
New Techniques in Replica Encodings with Client Setup

Rachit Garg∗ George Lu† Brent Waters‡

September 21, 2020

Abstract

A proof of replication system is a cryptographic primitive that allows a server (or group of servers)
to prove to a client that it is dedicated to storing multiple copies or replicas of a file. Until recently, all
such protocols required fine-grained timing assumptions on the amount of time it takes for a server to
produce such replicas.

Damg̊ard, Ganesh, and Orlandi (CRYPTO’ 19) [11] proposed a novel notion that we will call proof
of replication with client setup. Here, a client first operates with secret coins to generate the replicas
for a file. Such systems do not inherently have to require fine-grained timing assumptions. At the
core of their solution to building proofs of replication with client setup is an abstraction called replica
encodings. Briefly, these comprise a private coin scheme where a client algorithm given a file m can
produce an encoding σ. The encodings have the property that, given any encoding σ, one can decode
and retrieve the original file m. Secondly, if a server has significantly less than n · |m| bit of storage, it
cannot reproduce n encodings. The authors give a construction of encodings from ideal permutations
and trapdoor functions.

In this work, we make three central contributions.

• Our first contribution is that we discover and demonstrate that the security argument put forth by
[11] is fundamentally flawed. Briefly, the security argument makes assumptions on the attacker’s
storage behavior that does not capture general attacker strategies. We demonstrate this issue
by constructing a trapdoor permutation which is secure assuming indistinguishability obfuscation,
serves as a counterexample to their claim (for the parameterization stated).

• In our second contribution we show that the DGO construction is actually secure in the ideal
permutation model (or ideal cipher model) and the random oracle (or random function) model
from any trapdoor permutation when parameterized correctly. In particular, when the number of
rounds in the construction is equal to λ · n · b where λ is the security parameter, n is the number
of replicas and b is the number of blocks. To do so we build up a proof approach from the ground
up that accounts for general attacker storage behavior where we create an analysis technique that
we call “sequence-then-switch”.

• Finally, we show a new construction that is provably secure in the random oracle model. Thus
requiring less structure on the ideal function.

1 Introduction

In a proof of replication system [6, 5] , a user wants to distribute a file m and ensure that a server or group
of servers will dedicate the resources to storing multiple copies or replicas of it. That is, the server should
either receive or generate n replicas σ1, . . . , σn where the file m can be efficiently decoded from any single
replica. In the original notion of proofs of replication, a server could take a file m as input and independently

∗University of Texas at Austin. Email: rachit0596@gmail.com. Supported by NSF CNS-1908611, CNS-1414082, Packard
Foundation Fellowship, and Simons Investigator Award.
†University of Texas at Austin. Email: gclu@cs.utexas.edu. Supported by NSF CNS-1908611, CNS-1414082, Packard

Foundation Fellowship, and Simons Investigator Award.
‡University of Texas at Austin and NTT Research. Email: bwaters@cs.utexas.edu.

1

generate all the replicas σ1, . . . , σn. Later it could prove possession if challenged. Since the introduction of
this concept, several such solutions [24, 7, 17, 9, 16] have emerged.

However, in these solutions, there exist a tension that stems from the following attack. Consider a non-
compliant server that stores just a single copy of m. When challenged to prove possession of replicas, it
on the fly, generates σ1, . . . , σn using the legitimate generation algorithm and proceeds to prove replication
using the ephemeral values as though it were storing these replicas all along.

It is easy to see that achieving meaningful security against such an attack is impossible without imposing
a concrete time-bound between when a server is challenged and when it must answer. The setting of this
time-bound must be coupled with an understanding of how long it takes an honest system to retrieve the
replicas and produce a proof and balanced against how fast a highly provisioned server might take to produce
the replicas from scratch. This balancing act creates a certain tension in that more costly replica generation
will help security, but also imposes a higher burden on initiation. Moreover, other issues can arise in the
context of a more extensive system. For example, if audit challenges come out at a predictable time (e.g.,
daily), then a cheating server could start generating the response ahead of time.

To address these issues, Damg̊ard, Ganesh, and Orlandi [11] proposed a novel notion that we will call
proof of replication with client setup. In this notion, a client that wishes to store a file m will generate
replicas σ1, . . . , σn, along with a (short) public verification key vk. The system will have the properties that
(1) one can reconstruct the file from any replica along with the verification key, and (2) a server can prove
possession of the replicas to any client that holds the verification key. Unlike the previous systems, proof of
replication with client setup need not require fine-grained timing assumptions as a server will not be able
to regenerate the replicas from only the message m and vk. Indeed the security definition says (informally)
that any poly-time server that devotes significantly fewer resources than n times message length will not be
able to pass the possession test.

The solution proposed in [11] combines two high-level ingredients. The first is a proof of retrievability
system as proposed in prior work [27, 12, 8]. Roughly, if a server executes a proof of retrievability for
data d with a client, this means that now, the server was capable of reconstructing d. However, a proof of
retrievability in and of itself gives no guarantee about the amount of resources required to store d.

Second, the authors introduce a notion of a replica encoding. A replica encoding system consists of three
algorithms: (rSetup, rEnc, rDec). The setup algorithm on input, a security parameter κ and the maximum
number of replicas n of a scheme, outputs a public and secret key pair as (pk, sk) ← rSetup(1κ, 1n). The
encoding algorithm takes as input the secret key and a message m to produce an encoding as y ← rEnc(sk,m).
Finally, the decoding algorithm takes as input an encoding y and the public key to retrieve the message
as m ← rDec(pk, y) or outputs ⊥ to indicate failure. The algorithms are randomized, and the encoding
procedure can be run multiple times to produce multiple encodings. The correctness of the scheme dictates
that if one encodes any message m under a secret key and then decodes it under the corresponding public
key, m will be decoded.

To capture security, we will consider a soundness game which uses a two-stage attacker (A1,A2). In the
first stage, A1 will be given a challenger-generated public key pk and reply with a message m. It is then given
n encodings generated by the challenger as y1, . . . , yn. The attacker outputs a state variable state, which
we will generally think of as being smaller than |m| · n. At the second phase, the algorithm A2 is given the
input state and is tasked with outputting guesses ỹ1, . . . , ỹn. The security property intuitively states that if
the size of the storage |state| is significantly less than v · |m|, then the number of i where yi = ỹi will be less
than v. That is, the attacker cannot do much better than simply storing a set of values yi.

Damg̊ard, Ganesh, and Orlandi showed how a natural compilation of existing proof of retrievability
schemes along with replica encodings gave way to proofs of storage with client setup. Also, they provided a
candidate construction for replica encodings from trapdoor permutations under the ideal cipher model and
the random oracle model. We turn our attention to these.

The DGO construction: We now outline (a slight variant of the) construction for [11], which is given
in the ideal permutation and the random oracle model. We remark that the DGO construction itself is an
adaptation of one of the “hourglass” schemes of van Dijk et al. [28]. The building blocks will consists of a
trapdoor permutation f, f−1, along with the ideal cipher T,T−1, and a random oracle H. We again let κ be

2

the security parameter and let λ = λ(κ) be the output length of the trapdoor permutation as well as the
block length of an ideal permutation T : {0, 1}λ → {0, 1}λ. For pedagogical purposes, we will assume for
the sketch below that messages consist of λ bits, but in our main body, we consider the more realistic case
of many block messages.

The setup algorithm simply chooses a TDP public/secret key pair as KeyGen(1κ) outputs (pk, sk) where
KeyGen is the trapdoor permutation key generation algorithm. The public and secret key pair of the TDP
serve as the keypair of the replicated encoding scheme.

The encoding algorithm rEnc(sk,m) takes as input the TDP secret key and message m. It first chooses

a string ρ
R←− {0, 1}κ. It then initializes a value Y0 = m ⊕ H(ρ) where H is modeled as a random oracle

function. Then for j = 1 to r rounds it computes Yj = f−1(sk,T(Yj−1)) where r is the number of rounds,
which grows linearly with the number of replicas. The encoding is output as (Yr, ρ).

Finally, the decoding algorithm rDec(pk, y = (Yr, ρ)) recovers a message as follows. For setting j from
r − 1 down to 0 compute Yj = T−1(f(pk, Yj+1)). Then output m = Y0 ⊕ H(ρ).

The fact that the decoding step recovers the message follows straightforwardly from the correctness of
the trapdoor permutation and ideal permutation. We also observe that it is publicly computable since it
uses the public key and forward direction of the trapdoor permutation.

1.1 Our Contributions

We make three core contributions to this area:

1. Our first contribution is that we discover and demonstrate that the security argument put forth by [11] is
fundamentally flawed. The security argument makes implicit assumptions about an attacker’s behavior
which are not generally true. More specifically, in the security game applied to the DGO construction
(in the ideal permutation and random oracle model) an attacker works in two phases. The first stage
attacker A1 receives the replicas, can make several queries to the ideal permutation and then records
some state state of limited size. This state state is passed to a stage two attacker A2 which can
make further permutation queries and attempts to reconstruct the queries. In general a first stage
attacker can apply arbitrary strategies to breaking the scheme so long as it poly-time and state state
is sufficiently small. However, the proof argument of [11] assume that the ideal permutation queries
made by the attacker will be “uniquely stored”. Roughly, they will argue that a query output bit will
either be stored explicitly or not at all. This discounts the possibility of an attacker strategy such as
making several oracle queries and storing the XOR of all the outputs together.

We demonstrate that the above error manifests in a false theorem statement in [11]. The authors claim
that the scheme is secure for any trapdoor permutation (TDP) if r = λ · n rounds are applied when
doing n encodings of b blocks with security parameter λ . (I.e. Claim the number of rounds does not
need to scale with b.) We provide an explicit counterexample to this claim in Section 7. We give a
TDP that is secure assuming indistinguishability obfuscation, but for which the scheme is attackable
using these parameters. The attacker strategy actually works by XORing several query values together
and is thus directly tied to the flaw in the security proof. There does not appear to be any simple
“fix” to the security argument of [11] as we will see that addressing general attacker storage strategies
comprises the core difficulty of proving security.

We also note that an explicit “partitioning assumption” appears in the security definition of [28] for
“hourglass schemes” where the authors conjecture (but do not prove) that it seems implausible that
mixing together two representations can give an advantage to an attacker. Although we do not do so
formally, we believe that our counterexample can be adapted to the work of [28] as well (at least if
one considered the scheme for general trapdoor permutations) and demonstrates the danger of making
assumptions that restrict adversarial strategies.

2. For our second contribution we show that the DGO construction is actually secure when parameterized
correctly. In particular, when the number of rounds is equal to λ ·n · b. To do so we need to build up a
proof approach from the ground up that accounts for general attacker storage behavior. We first develop

3

an analysis technique that we call “sequence-then-switch”. We show how in this framework, we can
prove security against an attacker that arbitrarily assigns state. In particular, we show how to analyze
the security of a close variant of the [11] construction in the ideal permutation and random oracle model.
In addition, we give an explicit construction of a trapdoor permutation using indistinguishability
obfuscation which allows for an attack strategy not covered by their restricted model, showing the [11]
construction as given is in fact explicitly insecure against general adversaries.

3. The prior construction and proof relies on the ideal permutation model. A perhaps better goal would
be to have a construction secure in the random oracle or random function model as this assumes less
structure on the ideal object. Typically, this is dealt with by building a random permutation from
a function using a Feistel network and showing that this is “indifferentiable” in the indifferentiability
framework of Mauer et al. [21]. Prior works have shown this for 14 [19] and then 8 round Feistel [10].
However, Ristenpart, Shacham, and Shrimpton [26] show that the framework does not compose for
multi-round games. Since the above construction relies on a multi-round game, proof from an ideal
permutation cannot be reduced to a proof to an ideal function.

We give a new construction that relies only on the ideal function model and analyze its security.
Our construction uses the random function to embed a Feistel like structure into the construction.
However, instead of arguing in the indifferentiablity framework, we provide direct proof of security,
which bypasses any composability issues. In both proofs, we allow the attacker to assign its storage
arbitrarily.

1.2 Our Techniques

We begin by describing our analysis for the first construction using a TDP and ideal permutation. We
focus on the construction producing many replicas on a single block, as described in the introduction for
simplicity. Also, for simplicity, we consider the particular case where an attacker that asks for n replicas in
the first stage and wants to produce all n of these replicas, but we significantly less than n · λ storage. In
particular consider an adversary with state of length n ·λ−n ·ω(log κ) bits of storage for security parameter
κ and block length λ. Our central idea is to organize the proof into two parts where we first show that any
storage bounded A2 must make “sequential” oracle queries on at least one replica. Then we show that on
this particular replica, how one can swap out permutation output for another.

1. Sequentiality: In our security game, the challenger first creates n replicas of m. To create the i-th

replica by choosing ρi randomly. It sets Y
(i)
0 = m ⊕ H(ρi). Then for j = 1 to r rounds it computes

Y
(i)
j = f−1(sk,T(Y

(i)
j−1)). The encoding is output to A1 as (Y

(i)
r , ρi) for i ∈ [n]. The attacker A1 receives

the encodings, makes some more oracles queries before producing state of n · λ− n · ω(log κ) bits and
passing it to A2.

Let’s examine the behavior of A2 whose job it is to output the encodings using the state plus oracle
queries. We say that A2 “queries sequentially” on replica i if for all j ∈ [0, r − 1] it queries the oracle

T on Y
(i)
j before it queries the oracle on Y

(i)
j+1. (We will think of outputting the encoding Y

(i)
r at the

end as implicitly querying on the final value.) That is for A2 to query sequentially on replica i it must
both make all r + 1 oracle queries and make them in (relative) order. However, there could be many

other queries outside the replica chain interspersed between Y
(i)
j and Y

(i)
j+1.

We will first argue that except with negligible probability whenever A2 produces all the encodings,
it queries sequentially on at least one replica. Observe that we cannot hope to say that it queried
sequentially on all replicas as state could directly store several of the replica encodings, which allows
the algorithm to bypass any additional queries related to that replica.

To prove this, we first define and prove a useful matching pairs lemma. Consider an algorithm B that
takes as input a string advice of length n · λ − n · ω(log κ) and gets access to a string oracle access
to a randomly chosen permutation T(·),T−1 of block length λ. The goal of B is to provide n distinct
pairs (xi, yi) such that T(xi) = yi, but without querying the oracle a either xi nor yi. Thus B can

4

make several oracle queries on many values; however, once a query is made on some x, it spoils using
x as a value from one of the pairs. Note that to win in this game, B needs to produce the pairs— not
just distinguish them from random. Also observe that B can use advice to help it win this game. For
example, advice might encode the several pairs.

We prove that no attacker B that makes a polynomially bounded number of queries can win in this
game by a simple application of the union bound. Consider a fixed value of an advice string a — that
is a is fixed before the permutation is chosen. We show that the probability of B(a) winning is at most
poly(λ)
2nλ

. Then by the union bound the probability that there exists any string a which it could win with

is at most 2n·λ−n·ω(log κ) · poly(λ)
2nλ

which is negligible in λ.

Now we need to show that an attacker that wins but is not sequentially querying on any replica will
break our matching pairs game. We consider (A1,A2) that does this. Let’s think of the algorithm
pair as deterministic. (If they are randomized for each security parameter, we can fix their coins that
maximize success probability.) We construct an algorithm B along with the process of determining an
advice string that does this. Conceptually we can think of a preprocessing algorithm B′ that generates
the advice. B′ will first run A1, which makes several queries and then produce state. It then runs A2

on state. If A2 either did not produce all the replica encodings or it did sequentially query on some
replica i, then abort. However, if it did not make sequential queries on all replicas, then there must be

values j1, . . . , jn where A2 made an oracle query on Y
(i)
ji

(or f(pk, Y
(i)
ji

)), but had not yet made a query

on Y
(i)
ji−1. Let q1, . . . , qn be the indices of the queries (ordered chronologically) for which this occurs.

Note the number of queries A2 can make is polynomial in κ, but in general, it could be much more
than r · n · λ. The preprocessing algorithm will package its advice string as state along with j1, . . . , jn
and q1, . . . , qn. Importantly, the size of this information is bounded by lg(poly(κ)) for some polynomial
poly since n, r, and the number of replicas is polynomially bounded. This means that if state is of size
n · λ− n · ω(log κ), then the advice string will be within n · λ− ω(log κ).

We now consider algorithm B, which receives the advice string. B will run A2 with the following
modifications. Suppose A2 makes its q-th query where q = qi for some i. This means that A2 is

querying on Y
(i)
ji

, but had not yet made a query on Y
(i)
ji−1. At this point B determines Y

(i)
ji−1 by

querying Y
(i)
1 = f−1(sk,T(Y

(i)
0)) up to Y

(i)
ji−1 = f−1(sk,T(Y

(i)
ji−2)). It then submits (Y

(i)
ji−1, f(pk, Y

(i)
ji

)) as

one of its matching pairs noting that neither T(Y
(i)
ji−1) nor T−1(f(pk, Y

(i)
ji

)) were made before. It can
also continue to run A2 without making either of these queries to the oracles since it already knows
the answers to them. As this process proceeds, B will eventually recover n such pairs which breaks our
matching pairs lemma and arrives at a contradiction.

2. Switching:

Once sequentiality is established, we will proceed to argue that the adversary must still be sequential

with good probability even when we “switch” the random oracle output of some Y
(γ)
j to a random

value only for A2, allowing us to embed a trapdoor permutation challenge.

In more detail, we now consider a new switched game that is almost equivalent to the prior one. In
the switched game the challenger first chooses r random values Ai,b ∈ {0, 1}λ for j ∈ [1, r], b ∈ {0, 1}
along with a bit string x ∈ {0, 1}. It programs the oracle T such that Y

(γ)
j = Ai,b. This game can be

shown to be almost equivalent to the previous one.

Next, we consider a game where the challenger answers queries according to a string x with A1,
but switches to using a string x′ (and keeps everything else the same) when responding to A2. The
challenger chooses the string x′ such that the output state given by A1 is the same as if the queries are
answered according to x′ in the first phase. The attacker is considered to win only if it would produce
sequential queries both for when x was used with A2 and when x′ was used with A2.

With high probability, such an x′ will exist from the fact that |state| ≤ n · λ− ω(log κ) and r is set to
be n · λ. We emphasize that to make this argument we do not make any further assumptions on how

5

A1 assigns state other than the bound on the size. We can then use the heavy row lemma [23] to argue
that if an attacker wins with probability ε in the previous game, it wins with probability ≈ ε in this
game. We note that the game takes exponential time to find such an x′, but this is not an issue as the
closeness lemma is information-theoretic.

Finally, in order to embed a TDP challenge, we need to move to a security game that can be efficiently
simulated. While it might take exponential time to find x′ from x above, we observe that this is not
necessary. Instead, we can embed the challenge from just knowing the shortest common prefix of x and
x′. Moreover, given x, we can simply guess what the prefix is with a 1

r loss. Thus we move to a final
game where the challenger simply chooses a random value j and a random permutation T in the first

phase and then replaces the oracle output of Y
(i)
j with a random R in the second phase. The attacker

wins if it queries f−1(sk, R). A simple reduction then shows that any attacker that wins in this game
breaks the TDP security.

1.2.1 Extending to the ideal function model

We can now return to our goal of building a secure construction by replacing the ideal permutation model
with a random oracle model. As argued earlier, doing so is desirable as an ideal function imposes less
structure and appears to be a less risky heuristic. Our solution will build upon the analysis principles
established above, but proving security involves more complications.

We begin by sketching out the encoding construction. In this setting, we will have a TDP in the domain
λ bits and use a random oracle T′ that outputs λ bits. We will use blocks of length 2λ, and for this sketch,
focus on the particular case where each replica consists of a single block message.

