madrid, Spain

http://www.alcatel/espacio http://www.cad.polito.it http://www.uc3m.es

Abstract*

Fault-tolerant circuits are currently required in several
major application sectors, and a new generation of CAD
tools is required to automate the insertion and validation
of fault-tolerant mechanisms. This paper outlines the
characteristics of a new fault-injection platform and its
evaluation in a real industrial environment. It also details
techniques devised and implemented within the platform to
speed-up fault-injection campaigns. Experimental results
are provided, showing the effects of the different
techniques, and demonstrating that they are able to reduce
the total time required by fault-injection campaigns by at
least one order of magnitude.

1 Introduction

The last years marked growing demand for new
techniques to be applied in the design of fault tolerant
electronic systems, and for new tools for supporting the
designers of these systems. The increased interest for the
domain of fault tolerant electronic systems design stems
primarily from the extension in their use to many new
areas. At the same time, the cost and time-to-market
minimization constraints obviously affect the design of
fault tolerant systems, and new techniques and new tools
are continuously needed to face these constraints. Finally,
the adoption of new technologies for the implementation
of electronic devices asks for effective techniques for
making them able to guarantee a sufficient level of
reliability [1].

* This work has been partially supported by the

European Community through IST project AMATISTA and
by Ministero dell’Istruzione, dell’Univerità e della Ricerca
through project ISIDE.

In this framework, evaluation of the dependability of
designed systems is a key point, and fault injection
emerged as a viable solution [2] for the qualification plan
of a design. When assessing the reliability of in-house
designed ASICs or FPGAs, simulated fault injection [3],
[4] is normally preferred to other approaches, such as
those based on hardware fault injection [5], [6]. This is
due to several reasons:

• First, simulated fault injection provides the
maximum flexibility in terms of supported fault
models.

• Second, it allows performing reliability assessment
at different stages in the design process, well before
than a prototype is available.

• Finally, simulated fault injection can normally be
rather easily integrated into already existing design
flows.

As a major drawback, simulated fault injection can be
unacceptably slow, being based on the simulation of the
system in its fault-free version as well as in the presence of
the enormous number of the possible faults.

Several techniques have been proposed in the past to
efficiently implement simulation-based fault-injection
campaigns for transient faults:

• A first approach [3], [4] is based on modifying the
system description, so that faults can be injected
where and when desired, and their effects observed,
both inside and on the outputs of the system. This
method main advantage is its complete
independence on the adopted simulator, but it
normally provides very low performance, due to
the high cost for modification and possibly
recompilation for every fault.

• A second approach uses modified simulation tools,
which support the injection and observation
features. This approach normally provides the best
performance, but it can only be followed when the
code of the simulation tools is available and easily

modifiable, e.g., when fault injection is performed
on zero-delay gate-level models. Its adoption when
higher-level descriptions (e.g., RT-level VHDL
descriptions) are used is much more complex.

• A third approach [7] relies on the simulation
command language and interface provided by some
specific simulator. The main advantage of this
approach lies in the relatively low cost for its
implementation, while the obtained performance is
normally intermediate between those of the first
and second approaches. It must be noted that it is
now increasingly common for the new releases of
most commercial simulation environments to
support some procedural interface, thus allowing an
efficient and portable interaction with the
simulation engine and with its data structures [8].

In this paper we outline the fault-injection platform that
has been developed and is currently being evaluated in a
real industrial environment, and describe a set of
techniques devised and implemented within the platform
to speed-up fault-injection campaigns. This research is
performed in the context of the European IST project
AMATISTA, whose main target is indeed the
development of a set of tools for the design of fault
tolerant circuits at RT-level.

The fault-injection platform is mainly used for
assessing the correctness and effectiveness of the fault
tolerance mechanisms implemented within the ASIC and
FPGA designs developed for space applications. The
platform works on RT-level VHDL descriptions which are
then synthesized, and is based on commercial tools for
VHDL parsing and simulation. Simulation-based fault
injection is adopted, and prototypical tools have been
developed for automatically generating the script
commands interacting with the simulator.

