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Abstract* 

Fault-tolerant circuits are currently required in several 
major application sectors, and a new generation of CAD 
tools is required to automate the insertion and validation 
of fault-tolerant mechanisms. This paper outlines the 
characteristics of a new fault-injection platform and its 
evaluation in a real industrial environment. It also details 
techniques devised and implemented within the platform to 
speed-up fault-injection campaigns. Experimental results 
are provided, showing the effects of the different 
techniques, and demonstrating that they are able to reduce 
the total time required by fault-injection campaigns by at 
least one order of magnitude. 

 

1 Introduction 

The last years marked growing demand for new 
techniques to be applied in the design of fault tolerant 
electronic systems, and for new tools for supporting the 
designers of these systems. The increased interest for the 
domain of fault tolerant electronic systems design stems 
primarily from the extension in their use to many new 
areas. At the same time, the cost and time-to-market 
minimization constraints obviously affect the design of 
fault tolerant systems, and new techniques and new tools 
are continuously needed to face these constraints. Finally, 
the adoption of new technologies for the implementation 
of electronic devices asks for effective techniques for 
making them able to guarantee a sufficient level of 
reliability [1]. 

                                                           
*  This work has been partially supported by the 

European Community through IST project AMATISTA and 
by Ministero dell’Istruzione, dell’Univerità e della Ricerca 
through project ISIDE. 

In this framework, evaluation of the dependability of 
designed systems is a key point, and fault injection 
emerged as a viable solution [2] for the qualification plan 
of a design. When assessing the reliability of in-house 
designed ASICs or FPGAs, simulated fault injection [3], 
[4] is normally preferred to other approaches, such as 
those based on hardware fault injection [5], [6]. This is 
due to several reasons: 

• First, simulated fault injection provides the 
maximum flexibility in terms of supported fault 
models. 

• Second, it allows performing reliability assessment 
at different stages in the design process, well before 
than a prototype is available.  

• Finally, simulated fault injection can normally be 
rather easily integrated into already existing design 
flows. 

As a major drawback, simulated fault injection can be 
unacceptably slow, being based on the simulation of the 
system in its fault-free version as well as in the presence of 
the enormous number of the possible faults. 

Several techniques have been proposed in the past to 
efficiently implement simulation-based fault-injection 
campaigns for transient faults: 

• A first approach [3], [4] is based on modifying the 
system description, so that faults can be injected 
where and when desired, and their effects observed, 
both inside and on the outputs of the system. This 
method main advantage is its complete 
independence on the adopted simulator, but it 
normally provides very low performance, due to 
the high cost for modification and possibly 
recompilation for every fault. 

• A second approach uses modified simulation tools, 
which support the injection and observation 
features. This approach normally provides the best 
performance, but it can only be followed when the 
code of the simulation tools is available and easily 



modifiable, e.g., when fault injection is performed 
on zero-delay gate-level models. Its adoption when 
higher-level descriptions (e.g., RT-level VHDL 
descriptions) are used is much more complex. 

• A third approach [7] relies on the simulation 
command language and interface provided by some 
specific simulator. The main advantage of this 
approach lies in the relatively low cost for its 
implementation, while the obtained performance is 
normally intermediate between those of the first 
and second approaches. It must be noted that it is 
now increasingly common for the new releases of 
most commercial simulation environments to 
support some procedural interface, thus allowing an 
efficient and portable interaction with the 
simulation engine and with its data structures [8]. 

In this paper we outline the fault-injection platform that 
has been developed and is currently being evaluated in a 
real industrial environment, and describe a set of 
techniques devised and implemented within the platform 
to speed-up fault-injection campaigns. This research is 
performed in the context of the European IST project 
AMATISTA, whose main target is indeed the 
development of a set of tools for the design of fault 
tolerant circuits at RT-level. 

The fault-injection platform is mainly used for 
assessing the correctness and effectiveness of the fault 
tolerance mechanisms implemented within the ASIC and 
FPGA designs developed for space applications. The 
platform works on RT-level VHDL descriptions which are 
then synthesized, and is based on commercial tools for 
VHDL parsing and simulation. Simulation-based fault 
injection is adopted, and prototypical tools have been 
developed for automatically generating the script 
commands interacting with the simulator. 

In this paper, only single bit flip faults on memory 
element will be considered. The motivation is that, in 
synchronous designs with moderately slow clocks, 
transient faults are usually relevant for memory elements 
only. Moreover, when designs are described using well-
defined synthesizable description styles, memory elements 
may be deterministically recognized in the RT-level 
source. Since, gate-level optimization algorithms usually 
preserve memory elements, gate-level bit flips on such 
memory elements can be modeled in a nearly exact way at 
the RT-level.  