The setup algorithm again chooses a TDP public/secret key pair as KeyGen(1κ) → (pk, sk) as before.
The encoding algorithm rEnc(sk,m) takes as input the TDP secret key and message m ∈ {0, 1}2λ. It first

chooses a string ρ
R←− {0, 1}κ. It then initializes values Y0 = L(m⊕H(ρ)) and Y1 = R(m⊕H(ρ)) where H is

a random oracle that produces an 2λ bit output and L,R are functions that take the left and right halves.
Then on rounds j from 2 to r compute Yj from Yj−1 and Yj−2 as

Yj = f−1(sk, Yj−2 ⊕ T′(Yj−1)).

The replica encoding value is 2λ bits long and consists of the last two values as Yr−1||Yr. The decoding
algorithm rDec works backward down the Feistel structure to recover the message.

In this setting, we want to prove that in the security game, an attacker with n · 2λ− n · ω(log κ) cannot
produce n replica encodings. (The extra factor of two is solely due to blocks being 2λ bits here.)

Our proof will follow in the same theme of showing that there must be a form of sequential querying made
on at least one replica. However, the new structure of the construction presents additional complications.
For example, we could imagine an attacker A1, which stores all the values Y ij for some j. This is possible
since storing these only take nλ bits, and our assumption is only that the storage is less than 2nλ bits.
On the one hand, it is unclear how the attacker can leverage storing all these values because one needs

consecutive values (e.g., Y
(i)
j , Y

(i)
j+1) to propagate further. And, storing n different consecutive pairs requires

2nλ bits of storage. On the other hand, the attacker can store these means at the very least we need a new
notion of sequentiality.

For our new notion of sequentiality, we say that the queries to replica i meet our requirements if the

longest common subsequence of the queries made and Y
(i)
1 , Y

(i)
2 , . . . , Y

(i)
r is of length at least r−3. Intuitively,

this is close to our original notion but allows for a little skipping. To prove this form of sequentiality, we
invoke a random function analog of our matching pairs lemma from before. The reduction to matching pairs
follows in a similar spirit to before but requires a more nuanced case analysis.

Once that is in place, our proof proceeds analogously, but again with more nuances and complications
arising from the fact that we only can guarantee the weaker form of longest common subsequence.

1.2.2 The proposed construction is round optimal

We now consider the general case of a message having b blocks and give intuition that our construction is
round optimal up to constant factors. We construct a secure trapdoor permutation scheme from indistin-

6

guishability obfuscation which gives an insecure replica encoding scheme for any number of rounds /∈ Ω(b ·n)
(i.e. ∈ o(b · n)). Incidentally, this also shows that the construction provided by [11], which claims to only
requires O(n) rounds, is insecure against general adversaries.

We provide the intuition for our construction by considering the ideal VBB notion of obfuscation. The
overall idea is to construct a trapdoor permutation family where we can amortize the ‘state’ space required
to invert multiple independent instances. We will consider our permutations to be on domain {0, 1}λ. If we
assume we have VBB obfuscation, then consider a program that takes in b many inputs {yi}i∈b where yi ∈
{0, 1}λ and an advice string also in {0, 1}λ and outputs the preimages of the messages {xi = f−1(sk, yi)}i∈b
iff the advice string that was input was equal to

⊕
i∈b xi. The program has the secret key hardcorded and

simply computes xi and makes the check against the advice string and outputs {xi}i∈b if the check succeeds.
The VBB obfuscation of this program is then posted in the public parameters and provides a way for the
adversary to compress b · λ bits to λ bits and still preserve information. Thus an adversary with outputting
r · λ bits can recompute the replica from storing o(b · nλ) information. This would violate the security if we
proved soundness for the same parameters as our scheme. A formal treatment is presented in Section 7.

1.3 Additional Prior Work

Proofs of Retrievability:
Proofs of retrievability guarantee to a verifier that a server is storing all of client’s data. The notion

was formalized in [20], where, in an audit protocol the verifier stores a (short) verification key locally and
interacts with the server to enforce accountability of the storage provider. If the server can pass an audit,
then there exists an extractor algorithm, that must be able to extract the file on interaction with the server.
There are different constructions for this primitive, [12, 27, 8]. The construction of [27] showed how to do
this in the random oracle model that allow public verifiability.

Proofs of Space: Proof of space are interactive protocols between a prover (server) and a verifier (client)
that guarantee that a prover has dedicated a specific amount of space. It guarantees that it would be more
expensive for a dishonest prover to deviate from the honest protocol. They were introduced in [14] and
have been further studied in [25, 1]. Compared to a proof of replicated storage, they have an additional
requirement of communication being succinct between a prover and verifier and are usually studied in the
public-key setting.

Other examples of works which are different from proofs of space but enforce storage requirements similar
to our soundness game on the prover are storage-enforcing commitments [18], hourglass scheme [28] and the
model of computation considered by [15].

Proofs of Replicated Storage:
The formal treatment of proofs of replicated storage was given by [11, 16, 9]. The idea was introduced

in [6, 5] where they proposed Filecoin, a decentralized storage network that performs consensus using proofs
of replication. Recently, [24, 17, 7, 9, 16] have given constructions for proof of replication using timing
assumptions (encoding process is much slower so that a server cannot replicate data on demand). On the
other hand, the scheme of [11] is not based on timing assumptions and considers the protocol with a client
setup. They introduce the notion of a replica encoding that can be combined with a public verifiable proof
of retrievability [27] to give a proof of replicated storage. Please see [11] for other related works such as proof
of data replication.

Hourglass Scheme:
Our constructions and the construction from [11] are reminiscent of the hourglass scheme of [28]. Our

construction in the ideal permutation model differs from the RSA based hourglass function of [28] in explicitly
ensuring that the encoding blocks are uniformly distributed by applying a random oracle H and increasing
the number of rounds suggested by their scheme. Because of our explicit encoding function, we do not need
to make a partitioning assumption in our security proof. The brief analysis of their scheme gives a similar
intuition to the security as used by [11] and gives a construction for the number of rounds independent of
the number of blocks. But as we see in Section 7, this intuition does not hold true for general adversaries.

7

Technique Similarities in literature:
Some of our techniques have a flavor that appears in the the study of pebbling strategies on random

oracle graphs and the memory hardness literature [15, 13, 3, 2, 4]. Pebbling strategies on random oracle
graphs look at the amount of resources (the list of random-oracle calls) made by the adversary and help in
proving complexity lower-bounds on the resources. Our notion of “sequentiality” is similar to the notion of
a legal “ex-post-facto pebbling” on a directed acyclic graph (see [4] for details). The reductions there are
proven using a core lemma which looks at a legal ex-post-facto pebbling given hints; Lemma 1 of [4, 15, 13]
which is similar to our core lemmas for proving sequentiality Lemma 1, Lemma 2. Interestingly, [2] considered
adversaries that can store secret shares of the random oracle queries (such as a xor) and introduced the notion
of an entangled pebbling game. They look at the resource of “Cumulative Memory Complexity (CMC)” and
constructed an example to show that such strategies can help the adversary reduce it’s resource requirement.
The followup work of [3] improved on their lower bounds results for any general adversarial strategy.

1.4 Concurrent Work

After completing our work we learned of a concurrent and independent work of Moran and Wichs [22]. They
introduce a variant of replica encodings which they call incompressible encodings, and proceed to provide
constructions in the random-oracle model (and the common random string model) using the Decisional
Composite Residuosity or Learning with Errors assumptions. Their construction utilizes some new techniques
to apply lossiness to construct said encodings. In addition, they introduce an additional “big-key” application
for intrusion resilience which applies to our constructions and proofs as well.

At a very high level, our work depends on the general assumption of trapdoor permutations, whereas
they use the specific number theoretic assumptions of Decisional Composite Residuosity and Learning with
Errors. Comparing our construction instantiated with RSA trapdoor permutation to their DCR construction,
their construction appears to be more practically efficient from a computational perspective due to the round
complexity required for our construction, however, ours makes tighter use of space for small “s” values used in
the DCR construction. An interesting future direction could be to explore concrete space and computational
efficiency tradeoffs for increasing the s parameter in their DCR construction.

Similar to us, Moran and Wichs discovered foundational issues in the proof arguments of [11]. In a
personal communication Wichs noted that there is a simple heuristic counterexample to the claim of [11]
if one uses the heuristic of ideal obfuscation. We subsequently developed a counterexample based on the
concrete assumption of indistinguishability obfuscation that we added as Section 7 of our work.

2 Preliminaries
Notation. These notations are used consistently throughout the text.
We use κ to denote the security parameter. y ← B(x) denotes the output of the algorithm B when we run x
on it. A negligible function negl(x) is a function such that for every positive integer c, there exists an integer
Nc such that for all x > Nc, negl(x) < 1

xc . [n] denotes the set {1, 2, . . . , n} and [a, b] denotes the interval

between a and b inclusive. y
R←− D implies that we are uniformly sampling y from a domain set D. We say

an adversary or an algorithm A is probabilistic poly time (PPT) if there is a polynomial poly(·) such that
for all κ, A will halt in ≤ poly(κ) time in expectation on any input of length κ.

2.1 Trapdoor permutations

Definition 1. A trapdoor permutation is defined as a collection of three PPT algorithms KeyGen(.), f(., .), f−1(., .)
with the following properties:

• Easy to sample: KeyGen(1κ) outputs a public key pk, secret key sk pair (pk, sk). Size of both the keys
pk, sk are polynomial in the security parameter κ.

• Easy to compute: A public key pk defines a family of trapdoor permutation functions denoted by F on
domain Dpk where F = {f(pk, .) : Dpk → Dpk} as a collection of bijective polytime computable functions
f(pk, .).

8

• Inversion with trapdoor: f−1(sk, .) computes the inverse of f(pk, .).

∀κ, (pk, sk)← KeyGen(1κ),∀x ∈ Dpk, f
−1(sk, f(pk, x)) = x.

• One wayness, i.e. it is hard to invert without the knowledge of the secret key sk. More formally, for
all PPT algorithms A, there exists a negligible function negl such that,

Pr

[
f(pk, z) = y s.t.

(pk, sk)← KeyGen(1κ), x
R←− Dpk, y = f(pk, x), z ← A(pk, y)

]
≤ negl(κ),

where the probability is over the coins to KeyGen and sampling x.

3 Defining Replica Encoding

A Replica Encoding scheme - ReplicaEncoding is defined as a tuple of algorithms (rSetup, rEnc, rDec), where
rSetup takes in the security parameter denoted by 1κ and the maximum number of replicas a client wishes
to replicate denoted by 1n and outputs a public key secret key pair (pk, sk), rEnc is a randomized algorithm
which takes a message m ∈ {0, 1}∗, a secret key sk and outputs a replica encoding. rDec is a deterministic
algorithm that takes as input a public key pk, a replica encoding and outputs a message m. Formally,

(pk, sk)← rSetup(1κ, 1n), y ← rEnc(sk,m), m← rDec(pk, y).

Definition 2. A tuple (rSetup,rEnc,rDec) is a replica encoding if the following holds:

• Correctness: For any choice of coins of rSetup, the probability of incorrect decoding is

∀n,m, Pr

[
(pk, sk)← rSetup(1κ, 1n)

rDec(pk, rEnc(sk,m)) 6= m

]
≤ negl(κ)

where the probability is over the coins of rEnc 1.

• Length of the encoding scheme is denoted by a function len(·, ·) : N× N→ N that takes in the security
parameter and the length of the message and outputs the length of the encoding, formally for any κ,m,
choice of coins of rSetup,

∀κ,m, Pr

[
(pk, sk)← rSetup(1κ, 1n)
len(κ, |m|) 6= |rEnc(sk,m)|

]
≤ negl(κ)

where the probability is over the coins of rEnc.

• s-Sound: Consider the game SoundA1,A2
(κ, n) between an adversary pair (A1,A2) and a challenger

defined in Figure 1. A replica encoding scheme is s-sound (s : N× N → [0, 1]), if for any probabilistic
poly-time adversaries (A1,A2), for all n ∈ N, there exists a function negl such that the following holds.

Pr

[
(v, state,m)← SoundA1,A2

(κ, n), s.t.
|state| < v · s(κ, |m|) · len(κ, |m|)

]
≤ negl(κ).

where the probability is over the coins with the challenger and the two adversaries A1,A2.

1There exists a generic method for converting a scheme with negligible correctness error into a perfectly correct scheme. To
do so augment the rEnc algorithm so that it first produces the encoding. Then the new rEnc algorithm run the deterministc
rDec algorithm on the encoding to check that the message was recovered. If not, output the message in the clear and a flag bit
indicating that the message is output in plain instead of the encoding. This adds a negligible hit in the security as opposed to
the correctness.

9

Game SoundA1,A2(κ, n)

• Setup: The challenger(denoted by C) runs (pk, sk)← rSetup(1κ, 1n) and sends pk to A1. It keeps the secret key
sk for itself.

• File Challenge: The adversary A1, on input (1κ, pk), chooses a file m ∈ {0, 1}∗. It sends m to C.
• The challenger outputs n encodings of m by calling rEnc n times.

∀i ∈ [n], y(i) ← rEnc(sk,m)

and returns y(1), . . . , y(n) to A1.

• State Sharing: A1 outputs state ← A1(1κ, pk, y(1), . . . , y(n)) and sends state, the number of replicas 1n and
message m to A2.

• Guess: A2 on receiving state state, outputs the replica guess to C,

(ỹ(1), . . . , ỹ(n))← A2(1κ, 1n, pk,m, state)

• Verify: Let vi = 1 if ỹ(i) = y(i) and 0 otherwise. Output (v =
∑n
i=1 vi, state,m).

Figure 1: The soundness game for the replica encoding scheme.

A remark on the efficiency. We remark that there can exist trivial constructions of replica encoding
by simply concatenating a string m with the randomness ρ i.e. let rEnc(sk,m) = m||ρ. These schemes

are secure for s ∈ |ρ|
|m|+|ρ| −

ω(log κ)
|m|+|ρ| . If we consider long ρ, we can construct a sound replica encoding

scheme for arbitrary s(κ, |m|). As a specific example, imagine rEnc(sk,m) = m||ρ where ρ
R←− {0, 1}99|m|.

This scheme is trivially correct as m is output in the clear and len(κ, |m|) = 100|m|. For all functions s

such that s(κ, |m|) ∈ 99
100 −

ω(log κ)
100|m| , the proposed scheme is s sound. Intuitively, for each encoding A2 has

99|m| − ω(log κ) information in state and is supposed to output 99|m| random bits. Even if they randomly
guess the remaining bits the probability of success will be negligible in κ. For this reason we are interested
in schemes that do better than the soundness efficiency tradeoffs of this trivial solution.

Definitions in prior work. The formal definition of proof of replica encoding was given by Damg̊ard et
al [11]. The soundness game can also be defined from the proof of space literature where the input message
to be stored is generated through a private key setup (not revealed to the prover and the verifier) and the
time bound for the prover is polynomial. We simply clean up the definitions proposed by [11] and highlight
a few differences.

The earlier soundness definition is stated in terms of a constant c,

Pr
[
|state| < c · v · len(κ, |m|) | (v, state,m)← SoundA1,A2(κ, n)

]
≤ negl(κ).

We make 2 changes to this definition. First, rather than using a constant c, our soundness is stated in
terms of a function s(κ, |m|). This change is purely for increasing the flexibility of the definition, as we can
always take s(κ, |m|) to be a constant function. We make this change to highlight our theorem statement s
soundness for a larger class of functions. Next, we consider the total probability of the adversary winning
the soundness game with any number v replicas rather than the conditional probability per fixed v value. In
the original definition, the security can trivially be broken.

To see the issue let’s consider an attack algorithm that tries to guess the secret information used by C
when constructing the challenge (e.g. it tries to guess the TDP secret key and the randomness used during
the encryption algorithms). If its guess is correct, it can recover the replica encodings by running rEnc in
the forward direction and outputs the n replicas; otherwise, it simply gives up and outputs all 0’s. Clearly
such an adversary should not be viewed as successful since it only succeeds a negligible fraction of the time.
However, if its guess is correct (which happens only with negligible probability) it wins the game with v = n
and no state bits used. Otherwise, if the guess is incorrect even for some encoding then v < n. Even though
the winning probability of winning is negligible, when conditioned on v = n, this adversary succeeds with
probability 1.

10

Tweaking their definition to include v, state as output of the game and not conditioning on events where
the correct replica is output solves the issue.

Other minor differences between our definitions include a rSetup algorithm that sets up the parameters
for the scheme. We do this to formalize the alignment and use the KeyGen environment of the underlying
trapdoor permutation. The formal definition of replica encoding in DGO includes an efficiency condition
defined as exactly |m|+O(κ). We do not restrict the efficiency in the formal definition in our work and state
it as a desired property that should be required for a practical replica encoding scheme.

4 Lemmas on Random Functions and Permutations
This section contains useful information theoretic lemmas on analyzing random functions and permutations.
The first is a result on the hardness of outputting relations on the required ideal primitive given limited
advice and restricted behavior. We will use this later in showing adversaries capable in distinguishing
between certain games will be able to do the following with noticeable probability.

Lemma 1. Let T, T−1 : {0, 1}λ → {0, 1}λ be oracles to a random permutation and its inverse. Consider
any computationally unbounded adversary B that makes polynomially bounded (in λ) queries to T,T−1 on
input a bounded advice and outputs n pairs (xi, yi) without querying them explicitly. If advice is bounded by
n · λ− ω(log λ) bits where n is polynomial in λ, the probability that it succeeds is negligible in λ.

More formally, let the inputs and outputs by B to oracle O be denoted by lists sOB , SOB respectively. Then,

Pr

 ∃ advice ∈ {0, 1}∗ s.t. |advice| ≤ n · λ− ω(log λ),

{(xi, yi)}ni=1 ← BT(·),T
−1(·)(advice) where

∀i 6= j ∈ [n], xi 6= xj , T(xi) = yi, xi /∈ sTB and yi /∈ sT
−1

B

 ≤ negl(λ),

the probability is over the choice of the permutation T.

Proof. Let a be some fixed string , and let the event Ea be the event that B manages to produce n distinct
(xi, yi) pairs such that T(xi) = yi without querying T on xi or T−1 on yi when run on a.

Claim 1. Pr[Ea] ≤ poly(λ)
2nλ

over a random T.

Proof. Consider the set of {xi}ni=1 which B outputs. Suppose they are unique and not in sTB or ST−1

B . Since

each T(xi) is uniform on permutations not fixed on ST
B ∪ sT

−1

B , so the possible corresponding sequence of {yi}
is on a set of size

n−1∏
i=0

(2λ − |ST
B ∪ sT

−1

B | − i) ≥ (2λ − poly(λ))n ≥ 2nλ

poly(λ)
.

We can upper bound the probability that the correct sequence was picked out of this uniform set with
poly(λ)
2nλ

.

Following the above claim, we observe that ∃advice which solves Lemma 1, then some Ea must have
occured. We can union bound over all 2n·λ−ω(log λ)+1 − 1 strings of length ≤ n · λ− ω(log λ).

Pr

 ⋃
|a|≤n·λ−ω(log λ)

Ea

 ≤ ∑
|a|≤n·λ−ω(log λ)

Pr [Ea] ≤
(

2n·λ−ω(log(λ))+1 − 1
)
· poly(λ)

2nλ
≤

2nλ

2ω(log(λ))−1
2O(log(λ))

2nλ
=

1

2ω(log(λ))−O(log(λ))
=

1

2ω(log(λ))
∈ negl(λ).