In this paper, only single bit flip faults on memory
element will be considered. The motivation is that, in
synchronous designs with moderately slow clocks,
transient faults are usually relevant for memory elements
only. Moreover, when designs are described using well-
defined synthesizable description styles, memory elements
may be deterministically recognized in the RT-level
source. Since, gate-level optimization algorithms usually
preserve memory elements, gate-level bit flips on such
memory elements can be modeled in a nearly exact way at
the RT-level.

In the AMATISTA project, speeding-up RT-level
fault-injection campaigns are obtained by mainly
following two avenues of attack: first, clever techniques
have been devised to generate and collapse the list of
faults to be injected. Secondly, several optimization
mechanisms have been defined and successfully evaluated
to reduce the time required to simulate each fault

A prototype of the whole fault-injection platform has
been implemented and it has been evaluated on a real

benchmark circuit. Results are provided, showing the
effects of the different techniques, and demonstrating that
they are able to reduce the total time required by a fault-
injection campaign by at least one order of magnitude.

The paper is organized as follows: Section 2 describes
the whole fault-injection campaign, detailing fault-
injection schema and fault-collapsing strategies. Section 3
reports some experimental results on an industrial design.
Section 4 concludes the paper.

2 RT-Level Fault-injection Campaign

Single bit flip faults are generally termed single error
upset (SEU). Let us denote the set of all faults with Ψ, and
SEU number i with Si. (,)

i

A
i L iS FF T= , where Li is

index of the fault location into flip-flop list (FFj), i.e., the
memory element that changes its value; and Ti

A is the fault
activation time, i.e., the time instant when the fault
location flips its value. Defining Tsim as the workload
length, : A

i i simS T T∀ ∈ Ψ ≤ .
Function C(t) represents the state of the fault-free

design at test-bench instant t. The state takes into account
all values produced on output ports and all values stored
into memory elements: C(t) = {PO(t), FF(t)}. Cf

i(t)
represents the same state under the effect of Si. Clearly,

f[0, [: C() C ()A
i it T t t∀ ∈ =

since before Ti
A, Cf

i(t) is not affected by Si. The fault-free
simulation is usually termed golden run.

It should be noted that the design is assumed to be
synchronous sequential with, possibly, many clocks. By
defining the quantum τ as the greatest common divider
between all clocks periods, all significant time instants can
be expressed in the form aτ, with a ∈ ΝΝΝΝ. Functions C(⋅)
and Cf

i(⋅) are discrete and the golden run is a finite list of
values (C(τ), C(2τ), …, C(Tsimτ)), where Tsimτ is the length
of the test bench. To ease formulas, in the following τ = 1.

The goal of the fault-injection campaign is to grade
possible faults, by partitioning the set Ψ of all faults into
four different sets:

• Φ (Failure): the set of all SEUs that, during the test
bench, produce a difference on an output port of the
design.

• Σ (Silent): the set of all SEUs that, compared to the
golden run, never produce differences on output
ports and, at the end of the test bench, left no
differences in memory elements.

• Λ (Latent): the set of all SEUs that, compared to
the golden run, never produce differences on output
ports, but, at the end of the test bench, cause at least
a memory element to differ.

•

E (Error): the set of all SEUs that cause an error in
VHDL simulation.

At the end of the fault-injection campaign, each SEU is
classified in exactly one set.

Faults belonging to the E (error) set represent a typical
problem of high-level fault simulation, and they have no
correspondent classification in gate-level campaigns.
Simulation errors are caused, for instance, whenever a
fault sets a signal to a value out of its declaration range.
Once such an error has occurred, simulation may be
halted. Indeed, several commercial VHDL simulators do
halt simulation automatically in presence of such errors.

Failure set (Φ) deserves no special comments. As soon
differences propagate to an output port, simulation may be
halted and the fault classified as failure.