In the AMATISTA project, speeding-up RT-level 
fault-injection campaigns are obtained by mainly 
following two avenues of attack: first, clever techniques 
have been devised to generate and collapse the list of 
faults to be injected. Secondly, several optimization 
mechanisms have been defined and successfully evaluated 
to reduce the time required to simulate each fault 

A prototype of the whole fault-injection platform has 
been implemented and it has been evaluated on a real 

benchmark circuit. Results are provided, showing the 
effects of the different techniques, and demonstrating that 
they are able to reduce the total time required by a fault-
injection campaign by at least one order of magnitude. 

The paper is organized as follows: Section 2 describes 
the whole fault-injection campaign, detailing fault-
injection schema and fault-collapsing strategies. Section 3 
reports some experimental results on an industrial design. 
Section 4 concludes the paper. 

2 RT-Level Fault-injection Campaign 

Single bit flip faults are generally termed single error 
upset (SEU). Let us denote the set of all faults with Ψ, and 
SEU number i with Si. ( ,  )

i

A
i L iS FF T= , where Li is 

index of the fault location into flip-flop list (FFj), i.e., the 
memory element that changes its value; and Ti

A is the fault 
activation time, i.e., the time instant when the fault 
location flips its value. Defining Tsim as the workload 
length, : A

i i simS T T∀ ∈ Ψ ≤ . 
Function C(t) represents the state of the fault-free 

design at test-bench instant t. The state takes into account 
all values produced on output ports and all values stored 
into memory elements: C(t) = {PO(t), FF(t)}. Cf

i(t) 
represents the same state under the effect of Si. Clearly,  

f[0, [: C( ) C ( )A
i it T t t∀ ∈ =  

since before Ti
A, Cf

i(t) is not affected by Si. The fault-free 
simulation is usually termed golden run. 

It should be noted that the design is assumed to be 
synchronous sequential with, possibly, many clocks. By 
defining the quantum τ as the greatest common divider 
between all clocks periods, all significant time instants can 
be expressed in the form aτ, with a ∈ ΝΝΝΝ. Functions C(⋅) 
and Cf

i(⋅) are discrete and the golden run is a finite list of 
values (C(τ), C(2τ), …, C(Tsimτ)), where Tsimτ is the length 
of the test bench. To ease formulas, in the following τ = 1.  

The goal of the fault-injection campaign is to grade 
possible faults, by partitioning the set Ψ of all faults into 
four different sets:  

• Φ (Failure): the set of all SEUs that, during the test 
bench, produce a difference on an output port of the 
design. 

• Σ (Silent): the set of all SEUs that, compared to the 
golden run, never produce differences on output 
ports and, at the end of the test bench, left no 
differences in memory elements. 

• Λ (Latent): the set of all SEUs that, compared to 
the golden run, never produce differences on output 
ports, but, at the end of the test bench, cause at least 
a memory element to differ. 

• 

E (Error): the set of all SEUs that cause an error in 
VHDL simulation. 



At the end of the fault-injection campaign, each SEU is 
classified in exactly one set. 

Faults belonging to the E (error) set represent a typical 
problem of high-level fault simulation, and they have no 
correspondent classification in gate-level campaigns. 
Simulation errors are caused, for instance, whenever a 
fault sets a signal to a value out of its declaration range. 
Once such an error has occurred, simulation may be 
halted. Indeed, several commercial VHDL simulators do 
halt simulation automatically in presence of such errors. 

Failure set (Φ) deserves no special comments. As soon 
differences propagate to an output port, simulation may be 
halted and the fault classified as failure. 

A fault in the latent set (Λ) may be classified whenever 
as soon as all fault effects disappear (e.g., at time instant 
tr). Since no interference may exist between different 
faults, differences may be generated only at fault 
activation time, and then are propagated. More formally: 
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Thus, in three cases (error, failure, silent) SEUs are 
categorized before the end of the test bench, while in one 
(latent), the fault-injection experiment is required to reach 
the end of the test bench. The possibility to classify a SEU 
before the end of the test bench gives the opportunity to 
optimize the process by stopping the simulation. 

Next section details the fault-injection algorithm, while 
fault collapsing techniques are analyzed in 2.2, 2.3 and 
2.4. Fault-collapsing methodologies that can be applied 
only during the fault-injection experiment are called 
dynamic, while methodologies that can be applied before it 
are termed static. Static techniques are again classified in 
workload-dependent and workload-independent, whereas 
they require the analysis of the test bench or not.  