11

Lemma 2. Let T′ : {0, 1}λ → {0, 1}λ be an oracle to a random function. Consider any computationally
unbounded adversary B that makes queries to T′ on input a bounded advice and outputs n pairs (xi, yi)
without querying them explicitly. If advice is bounded by n · λ− ω(log λ) bits, the probability that it succeeds
is negligible in λ.

More formally, let the inputs and outputs by B to oracle O be denoted by lists sOB , SOB respectively. Then,

Pr

∃ advice ∈ {0, 1}∗ s.t. |advice| ≤ n · λ− ω(log λ),

{(xi, yi)}ni=1 ← BT
′(·)(advice) where

∀i 6= j ∈ [n], xi 6= xj , T′(xi) = yi, xi /∈ sT
′

B

 ≤ negl(λ),

the probability is over the choice of the random function T′ picked.

Proof. Let a be some fixed string , and let the event Ea be the event that B manages to produce n distinct
(xi, yi) pairs such that T(xi) = yi without querying T on xi when run on a.

Claim 2. Pr[Ea] ≤ 1
2nλ

over a random T′.

Proof. Suppose the sequence {xi} are unique and not in sT
′

B . We know from definition of a random function
that T′(xi) are uniform and independent of all other queries on {0, 1}λ, so the probability that all {yi} are
correct is simply (2−λ)n.

Just as before, to complete the proof of the lemma, we observe that for B to succeed in Lemma 2, some
Ea must have occured, which we can simply union bound the probability B is correct on any advice string
with

Pr

 ⋃
|a|≤n·λ−ω(log λ)

Ea

 ≤ ∑
|a|≤n·λ−ω(log λ)

Pr [Ea] ≤
(

2n·λ−ω(log(λ))+1 − 1
)
· 1

2nλ
= negl(λ).

Definition 3. Let π be a permutation or permutation oracle with domain D, and let x1, x2 ∈ D. We define
the notation π′ = π[swap(x1, x2)]] to imply π′ to be same as π but swapped on points x1, π

−1(x2). Concretely,

π′(x) =


x2 x = x1

π(x1) x = π−1(x2)

π(x) otherwise.

Lemma 3. Let SD denote the symmetric group on D. Let x, r
R←− D, and π

R←− SD. Then (x, π[swap(x, r)])
is uniform on D × SD - i.e. x is independent of π[swap(x, r)].

Proof. We compute the probability π[swap(x, r)] is equal to some fixed permutation π0 conditional on x as

Pr
r,π

[π[swap(x, r)] = π0|x] =
∑
i∈D

Pr
π

[π = π0[swap(x, i)]|x] · Pr
π

[i = π(x)|x]

by independence of r and π. Let N = |D|, this is equal to∑
i∈[N]

1

N !
· 1

N
= N · 1

N !
· 1

N
=

1

N !
.

This is exactly equal to the probability of picking a T uniformly at random from the space of permutations.

12

Definition 4. Multiple invocations of the swap notation are defined as following
π[swap(x1, y1), . . . , swap(xk, yk)]:

• Let π0 = π.

• Iterate from i = 1 to k,
• Perform ith swap, πi = πi−1[swap(xi, yi)].

• Output πk.

Lemma 4. Let {r0, r1, . . . rk}
R←− D and π be a random permutation. Let SD be the set of all permutations.

Let τ be a fixed permutation on D. Then

(rk, π[swap(r0, τ(r1)), . . . , swap(rk−1, τ(rk))])

is uniform on D × SD.

Proof. This proceeds via a simple induction argument. For our base case, it is easy to see (r0, π) is uniform
on D × SD by their independence. In the induction step, we assume that

(ri, π[swap(r0, τ(r1)), . . . , swap(ri−1, τ(ri))])

is uniform on D × SD, so ri is uniform and independent of

π[swap(r0, τ(r1)), . . . , swap(ri−1, τ(ri))].

Since τ is a permutation, this means τ(ri+1) is still uniform and independent of

π[swap(r0, τ(r1)), . . . , swap(ri−1, τ(ri))]

as ri+1 clearly is, so by Lemma 3, we can say

(ri+1, π[swap(r0, τ(r1)), . . . , swap(ri−1, τ(ri))][swap(ri, τ(ri+1))]

= π[swap(r0, τ(r1)), . . . , swap(ri, τ(ri+1))])

is uniform on D × SD.

Definition 5. Let F be a function with domain D and codomain C, and let x1 ∈ D, x2 ∈ C. We define the
reprogramming shorthand F ′ = F [reprog(x1, x2)] to mean

F ′(x) =

{
x2 x = x1

F (x) otherwise.

Definition 6. Multiple invocations of the reprogram notation are defined as following
F [reprog(x1, y1), . . . , reprog(xk, yk)]:

• Let F0 = F .

• Iterate from i = 1 to k,
• Perform ith reprogramming, Fi = Fi−1[reprog(xi, yi)].

• Output Fk.

13

Lemma 5. Let x1, x2, r
R←− D, and F

R←− (D → D)2. If F ′ = F [reprog(x1, x2 ⊕ r)], then (x1, x2, F
′) is

uniform on D ×D × (D → D).

Proof. We compute the probability F [reprog(x1, x2 ⊕ r)] is equal to some fixed function F0 conditional on
x1, x2 as

Pr
r,F ′

[F ′ = F0|x1, x2] =
∑
i∈D

Pr
F

[F = F0[reprog(x1, i)]|x1, x2] · Pr
r

[r = i⊕ x2|x1, x2]

by independence of r. Let N = |D|, this is equal to∑
i∈[N]

1

NN
· 1

N
= N · 1

NN
· 1

N
=

1

NN

which is exactly the probability of picking an F uniformly at random from the space of functions.

Lemma 6. Let {r0, r1, . . . , rk}
R←− D and F

R←− (D → D). Let τ be a fixed permutation. If F ′ =
F [reprog(r1, r0⊕ τ(r2)), . . . , reprog(rk−1, rk−2⊕ τ(rk))], then (rk−1, rk, F

′) is uniform on D×D× (D → D).

Proof. This proceeds via a simple induction argument. For our base case, it is easy to see (r0, r1, F) is
uniform on D ×D × (D → D) by their independence.

In the induction step, If we assume that

(ri, ri+1, F [reprog(r1, r0 ⊕ τ(r2)), . . . , reprog(ri, ri−1 ⊕ τ(ri+1))])

is uniform on D ×D × (D → D), so ri, ri+1 are uniform and independent of

F [reprog(r1, r0 ⊕ τ(r2)), . . . , reprog(ri, ri−1 ⊕ τ(ri+1))].

So we can apply our Lemma 5 to x1 = ri+1, x2 = τ(ri+2) and r = ri to conclude that

(ri+1, τ(ri+2), F [reprog(r1, r0 ⊕ τ(r2)), . . . , reprog(ri+1, ri ⊕ τ(ri+2))])

is uniform. Since τ is a fixed permutation, this means

(ri+1, ri+2, F [reprog(r1, r0 ⊕ τ(r2)), . . . , reprog(ri+1, ri ⊕ τ(ri+2))])

is as well.

We introduce another useful result on the probability of finding collisions on a deterministic function h.

Lemma 7. Let D(κ),R(κ) represent domain,range respectively dependent on the security parameter. Let h
be any deterministic function that maps values in domain D(κ) to range R(κ) . Then,

Pr
a

[∃b 6= a ∈ D(κ), h(a) = h(b)] ≥ |D(κ)| − |R(κ)|+ 1

|D(κ)|
.

Proof. Let Sh be the bad set for a function h. Sh = {a|h(a) has just one preimage}. The cardinality of the
set is upper bounded by |R| − 1. If the set Sh was equal to the full range, each element in the range has
one preimage and the rest of the elements in the domain cannot map to any choice in the range. Thus,

Pra[a ∈ Sh] = |R(κ)|−1
|D(κ)| .

2(D → D) denotes the set of all functions from domain D to range D

14

5 Replica Encoding in the Ideal Permutation Model.
We now give the construction and proof of our replica encoding scheme from trapdoor permutations in the
ideal permutation model and the random oracle model. As stated in the introduction, the construction itself
is a close variant of [11]. However, our proof will introduce new analysis techniques that account for an
attacker that stores state in an arbitrary manner.

Let κ denote the security parameter. Let λ(κ) (denoted by λ) be a function polynomial in κ and represents
block length in our construction. We use a trapdoor permutation (KeyGen, f(., ,)f−1(., .)) where the domain
for the family of trapdoor functions is Dpk = {0, 1}λ where KeyGen is setup with security parameter κ. Let
T,T−1 be random permutation oracles on the same domain {0, 1}λ and H be a random oracle on the range
{0, 1}λ.

5.1 Construction

Let r(κ, n, |m|) (denoted by r) be the number of rounds in our scheme. For our construction, it depends on
the security parameter, maximum number of replicas chosen during setup and the message length.

rSetup(1κ, 1n):

Run KeyGen(1κ)→ (pk, sk). Output (pk′ = (pk, n), sk′ = (sk, n)).

rEnc(sk′,m):

• Parse sk′ = (sk, n).

• Choose a string ρ
R←− {0, 1}κ.

• Divide m into b blocks of length λ i.e. m = m1||m2|| . . . ||mb, b = d|m|/λe.

• Set r = n · b · λ.

• Compute ∀t ∈ [b],
Yt,0 = mt ⊕ H(ρ||t).

– For rounds j from 1 to r, compute:

Yt,j = f−1(sk,T(Yt,j−1)).

• Let yr = Y1,r|| . . . ||Yb,r and output (yr, ρ).

rDec(pk′, y):

• Parse pk′ = (pk, n).

• Parse y as (yr, ρ). Parse yr as Y1,r|| . . . ||Yb,r, where b = d|yr|/λe and r = n · b · λ.

• For rounds j from r − 1 to 0:

– Compute ∀t ∈ [b],

Yt,j = T−1(f(pk, Yt,j+1)).

• ∀t ∈ [b] compute,
mt = Yt,0 ⊕ H(ρ||t)

Output m = m1|| . . . ||mb.

The encoding length for our scheme is len(κ, |m|) = |m|+O(κ).3

3Upto additional rounding factors.

15

5.2 Security of Replica Encoding Scheme

Theorem 1. Assuming (KeyGen(1κ), f(·, ·), f−1(·, ·)) is a secure trapdoor permutation and T,T−1 are oracles
to a random permutation on domain and range {0, 1}λ and H is a random oracle on the same range. Then
our construction for ReplicaEncoding described above is s-sound according to Definition 2 for all κ, n ∈ N
and s ∈ 1− ω(log κ)

λ .

5.2.1 Sequence of Games

Our proof proceeds via a sequence of games as described below. We assume that adversaries have their
randomness non-uniformly fixed in each game to maximize their success. The changes in each game in
comparison to the previous one are indicated with red. Details of the previous game are copied without
explicit rewriting.

Game 0: This is the original SoundA1,A2(κ, n) security game where we record the queries made by the
adversaries in lists. We also assume that any list is ordered and stores distinct elements. More concretely,
when in Phase 1 a query x is made on O, C checks if x 6∈ uO and updates the list uO if the condition
is true. It performs this operation of maintaining the list for each Phase and oracle separately. Denote
q1
O, q2

O, q3
O as the functions that take in the security parameter and output the total distinct queries made

by the adversaries to oracle O during the three phases respectively. Note that the functionality of the oracles
is still the same, we just record queries.

• Setup: The challenger(denoted by C) runs (pk′, sk′)← rSetup(1κ, 1n) and sends public key pk’ to A1. It keeps
the secret key sk’ for itself.

• Phase 1: The adversary A1 issues queries on T,T−1,H, C responds the query back to A1. Let the queries on
oracle O be denoted by an ordered and distinct list uO = (uO1 , . . . , u

O
q1O

) and their outputs be denoted by an

ordered and distinct list UO = (UO1 , . . . ,U
O
q1O

).

• File Challenge: m ∈ {0, 1}∗ ← AH(·),T(·),T−1(·)
1 (1κ, pk′). It sends m to C who parses pk′ as (pk, n); sk′ as

(sk, n) and does the following:

– Divide m into b blocks of length λ i.e. m = m1||m2|| . . . ||mb, b = d|m|/λe.
– For i ∈ [n],

∗ Choose a string ρi
R←− {0, 1}κ.

∗ Compute ∀t ∈ [b],

Y
(i)
t,0 = mt ⊕ H(ρi||t).

∗ For rounds j from 1 to r and ∀t ∈ [b],

· Compute Y
(i)
t,j from Y

(i)
t,j−1 as

Y
(i)
t,j = f−1(sk,T(Y

(i)
t,j−1)).

∗ Let y
(i)
r = Y

(i)
1,r || . . . ||Y

(i)
b,r and set y(i) = (y

(i)
r , ρi).

C returns y(1), y(2), . . . y(n) to A1.

• Phase 2: A1 issues additional queries on T,T−1,H, C responds the query back to A1. Let the queries on
oracle O be denoted by an ordered and distinct list vO = (vO1 , . . . , v

O
q2O

) and their outputs be denoted by an

ordered and distinct list VO = (VO1 , . . . ,V
O
q2O

).

• State Sharing: A1 outputs state state← AH(·),T(·),T−1(·)
1 (1κ, pk′, y) and sends state to A2.

• Phase 3: The adversary A2 queries on T,T−1,H, C responds the query back to A2. Let the queries on oracle
O be denoted by an ordered and distinct list wO = (wO1 , . . . ,w

O
q3O

) and their outputs be denoted by an ordered

and distinct list WO = (WO1 , . . . ,W
O
q3O

).

• Guess: A2 outputs the replica guesses to C.

{ỹ(i)} ← A2(1κ, pk′,m, state).

16

• Verify: Let vi = 1 if ỹ(i) = y(i) and 0 otherwise. Adversary wins if |state| <
∑
vi · s(κ, |m|) · len(κ, |m|).

Game 1 : In this game we remove the sk and rely on the public key with an additional reprogramming step at
oracle H. This helps us further down the road in showing a reduction to the security of the trapdoor permutation.

• Setup: The challenger(denoted by C) runs (pk′, sk′)← rSetup(1κ, 1n) and sends public key pk’ to A1. It keeps
the secret key sk’ for itself. Set flag = 0.

• Phase 1: . . .

• File Challenge: m ∈ {0, 1}∗ ← AH(·),T(·),T−1(·)
1 (1κ, pk′). It sends m to C who parses pk′ as (pk, n); sk′ as

(sk, n) and does the following:

– Divide m into b blocks of length λ i.e. m = m1||m2|| . . . ||mb, b = d|m|/λe.
– For i ∈ [n],

∗ Choose a string ρi
R←− {0, 1}κ.

Prequery Check H If ∃t ∈ [b] : ρi||t ∈ uH, set flag = 1.

∗ Sample {Y (i)
t,r }t∈[b]

R←− {0, 1}λ

∗ For rounds j from r to 1 and ∀t ∈ [b],

· Compute Y
(i)
t,j−1 from Y

(i)
t,j as

Y
(i)
t,j−1 = T−1(f(pk, Y

(i)
t,j−1)).

∗ For each block ∀t ∈ [b], reprogram H

H(ρi||t) = mt ⊕ Y (i)
t,0

.

∗ Let y
(i)
r = Y

(i)
1,r || . . . ||Y

(i)
b,r and set y(i) = (y

(i)
r , ρi).

C returns y(1), y(2), . . . y(n) to A1.

• Phase 2, State Sharing, Phase 3, Guess: . . .

• Verify: Let vi = 1 if ỹ(i) = y(i) and 0 otherwise. Adversary wins if flag = 0 and |state| <
∑
vi · s(κ, |m|) ·

len(κ, |m|).

Game 2: In this game an adversary wins if they query on the oracle rather than outputting the replica. This
helps us ease the notation by only focussing at the oracle query lists.

• Setup, Phase 1, File Challenge, Phase 2, State Sharing, Phase 3:

• Guess:. . . .
C adds the guess to A2’s lists of queries to T in Phase 3, i.e. ∀i ∈ [n], let ỹ(i) = (Ỹ

(i)
0,r || . . . ||Ỹ

(i)
b,r , ρ̃i). ∀t ∈ [b]

add Ỹ
(i)
t,r to list of queries to T by A2 in Phase 3.

• Verify: Let vi = 1 if ∀t ∈ [b], T is queried on Y
(i)
t,r and 0 otherwise. Adversary wins if flag = 0 and

|state| <
∑
vi · s(κ, |m|) · len(κ, |m|).

Game 3: In this game, we look at the queries made by the adversary and require that it traverses atleast one
block in some replica sequentially.

• Setup, Phase 1, File Challenge, Phase 2, State Sharing, Phase 3, Guess:

• Sequentiality:
We consider going through A′2s ordered list of queries to T and T−1. If ∀i ∈ [n] ∀t ∈ [b], there is a point in time

such that some Y
(i)
t,j+1 was queried on T or f(pk, Y

(i)
t,j+1) was queried on T−1 when A2 has not made a query to

T for Y
(i)
t,j), then set flag = 1.

• Verify: Let vi = 1 if ∀t ∈ [b], T is queried on Y
(i)
t,r and 0 otherwise. Adversary wins if flag = 0 and

|state| <
∑
vi · s(κ, |m|) · len(κ, |m|).

17

Game 4: In this game, we guess the block which the adversary traversed sequentially. We concentrate on one
randomly chosen block and replica and the adversary wins if it outputs the correct encoding for this block. We lose
a multiplicative factor of b · n in the reduction due to this change.

• Setup: The challenger(denoted by C) runs (pk′, sk′)← rSetup(1κ, 1n) and sends public key pk’ to A1. It keeps
the secret key sk’ for itself. Set flag = 0.
Choose a random β ∈ [b] and γ ∈ [n].

• Phase 1, File Challenge, Phase 2, State Sharing, Phase 3, Guess:

• Sequentiality:
We consider going through A′2s list of queries to T and T−1. If there is a point in time such that some Y

(γ)
β,j+1

was queried on T or f(pk, Y
(γ)
β,j+1) was queried on T−1 when A2 has not made a query to T for Y

(γ)
β,j , then set

flag = 1.

• Verify: Let vi = 1 if ∀t ∈ [b], T is queried on Y
(i)
t,r and 0 otherwise. Adversary wins if T is queried on Y

(γ)
β,r ,

flag = 0, and |state| < n · s(κ, |m|) · len(κ, |m|).

Game 5: In this game, we reprogram the oracles H,T to have a permutation which we can analyze cleanly. The
primary idea behind this game is that there will exist two sequences of values on the chosen block and replica for
which any adversary A1 produces the same state. These possibilities for a “switch” are set up in this game. H is
programmed to output Y

(γ)
β,0 and for i ∈ [r], the values Ai,0, Ai,1 have a choice to be mapped to either of the two

Ai+1,0, Ai+1,1 depending on the sampled index x. The collision check makes sure that the reprogramming preserves
the permutation property of T and the prequery check is done to make sure that none of the values were queried in
the oracle lists in the previous phase. The oracle Tx is then reprogrammed according to the swap operation defined
in Definition 4 where for i ∈ [r], xi is now mapped to f(pk, xi+1) where xi is used to indicate the notation for Ai,x[i].

• Setup, Phase 1:

• Sampling a new permutation:

– Sample, Y
(γ)
β,0 , A1,0, . . . , Ar,0, A1,1, . . . , Ar,1

R←− {0, 1}λ.

Let Z1 = {Y (γ)
β,0 , A1,0 . . . , Ar,0, A1,1, . . . , Ar,1}.

Let Z2 = {f(pk, A1,0) . . . , f(pk, Ar,0), f(pk, A1,1), . . . , f(pk, Ar,1)}.
Collision Check: If |Z1| 6= 2r + 1, set flag = 1.