A fault in the latent set (Λ) may be classified whenever
as soon as all fault effects disappear (e.g., at time instant
tr). Since no interference may exist between different
faults, differences may be generated only at fault
activation time, and then are propagated. More formally:

f

f

] ,] C() C ()

[,] : C() C ()

A
r i SIM r i r

r SIM i

t T T t t
t t T t t

∈ ∧ =

⇒ ∀ ∈ =

Thus, in three cases (error, failure, silent) SEUs are
categorized before the end of the test bench, while in one
(latent), the fault-injection experiment is required to reach
the end of the test bench. The possibility to classify a SEU
before the end of the test bench gives the opportunity to
optimize the process by stopping the simulation.

Next section details the fault-injection algorithm, while
fault collapsing techniques are analyzed in 2.2, 2.3 and
2.4. Fault-collapsing methodologies that can be applied
only during the fault-injection experiment are called
dynamic, while methodologies that can be applied before it
are termed static. Static techniques are again classified in
workload-dependent and workload-independent, whereas
they require the analysis of the test bench or not.

2.1 Fault Injection

The basic idea of the fault-injection algorithm is to
fully simulate the fault-free design, storing the golden run.
Then simulate each fault sequentially by loading the state
of the design just before fault activation time, injecting the
SEU and eventually categorizing its effects. Since the
design is sequential, it is sufficient to load values into
memory elements FF(t) and set input stimula PI(t).

Fault-injection schema is shown in Figure 1; however,
a few additional performance considerations still need to
be made.

Simulate fault-free design and store checkpoints CP = (
C(tg1), C(tg2), ..., C(tgNg))
For each Si {
 Ei = ∅ // Empty equivalent set

1

1
max ()
g A

ij

g

t T

j N
s j

≤ −

≤ ≤
= // Select the nearest state in GR

 Cfi(tsg) ← C(tsg) // Load nearest state CP list
 Simulate design until t = TiA-1
 Inject Si and calculate Cfi(TiA)
 inc = 1 // Initialize increment step
 Tend = TiA // Initialize interval
 while(Si is not categorized) {
 Tstart = Tend
 Tend = Tstart + inc
 Simulate design calculating Cfi(t),
 t ∈]Tstart, Tend]
 Insert all faults Sj dynamically equivalent to Si
 in set Ei
 Try to categorize Si:
 if exists a Sj in set Ei already categorized
 or comparing Cfi(t) to C(t), t ∈]Tstart, Tend]
 inc = inc * 2
 }
 Categorize all faults Sj in Ei like Si
}

Figure 1: Fault-Injection Schema

Firstly, saving circuit states is a time- and space-
consuming task. It is necessarily to trade-off the ability to
resume simulation from any possible Ti

A with the amount
of disk space required to save all these states. Thus, a list
of checkpoints CP is defined as a list of Ng equally
distributed simulation states ()

g

g
NC t . In order to inject

fault Si, the design is first brought to the nearest CP state
preceding Ti

A-1 by loading data from the checkpoint list.
Then, the fault-free design is simulated until Ti

A-1. The
number Ng of checkpoints and the interval between them
must be carefully regulated.

Secondly, also checking the state of a simulation,
seeking differences from the golden run is a resource-
consuming task. In the current implementation of the fault
injector, it is significantly optimized and exploits
simulator facilities, however, it still deserves special
attention. It has been experimentally observed that most of
the SEUs either can be classified in the first clock cycles
after injection, or after a relatively long time. Thus, the
simulation is run for exponentially increasing amounts of
time: one clock cycle after the activation of the SEU the
faulty circuit signal traces are compared against the good
ones; next comparison is performed after two clock cycles,
then four, and so on.

A set Ei of faults equivalent to Si is dynamically built
during simulation. The goal is to reduce the number of
SEUs injected either by categorizing some faults before
simulation, or stopping the current simulation as soon as
the current SEU Si is discovered equivalent to an already-
simulated one. This optimization will be detailed later.