2.1 Fault Injection 

The basic idea of the fault-injection algorithm is to 
fully simulate the fault-free design, storing the golden run. 
Then simulate each fault sequentially by loading the state 
of the design just before fault activation time, injecting the 
SEU and eventually categorizing its effects. Since the 
design is sequential, it is sufficient to load values into 
memory elements FF(t) and set input stimula PI(t). 

Fault-injection schema is shown in Figure 1; however, 
a few additional performance considerations still need to 
be made.  

 

Simulate fault-free design and store checkpoints CP = ( 
C(tg1), C(tg2), ..., C(tgNg) ) 
For each Si { 
 Ei = ∅     // Empty equivalent set 
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=   // Select the nearest state in GR 

 Cfi(tsg) ← C(tsg) // Load nearest state CP list 
 Simulate design until t = TiA-1 
 Inject Si and calculate Cfi(TiA) 
 inc = 1     // Initialize increment step 
 Tend = TiA   // Initialize interval 
 while(Si is not categorized) {  
  Tstart = Tend 
  Tend = Tstart + inc 
  Simulate design calculating Cfi(t), 
         t ∈ ]Tstart, Tend] 
  Insert all faults Sj dynamically equivalent to Si 
         in set Ei 
  Try to categorize Si: 
   if exists a Sj in set Ei already categorized 
   or comparing Cfi(t) to C(t), t ∈ ]Tstart, Tend] 
  inc = inc * 2 
 }  
 Categorize all faults Sj in Ei like Si 
} 

Figure 1: Fault-Injection Schema 

Firstly, saving circuit states is a time- and space-
consuming task. It is necessarily to trade-off the ability to 
resume simulation from any possible Ti

A with the amount 
of disk space required to save all these states. Thus, a list 
of checkpoints CP is defined as a list of Ng equally 
distributed simulation states ( )

g

g
NC t . In order to inject 

fault Si, the design is first brought to the nearest CP state 
preceding Ti

A-1 by loading data from the checkpoint list. 
Then, the fault-free design is simulated until Ti

A-1. The 
number Ng of checkpoints and the interval between them 
must be carefully regulated. 

Secondly, also checking the state of a simulation, 
seeking differences from the golden run is a resource-
consuming task. In the current implementation of the fault 
injector, it is significantly optimized and exploits 
simulator facilities, however, it still deserves special 
attention. It has been experimentally observed that most of 
the SEUs either can be classified in the first clock cycles 
after injection, or after a relatively long time. Thus, the 
simulation is run for exponentially increasing amounts of 
time: one clock cycle after the activation of the SEU the 
faulty circuit signal traces are compared against the good 
ones; next comparison is performed after two clock cycles, 
then four, and so on.  



A set Ei of faults equivalent to Si is dynamically built 
during simulation. The goal is to reduce the number of 
SEUs injected either by categorizing some faults before 
simulation, or stopping the current simulation as soon as 
the current SEU Si is discovered equivalent to an already-
simulated one. This optimization will be detailed later. 

2.2 Workload Independent Fault Collapsing 

This Sub-section illustrates static fault-collapsing 
techniques that are uniquely based on the analysis of the 
design. 

The study of the topology of the circuit helps 
determining the category of a fault. First, a scheme of the 
circuit where only two types of elements appear: 
sequential and combinational blocks (e.g., Figure 2). 

O1

O2

I1 C1 C2

C3I2

R1 R2 R3

R4

 

Figure 2: Design Topology 

In this scheme it is possible to find the following cases: 
• 

Primary input directly going to a flip-flop 
• Primary input going to a flip-flop through a 

combinational part 
• 

Direct communication between two flip-flops 
• Communication between two flip-flops through a 

combinational part 
• 

Feedback in a flip-flop 
• Direct communication from a flip-flop to a primary 

output of the circuit 
• 

Communication from a flip-flop to a primary 
output through a combinational part 

With the analysis of these elements it is possible to find 
dominances and static equivalences with respect to the 
faults to be injected. Dominant fault are those fault whose 
effect is the same as the effect for other faults and their 
simulation causes the same changes as the others but not 
in the contrary. On the other hand, equivalent faults are 
those faults whose effects are the same after a period of 
time are considered equivalent if the effects caused by any 
of them are not sub-set of the effects of the others. 
Dominances and static equivalencies may reduce the size 

of the fault list, and speed-up the simulation process 
improving dynamic equivalencies, described later. 