Prequery Check T: If (Z1 ∪ Z2) ∩
(
uT ∪ uT−1

∪UT ∪UT−1
)
6= ∅, set flag = 1.

– Sample a random setting x
R←− {0, 1}r. Let x[k] denote the kth bit of x. We will write xj to refer to

Aj,x[j−1] and denote Aj,̄x[j−1] with x̄j . Set x0 to denote Y
(γ)
β,0 .

– Define Tx using swap (Definition 4):

Tx = T[swap(x0, f(pk, x1)), . . . , swap(xr−1, f(pk, xr))].

– Let T−1
x be the inverse of Tx.

• File Challenge: m ∈ {0, 1}∗ ← AH(·),T(·),T−1(·)
1 (1κ, pk′). It sends m to C who parses pk′ as (pk, n); sk′ as

(sk, n) and does the following:

– Divide m into b blocks of length λ i.e. m = m1||m2|| . . . ||mb, b = d|m|/λe.
– For i ∈ [n],

∗ Choose a string ρi
R←− {0, 1}κ.

Prequery Check H If ∃t ∈ [b] : ρi||t ∈ uH, set flag = 1.

∗ Sample {Y (i)
t,r }t∈[b]

R←− {0, 1}λ

∗ For rounds j from r to 1 and ∀t ∈ [b], continue if t 6= β or i 6= γ,

· Compute Y
(i)
t,j−1 from Y

(i)
t,j as

Y
(i)
t,j−1 = T−1(f(pk, Y

(i)
t,j−1)).

18

∗ For each block ∀t ∈ [b], reprogram H

H(ρi||t) = mt ⊕ Y (i)
t,0 .

∗ Let y
(i)
r = Y

(i)
1,r || . . . ||Y

(i)
b,r and set y(i) = (y

(i)
r , ρi).

C returns y(1), y(2), . . . y(n) to A1.

• Phase 2: Use Tx,T
−1
x to answer queries for T,T−1 respectively.

• State Sharing:

• Phase 3: Use Tx,T
−1
x to answer queries for T,T−1 respectively.

• Guess, Sequentiality:

• Verify: Adversary wins if T is queried on Y
(γ)
β,r , flag = 0, and |state| < n · s(κ, |m|) · len(κ, |m|).

Game 6: In this game, C has unbounded computation time and calls A1,A2 exponentially many times
to find a collision to state through the procedure search. The setting y′ for which the procedure search outputs
a collision in state is stored in a set which is outputted at the end of the procedure. search(1κ, y, state; ζ)
takes input y ∈ {0, 1}r, state and runs algorithms A1,A2 on Game 5. Let ζ be the randomness used by the
procedure and denotes all the random coins (except those used to sample x) used by C. The procedure is
described in Figure 2.

search(1κ, y, state; ζ)

Inputs: Security parameter - 1κ

Oracle Settings on T - y ∈ {0, 1}r

State - state

Randomness used in the game - ζ

Output: Set containing all oracle settings with collision in state - S

• Set S = ∅.
• ∀y′ 6= y ∈ {0, 1}r,

– Run A1,A2 on Game 5 with randomness defined by ζ and using y′ instead of x in the game.

– Let state′ be the state shared between A1,A2.

– If state′ = state and A2 wins Game 5, then S = S ∪ {y′}.

• Output S.

Figure 2: Routine search

• Setup, Phase 1, Sampling a New Permutation, File Challenge, Phase 2, State Sharing:

• Running search: Let ζ be all the random coins (except those used to sample x) used by C. Let S ←
search(1κ, x, state; ζ).

If S = ∅ set flag = 1 and x′ = x, otherwise sample x′
R←− S.

• Setting switched oracle:

– Let x′[k] denote the kth bit of x′. We will write x′j to refer to Aj,x′[j−1] and denote Aj,̄x′[j−1] with x̄′j . Set

x′0 to denote Y
(γ)
β,0 .

– Define Tx′ to be:
Tx′ = T[swap(x′0, f(pk, x′1)), . . . , swap(x′r−1, f(pk, x′r))].

– Let T−1
x′ be the inverse of Tx′ .

• Phase 3: Use Tx′ ,T
−1
x′ to answer queries for T,T−1 respectively.

19

• Guess:

• Sequentiality:
If ∃j ∈ [0, r] :(x′j+1 was queried on T or f(pk, x′j+1) was queried on T−1 while T had not been queried on x′j),
set flag = 1.

• Verify: Adversary wins if T is queried on x′r, flag = 0, and |state| < n · s(κ, |m|) · len(κ, |m|).

Game 7: In this game we modify the verification step for which an adversary can win this game. We increase
it’s winning probability so that the adversary can win if it doesn’t query the full sequence, but queries at the point
where the sequences x, x′ diverge. Notice that we define another oracle Tδx′ here that doesn’t reprogram the complete
sequence. This change is statistically indistinguishable to the adversary.

• Setup, Phase 1, Sampling a New Permutation, File Challenge, Phase 2, State Sharing, Running
search:

• Setting switched oracle:

– Let x′[k] denote the kth bit of x′. We will write x′j to refer to Aj,x′[j−1] and denote Aj,̄x′[j−1] with x̄′j . Set

x′0 to denote Y
(γ)
β,0 .

– Let δ be the first index for which xδ 6= x′δ.

– Define Tδx′ to be:

Tδx′ = T[swap(x′0, f(pk, x′1)), . . . , swap(x′δ−1, f(pk, x′δ))]

= T[swap(x0, f(pk, x1)), . . . , swap(xδ−1, f(pk, x̄δ))].

– Let T−1
x′ be the inverse of Tx′ .

• Phase 3, Guess:

• Sequentiality:

• Verify: Adversary wins of T is queried on x̄δ, flag = 0 and |state| < n · s(κ, |m|) · len(κ, |m|).

Game 8: In this game we observe that C need not be unbounded computation time and only needs to the guess
the first prefix at which x, x′ differ to successfully output one sequential query.

• Setup, Phase 1, Sampling a New Permutation, File Challenge, Phase 2, State Sharing:

• Running search:

• Setting switched oracle:

– Let x′[k] denote the kth bit of x′. We will write x′j to refer to Aj,x′[j−1] and denote Aj,̄x′[j−1] with x̄′j . Set

x′0 to denote Y
(γ)
β,0 .

– Let δ
R←− [r]

– Define Tδx′ to be:
Tδx′ = T[swap(x0, f(pk, x1)), . . . , swap(xδ−1, f(pk, x̄δ))].

– Let T−1
x′ be the inverse of Tx′ .

• Phase 3, Guess:

• Verify: Adversary wins of T is queried on x̄δ and flag = 0.

5.2.2 Indistinguishability of Games

Let Fi(κ) (denoted by Fi) be the probability that the adversaries win at the end of Game i.

20

Game 0

Proof. Game 0 is a restatement of the original SoundA1,A2
(κ, n) game with two differences, (i) the syntactical

change to note down queries to each oracle, (ii) expands on rEnc. Both the syntactical changes do not change
the functioning of the game.

Game 1

Lemma 8. Pr[F1] ≥ Pr[F0]− negl(κ).

Proof. Game 1 differs from Game 0 in how queries are answered to the adversaries and the possibility of flag
being set. Let Pr[F0] = ε be the probability of adversary winning in Game 0. Let EH be the event flag is
set due to Prequery Check H. We can upper bound the difference in probability of F1 and F0 by the sum
of (i) the probability that EH occurs, (ii) and the statistical difference of the output of C from the alternate
method of encoding generation.

Claim 3. Pr[EH] = negl(κ).

Proof. Since each ρi is generated uniformly on {0, 1}κ and independent of A1, we can bound the probability
that any fixed query is equal to a particular ρi as k ∈ [q1

H] i ∈ [n] Pr[uH
k = ρi] = 2−κ. From this, we can

union bound the
Pr[∃k ∈ [q1

H] i ∈ [n] t ∈ [b] : uH
k = ρi||t] ≤ q1

H · n · b · 2−κ

Since q1
H, n, b ∈ poly(κ), this is negligible

Claim 4. The distribution of T× {Y (i)
t,r } in Game 0 is statistically close to uniform.

Proof. First, observe that with probability 1− negl(κ), ∀i ∈ [n], t ∈ [b] ρi||t is not queried H on by A1 before
submitting m. This is apparent as each ρi is uniformly random on a domain of size 2κ and A1 can make

at most poly(κ) queries. Since Y
(i)
t,0 = H(ρi||t) ⊕mt, and m is independent of H(ρi||t), we can say {Y (i)

t,0 } is
uniform and independent of at least a 1−negl(κ) fraction of T, and once an T is fixed, this defines a bijective

relation from Y
(i)
t,0 to Y

(i)
t,r , so the latter is also uniform and independent of at least a 1− negl(κ) fraction of

T. Bounding the statistical distance with negl(κ).

Since in Game 1, it is apparent that T×{Y (i)
t,r } is uniform by the fact that {Y (i)

t,r } are generated independent
of T, Claim 4 bounds the statistical distance between the responses of C between Game 0 and 1 with
negl(κ). Combined with the previous claim, we can conclude the total difference between Game 0 and 1 is
negligible.

Game 2

Claim 5. Pr[F2] ≥ Pr[F1].

Proof. Game 2 differs from Game 1 in the winning condition. Let Pr[F1] = ε be the probability of adversary
winning in winning Game 1. Then the adversary is sure to win Game 2 as C records the output in the
query.

Game 3

Lemma 9. Pr[F3] ≥ Pr[F2]− negl(κ)

Proof. Observe that these games only differ when flag is set to 1 and adversary ends up winning Game 2. Let
ε be the probability that (A1,A2) wins in such a manner. We will refer to this as winning non-sequentially.

21

Claim 6. A1 will only query on Y
(i)
t,j or f(pk, Y

(i)
t,j) in Phase 1 with negligible probability.

Pr[∃(i, j, t) : Y
(i)
t,j ∈ uT ∨ f(pk, Y

(i)
t,j) ∈ uT−1

] = negl(κ)

Proof. Once we fix T, any Y
(i)
t,j and f(pk, Y

(i)
t,j) have a bijective relation onto Y

(i)
t,r , which is uniform and

independently generated, so we can union bound the probability

Pr[∃(i, j, t) : Y
(i)
t,j ∈ uT ∨ f(pk, Y

(i)
t,j) ∈ uT−1

]

≤
∑

(i,j,t)∈[n]×[r]×[b]

 q1
T∑

q=0

Pr[Y
(i)
t,j = uT

q] +

q1
T−1∑
q=0

Pr[f(pk, Y
(i)
t,j) = uT−1

q]


= n · b · r

(
q1

T · 2−λ + q1
T−1

· 2−λ
)

Since b, r, n, q1
T, q1

T−1

are all poly(κ), this is negligible.

Claim 7. With all but negligible probability, the {Y (i)
t,j } are unique.

Pr[∃(i1, j1, t1) 6= (i2, j2, t2) : Y
(i1)
t1,j1

= Y
(i2)
t2,j2

] ≤ negl(κ)

Proof. We do a case by case analysis,

• Assume (i1, t1) = (i2, t2) - where both values are on the same block, but different rounds. Lets consider

j1 ∈ [r]. Let j2 be the smallest index greater than j1 such that Y
(i1)
t1,j1

= Y
(i2)
t2,j2

. Now consider the set of

all permutations such that T(Y
(i1)
t1,j

) = f(pk, Y
(i1)
t1,j+1) for j ∈ [j1, j2 − 2]. This set fixes the permutation

on j2 − j1 − 1 points. Thus the probability over the remaining permutations that T(Y
(i1)
t1,j2−1) = Y

(i2)
t2,j1

is 1/(2λ − j2 + j1 + 1). Union bounding over j1, j2, i1, t1, which are all poly(κ) the probability is still
negligible.

• Assume (i1, t1) 6= (i2, t2) - where the two values are on different blocks. Lets consider j1, j2 ∈ [r].

Observe that if max(j1, j2) < r, Y
(i1)
t1,j1

= Y
(i2)
t2,j2

⇒ Y
(i1)
t1,j1+1 = Y

(i2)
t2,j2+1. Without loss of generality,

assume j1 ≤ j2, this implies Y
(i1)
t1,j1−j2+r = Y

(i2)
t2,r . However, since Y

(i2)
t2,r was independently randomly

chosen, the probability it is equal to any Y
(i1)
t1,j

occurs with probability ≤ r
2λ

, which is negligible. We
can union bound over t1, i1, t2, i2, which are all poly(κ), so the probability is still negligible.

Now consider the following computationally unbounded algorithm B′ with access to oracle T,T−1. This
algorithm will translate a non-sequential A2 into a reduction to the game outlined in Lemma 1 by working
backwards from m and using its unbounded computation to invert the trapdoor permutation and recover
the output of a non-sequential random oracle query without ever querying on its input.

Reduction B′T(·),T−1(·)(advice):

Goal: Produce Input Output oracle pairs without explicitly querying the oracle.

• Setup:

22

– Sample a random function H(·) and use it to answer oracle queries made by A1,A2.

– Perform, Setup and Phase 1 as in Game 3.

– Receive m← AH(·),T(·),T−1(·)
1 (1κ, pk′) after Phase 1. Parse pk′ as (pk, n).

– Choose a set of random {ρi}i∈[n] and compute {Y (i)
t,0 = H(ρi||t)⊕mt}t∈[b],i∈[n].

– Parse advice as (state,Q = {(qk, ik, tk, jk)}k) where k is polynomial in security parameter and
qk represents query that will be made by algorithm A2, ik, tk, jk represent the replica,block and
round number respectively.

• Simulate:

– Run AH(·),T(·),T−1(·)
2 (1κ, pk′,m, state), interacting with the random oracle queries it makes to

T,T−1. Let wT,T−1

denote the ordered and distinct list of queries A2 makes to T or T−1, and let
wT,T−1

q refer to the qth element in this list. We perform the operations below while running A2.

– ∀k, let xk be wT,T−1

qk
. Compute Y

(ik)
tk,jk

from Y
(ik)
tk,0

.

∗ For j from 1 to jk,

Y
(ik)
tk,j

= f−1(sk,T(Y
(ik)
tk,j−1)).

Let yk = xk if the qthk query was made to T−1 and yk = f(pk, xk) if it were made to T.

– Any time A2 attempts to query T on Y
(ik)
tk,jk

or T−1 on yk, B′ doesn’t query the true oracle and

instead returns yk or Y
(ik)
tk,jk

to A2 respectively.

– For any other queries A2 makes to an oracle, B′ simply queries the appropriate oracle, returns
the query results and completes execution of A2.

• Return: Output the pairs {(Y (ik)
tk,jk

, f(pk, xk))}k.

Claim 8. Suppose Y
(i)
t,j+1 is queried on T or f(pk, Y

(i)
t,j+1) is queried on T−1 by A2 when Y

(i)
t,j has not yet been

queried on T. Then ∃ hint q′ such that B′ on input advice = (state,Q) where (q′, i, t, j) ∈ Q and B′ outputs

(Y
(i)
t,j , f(pk, Y

(i)
t,j+1)) and in Simulate phase never queries T on Y

(i)
t,j or T−1 on f(pk, Y

(i)
t,j+1) and only queries

T on Y
(i)
t,j′ for j′ < j (in addition to A2’s queries).

Proof. Let q′ be the smallest index in wT,T−1

which represent a query of Y
(i)
t,j+1 to T or f(pk, Y

(i)
t,j) to T−1

by A2. B′ from our construction can from now on answer T(Y
(i)
t,j) and T−1(f(pk, Y

(i)
t,j)) without querying the

true oracle in Simulate phase. Since by assumption, Y
(i)
t,j has not yet been queried on T by A2 yet, and q′

was minimum, so T−1 was not queried on f(pk, Y
(i)
t,j) before either.

Claim 9. If A2 wins nonsequentially with probability ε,

Pr

 ∃ advice ∈ {0, 1}∗ s.t. |advice| ≤ n′ · λ− ω(log λ),

{(xi, yi)}n
′

i=1 ← B′T(·),T
−1(·)(advice) where

∀i 6= j ∈ [n′], xi 6= xj , T(xi) = yi, xi /∈ sTB′ and yi /∈ sT
−1

B′

 ≥ ε− negl(κ),

Proof. We can take advice to be the state produced by AH(·),T,T−1

1 (1κ, pk) and (q, i, t, j) ∈ Q to be a j such

that Y
(i)
t,j+1 was queried before Y

(i)
t,j for every i ∈ [n], t ∈ [b].

By Claim 8, such a q exists for each (i, t, j), and B′ has outputted n · b pairs (Y
(i)
t,j , f(pk, Y

(i)
t,j+1)) without

querying on T,T−1 in the Simulate phase. By Claim 7 and Claim 6 that these pairs (xi, yi) are distinct,
and that B will not have queried any xi or yi in the Setup phase with all but negligible probability.

23

Since (q, i, t, j) are all ≤ poly(κ) by the running time of A2, Q only needs b · n · O(log κ) bits. As

s ∈ 1− ω(log κ)
λ , we get,

|state| ≤ b · n · λ− b · n · ω(log(κ))⇒ |advice| ≤ b · n · λ− b · n · ω(log(κ)) + b · n ·O(log κ)

≤ b · n · λ− ω(log(κ)).

This proves the claim for n′ = b · n which is polynomial in κ and hence polynomial in λ.

By Lemma 1, ε− negl(κ) ∈ negl(λ) = negl(κ)⇒ ε ≤ negl(κ).

Game 4

Claim 10. Pr[F4] ≥ Pr[F3]
bn .

Proof. Game 4 differs from Game 3 in the winning condition. Let Pr[F3] = ε be the probability of adversary
winning in winning Game 3. Let this adversary be A2. From the sequentiality condition we have that A2 is
sequential on at least one block and replica. The probability that this guess was made correctly in Game 4
is ≥ 1

bn . This adversary thus wins Game 4 with probability ≥ ε
bn .

Game 5

Lemma 10. Pr[F5] ≥ Pr[F4]− negl(κ).

Proof. Game 5 differs from Game 4 in how queries are answered to the adversaries and the possibility of flag
being set. Let Pr[F4] = ε be the probability of adversary winning in winning Game 4. Let ET be the event
that it is set due to Prequery Check T, and let Ex be the probability that flag is due to Collision Check.
We can bound the probability that the adversary wins Game 5 by the sum of (i) the probability that Ex

occurs, (ii) the probability ET occurs, and (iii) the statistical difference of the output of C from using T,Tx.

Claim 11. Pr[Ex] = negl(κ).

We note that since Z1 are uniform and independently random, we can bound the probability that za, zb ∈
Z1 collide for any fixed a 6= b is 1

2λ
, so we can union bound the probability that

Pr[∃a 6= b : za = zb] ≤
2r+1∑
a=0

2r+1∑
b=a+1

Pr[za = zb] =

(
2r + 1

2

)
1

2λ
= negl(κ)

Claim 12. Pr[ET] = negl(κ)

Proof. We note that since all 4r + 1 elements of Z1 ∪ Z2 are uniform and independent of T, we can bound

the probability that some z ∈ Z1 ∪ Z2 is equal to some z′ ∈
(
uT ∪ uT−1 ∪UT ∪UT−1

)
with 1

2λ
. Thus, we

can union bound

Pr[(Z1 ∪ Z2) ∩
(
uT ∪ uT−1

∪UT ∪UT−1
)
6= ∅] ≤ (4r + 1) ·

(
2q1

T + 2q1
T−1
)
· 2−λ

Since q1
T, q1

T−1

, r are all poly(κ), this is negl(κ).