2.2 Workload Independent Fault Collapsing

This Sub-section illustrates static fault-collapsing
techniques that are uniquely based on the analysis of the
design.

The study of the topology of the circuit helps
determining the category of a fault. First, a scheme of the
circuit where only two types of elements appear:
sequential and combinational blocks (e.g., Figure 2).

O1

O2

I1 C1 C2

C3I2

R1 R2 R3

R4

Figure 2: Design Topology

In this scheme it is possible to find the following cases:
•

Primary input directly going to a flip-flop
• Primary input going to a flip-flop through a

combinational part
•

Direct communication between two flip-flops
• Communication between two flip-flops through a

combinational part
•

Feedback in a flip-flop
• Direct communication from a flip-flop to a primary

output of the circuit
•

Communication from a flip-flop to a primary
output through a combinational part

With the analysis of these elements it is possible to find
dominances and static equivalences with respect to the
faults to be injected. Dominant fault are those fault whose
effect is the same as the effect for other faults and their
simulation causes the same changes as the others but not
in the contrary. On the other hand, equivalent faults are
those faults whose effects are the same after a period of
time are considered equivalent if the effects caused by any
of them are not sub-set of the effects of the others.
Dominances and static equivalencies may reduce the size

of the fault list, and speed-up the simulation process
improving dynamic equivalencies, described later.

Direct flip-flops to the outputs are very common in
current designs, aero-spatial industry imposes this
condition to all its designs in order to ensure Fault
Tolerance in their equipments as indicated in the ESA
Guidelines. All flip-flops whose value is connected
directly with the outputs of the circuit will have
automatically all of their faults marked as failure.
Moreover any flip-flop FFi whose output is connected
directly and exclusively to another flip-flop FFj have its
faults belonging to the same category as faults of the
connected flip-flop FFj.

Further optimizations are possible, considering that all
SEUs affecting registers with a given bit width can be
categorised by analysing faults in a single flip-flop of the
register, if the same operations and transformations are
affecting all the bits. In addition, whenever the output of
an internal counter is the overflow or a related function,
each fault affecting it can be categorized by analyzing an
equivalent SEU in the last flip-flop of the counter,
although with a different activation time.

Experimental evidence suggests that static test-bench
dependent fault collapsing enables pruning about 10% of
the total number of faults.

2.3 Workload Dependent Fault Collapsing

This Sub-section illustrates static fault-collapsing
techniques that are based on the simulation of the
workload, or test bench.

The fault-free design is simulated, and all read and
write operations on memory elements are tracked.
Operations are tracked with bit granularity (the same
granularity as SEUs). That is, each single read and write
operation on each single bit is logged. Figure 3 show an
example of read and write operations on bit 3 of a signal
named sig.

Figure 3: Golden-Run Fault Collapsing

Starting with the log, all possible SEUs are collapsed
using the following rules:

• All SEUs between an operation (either read or
write) and a write operation are marked as silent.
Fault injection is useless, because their effect will
be masked before any possible propagation. In the
example, a SEU at TA = 9 is silent.

W R R W R W R

1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 1913

sig[3]
WW R R W R W R

1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 1913

sig[3]
W

• All SEUs between an operation (either read or
write) and the subsequent read operation are
equivalent. In the example, fault on sig[3] with
TA = 1 and TA = 2 are equivalent, while the SEU at
TA = 4 is equivalent to the one at TA = 7.

Experimental evidence suggests that workload
dependent fault collapsing may enable pruning up to 80%
of the total number of faults.

2.4 Dynamic Fault Collapsing

This Sub-section illustrates fault-collapsing techniques
that may be activated during the fault-injection campaign.
As anticipated before, this technique is exploited to
discover equivalencies between faults.