Direct flip-flops to the outputs are very common in 
current designs, aero-spatial industry imposes this 
condition to all its designs in order to ensure Fault 
Tolerance in their equipments as indicated in the ESA 
Guidelines. All flip-flops whose value is connected 
directly with the outputs of the circuit will have 
automatically all of their faults marked as failure. 
Moreover any flip-flop FFi whose output is connected 
directly and exclusively to another flip-flop FFj have its 
faults belonging to the same category as faults of the 
connected flip-flop FFj. 

Further optimizations are possible, considering that all 
SEUs affecting registers with a given bit width can be 
categorised by analysing faults in a single flip-flop of the 
register, if the same operations and transformations are 
affecting all the bits. In addition, whenever the output of 
an internal counter is the overflow or a related function, 
each fault affecting it can be categorized by analyzing an 
equivalent SEU in the last flip-flop of the counter, 
although with a different activation time. 

Experimental evidence suggests that static test-bench 
dependent fault collapsing enables pruning about 10% of 
the total number of faults. 

2.3 Workload Dependent Fault Collapsing 

This Sub-section illustrates static fault-collapsing 
techniques that are based on the simulation of the 
workload, or test bench. 

The fault-free design is simulated, and all read and 
write operations on memory elements are tracked. 
Operations are tracked with bit granularity (the same 
granularity as SEUs). That is, each single read and write 
operation on each single bit is logged. Figure 3 show an 
example of read and write operations on bit 3 of a signal 
named sig. 

 

Figure 3: Golden-Run Fault Collapsing 

Starting with the log, all possible SEUs are collapsed 
using the following rules: 

• All SEUs between an operation (either read or 
write) and a write operation are marked as silent. 
Fault injection is useless, because their effect will 
be masked before any possible propagation. In the 
example, a SEU at TA = 9 is silent. 

W R R W R W R

1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 1913

sig[3]
WW R R W R W R

1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 1913

sig[3]
W



• All SEUs between an operation (either read or 
write) and the subsequent read operation are 
equivalent. In the example, fault on sig[3] with 
TA = 1 and TA = 2 are equivalent, while the SEU at 
TA = 4 is equivalent to the one at TA = 7.  

Experimental evidence suggests that workload 
dependent fault collapsing may enable pruning up to 80% 
of the total number of faults.  

2.4 Dynamic Fault Collapsing 

This Sub-section illustrates fault-collapsing techniques 
that may be activated during the fault-injection campaign. 
As anticipated before, this technique is exploited to 
discover equivalencies between faults. 

During the simulation of SEU Si, if at time te > Ti
A 

differences between C(te) and Cf
i(te) are limited to the 

value of exactly one memory element FFe, then Si is 
equivalent to a bit-flip Se on that memory element with 
Te

A = te. I.e., 
 with ( , )j e e e eS S S FF t≈ =  

Indeed, Se may not be explicitly listed in the fault list, 
because static fault collapsing marked it equivalent to a 
different SEU Sf. In this case, for the transitive property, Si 
will be marked equivalent to Sf 

j e e f j fS S S S S S≈ ∧ ≈ ⇒ ≈  
As a result, during simulation the set Ei of SEUs 

equivalent to Si is dynamically built. Whenever the fault 
injector is able to categorize Si, all faults in Ei get the same 
classification.  

It must be also noted that the newly discovered 
equivalent fault Se may be already classified, even if 
Te

A > Ti
A. First of all, there is no reason to presume that 

faults are injected in the same time order of their 
activation time (indeed, several optimizations are currently 
under study to optimize the order of injections). Moreover, 
fault Se may be already classified because it has been 
found equivalent to a fault Sk with Te

A > Ti
A > Tk

A. In this 
eventuality, fault Si and all elements of Ei take the same 
classification as Se. 

Experimental evidence suggests that, exploiting 
dynamic fault collapsing, about 5% of a statically-
collapsed fault list may not be injected. Using a complete 
(not collapsed) list of SEUs, about 2 faults out of 3 may 
usually be classified without simulation. 

3 Experimental Results 

A prototypical version of the fault-injection platform 
has been devised in ANSI C, and consists of about 3,000 
lines. 

Circuit analysis exploits FTL Systems’ Tauri™ parser, 
fault-list generation takes advantage of Synopsis VHDL 

Simulator, while the fault injector is currently based on 
Modelsim™ by Model Technology. Simulation states are 
saved using the checkpoint command, and subsequently 
loaded exploiting the restore option of the simulator. The 
faulty circuit and the golden run are compared taking 
advantage of the waveform comparison facilities built in 
the simulator. 