For (iii), applying Lemma 4 with π = T, {r0, . . . rk} = {x0, . . . , xr}, and τ = f(pk, ·) tells us that
(xr,T[swap(x0, f(pk, x1)), . . . , swap(xr−1, f(pk, xr))]) is uniformly random. Since the only place C’s responses

differ are answers to Tx and returning the encoding Y
(γ)
β,r = xr. We recall that (Y

(γ)
β,r ,T) is uniform in Game

4 by construction, so these distributions are identical.
Since (i), (ii), (iii) are all negligible, the adversary thus wins Game 5 with probability ε− negl(κ).

24

Game 6

Let Pr[F5] = ε be the probability of adversary winning in winning Game 5.

Lemma 11. Pr[F6] ≥
(
ε
2

) (
ε2r−1−2|state|+1

ε2r−1

)
.

Here we apply the bound on state size to argue that x′ which ensure that A wins must be fairly frequent.

Proof. Note that by construction, A will win Game 6 as long as an appropriate x′ exists. We will lower
bound said probability below. Let us consider the random coins used in Game 5. The randomness for C is
over the choice of permutation picked T and γ, β,Z, x, δ, ρ′ where ρ′ denotes the randomness over ρi sampled
for each replica and the coins used by the rSetup. Let us denote η = (γ, β,T,Z, ρ′) for ease of notation. Let
A1,A2 denote the adversaries that solves Game 5 with ε probability.

Define the set N = {(η, x)|F5(η, x)} where F5(η, x) denotes the event that adversaries win game 5 with
given parameters. Thus Prη,x[(η, x) ∈ N] = ε.

Let us define a heavy set, H = {(η, x)|Prη,x′ [(η, x
′) ∈ N] ≥ ε

2}. Then from the heavy row lemma of [23],
Prη,x[(η, x) ∈ H|(η, x) ∈ N] ≥ 1/2 i.e. probability that our winning instance lies on a heavy set is atleast
half.

Note that for A2 to successfully solve Game 6, we must see the following events,

1. Adversary solves the Game 5 i.e. (η, x) ∈ N , and let this be denoted by event E1.

Pr
η,x

[E1] ≥ ε.

2. Let the event that (η, x) ∈ H lies on a heavy set be denoted by E2. By heavy row lemma, we have that,

Pr
η,x

[E2|E1] ≥ 1/2

⇒ Pr
η,x

[E2] ≥ ε

2
.

3. Let the event that there exists a collision of x consistent with state that is also successful on Game 5
be denoted by E3.

Claim 13. Prη,x[E3|E2] ≥
(
ε2r−1−2|state|+1

ε2r−1

)
.

Proof. Given that (η, x) ∈ H i.e. it lies on a heavy set. Define a possible set of switches by Q = {x′|(η, x′) ∈
N}. From the definition of H, clearly |Q| ≥ ε2r

2 .

From Lemma 7 (Section 4), define hη as a function from Q → {0, 1}|state| where hη(a) = statea where
statea denotes the state shared by A1 to A2 when playing Game 5 with parameters η and x set to a. Since
A1’s coins are deterministically fixed, hη is a deterministic function.

The lemma implies the statement that,

Pr
x

[∃x′ 6= x ∈ Q, hη(x) = hη(x′)] ≥ |D| − |R|+ 1

|D|
.

This proves the claim.

Pr
η,x

(A2 wins Game 6) ≥ Pr[E2 ∩ E3]

≥ (Pr[E2]) (Pr[E3|E2])

≥
(ε

2

)(ε2r−1 − 2|state| + 1

ε2r−1

)

25

We note that if F5 is non negligible then so is F6 - i.e. ε ≥ 1
poly(κ) , then

ε2r−1 ≥ 2r−O(log κ) ∈ ω(2|state| + 1)⇒ ε2r−1 − 2|state|+1

ε2r−1
∈ (1− negl(κ)).

Game 7

Lemma 12. Pr[F7] ≥ Pr[F6]− negl(κ).

Proof. Game 7 is played on a different permutation than Game 6, with a different winning condition. By our
definition of swap(·, ·), we can observe that these permutations differ when querying Tδx′ on x′j or T−1(f(pk, x′j))

for j > δ and when querying Tδx′ on f(pk, x′j) or T(f(pk, x′j)) again for j > δ.

Claim 14. Let a, b, c, d
R←− D and T

R←− SD. Then the distributions of (a, b,T[swap(a, b)]) and
(a, b,T[swap(a, c), swap(d, b), swap(a, b)]) are identical.

Proof. By Lemma 3, (a,T[swap(a, c)]) is identical distributed to (a,T), so since b is independent of a, we
can apply Lemma 3 again to say (a, b,T[swap(a, c), swap(b, d)]) is identically distributed to (a, b,T), after the
result follows from applying swap(a, b) to both distributions.

By Claim 14, we know the distribution of

({x′j},T[. . . , swap(x′j , f(pk, x′j+1)), . . .])

is identical to that of

({x′j},T[. . . , swap(x′j , c), swap(d, f(pk, x′j+1)), swap(x′j , f(pk, x′j+1)), . . .])

for any j ∈ [r], but observe in the latter case, d and c are the preimage and image of f(pk, x′j+1) and x′j
respectively before swap(x′j , f(pk, x′j+1)), and are independently random, which tells us that T−1(f(pk, x′j))

and T(f(pk, x′j)) are random independent of {(x′j),Tx′}, so the probability that some z ∈ wT ∪ wT−1

is equal

a one of those is 2−λ, which allows us to union bound the total probability

Pr[
(
T−1({f(pk, xj))} ∪ {T(f(pk, x′j))}

)
∩
(

wT ∪ wT−1
)
6= ∅] ≤ 2r ·

(
q3

T + q3
T−1
)
· 2−λ

Since q3
T, q3

T−1

, r are all poly(κ), this is negl(κ). In addition A wins Game 6, by sequentiality, A2 must
have queried on x′δ before querying on any x′j or f(pk, x′j) for j > δ, so Game 6 and Game 7 have identical
queries with all but negligible probability before x′δ is queried on, at which point A wins Game 7.

Game 8

Claim 15. Pr[F8] ≥ Pr[F7]
r .

Proof. Our main observation here is that C does not need to guess the switch completely, C guesses δ. The
probability that this index was corretly guessed in Game 8 is exactly equal to 1

r . This adversary thus queries

x′δ and hence wins Game 8 with probability ≥ Pr[F7]
r .

Claim 16. Pr[F8] = negl(κ)

Proof. We will show through a reduction that an adversary able to win Game 8 with probability ε will also
be able to invert our trapdoor permutation with the same probability.

Let (pk, sk)← KeyGen(1κ), y
R←− Dpk = {0, 1}λ, z = f(pk, y),

Reduction B(pk, z)

Goal: Output z such that, f(pk, y) = z.

26

• Setup: The challenger(denoted by C) runs (pk′, sk′)← rSetup(1κ, 1n) and sends public key pk’ to A1. It keeps
the secret key sk’ for itself.

• Phase 1, Sampling a New Permutation, File Challenge, Phase 2, State Sharing:

• Setting switched oracle:

–

– Let δ
R←− [r]

– Define Tx using swap (Definition 4):

Tδx′ = T[swap(x0, f(pk, x1)), . . . , swap(xδ−1, z)]

– Let T−1
x′ be the inverse of Tx′ .

• Phase 3, Guess:

• Verify: Adversary wins of T is queried on x̄δ and flag = 0.

• Embed: Output embedding wT
i , where wT

i ∈ wT, s.t. f(pk,wT
i) = z.

Since x̄δ is uniformly distributed and not used before here, f(pk, x̄δ) is uniform and independent, and
indistinguishable from a uniformly random z. Note that since we no longer check for flag, it is no longer
necessary to perform collision and prequery checks, the only place where x′δ is used instead of f(pk, x̄′δ). We
can simulate the random permutation oracles and regular random oracle by picking uniformly random values
on the appropriate domain whenever A makes a new query and maintaining a map of queries already made.
Thus, if A2 won game 8, they must have queried

x̄δ = f−1(sk, f(pk, x̄δ)) = f−1(sk, z)

Which, from our definition of a secure trapdoor permutation, can only happen with negligible probability,

To complete our proof of Theorem 1, from our sequence of games, we conclude that Pr[F0] = negl(κ),
fulfilling our soundness definition.

6 Replica Encodings in the Random Function Model
We now turn toward building Replica Encodings from trapdoor permutations in the ideal function model.
Our construction will embed a Feistel like structure into the replica encoding construction. We will directly
prove security of this construction. Our construction makes use of the KeyGen, f, and f−1 defined for a
trapdoor permutation on domain {0, 1}λ and a random function T′ on the same domain. Let H be a random
oracle on the range {0, 1}λ.

Define functions L,R : {0, 1}∗ → {0, 1}∗ on even length inputs as follows. If x = y||z, where x, y, z ∈
{0, 1}∗, |y| = |z|, then the function L(.) denotes the left half of x i.e. L(x) = y and the function R(.) denotes
the right half of x i.e. R(x) = z.

6.1 Construction

rSetup(1κ, 1n):

Run KeyGen(1κ)→ (pk, sk). Output (pk′ = (pk, n), sk′ = (sk, n)).

rEnc(sk′,m):

• Parse sk′ = (sk, n).

• Choose a string ρ
R←− {0, 1}κ.

• Divide m into b blocks of length 2λ i.e. m = m1||m2|| . . . ||mb, b = d|m|/2λe.

27

• Set r = n · b · λ.

• Compute ∀t ∈ [b],
Yt,0 = L(mt ⊕ H(ρ||t)).

Yt,1 = R(mt ⊕ H(ρ||t)).

• For rounds j from 2 to r compute:

- Compute Yt,j from Yt,j−1 and Yt,j−2 as

Yt,j = f−1(sk, Yt,j−2 ⊕ T′(Yt,j−1))

• Let Zt = Yt,r−1||Yt,r

• Let yr = Z1|| . . . ||Zb and output (yr, ρ).

rDec(pk′, y):

• Parse pk′ = (pk, n).

• Parse y as (yr, ρ). Parse yr as Z1||Z2|| . . . ||Zb,where b = d|yr|/2λe and r = n · b · λ.

• For each Zt = Yt,r−1||Yt,r and for rounds j from r − 2 to 0 compute:

- Compute Yt,j from Yt,j+1 and Yt,j+2 as

Yt,j = f(pk, Yt,j+2)⊕ T′(Yt,j+1)

• ∀t ∈ [b] compute,
mt = Yt,0||Yt,1 ⊕ H(ρ||t)

Output m = m1|| . . . ||mb.

The encoding length for our scheme is len(κ, |m|) = |m|+O(κ).4

6.2 Proof of Security

Theorem 2. Assuming (KeyGen(1κ), f(·, ·), f−1(·, ·)) is a secure trapdoor permutation on domain and range
{0, 1}λ and T′ is an oracle to a random function on the same domain and range, and H is a random oracle
with range {0, 1}2λ. Then our construction for ReplicaEncoding described above is s-sound according to

Definition 2 for all κ, n ∈ N and s ∈ 1− ω(log κ)
2λ .

6.2.1 Sequence of Games

Our proof proceeds via a sequence of games as described below. We assume that adversaries have their
randomness non-uniformly fixed in each game to maximize their success. The changes in each game in
comparison to the previous one are indicated with red. Details of the previous game are copied without
explicit rewriting.

Game 0: This is the original SoundA1,A2(κ, n) security game where we record the queries made by the
adversaries in lists. We also assume that any list is ordered and stores distinct elements. More concretely,
when in Phase 1 a query x is made on O, C checks if x 6∈ uO and updates the list uO if the condition
is true. It performs this operation of maintaining the list for each Phase and oracle separately. Denote
q1
O, q2

O, q3
O as the functions that take in the security parameter and output the total distinct queries made

by the adversaries to oracle O during the three phases respectively.

4Upto additional rounding factors.

28

• Setup: The challenger(denoted by C) runs (pk′, sk′)← rSetup(1κ, 1n) and sends public key pk’ to A1. It keeps
the secret key sk’ for itself.

• Phase 1: The stateful adversary A1 issues queries on H and T′, C responds the query back to A1. Let the
queries on oracle O be denoted by an ordered and distinct list uO = (uO1 , . . . , u

O
q1O

) and their outputs be

denoted by an ordered and distinct list UO = (UO1 , . . . ,U
O
q1O

).

• File Challenge: m ∈ {0, 1}∗ ← AH(·),T′(·)
1 (1κ, pk′). It sends m to C who parses pk′ as (pk, n); sk′ as (sk, n)

and does the following:

– Divide m into b blocks of length 2λ i.e. m = m1||m2|| . . . ||mb, b = d|m|/2λe.
– For i ∈ [n],

∗ Choose a string ρi
R←− {0, 1}κ.

∗ Divide m into b blocks of length 2λ i.e. m = m1||m2|| . . . ||mb, b = d|m|/2λe.
∗ Compute ∀t ∈ [b],

Y
(i)
t,0 = L(mt ⊕ H(ρi||t)).

Y
(i)
t,1 = R(mt ⊕ H(ρi||t)).

∗ For rounds j from 2 to r compute:

- Compute Y
(i)
t,j from Y

(i)
t,j−1 and Y

(i)
t,j−2 as

Y
(i)
t,j = f−1(sk1, Y

(i)
t,j−2 ⊕ T′(Y

(i)
t,j−1))

∗ Let Zt = Y
(i)
t,r−1||Y

(i)
t,r

∗ Let y
(i)
r = Z

(i)
1 || . . . ||Z

(i)
b and output (y

(i)
r , ρ).

C returns y(1), y(2), . . . y(n) to A1.

• Phase 2: A1 issues additional queries on H and T′, C responds the query back to A1. Let the queries on oracle
O be denoted by an ordered and distinct list vO = (vO1 , . . . , v

O
q2O

) and their outputs be denoted by an ordered

and distinct list VO = (VO1 , . . . ,V
O
q2O

).

• State Sharing: A1 outputs state state← AH(·),T′(·)
1 (1κ, pk′, y) and sends state to A2.

• Phase 3: Stateful adversary A2 queries on H and T′, C responds the query back to A2. Let the queries on
oracle O be denoted by an ordered and distinct list wO = (wO1 , . . . ,w

O
q3O

) and their outputs be denoted by an

ordered and distinct list WO = (WO1 , . . . ,W
O
q3O

).

• Guess: A2 outputs the replica guesses to C

{ỹ(i)} ← A2(1κ, pk′, state).

• Verify: Let vi = 1 if ỹ(i) = y(i) and vi = 0 otherwise. Adversary wins if |state| <
∑
vi · s(κ, |m|) · len(κ, |m|).

Game 1: In this game we remove the sk and rely on the public key with an additional reprogramming step at
oracle H. This helps us further down the road in showing a reduction to the security of the trapdoor permutation.

• Setup: The challenger(denoted by C) runs (pk′, sk′)← rSetup(1κ, 1n) and sends public key pk’ to A1. It keeps
the secret key sk’ for itself. Set flag = 0.

• Phase 1: . . .

• File Challenge: m ∈ {0, 1}∗ ← AH(·),T′(·)
1 (1κ, pk′). It sends m to C who parses pk′ as (pk, n); sk′ as (sk, n)

and does the following:

– Divide m into b blocks of length 2λ i.e. m = m1||m2|| . . . ||mb, b = d|m|/2λe.
– For i ∈ [n],

∗ Choose a string ρi
R←− {0, 1}κ.

Prequery Check H: If ∃t ∈ [b] : ρi||t ∈ uH, set flag = 1.

29

∗ Sample {(Y (i)
t,r−1, Y

(i)
t,r)}t∈[b]

R←− {0, 1}λ.

∗ For rounds j from r to 2 and ∀t ∈ [b],

· Compute Y
(i)
t,j−2 from Y

(i)
t,j , Y

(i)
t,j−1 as

Y
(i)
t,j−2 = T′(Y

(i)
t,j−1)⊕ f(pk, Y

(i)
t,j).

∗ For each block ∀t ∈ [b], reprogram H

H(ρi||t) = mt ⊕ Y (i)
t,0 ||Y

(i)
t,1 .

∗ Let Zt = Y
(i)
t,r−1||Y

(i)
t,r .

∗ Let y
(i)
r = Z

(i)
1 || . . . ||Z

(i)
b and output (y

(i)
r , ρ).

C returns y(1), y(2), . . . y(n) to A1.

• Phase 2, State Sharing, Phase 3, Guess: . . .

• Verify: Let vi = 1 if ỹ(i) = y(i) and vi = 0 otherwise. Adversary wins if flag = 0 and |state| <
∑
vi · s(κ, |m|) ·

len(κ, |m|).

Game 2: In this game an adversary wins if they query on the oracle rather than outputting the replica. This
helps us ease the notation by only focussing at the oracle query lists. This is used later when we argue the order the
adversary must make certain random oracle queries.

• Setup, Phase 1, File Challenge, Phase 2, State Sharing, Phase 3:

• Guess:. . . .
C adds the guess to A2’s lists of queries to T′ in Phase 3, i.e. ∀i ∈ [n], let ỹ(i) = (Z̃

(i)
1 || . . . ||Z̃

(i)
r , ρ̃i), where

Z̃
(i)
t = Ỹ

(i)
t,r−1||Ỹ

(i)
t,r . ∀t ∈ [b] add Ỹ

(i)
t,r−1 and Ỹ

(i)
t,r to list of queries to T′ by A2 in Phase 3.

• Verify: Let vi = 1 if ∀t ∈ [b], T′ is queried on Y
(i)
t,r−1 and Y

(i)
t,r and vi = 0 otherwise. Adversary wins if flag = 0

and |state| <
∑
vi · s(κ, |m|) · len(κ, |m|).

Game 3: In this game, we look at the queries made by the adversary and show that if it didn’t sequentially
query (almost sequentially), then it has a negligible chance of winning. Let LCS[x, y] denote the longest common
subsequence between two lists x, y. Since we want soundness for adversaries which can store information close to the
encoding size (i.e. < 2 · λ · b). It should be able to query oracle T′ on atmost one query out of place (it does not
have enough to store the complete replica encoding or make two queries out of the sequence). The notion that it can
query oracle T′ out of place at one spot is captured by the LCS metric. For difficulties in the case analysis of our
proof, we relax and allow the adversary to make two out of place queries. We claim that if the adversary wins with
non negligible probability then there exists atleast one block in some replica that has LCS greater than equal to r−2.

• Setup, Phase 1, File Challenge, Phase 2, State Sharing, Phase 3, Guess:

• Sequentiality:
If ∀i ∈ [n] ∀t ∈ [b],

|LCS[(Y
(i)
t,1 , . . . , Y

(i)
t,r),wT′]| < r − 2, then set flag = 1.

• Verify: Let vi = 1 if ∀t ∈ [b], T′ is queried on Y
(i)
t,r−1 and Y

(i)
t,r and vi = 0 otherwise. Adversary wins if flag = 0

and |state| <
∑
vi · s(κ, |m|) · len(κ, |m|).

Game 4: In this game, we guess the block which the adversary traversed sequentially. We concentrate on one
randomly chosen block and replica and the adversary wins if it outputs the correct encoding for this block. We lose
a multiplicative factor of b · n in the reduction due to this change. In contrast with the permutation case, here the
adversary also guesses the positions where the adversary was non-sequential. This looses an additional factor of

(
r
2

)
in the reduction.

30

• Setup: The challenger(denoted by C) runs (pk, sk) ← rSetup(1κ, 1n) and sends public key pk to A1. It keeps
the secret key sk for itself.
Choose random α1 < α2 ∈ [r], β ∈ [b] and γ ∈ [n].