During the simulation of SEU Si, if at time te > Ti
A

differences between C(te) and Cf
i(te) are limited to the

value of exactly one memory element FFe, then Si is
equivalent to a bit-flip Se on that memory element with
Te

A = te. I.e.,
 with (,)j e e e eS S S FF t≈ =

Indeed, Se may not be explicitly listed in the fault list,
because static fault collapsing marked it equivalent to a
different SEU Sf. In this case, for the transitive property, Si
will be marked equivalent to Sf

j e e f j fS S S S S S≈ ∧ ≈ ⇒ ≈
As a result, during simulation the set Ei of SEUs

equivalent to Si is dynamically built. Whenever the fault
injector is able to categorize Si, all faults in Ei get the same
classification.

It must be also noted that the newly discovered
equivalent fault Se may be already classified, even if
Te

A > Ti
A. First of all, there is no reason to presume that

faults are injected in the same time order of their
activation time (indeed, several optimizations are currently
under study to optimize the order of injections). Moreover,
fault Se may be already classified because it has been
found equivalent to a fault Sk with Te

A > Ti
A > Tk

A. In this
eventuality, fault Si and all elements of Ei take the same
classification as Se.

Experimental evidence suggests that, exploiting
dynamic fault collapsing, about 5% of a statically-
collapsed fault list may not be injected. Using a complete
(not collapsed) list of SEUs, about 2 faults out of 3 may
usually be classified without simulation.

3 Experimental Results

A prototypical version of the fault-injection platform
has been devised in ANSI C, and consists of about 3,000
lines.

Circuit analysis exploits FTL Systems’ Tauri™ parser,
fault-list generation takes advantage of Synopsis VHDL

Simulator, while the fault injector is currently based on
Modelsim™ by Model Technology. Simulation states are
saved using the checkpoint command, and subsequently
loaded exploiting the restore option of the simulator. The
faulty circuit and the golden run are compared taking
advantage of the waveform comparison facilities built in
the simulator.

The new version of the fault injector will be closely
fastened to FTL Systems’ Auriga™ simulation system.
This would lead to a closer integration, better performance
and allow additional optimizations.

The available prototype was used to assess the
reliability of a partially hardened version of the Solar
Array Drive Electronics (SADE). SADE is a module
developed by Alcatel Espacio that will be hosted on
satellites and it is dedicated to rotate two solar array drives
so as to get the maximum energy from the solar cell
panels.

On the one hand, SADE gets control commands from
and transmits telemetries to special modules via a MACS
bus. On the other hand, SADE controls the two SADM
(Solar Array Drive Modules). These two functions,
interfaces and SADM control, are included in an FPGA.
SADE also includes an AC/DC and telemetry module and
two motor drives modules, one for each SADM. The
selected foundry for this design is Actel. The technology is
the 0.8 micron CMOS Radiation Hardened FPGA Family.
The device shall be an RT14100A-CQ256E FPGA.

SADE contains 480 memory elements, and the typical
analyzed workload consists of Tsim = 131,026 simulation
cycles. The complete fault list Ψ contains 62,892,480
SEUs, however, in the preliminary experiments only the
motor operator block has been considered. This block
includes 95 memory elements and, since the full workload
was considered, adopted complete fault list counts
12,709,522 SEUs. Since there are two motor blocks in the
SADE design, current experiments take into account 40%
of total faults. Examined blocks do not contain any
peculiar characteristic. Table 1 summarizes the result of
the fault collapsing.

 # %
Total number of SEU 12,709,522 100.00
Pruned by workload independent
collapsing

1,379,720 10.86

Pruned by workload dependent
collapsing

9,448,798 74.34

SEU that need to be injected 1,618,952 12.74

Table 1: Fault Collapsing Experiment

At the end of the fault-collapsing phase, the fault list
has been collapsed to about 13% of its initial size. Then,
during fault-injection of a sampled fault list, dynamic

equivalencies allow to avoid simulation of a further 4.73%
of the sampled SEUs. It should be remarked that dynamic
fault collapsing does not introduce any significant
overhead in the simulation.