The new version of the fault injector will be closely 
fastened to FTL Systems’ Auriga™ simulation system. 
This would lead to a closer integration, better performance 
and allow additional optimizations. 

The available prototype was used to assess the 
reliability of a partially hardened version of the Solar 
Array Drive Electronics (SADE). SADE is a module 
developed by Alcatel Espacio that will be hosted on 
satellites and it is dedicated to rotate two solar array drives 
so as to get the maximum energy from the solar cell 
panels.  

On the one hand, SADE gets control commands from 
and transmits telemetries to special modules via a MACS 
bus. On the other hand, SADE controls the two SADM 
(Solar Array Drive Modules). These two functions, 
interfaces and SADM control, are included in an FPGA. 
SADE also includes an AC/DC and telemetry module and 
two motor drives modules, one for each SADM. The 
selected foundry for this design is Actel. The technology is 
the 0.8 micron CMOS Radiation Hardened FPGA Family. 
The device shall be an RT14100A-CQ256E FPGA. 

SADE contains 480 memory elements, and the typical 
analyzed workload consists of Tsim = 131,026 simulation 
cycles. The complete fault list Ψ contains 62,892,480 
SEUs, however, in the preliminary experiments only the 
motor operator block has been considered. This block 
includes 95 memory elements and, since the full workload 
was considered, adopted complete fault list counts 
12,709,522 SEUs. Since there are two motor blocks in the 
SADE design, current experiments take into account 40% 
of total faults. Examined blocks do not contain any 
peculiar characteristic. Table 1 summarizes the result of 
the fault collapsing. 

 
 # % 
Total number of SEU 12,709,522 100.00
Pruned by workload independent 
collapsing 

1,379,720 10.86

Pruned by workload dependent 
collapsing 

9,448,798 74.34

SEU that need to be injected 1,618,952 12.74

Table 1: Fault Collapsing Experiment 

At the end of the fault-collapsing phase, the fault list 
has been collapsed to about 13% of its initial size. Then, 
during fault-injection of a sampled fault list, dynamic 



equivalencies allow to avoid simulation of a further 4.73% 
of the sampled SEUs. It should be remarked that dynamic 
fault collapsing does not introduce any significant 
overhead in the simulation. 

Experiments where run on a SPARC ULTRA 
Workstation with 256MB of RAM. The CPU time 
required for running the preliminary golden run simulation 
of SADE was about 80 seconds. This time includes 
generating and saving all required checkpoints. For the 
sake of comparison, the CPU time required running a full 
simulation of the test bench is about 6 seconds, but this 
time accounts for no comparisons of any kind: the 
simulation is run without observing nor storing any 
information. 

The CPU time required for simulating a single fault 
was about 5 seconds. It is only slightly smaller than 
running complete simulation, but for each fault the fault 
injector loads a state from the golden run, and runs the 
simulation checking waveform and massively interacting 
with the simulator. 

4 Conclusions 

This paper described a set of techniques for speeding-
up fault-injection campaigns on fault tolerant circuits at 
RT-level. 

Experimental results illustrated the effectiveness of the 
proposed approach in term of fault list collapsing and fault 
injection mechanism. The evaluation in an industrial 
environment showed that a SEU can be injected and 
categorized in a reasonable amount of time on a 
workstation, and only a small fraction of possible SEUs 
needs to be explicitly injected.  

In more general terms, through integration into 
commercial design flows, the AMATISTA project hopes to 
increase the usage of fault tolerant technology in 
application sectors where the time and additional people 
previously required to manually implement approaches 
has not resulted in wide-spread use of fault tolerance.   

Industrial partners foresee that the enhancement of the 
design flow would allow a reduction between 25% and 
35% in terms of overall design time. Improvements will 
include reduction of simulation times, reduction of re-
cycling in the design flow, earlier detection of errors, and 
minimization of several design effort. 

Experimental results show the efficacy of all fault-
collapsing techniques: workload independent, workload 
dependent and dynamic. Dramatic reductions in the 
number of SEUs are essential to keep fault-injection 
campaigns feasible. 

Deeper topological analyses of the circuits are currently 
under study. A fault dictionary for classifying SEU will be 
created analyzing the design starting from its outputs to its 
inputs, through internal registers. This dictionary will be 
subsequently exploited during fault collapsing or fault 
injection.  

Other experimental results gathered on different 
circuits from different industries confirm the general 
validity of our claims. 
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