• Phase 1, File Challenge, Phase 2, State Sharing, Phase 3, Guess:

• Sequentiality:
If {Y (γ)

β,1 , . . . , Y
(γ)
β,α1−1, Y

(γ)
β,α1+1, . . . , Y

(γ)
β,α2−1, Y

(γ)
β,α2+1, . . . , Y

(γ)
β,r } is not a subsequence of wT′ , then set flag = 1.

• Verify: Let vi = 1 if ∀t ∈ [b], T′ is queried on Y
(i)
t,r−1 and Y

(i)
t,r and vi = 0 otherwise. Adversary wins if T′ is

queried on Y
(γ)
β,r−1 and Y

(γ)
β,r , flag = 0, and |state| < n · s(κ, |m|) · len(κ, |m|).

Game 5: In this game, we reprogram the oracles H,T′ to have a random function which we can analyze cleanly.
The primary idea behind this game is that there will exist two sequences of values on the chosen block and replica
for which any adversary A1 produces the same state. These possibilities for a “switch” are set up in this game. H is
programmed to output Y

(γ)
β,0 , Y

(γ)
β,1 and for i ∈ [r − 1], the values Ai−1,0, Ai−1,1 have a choice to be related to either

of the two Ai,0, Ai,1 and one among Ai+1,0, Ai+1,1 depending on the sampled index x. The collision check makes
sure that the reprogramming doesn’t erroneously reprogram the same value twice and the prequery check is done
to make sure that none of the values were queried in the oracle lists in the previous phase. The oracle T′x is then
reprogrammed according to the reprogram operation defined in Definition 6 where for i ∈ [r − 1], xi is now mapped
to f(pk, xi+1)⊕ xi−1 where xi is used to indicate the notation for Ai,x[i].

• Setup, Phase 1:

• Sampling a new function:

– Sample possible switches Y
(γ)
β,0 , Y

(γ)
β,1 , A2,0, . . . , Ar,0, A2,1, . . . , Ar,1

R←− {0, 1}λ.

Let Z1 = {Y (γ)
β,0 , Y

(γ)
β,1 , A2,0 . . . , Ar,0, A2,1, . . . , Ar,1}.

Collision Check: If |Z1| 6= 2r, set flag = 1.

Prequery Check T′: If Z1 ∩ uT′ 6= ∅, set flag = 1.

– Sample a random setting x
R←− {0, 1}r−1. Let x[k] denote the kth bit of x′. We will write x′j to refer to

Aj,x′[j−2] and denote Aj,̄x′[j−2] with x̄′j .

– Define T′x to be T′ and perform the following changes:

∀j ∈ [r − 1] T′x(xj) = xj−1 ⊕ f(pk, xj+1).

• Phase 1: Use T′x to answer queries for T′.

• File Challenge: (1n,m ∈ {0, 1}∗)← AH(·),T′(·)
1 (1κ, pk). It sends (1n,m) to C who does the following:

– Divide m into b blocks of length 2λ i.e. m = m1||m2|| . . . ||mb, b = d|m|/2λe.
– For i ∈ [n],

∗ Choose a string ρi
R←− {0, 1}κ.

Prequery Check H: If ∃t ∈ [b] : ρi||t ∈ uH, set flag = 1.

∗ Sample {(Y (i)
t,r−1, Y

(i)
t,r)}t∈[b]

R←− {0, 1}λ.

∗ For rounds j from r to 2 and ∀t ∈ [b], continue if t 6= β or i 6= γ,

· Compute Y
(i)
t,j−2 from Y

(i)
t,j , Y

(i)
t,j−1 as

Y
(i)
t,j−2 = T′(Y

(i)
t,j−1)⊕ f(pk, Y

(i)
t,j).

∗ For each block ∀t ∈ [b], reprogram H

H(ρi||t) = mt ⊕ Y (i)
t,0 ||Y

(i)
t,1 .

∗ Let Zt = Y
(i)
t,r−1||Y

(i)
t,r .

∗ Let y
(i)
r = Z

(i)
1 || . . . ||Z

(i)
b and output (y

(i)
r , ρ).

31

C returns y(1), y(2), . . . y(n) to A1.

• Phase 2: Use T′x to answer queries for T′.

• State Sharing:

• Phase 3: Use T′x to answer queries for T′.

• Guess, Sequentiality:

• Verify: Adversary wins if T′ is queried on Y
(γ)
β,r−1 and Y

(γ)
β,r , flag = 0, and |state| < n · s(κ, |m|) · len(κ, |m|).

Game 6: In this game, C has unbounded computation time and calls A1,A2 exponentially many times to
find a collision to state through the procedure search. The setting y′ for which the procedure search outputs a
collision in state is stored in a set which is outputted at the end of the procedure. search(1κ, y, state, α1, α2; ζ)
takes input y, state, α1, α2 and runs algorithms A1,A2 on Game 5. Let ζ be the randomness used by the
procedure and denotes all the random coins (except those used to sample x) used by C. The procedure
is described in Figure 3. The additional complexity of this function in contrast to Figure 2 is due to the
weaker conformity condition of LCS(Yt) < r − 2 rather than LCS(Yt) < r. Since our goal is to argue
indistinguishability via Lemma 2, we need to fix more points in the search space y′. The quantities α1, α2

represent the two places where the adversary might have queried out of the sequence. The six indices
α1 − 1, α1, α1 + 1, α2 − 1, α2, α2 + 1 are all fixed so that no reprogramming is observed at α1 and α2.

search(1κ, y, state, α1, α2; ζ)

Inputs: Security parameter - 1κ

Oracle Settings on T - y ∈ {0, 1}r−1

State - state

Out of Sequence Query indices - α1, α2

Randomness used in the game - ζ

Output: Set containing all oracle settings with collision in state - S

• Set S = ∅.
• ∀y′ 6= y ∈ {0, 1}r−1 : ∀a ∈ {α1, α2} ∀k ∈ [3] y′[a− k] = y[a− k],

– Run A1,A2 on Game 5 with randomness defined by ζ and using y′ instead of x in the game.

– Let state′ be the state shared between A1,A2.

– If state′ = state and A2 wins Game 5, then S = S ∪ {y′}.

• Output S.

Figure 3: Routine search

• Setup, Phase 1, Sampling a New Function, File Challenge, Phase 2, State Sharing:

• Running search: Let ζ be all the random coins (except those used to sample x) used by C. Let S ←
search(1κ, x, state, α1, α2; ζ).

If S = ∅ set flag = 1 and x′ = x, otherwise sample x′
R←− S.

• Setting switched oracle:

– Let x′[k] denote the kth bit of x′. We will write x′j to refer to Aj,x′[j−1] and denote Aj,̄x′[j−1] with x̄′j . Let

x′0 denote Y
(γ)
β,0 and x′1 denote Y

(γ)
β,1 .

– Define T′x′ to be T′ and perform the following changes:

∀j ∈ [r − 1] T′x′(x′j) = x′j−1 ⊕ f(pk, x′j+1)

32

• Phase 3: Use T′x′ to answer queries for T respectively.

• Guess:

• Sequentiality:
If {x′0, . . . , x′α1−1, x

′
α1+1, . . . , x

′
α2−1, x

′
α2+1, . . . , x

′
r} is not a subsequence of wT′ , then set flag = 1.

• Verify: Adversary wins if T′ is queried on x′r−1 and x′r, flag = 0, and |state| < n · s(κ, |m|) · len(κ, |m|).

Game 7: In this game we modify the verification step for which an adversary can win this game. We
increase it’s winning probability so that the adversary can win if it doesn’t query the full sequence, but
queries at the point where the sequences x, x′ diverge. Notice that we define another oracle T′

δ
x′ here that

doesn’t reprogram the complete sequence. This change is statistically indistinguishable to the adversary.

• Setup, Phase 1, Sampling a New Function, File Challenge, Phase 2, State Sharing, Running
search:

• Setting switched oracle:

– Let x′[k] denote the kth bit of x′. We will write x′j to refer to Aj,x′[j−1] and denote Aj,̄x′[j−1] with x̄′j . Set

x′0 to denote Y
(γ)
β,0 .

– Let δ be the first index for which xδ 6= x′δ.

– Define T′
δ
x′ to be T′ and perform the following changes:

∀j ∈ [δ − 2],T′
δ
x (xj) = xj−1 ⊕ f(pk, xj+1)

T′
δ
x (xδ−1) = xδ−2 ⊕ f(pk, x̄δ)

T′
δ
x (xα1) = xα1−1 ⊕ f(pk, xα1+1)

T′
δ
x (xα2) = xα2−1 ⊕ f(pk, xα2+1).

Note - this is equivalent to

∀j ∈ [δ − 1]∪{α1, α2} T′
δ
x′(x′j) = x′j−1 ⊕ f(pk, x′j+1)

• Phase 3, Guess:

• Sequentiality:

• Verify: Adversary wins of T′ is queried on x̄δ(= x′δ), flag = 0 and |state|
< n · s(κ, |m|) · len(κ, |m|)

Game 8: In this game we observe that C need not be unbounded computation time and only needs to
the guess the first prefix at which x, x′ differ to successfully output one sequential query.

• Setup, Phase 1, Sampling a New Function, File Challenge, Phase 2, State Sharing:

• Running search:

• Setting switched oracle:

– Let x′[k] denote the kth bit of x′. We will write x′j to refer to Aj,x′[j−1] and denote Aj,̄x′[j−1] with x̄′j . Set

x′0 to denote Y
(γ)
β,0 .

– Let δ
R←− [2, r].

– Define T′
δ
x′ to be T′ and perform the following changes:

∀j ∈ [δ − 2],T′
δ
x (xj) = xj−1 ⊕ f(pk, xj+1)

T′
δ
x (xδ−1) = xδ−2 ⊕ f(pk, x̄δ)

T′
δ
x (xα1) = xα1−1 ⊕ f(pk, xα1+1)

T′
δ
x (xα2) = xα2−1 ⊕ f(pk, xα2+1).

33

• Phase 3, Guess:

• Verify: Adversary wins of T′ is queried on x̄δ and flag = 0.

6.2.2 Indistinguishability of Games

Let Fi(κ) (denoted by Fi) be the probability that the adversaries win at the end of Game i.

Game 0

Proof. Game 0 is a restatement of the original SoundA1,A2
(κ, n) game with two differences, (i) the syntactical

change to note down queries to each oracle, (ii) expands on rEnc. Both the syntactical changes do not change
the functioning of the game.

Game 1

Lemma 13. Pr[F1] ≥ Pr[F0]− negl(κ).

Proof. Game 1 differs from Game − in how queries are answered to the adversaries and the possibility of
flag being set. Let Pr[F0] = ε be the probability of adversary winning in Game 0. Let EH be the event flag is
set due to Prequery Check H. We can upper bound the difference in probability of F1 and F0 by the sum
of (i) the probability that EH occurs, (ii) and the statistical difference of the output of C from the alternate
method of encoding generation.

Claim 17. Pr[EH] = negl(κ).

Proof. Since each ρi is generated uniformly on {0, 1}κ and independent of A1, we can bound the probability
that any fixed query is equal to a particular ρi as k ∈ [q1

H] i ∈ [n] Pr[uH
k = ρi] = 2−κ. From this, we can

union bound the
Pr[∃k ∈ [q1

H] i ∈ [n] uH
k = ρi] ≤ q1

H · n · 2−κ

Since q1
H, n ∈ poly(κ), this is negligible

Claim 18. The distribution of T′ × {Y (i)
t,r−1, Y

(i)
t,r } in Game 0 is statistically close to uniform.

Proof. First, observe that with probability 1− negl(κ), ∀i ∈ [n], t ∈ [b] ρi||t is not queried H on by A1 before
submitting m. This is apparent as each ρi is uniformly random on a domain of size 2κ and A1 can make

at most poly(κ) queries. Since Y
(i)
t,0 ||Y

(i)
t,1 = H(ρi||t) ⊕ mt, and m is independent of H(ρi||t), we can say

{(Y (i)
t,0 , Y

(i)
t,1)} is uniform and independent of at least a 1− negl(κ) fraction of T′, and once an T′ is fixed, this

defines a bijective relation from (Y
(i)
t,0 , Y

(i)
t,1) to (Y

(i)
t,r−1, Y

(i)
t,r), so the latter is also uniform and independent of

at least a 1− negl(κ) fraction of T′. Bounding the statistical distance with negl(κ).

Since in Game 1, it is apparent that T′ × {Y (i)
t,r−1, Y

(i)
t,r } is uniform by the fact that {Y (i)

t,r−1, Y
(i)
t,r } are

generated independent of T′, Claim 18 bounds the statistical distance between the responses of C between
Game 0 and 1 with negl(κ). Combined with the previous claim, we can conclude the total difference between
Game 0 and 1 is negligible.

Game 3

Lemma 14. Pr[F3] ≥ Pr[F2]− negl(κ)

Proof. Observe that these games only differ when flag is set to 1 and adversary ends up winning Game 2. Let
ε be the probability that (A1,A2) wins in such a manner. We will refer to this as winning non-sequentially.

Claim 19. A1 will only query on Y
(i)
t,j in Phase 1 with negligible probability.

Pr[∃(i, j, t) : Y
(i)
t,j ∈ uT′] = negl(κ).

34

Proof. Once we fix T′, consider the bijective mapping from Y
(i)
t,r−1, Y

(i)
t,r to Y

(i)
t,j , Y

(i)
t,j+1 defined by Y

(i)
t,j−2 =

T′(Y
(i)
t,j−1)⊕ f(pk, Y

(i)
t,j). Since Y

(i)
t,r−1, Y

(i)
t,r are uniformly random and independent of T′ by construction, we

conclude that Y
(i)
t,j is as well, which lets us union bound the probability,

Pr[∃(i, j, t) : Y
(i)
t,j ∈ uT′] ≤

∑
(i,j,t)∈[n]×[r]×[b]

q1
T′∑

q=0

Pr[Y
(i)
t,j= uT′

q]

 = n · b · r
(

q1
T′ · 2−λ

)

Since b, r, n, q1
T′ are all poly(κ), this is negligible.

Claim 20. With all but negligible probability, the {Y (i)
t,j } are distinct

Pr[∃(i1, j1, t1) 6= (i2, j2, t2) : Y
(i1)
t1,j1

= Y
(i2)
t2,j2

] ≤ negl(κ).

Proof. We do a case by case analysis,

• Assume (i1, t1) = (i2, t2) - that these two values are in the same block and replica, but on different

rounds. We will proceed by an induction argument that any two such Y
(i1)
t1,j

will only be equal with

negligible probability. In our base case, we note that since Y
(i1)
t1,r−1 and Y

(i1)
t1,r are chosen indepen-

dently at random, and so collide with probability 2−λ. In our induction step, consider the proba-

bility Y
(i1)
t1,j

collides with anything in {Y (i1)
t1,j+1, . . . , Y

(i1)
t1,r }. Since Y

(i1)
t1,j

= T′(Y
(i1)
t1,j+1) ⊕ f(pk, Y

(i1)
t1,j+2), if

{Y (i1)
t1,j+1, . . . , Y

(i1)
t1,r } are unique, then they are all independent of T′(Y

(i1)
t1,j+1), so we can union bound the

probability that Y
(i1)
t1,j

collides with any of them with (r−j)2−λ, which is negligible. Since the number of

rounds, blocks, and replicas are polynomial, this remains negligible ∀i1 ∈ [n] t1 ∈ [b] |{Y (i1)
t1,j
}j∈[b]| < b.

• Assume (i1, t1) 6= (i2, t2) - Let’s fix T′ and some value for Y
(i1)
t1,j1

. Recall that fixing T′ induces a bijective

relation from Y
(i2)
t2,r−1, Y

(i2)
t2,r to Y

(i2)
t2,j2

, Y
(i2)
t2,j2+1 via Y

(i2)
t2,j−2 = T′(Y

(i2)
t2,j−1)⊕ f(pk, Y

(i2)
t2,j

). Since Y
(i2)
t2,r−1, Y

(i2)
t2,r

are uniformly random and independent of Y
(i1)
t1,j1

, so is Y
(i2)
t2,j2

, so the probability of collision is 2−λ. We
can union bound over t1, i1, j1, t2, i2, j2, which are all poly(κ), so the union is still negligible.

Claim 21. Let N be a permutation of (1, 2, . . . , n) such that the longest increasing subsequence of N is of
length < n−2. Let Ni be the mapping of i in N . Then either (i) ∃i1 6= i2 such that Ni1 > max(Ni1+1,Ni1−1)
and Ni2 > max(Ni2+1,Ni2−1), (ii) ∃i : Ni−1 > Ni > Ni+1, or (iii) ∃i : max(Ni+1,Ni+2) < min(Ni,Ni−1)

Proof. Assume for sake of contradiction there is such a N with longest increasing subsequence N ′ where
there is at most one i such that Ni > max(Ni+1,Ni−1) (corresponding to (i)) and no i such that either
(ii) or (iii) are true. However, note that for any Ni < max(Ni+1,Ni−1) and Ni−1 < Ni ∨ Ni < Ni+1

(Complements of conditions (i) and (ii)) we can conclude that Ni < Ni+1. Thus, there exists only one i for
which Ni > Ni+1. But by (iii), we know max(Ni+1,Ni+2) > min(Ni,Ni−1), so we can using at least one
each of (Ni,Ni−1) and (Ni+1,Ni+2). Since all other elements are ordered, we have produced an increasing
subsequence of length n− 2, a contradiction.

Now consider the following computationally unbounded algorithm B′ with access to oracle T′. This
algorithm will translate a non-sequential A2 into a reduction to the game outlined in Lemma 2. We will only

consider ‘conforming’ adversaries A2 which, when successful, query all possible Y
(i)
t,j . We also observe that

any adversary can be transformed into a ‘conforming’ adversary by simply using the (Y
(i)
t,r−1, Y

(i)
t,r) output

to query on all lower Y
(i)
t,j . If the permutation of (1, . . . r) induced by the order of queries of {Y (i)

t,j }j∈[r] to

wT′ on some block and replica falls into one of the 3 categories outlined in Claim 21, we present a strategy

35

to output two (xi,T
′(xi)) pairs without querying xi on T′. Roughly speaking, these strategies will work by

computing backwards from non-sequential queries to recover the supposed output of certain oracle queries
without ever making said queries.

Reduction B′T′(·)(advice):

Goal: Produce Input Output oracle pairs without explicitly querying the oracle.

• Setup:

– Sample a random function H(·) and use it to answer oracle queries made by A1,A2.

– Perform, Setup and Phase 1 as in Game 3.

– Receive m← AH(·),T′(·)
1 (1κ, pk′) after Phase 1. Parse pk′ as (pk, n).

– Choose a set of random {ρi}i∈[n] and compute {Y (i)
t,0 ||Y

(i)
t,1 = H(ρi||t)⊕mt}t∈[b],i∈[n].

– Parse advice as (state,Q = {hint
(i)
t }) where hint

(i)
t is some O(log κ) length hint for each block and

replica.

• Simulate:

– Run AH(·),T′(·)
2 (1κ, pk′,m, state), interacting with the random oracle queries it makes to T′. Let

wT′ denote the ordered and distinct list of queries A2 makes to T′, and let wT′

q refer to the qth

element in this list. We perform the operations below while running A2.

– Let S = ∅. For each block/replica, the hint
(i)
t will fall into one of the 3 categories below:

– Case (i): hint
(i)
t = (j, q1, q2, q3, j

′, q′1, q
′
2, q
′
3), where q2 > max(q1, q3) and q′2 > max(q′1, q

′
3). We

will describe this procedure for q, j, but the same procedure is repeated for q′, j′.

∗ Assume Y
(i)
t,j−1 = wT′

q1 and Y
(i)
t,j+1 = wT′

q3 .