Experiments where run on a SPARC ULTRA
Workstation with 256MB of RAM. The CPU time
required for running the preliminary golden run simulation
of SADE was about 80 seconds. This time includes
generating and saving all required checkpoints. For the
sake of comparison, the CPU time required running a full
simulation of the test bench is about 6 seconds, but this
time accounts for no comparisons of any kind: the
simulation is run without observing nor storing any
information.

The CPU time required for simulating a single fault
was about 5 seconds. It is only slightly smaller than
running complete simulation, but for each fault the fault
injector loads a state from the golden run, and runs the
simulation checking waveform and massively interacting
with the simulator.

4 Conclusions

This paper described a set of techniques for speeding-
up fault-injection campaigns on fault tolerant circuits at
RT-level.

Experimental results illustrated the effectiveness of the
proposed approach in term of fault list collapsing and fault
injection mechanism. The evaluation in an industrial
environment showed that a SEU can be injected and
categorized in a reasonable amount of time on a
workstation, and only a small fraction of possible SEUs
needs to be explicitly injected.

In more general terms, through integration into
commercial design flows, the AMATISTA project hopes to
increase the usage of fault tolerant technology in
application sectors where the time and additional people
previously required to manually implement approaches
has not resulted in wide-spread use of fault tolerance.

Industrial partners foresee that the enhancement of the
design flow would allow a reduction between 25% and
35% in terms of overall design time. Improvements will
include reduction of simulation times, reduction of re-
cycling in the design flow, earlier detection of errors, and
minimization of several design effort.

Experimental results show the efficacy of all fault-
collapsing techniques: workload independent, workload
dependent and dynamic. Dramatic reductions in the
number of SEUs are essential to keep fault-injection
campaigns feasible.

Deeper topological analyses of the circuits are currently
under study. A fault dictionary for classifying SEU will be
created analyzing the design starting from its outputs to its
inputs, through internal registers. This dictionary will be
subsequently exploited during fault collapsing or fault
injection.

Other experimental results gathered on different
circuits from different industries confirm the general
validity of our claims.

5 References

[1] M. Nikoladis, Time Redundancy Based Soft-Error
Tolerance to Rescue Nanometer Technologies, IEEE 17th
VLSI Test Symposium, April 1999, pp. 86-94

[2] M.C. Hsueh, T. K. Tsai, R. K. Iyer, “Fault Injection
Techniques and Tools”, Computer, April 1997, pp. 75-82.

[3] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, J. Karlsson, Fault
Injection into VHDL Models: the MEFISTO Tool, Proc.
FTCS-24, 1994, pp. 66-75

[4] T.A. Delong, B.W. Johnson, J.A. Profeta III, A Fault
Injection Technique for VHDL Behavioral-Level Models,
IEEE Design & Test of Computers, Winter 96 (Vol 13,
No. 4)

[5] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.C. Fabre, J.-C.
Laprie, E. Martins, D. Powell, Fault Injection for
Dependability Validation: A Methodology and some
Applications, IEEE Transactions on Software Engineering,
Vol. 16, No. 2, February 1990

[6] J. Karlsson, P. Liden, P. Dahlgren, R. Johansson, U.
Gunneflo, Using Heavy-Ion Radiation to Validate Fault-
Handling Mechanisms, IEEE Micro, Vol. 14, No. 1, pp. 8-
32, 1994

[7] D. Gil, R. Martinez, J. V. Busquets, J. C. Baraza, P. J. Gil,
Fault Injection into VHDL Models: Experimental
Validation of a Fault Tolerant Microcomputer System,
Dependable Computing EDCC-3, September 1999, pp. 191-
208

[8] B. Parrotta, M. Rebaudengo, M. Sonza Reorda, M.
Violante, “New Techniques for Accelerating Fault Injection
in VHDL descriptions”, IEEE International On-Line Test
Workshop, July 2000, pp. 61-66

Auriga and Tauri are trademarks of FTL Systems, Inc.