∗ Solve for T′(Y
(i)
t,j) = Y

(i)
t,j−1 ⊕ f(pk, Y

(i)
t,j+1).

∗ Assume the qth2 query is the first query to Y
(i)
t,j , and send T′(Y

(i)
t,j) instead of querying the true

T′ whenver this value is queried.

∗ Add (Y
(i)
t,j ,T

′(Y
(i)
t,j)) to S.

– Case (ii): hint
(i)
t = (j, q1, q2, q3), where q3 < q2 < q1.

∗ Use Y
(i)
t,0 , Y

(i)
t,1 to compute Y

(i)
t,j−1, querying T′ on Y

(i)
t,1 , . . . Y

(i)
t,j−2.

∗ Assume Y
(i)
t,j+1 = wT′

q3 .

∗ Solve for T′(Y
(i)
t,j) = Y

(i)
t,j−1 ⊕ f(pk, Y

(i)
t,j+1).

∗ Assume the qth2 query is the first query to Y
(i)
t,j , and send T′(Y

(i)
t,j) instead of querying the true

T′ whenver this value is queried.

∗ Solve for T′(Y
(i)
t,j−1) = Y

(i)
t,j−2 ⊕ f(pk, Y

(i)
t,j).

∗ Assume the qth1 query is the first query to Y
(i)
t,j−1, and send T′(Y

(i)
t,j−1) instead of querying the

true T′ whenver this value is queried.

∗ Add (Y
(i)
t,j−1,T

′(Y
(i)
t,j−1)) and (Y

(i)
t,j ,T

′(Y
(i)
t,j)) to S.

– Case (iii): hint
(i)
t = (j, q3, q4).

∗ Use Y
(i)
t,0 , Y

(i)
t,1 to compute Y

(i)
t,j−1, querying T′ on Y

(i)
t,1 , . . . Y

(i)
t,j−2.

∗ Assume Y
(i)
t,j+1 = wT′

q3 and Y
(i)
t,j+2 = wT′

q4

∗ Solve for Y
(i)
t,j = T′(Y

(i)
t,j+1)⊕ f(pk, Y

(i)
t,j+2).

36

∗ Solve for T′(Y
(i)
t,j) = f(pk, Y

(i)
t,j+1)⊕ Y (i)

t,j−1 and T′(Y
(i)
t,j−1) = f(pk, Y

(i)
t,j)⊕ Y (i)

t,j−2.

∗ Send our solved T′(Y
(i)
t,j−1) and T′(Y

(i)
t,j) whenever A2 queries on those inputs rather than

querying the true T′.

∗ Add (Y
(i)
t,j−1,T

′(Y
(i)
t,j−1)) and (Y

(i)
t,j ,T

′(Y
(i)
t,j)) to S.

– For any other queries A2 makes to an oracle, B′ simply queries the appropriate oracle, returns
the query results and completes execution of A2.

• Return: Output the pairs S.

Claim 22. Suppose |LCS[wT′ , {Y (i)
t,1 , . . . , Y

(i)
t,r }]| ≤ r−3. Then if A2 wins, ∃ hints q(1), j(1), q(2), j(2), q(3), j(3)

such that j(1) 6= j(2) 6= j(3) and T′ was queried on Y
(i)

t,j(1)
while T′ was not queried on Y

(i)

t,j(1)−1 and similarly

for j(2) and j(3). B′ on input advice = (state, Q) where (i, t, q(1), j(1), q(2), j(2), q(3), j(3)) ∈ Q outputs two j, j′

such that (Y
(i)
t,j−1, f(pk, Y

(i)
t,j−2⊕ Y

(i)
t,j)), (Y

(i)
t,j′−1, f(pk, Y

(i)
t,j′−2⊕ Y

(i)
t,j′)) and in Simulate phase never queries T′

on Y
(i)
t,j−1 and Y

(i)
t,j′−1 and additionally queries T′ from the set {Y (i)

t,j′′}j′′∈[r] (in addition to A2’s queries).

Proof. Consider the subsequence of wT′ of elements in {Y (i)
t,1 , . . . , Y

(i)
t,r }. If A2 wins, then by the fact that

A2 is conforming and this wT is unique, this subsequence is a permutation of
(
Y

(i)
t,1 , . . . , Y

(i)
t,r

)
with longest

increasing subsequence equal to the LCS described. By Claim 21, one of the three cases must occur. We
can verify that in all cases, if B′ is given the correct indices for said hint, it will be able to output those
pairs without querying any additional pairs outside said (i, j) sequence. Since there is one hint per (i, j), we
conclude that B will not query that pair in the Simulate phase.

Claim 23. If A2 wins nonsequentially with probability ε,

Pr

∃ advice ∈ {0, 1}∗ s.t. |advice| ≤ n′ · λ− ω(log λ),

{(xi, yi)}n
′

i=1 ← B′T
′(·)(advice) where

∀i 6= j ∈ [n′], xi 6= xj , T′(xi) = yi, xi /∈ sT
′

B′

 ≥ ε− negl(κ).

Proof. We can take advice to be the state produced by AH(·),T′
1 (1κ, pk) and for every i ∈ [n], t ∈ [b] we have

|LCS[(Y
(i)
t,1 , . . . , Y

(i)
t,r),wT′]| < r − 2.

By Claim 22, a hint exist for each (i, t), and B′ has outputted 2·b·n pairs (Y
(i)
t,j , f(pk, Y

(i)
t,j+1)), (Y

(i)
t,j′ , f(pk, Y

(i)
t,j′+1))

without querying on T′ in the Simulate phase. By Claim 20 and Claim 19, these pairs (xi, yi) are distinct,
and that B′ will not have queried any xi or yi in the Setup phase with all but negligible probability.

Since each hint outputs a constant number of q’s and j’s from domains of size ≤ poly(κ) by the running

time of A2, Q only needs b · n ·O(log κ) bits. As s ∈ 1− ω(log κ)
2λ , we get,

|state| ≤ b · n · 2λ− b · n · ω(log(κ))⇒ |advice| ≤ b · n · 2λ− b · n · ω(log(κ)) + b · n ·O(log κ)

≤ b · n · λ− b · n · ω(log(κ)) ≤ b · n · 2λ− ω(log(κ)).

This proves the claim for n′ = 2b · n which is polynomial in κ and hence polynomial in λ.

By Lemma 2, ε− negl(κ) ∈ negl(λ) = negl(κ)⇒ ε ≤ negl(κ).

Game 4

Claim 24. Pr[F4] ≥ Pr[F3]

(r2)bn
.

Proof. Game 4 differs from Game 3 in the winning condition. Let Pr[F3] = ε be the probability of adversary
winning in winning Game 3. Let this adversary be A2. From the sequentiality condition we have that

A2 on at least one block and replica, A2 queries all but possibly two Y
(i)
t,j in order. The probability that

these guesses were made correctly in Game 4 is ≥ 1

(r2)bn
. This adversary thus wins Game 4 with probability

≥ ε

(r2)bn
.

37

Game 5

Claim 25. Pr[F5] ≥ Pr[F4]− negl(κ).

Proof. Game 5 differs from Game 4 in how queries are answered to the adversaries and the possibility of flag
being set. Let Pr[F4] = ε be the probability of adversary winning in winning Game 4. Let ET′ be the event
flag is set due to Prequery Check T′, and let Ex be the probability that flag is due to Collision Check.
We can lower bound the probability that the adversary wins Game 5 relative to Game 4 by the sum of (i)
the probability that Ex occurs, (ii) the probability ET′ occurs, and (iii) the statistical difference of the output
of C from using T′,T′x.

Claim 26. Pr[Ex] = negl(κ).

We note that since Z1 are uniform and independently random, we can bound the probability that za, zb ∈
Z1 for any fixed a 6= b is 1

2λ
, so we can union bound the probability that

Pr[∃a 6= b : za = zb] ≤
2r∑
a=0

2r∑
b=a+1

Pr[za = zb] =

(
2r

2

)
1

2λ
= negl(κ)

Claim 27. Pr[ET′] = negl(κ)

Proof. We note that since all 2r elements of Z1 are uniform and independent of T′, we can bound the
probability that some z ∈ Z1 is equal to some z′ ∈ uT′ with 1

2λ
. Thus, we can union bound

Pr[Z1 ∩ uT′ 6= ∅] ≤ 2r · q1
T′ · 2−λ

Since q1
T′ and r are poly(κ), this is negl(κ).

Claim 28. The statistical difference of the output of C using T′ and using T′x is negl(κ).

Proof. Note the only outputs changed affected by the reprogramming of T′x are the encoding Y
(γ)
β,r−1, Y

(γ)
β,r =

xr−1, xr and of course responses to A’s queries to T′x.
Applying Lemma 6 to {r0, . . . rk} = {x0 . . . xr} and τ = f(pk, ·) gives us immediately that (xr−1, xr,T

′
x)

is uniform. Also recall by construction the distribution of (Y
(γ)
β,r−1, Y

(γ)
β,r ,T

′) in Game 5 is uniform, so the
responses distance of C’s responses in Game 5 and 6 is negligible.

Since (i), (ii), and (iii) are all negligible, the adversary thus wins Game 5 with probability ε−negl(κ).

Game 6

Let Pr[F5] = ε be the probability of adversary winning in winning Game 5.

Lemma 15. Pr[F6] ≥
(
ε
2

) (
ε2r−8−2|state|+1

ε2r−8

)
.

Proof. Note that by construction, A will win Game 6 as long as an appropriate x′ exists. We will lower
bound said probability below. Let us consider the random coins used in Game 5. The randomness for C is
over the choice of permutation picked T and γ, β,Z, x, δ, ρ′ where ρ′ denotes the randomness over ρi sampled
for each replica and the coins used by the rSetup. Let us denote η = (γ, β,T,Z, ρ′) for ease of notation. Let
A1,A2 denote the adversaries that solves Game 5 with ε probability.

Define the set N = {(η, x)|F5(η, x)} where F5(η, x) denotes the event that adversaries win game 5 with
given parameters. Thus Prη,x[(η, x) ∈ N] = ε.

Let us define a heavy set, H = {(η, x)|Prη,x′ [(η, x
′) ∈ N] ≥ ε

2}. Then from the heavy row lemma of [23],
Prη,x[(η, x) ∈ H|(η, x) ∈ N] ≥ 1/2 i.e. probability that our winning instance lies on a heavy set is atleast
half.

Note that for A2 to successfully solve Game 6, we must see the following events,

38

1. Adversary solves the Game 5 i.e. (η, x) ∈ N , and let this be denoted by event E1.

Pr
η,x

[E1] ≥ ε.

2. Let the event that (η, x) ∈ H lies on a heavy set be denoted by E2. By heavy row lemma, we have that,

Pr
η,x

[E2|E1] ≥ 1/2⇒ Pr
η,x

[E2] ≥ ε

2
.

3. Let the event that there exists a collision of x consistent with state that is also successful on Game 5
be denoted by E3.

Claim 29. Prη,x[E3|E2] ≥
(
ε2r−8−2|state|+1

ε2r−8

)
.

Proof. Given that (η, x) ∈ H i.e. it lies on a heavy set. Define a possible set of switches by Q =

{x′|(η, x′) ∈ N}. From the definition of H, |Q| ≥ ε2r−7

2 (Recall the total set of H considered by
search are the set of {0, 1}r−1 which agree with x on up to 6 distinct indices α1 − 1, α1 − 2, α1 − 3,
α2 − 1, α2 − 2, α2 − 3).

From Lemma 7, define hη as a function from Q → {0, 1}|state| where hη(a) = statea where statea denotes
the state shared by A1 to A2 when playing Game 5 with parameters η and x set to a. Since A1’s coins
are deterministically fixed, hη is a deterministic function.

The lemma implies the statement that,

Pr
x

[∃x′ 6= x ∈ Q, hη(x) = hη(x′)] ≥ |D| − |R|+ 1

|D|
.

This proves the claim.

Pr
η,x

(A2 wins Game 6) ≥ Pr[E2 ∩ E3]

≥ (Pr[E2]) (Pr[E3|E2])

≥
(ε

2

)(ε2r−8 − 2|state| + 1

ε2r−8

)

We note that if F5 is noticeable - i.e. ε ≥ 1
poly(κ) and |state| < s(κ, |m|) ·n · len(κ, |m|) ≤ r−ω(log κ), then

ε2r−8 ≥ 2r−O(log κ) ∈ ω(2|state| + 1)→ ε2r−8 − 2|state| + 1

ε2r−8
∈ (1− o(1))

meaning F6 is noticeable as well

Game 7

Claim 30. Pr[F7] ≥ Pr[F6].

Proof. Observe Game 7 differs from Game 6 in the winning condition and oracle responses to x′j for j ≥ δ
and j 6= α1, α2.

If the adversary won Game 6, by sequentiality, A2 must have queried on x′δ before querying on any x′j
for j > δ j 6= α1, α2. Since the adversary wins Game 7 when it queries x′δ, the queries where T′

δ
x′ differ from

T′x′ would only happen after A2 has already won - i.e. the queries before x′δ are identical to those of Game
6, and so they will execute the same way.

39

Game 8

Claim 31. Pr[F8] ≥ Pr[F7]
r−1 .

Proof. Our main observation here is that rather than guessing the switch completely, C can guess δ. The
probability that this index was corretly guessed in Game 8 is equal to 1

r−1 . If guessed correctly, the games

are identical, so the adversary queries x′δ and hence wins Game 8 with probability ≥ Pr[F7]
r−1 .

Claim 32. Pr[F8] = negl(κ)

Proof. We will show through a reduction that an adversary able to win Game 8 with probability ε will also
be able to invert our trapdoor permutation with the same probability.

Let (pk, sk)← KeyGen(1κ), y
R←− Dpk = {0, 1}λ, z = f(pk, y),

Reduction B(pk, z)

Goal: Output z such that, f(pk, y) = z.

• Setup: The challenger(denoted by C) runs (pk′, sk′)← rSetup(1κ, 1n) and sends public key pk’ to A1. It keeps
the secret key sk’ for itself.

• Phase 1, Sampling a New Function, File Challenge, Phase 2, State Sharing:

• Setting switched oracle:

– Let δ
R←− [2, r].

– Define T′
δ
x′ to be T′ and perform the following changes:

∀j ∈ [δ − 2],T′
δ
x (xj) = xj−1 ⊕ f(pk, xj+1)

T′
δ
x (xδ−1) = xδ−2 ⊕ z

T′
δ
x (xα1) = xα1−1 ⊕ f(pk, xα1+1)

T′
δ
x (xα2) = xα2−1 ⊕ f(pk, xα2+1).

• Phase 3:

• Guess, Verify:

• Embed: Output embedding wT′
i , where wT′

i ∈ wT′ , s.t. f(pk,wT′
i) = z.

Since x̄δ is uniformly distributed and not used before here, f(pk, x̄δ) is uniform and independent, and
indistinguishable from a uniformly random z. Note that since we no longer check for flag, it is no longer
necessary to perform collision and prequery checks, the only place where x′δ is used instead of f(pk, x̄′δ). We
can simulate the random oracles by picking uniformly random values on the appropriate domain whenever
A makes a new query and maintaining a map of queries already made. Thus, if A2 won game 8, they must
have queried

x̄δ = f−1(sk, f(pk, x̄δ)) = f−1(sk, z)

Which, from our definition of a secure trapdoor permutation, can only happen with negligible probability,

To complete our proof of Theorem 2, from our sequence of games, we conclude that Pr[F0] = negl(κ) as
well, fulfilling our soundness definition.

40

7 Counterexample for Round Function Independent of Blocks
We gave intuition in Section 1.2.2 using VBB obfuscation that our construction is round optimal up to
constant factors i.e. is insecure for any number of rounds ∈ o(b ·n). Below we formalize the notion by giving
a construction from iO that captures this intuition formally and constructs a scheme in the end that breaks
soundness security.

We assume the existence of a trapdoor permutation (KeyGen, f(·, ·), f−1(·, ·)) with domain {0, 1}λ for
λ ∈ ω(κ)5 , a puncturable PRF family (PPRF.KeyGen,PPRF.Eval,PPRF.Puncture), indistinguishability ob-
fuscation iO for all polynomial sized circuits.

7.1 Preliminaries

Definition 7. We say a PPT algorithm iO(κ,C) is an indistinguishability obfuscator for a circuit class
{Cκ} if the following hold

Correctness - For all security parameters κ ∈ N, for all C ∈ Cκ, for all inputs x

Pr[C ′(x) = C(x) : C ′ ← iO(κ,C)] = 1

Indistinguishability - For any PPT distinguisher A, for all security parameters κ ∈ N, for all pairs of circuits
C0, C1 ∈ Cκ such that C0 and C1 are equivalent on all inputs x

|Pr[A(iO(κ,C0)) = 1]− Pr[A(iO(κ,C1)) = 1]| ≤ negl(κ)

Definition 8. We say a set of algorithms (PPRF.KeyGen,PPRF.Eval,PPRF.Puncture) puncturable pseudo-
random function family (PPRF) on domain Dκ and range Rκ if it is a PRF and the following hold

Function preserving - For every set polynomial (in κ) sized subset S ⊆ Dκ, for all x ∈ Dκ\S,

Pr[PPRF.Eval(K,x) = PPRF.Eval(KS , x) : K ← PPRF.KeyGen(1κ),KS = PPRF.Puncture(K,S)] = 1.

Pseudorandom at puncture - For every PPT adversary (A1, A2) such that A1(1κ) outputs a set S ⊆ Dκ and
state σ, consider an experiment where K ← KeyGen(1κ) and KS ← PPRF.Puncture(K,S),∣∣Pr[A2(σ,KS , S,PPRF.Eval(K,S)) = 1]− Pr[A2(σ,KS , S, URκ·|S|) = 1]

∣∣ ≤ negl(κ).

where PPRF.Eval(K,S) denotes the concatenation of PPRF.Eval(K,x1), . . . ,PPRF.Eval(K,xk) where S =
{x1, . . . , xk} is the enumeration of the elements of S in lexicographic order.

For ease of notation, we will write F (K,x) to represent PPRF.Eval(K,x) and will write K(S) to represent
punctured keys PPRF.Puncture(K,S).

7.2 Construction

Let (KeyGen, f(·, ·), f−1(·, ·)) be a trapdoor permutation on {0, 1}κ, where KeyGen uses some r(κ) bits of
randomness. Let (PPRF.KeyGen,PPRF.Eval,PPRF.Puncture) be a puncturable PRF on domain {0, 1}κ and

range {0, 1}r(κ). We will construct a trapdoor permutation (keygen′n, f
′
n(·, ·), f ′n

−1
(·, ·)) on domain {0, 1}2κ

parameterized by a quantity n ∈ poly(κ).

keygen′n(1
κ)

1. Sample K ← PPRF.KeyGen(1κ)

2. Let OProgram f = iO(κ,Program f) and OProgram f−1 = iO(κ,Program f−1).

3. Output (pk = (OProgram f,OProgram f−1), sk = K)

f ′n(pk = (OProgram f,OProgram f−1), (z, x))

5note it suffices to have some trapdoor permutation with domain λ ∈ ω(κε) for ε > 0, and we can generically transform this
by taking said TDP on security parameter κ′ = κ1/ε

41

Program f(z, x)

Inputs: Index z ∈ {0, 1}κ

Input x ∈ {0, 1}κ

Constants: Punctured PRF key K

Output: y ∈ {0, 1}n

1. Let r ← PPRF.Eval(K, z)

2. Let (pk′, sk′)← KeyGen(1κ; r)

3. Output f(pk′, x)

Figure 4: Routine Program f

Program f−1((z1, y1), . . . , (zn, yn) ∈ {0, 1}2κ, x ∈ {0, 1}κ)

Inputs: Images (z1, y1), . . . , (zn, yn) ∈ {0, 1}2κ

Advice x ∈ {0, 1}κ

Constants: Punctured PRF key K

Output: Preimages {xi ∈ {0, 1}κ}i∈[n]

1. If ∃i, j ∈ [n] : i 6= j ∧ zi = zj output ⊥.

2. For i ∈ [n]

(a) Let ri ← PPRF.Eval(K, zi)

(b) Let (pki, ski)← KeyGen(1κ; ri)

(c) Let xi = f−1(ski, yi)

3. If
⊕

i∈[n] xi 6= x output ⊥.

4. If the above checks pass, output {xi}i∈[n].

Figure 5: Routine Program f−1

1. Let y ← OProgram f(z, x) and output (z, y).

f ′n
−1

(sk = K, (z, y))

1. Let r ← PPRF.Eval(K, z).

2. Let (pk0, sk0)← KeyGen(1κ; r).

3. Output (z, f−1(sk0, y)).

7.3 Proofs

Efficiency

Claim 33. (keygen′n, f
′
n(·, ·), f ′n

−1
(·, ·)) are polynomial time algorithms

Proof. keygen′n simply calls iO twice. The programs Program f and Program f−1 simply call the underlying
PRF and trapdoor primitives at most n ∈ poly(κ) times. By the efficiency of the underlying PRF and
trapdoor permutation, Program f and Program f−1 are poly-sized circuits and iO runs in poly time, thus
keygen′n runs in polynomial time.
f ′n simply evaluates a polynomial sized circuit, which is polynomial time.

f ′n
−1

does a single call to PPRF.Eval,KeyGen, f−1(·, ·), which are all polynomial time algorithms by definition.

42

Correctness

Claim 34. iO is correct from definition (7) and f−1(sk′, ·) computes inverse of f(pk′, ·) implies f ′n
−1

(sk, ·)
computes the inverse of f ′n(pk, ·), i.e.

∀κ, (pk, sk)← keygen′n(1
κ),∀x′ ∈ {0, 1}2κ, f ′n

−1
(sk, f ′n(pk, x′)) = x′.

Proof. Let x′ = (z, x) ∈ {0, 1}2κ be an arbitrary input to . Recall that f ′n simply runs OProgram f on (z, x)
and is same as the result of outputting Program f on (z, x) from correctness of iO. The output produced

is (z, f(pk′, x)) where (pk′, sk′) = KeyGen(1κ, F (K, z)). f ′n
−1

when run on (z, f(pk′, x)) produces the same
(pk′, sk′) pair as OProgram f. Since,

∀κ, (pk′, sk′)← KeyGen(1κ),∀x ∈ {0, 1}κ, f−1(sk′, f(pk′, x)) = x.

f ′n
−1

returns (z, f−1(sk′, f(pk′, x))) = (z, x).

Security

Theorem 3. Assuming (KeyGen, f(·, ·), f−1(·, ·)) is a secure one way permutation from definition (1), indis-
tinguishability of iO from definition (7) and a puncturable PRF family (PPRF.KeyGen,PPRF.Eval,PPRF.Puncture)

secure according to definition (8), (keygen′n, f
′
n, f
′
n
−1

) is a secure one way permutation - i.e., that for all PPT
algorithms A

Pr

[
f ′n(pk, (z0, x0)) = (z, y) s.t.

(pk, sk)← keygen′n(1
κ), (z0, x0)

R←− {0, 1}2κ, (z, y) = f ′n(pk, (z0, x0)), (z′, x′)← A(pk, (z, y))

]
≤ negl(κ),

over the random coins of keygen′n and sampling of (z0, x0).

We will show this via a sequence of games, where the view of the adversary between successive games is
indistinguishable.

Game 0

This is the original security game.

1. Challenger samples a random (z0, x0)
R←− {0, 1}2κ

(a) Sample K ← PPRF.KeyGen(1κ)

(b) Let OProgram f = iO(κ,Program f) and OProgram f−1 = iO(κ,Program f−1). 6

(c) Output (pk = (OProgram f,OProgram f−1), sk = K)

2. Challenger runs f ′n(pk, (z0, x0))

(a) Let y0 ← OProgram f(z0, x0).

3. Adversary is given (pk, (z0, y0)).

4. Adversary outputs (z′, x′)

5. If f ′n(pk, (z′, x′)) = (z0, y0) then output 1 else output 0

43

Program f∗(z, x)

Inputs: Index z ∈ {0, 1}κ

Input x ∈ {0, 1}κ

Constants: Punctured PRF key K({z0})
Public Key pk0

Output: y ∈ {0, 1}n

1. If z = z0, output f(pk0, x).

2. Let r ← PPRF.Eval(K({z0}), z)
3. Let (pk′, sk′)← KeyGen(1κ; r)

4. Output f(pk′, x)

Figure 6: Routine Program f∗

Game 1

In this game, we change the way Program f is programmed.

1. Challenger samples a random (z0, x0)
R←− {0, 1}2κ

(a) Sample K ← PPRF.KeyGen(1κ)

(b) Compute (pk0, sk0)← KeyGen(1κ, F (K, z0))

(c) Compute punctured key K({z0})
(d) Let OProgram f∗ = iO(κ,Program f∗) and OProgram f−1 = iO(κ,Program f−1).

(e) Output (pk = (OProgram f∗,OProgram f−1), sk = K)

2. Challenger runs f ′n(pk, (z0, x0))

(a) Let y0 ← OProgram f∗(z0, x0).

3. Adversary is given (pk, (z0, y0)).

4. Adversary outputs (z′, x′)

5. If f ′n(pk, (z′, x′)) = (z0, y0) then output 1 else output 0

Game 2

In this game, we change the way Program f−1 is programmed.

1. Challenger samples a random (z0, x0)
R←− {0, 1}2κ

(a) Sample K ← PPRF.KeyGen(1κ)

(b) Compute (pk0, sk0)← KeyGen(1κ, F (K, z0))

(c) Compute punctured key K({z0})
(d) Let OProgram f∗ = iO(κ,Program f∗) and OProgram f−1

∗
= iO(κ,Program f−1

∗
).

(e) Output (pk = (OProgram f∗,OProgram f−1
∗
), sk = K)

2. Challenger runs f ′n(pk, (z0, x0))

6The security parameter in the input to iO algorithm is the smallest λ for which Program f,Program f∗ are in Cλ which will
be polynomial in κ as the circuits are polynomial. We denote this by κ here for notation clarity.

44

Program f−1∗((z1, y1), . . . , (zn, yn) ∈ {0, 1}2κ, x ∈ {0, 1}κ)

Inputs: Images (z1, y1), . . . , (zn, yn) ∈ {0, 1}2κ

Advice x ∈ {0, 1}κ

Constants: Punctured PRF key K({z0})
Public Key pk0

Output: Preimages {xi ∈ {0, 1}κ}i∈[n]

1. If ∃i, j ∈ [n] : i 6= j ∧ zi = zj output ⊥.

2. For i ∈ [n] when zi 6= z0

(a) Let ri ← PPRF.Eval(K({z0}), zi)
(b) Let (pki, ski)← KeyGen(1κ; ri)

(c) Let xi = f−1(ski, yi)

3. If ∃i′ : zi′ = z0

(a) Let xi′ = x⊕ (
⊕

i∈[n]\{i′} xi).

(b) If f(pk0, xi′) 6= yi, output ⊥.

4. If
⊕

i∈[n] xi 6= x output ⊥.

5. If the above checks pass, output {xi}i∈[n].

Figure 7: Routine Program f−1
∗

(a) Let y0 ← OProgram f∗(z0, x0).

3. Adversary is given (pk, (z0, y0)).

4. Adversary outputs (z′, x′)

5. If f ′n(pk, (z′, x′)) = (z0, y0) then output 1 else output 0

Game 3

In this game, we compute (pk0, sk0)← KeyGen(1κ, r0) using true randomness r0.

1. Challenger samples a random (z0, x0)
R←− {0, 1}2κ

(a) Sample K ← PPRF.KeyGen(1κ)

(b) Sample r0
R←− {0, 1}r(κ)

(c) Compute (pk0, sk0)← KeyGen(1κ, r0)

(d) Compute punctured key K({z0})
(e) Let OProgram f∗ = iO(κ,Program f∗) and OProgram f−1

∗
= iO(κ,Program f−1

∗
).

(f) Output (pk = (OProgram f∗,OProgram f−1
∗
), sk = K)

2. Challenger runs f ′n(pk, (z0, x0))

(a) Let y0 ← OProgram f∗(z0, x0).

3. Adversary is given (pk, (z0, y0)).

4. Adversary outputs (z′, x′)

5. If f ′n(pk, (z′, x′)) = (z0, y0) then output 1 else output 0

45

Analysis

Let adviA be a function parameterized by κ and denote the probability of an adversary A winning Game
i, i.e. the output of Game i is 1.

Lemma 16. Assuming indistinguishability for PPT algorithm iO according to definition 7, there exists a
negligible function negl(·) such that ∀κ ∈ N, |adv0A − adv1A| = negl(κ).

Proof. The only difference between the two games is that obfuscation of Program f is changed to obfuscation
of Program f∗ respectively.

Claim 35. Program f,Program f∗ functionally equivalent, i.e.

∀κ ∈ N, (z, x) ∈ {0, 1}2κ,Program f(z, x) = Program f∗(z, x).

Proof. We separate inputs (z, x) into 2 cases

• Case 1 - z = z0
Here, we make an additional conditional check in bullet 1 in figure 6 and use pk0 hardcoded to return
the coputatation f(pk0, x) where pk0 is computed from running keygen on randomness obtained by
evaluating punctured prf on key K and input z0. In figure 4 this is exactly how the computation
proceeds.

• Case 2 - z 6= z0
Here, the conditional check inserted in bullet 1 in figure 6 does not hold, so by functionality preserving
under puncturing, PPRF.Eval(K, z) = PPRF.Eval(K({z0}), z), and the executions are identical.

Let A be an adversary that distinguishes between Game 0 and Game 1 with probability ε(κ) then we can
construct an adversary B that is a distinguisher between OProgram f,OProgram f∗ with probability ε(κ).
B on input (κ, P) interacts with A according to Game 0 but outputs (pk = (P,OProgram f−1), sk = K).
Clearly B on input (κ,OProgram f) simulates Game 0 and on input (κ,OProgram f∗) simulates Game 1.
By security of iO since OProgram f,OProgram f∗ are functionally equivalent from claim 35, ε is a negligible
function.

Lemma 17. Assuming indistinguishability for PPT algorithm iO according to definition 7, there exists a
negligible function negl(·) such that ∀κ ∈ N, |adv1A − adv2A| = negl(κ).

Proof. The only difference between the two games is that obfuscation of Program f−1 is changed to obfusca-
tion of Program f−1

∗
respectively.

Claim 36. Program f−1,Program f−1
∗

are functionally equivalent, i.e.[
∀κ ∈ N, (z1, y1), . . . , (zn, yn) ∈ {0, 1}2κ, x ∈ {0, 1}κ

Program f−1((z1, y1), . . . , (zn, yn), x) = Program f−1
∗
((z1, y1), . . . , (zn, yn), x)

]
.

Proof. We first note that if there doesn’t exist i′ ∈ [n], zi′ = z0, then the two programs are exactly identical
except that the key is punctured in one of them. We observe by functionality preserving under puncturing,
PPRF.Eval(K, zi) = PPRF.Eval(K({z0}), zi), so {pki}i∈[n] are identical in both programs when zi 6= z0.

In the case that there exists i′ ∈ [n], zi′ = z0, as observed above {pki}i∈[n]\{i′} are identical. Also as seen
in the proof of claim 35, the hardcoded pk0 is same as what was obtained by evaluating prf on key K. Let
x0i , x

1
i denote the value of xi computed in Program f−1,Program f−1

∗
respectively. Note that we have shown

above that ∀i ∈ [n] \ {i′} x0i = x1i .

46

• Case 1: If advice given is correct i.e. x =
⊕

i∈[n]{x0i } ⇒ x0i′ = x1i′ . This means check 3(b) in figure 7

passes as yi′ = f(pk0, x
0
i′) = f(pk0, x

1
i′) and both programme output the preimages {x0i }i∈[n] = {x1i }i∈[n].

• Case 2: If advice given is incorrect i.e. x 6=
⊕

i∈[n]{x0i } then Program f−1 clearly outputs ⊥. Since

x1i′ = x ⊕ (
⊕

i∈[n]\{i′} x
1
i) = x ⊕ (

⊕
i∈[n]\{i′} x

0
i). This implies x1i′ 6= x0i′ . Since yi′ = f(pk0, x

0
i′) 6=

f(pk0, x
1
i′) as f(·, ·) is a trapdoor permutation. Program f−1

∗
will also output bot at check 3(b) in figure

7.

Let A be an adversary that distinguishes between Game 1 and Game 2 with probability ε(κ) then we
can construct an adversary B that is a distinguisher between OProgram f−1,OProgram f−1

∗
with probability

ε(κ). B on input (κ, P) interacts with A according to Game 1 but outputs (pk = (OProgram f∗, P), sk = K).
Clearly B on input (κ,OProgram f−1) simulates Game 1 and on input (κ,OProgram f−1

∗
) simulates Game

2. By security of iO since OProgram f−1,OProgram f−1
∗

are functionally equivalent from claim 36, ε is a
negligible function.

Lemma 18. Assuming pseudorandomness at puncturing property for a puncturable PRF family (PPRF.KeyGen,
PPRF.Eval,PPRF.Puncture) according to definition 8, there exists a negligible function negl(·) such that
∀κ ∈ N, |adv2A − adv3A| = negl(κ).

Proof. We now argue that the advantage for any poly-time attacker must be negligibly close in Games 2 and
3. Otherwise, we can create a reduction algorithm B that breaks the selective security of the constrained
pseudorandom function at the punctured points. B executes Game 2, except that it gets gets the punctured
PRF key K({z0}) and challenge c. It continues to run as in Game 2 except that it generates (pk0, sk0) ←
KeyGen(1κ, c). If c is the output of the PRF at point z0, then we are in Game 2. If it was chosen uniformly at
random, we are in Game 3. Thus if A was an adversary with advantage ε(κ) in distinguishing between Game
2 and Game 3 then B is an adversary which distinguishes the pseudorandomness at puncturing property
with the same advantage. Thus ε(κ) is negl(κ). Note, that we were able to reduce to selective security since
z0 is defined to be chosen at random by the challenger and outside the attacker’s control and was chosen
before the punctured PRF key was received. Below we have described the reduction explicitly.

B1(1κ)

1. Sample a random z0.

2. Output S = {z0}, σ = ε (empty string)

B2(σ,K({z0}), {z0}, c)

1. Challenger samples a random x0
R←− {0, 1}κ

(a) Compute (pk0, sk0)← KeyGen(1κ, c)

(b) Let OProgram f∗ = iO(κ,Program f∗) and OProgram f−1
∗

= iO(κ,Program f−1
∗
).

(c) Output pk = (OProgram f∗,OProgram f−1
∗
)

2. Challenger runs f ′n(pk, (z0, x0))

(a) Let y0 ← OProgram f∗(z0, x0).

3. Let x′0 = A(pk, (z0, y0)).

4. If x′0 = x0 output 0, else output 1.

Lemma 19. Assuming (KeyGen, f(·, ·), f−1(·, ·)) is a secure trapdoor function from definition 1, there exists
a negligible function negl(·) such that ∀κ ∈ N, adv3A = negl(κ).

47

Proof. Let A be an adversary that interacts with challenger in Game 3 with winning probability ε(κ). We
describe a reduction to the security of a trapdoor permutation (KeyGen, f(·, ·), f−1(·, ·)).

Inputs: (pk′, sk′)← KeyGen(1κ), y = f(pk′, x0) where x0
R←− {0, 1}κ.

Reduction B(pk′, y) :

1. Challenger samples a random (z0)
R←− {0, 1}κ

(a) Sample K ← PPRF.KeyGen(1κ)

(b) Set pk0 = pk′

(c) Compute punctured key K({z0})
(d) Let OProgram f∗ = iO(κ,Program f∗) and OProgram f−1

∗
= iO(κ,Program f−1

∗
).

(e) Output (pk = (OProgram f∗,OProgram f−1
∗
), sk = K)

2. Adversary is given (pk, (z0, y)).

3. Adversary outputs (z′, x′)

4. Output x′

A wins with probability ε which implies f ′n(pk, (z′, x′)) = (z0, y). From the construction, it can be seen
that this is correct if f(pk0, x

′) = y. Thus B wins with probability ≥ ε. Thus ε = negl(κ) from security of
the trapdoor function.

From the above lemmas, it is clear that adv0A = negl(κ) and hence proving stated theorem 3.

7.4 Attack on Replica Encoding Scheme

First, we restate the security game in the context of the above TDP. We consider a variation of our construc-
tion in Section 5 with r ∈ o(b · n) instantiated with the above trapdoor permutation and present a concrete
attack adversary which breaks the s-soundness of our replica encoding scheme for any constant s ∈ (0, 1).
We remark that this attack also applies to the construction in Section 6.

Game 0: SoundA1,A2(κ, n)

• Setup: The challenger(denoted by C) runs (pk′, sk′) ← rSetup(1κ, 1n) and sends public key pk’ = (C′0, C
′
1, n)

to A1. It keeps the secret key sk’ = (K,n) for itself.

• Phase 1: The adversary A1 issues queries on T,T−1,H, C responds the query back to A1.

• File Challenge: m ∈ {0, 1}∗ ← AH(·),T(·),T−1(·)
1 (1κ, pk′). It sends m to C who parses pk′ as (C′0, C

′
1, n); sk′ as

(K,n) and does the following:

– Divide m into b blocks of length λ i.e. m = m1||m2|| . . . ||mb, b = d|m|/λe.
– For i ∈ [n],

∗ Choose a string ρi
R←− {0, 1}κ.

∗ Compute ∀t ∈ [b],

Y
(i)
t,0 = mt ⊕ H(ρi||t).

∗ For rounds j from 1 to r and ∀t ∈ [b],

· Let z
(i)
t,j , x

(i)
t,j ∈ {0, 1}

λ/2

· Let z
(i)
t,j ||x

(i)
t,j = T(Y

(i)
t,j)

· Compute Y
(i)
t,j from Y

(i)
t,j as

(pk
(i)
t,j , sk

(i)
t,j) = KeyGen(1κ; PPRF.Eval(K, z

(i)
t,j).

Y
(i)
t,j = z

(i)
t,j ||f

−1(sk
(i)
t,j , x

(i)
t,j)

48

∗ Let y
(i)
r = Y

(i)
1,r || . . . ||Y

(i)
b,r and set y(i) = (y

(i)
r , ρi).

C returns y(1), y(2), . . . y(n) to A1.

• Phase 2: A1 issues additional queries on T,T−1,H, C responds the query back to A1.

• State Sharing: A1 outputs state state← AH(·),T(·),T−1(·)
1 (1κ, pk′, y) and sends state to A2.

• Phase 3: The adversary A2 queries on T,T−1,H, C responds the query back to A2.

• Guess: A2 outputs the replica guesses to C.

{ỹ(i)} ← A2(1κ, pk′,m, state).

• Verify: Let vi = 1 if ỹ(i) = y(i) and 0 otherwise. Adversary wins if |state| <
∑
vi · s(κ, |m|) · len(κ, |m|).

Now below, we present out construction of adversaries A1,A2.

A1(1κ, pk′ = (pk, n))

• Choose any message m ∈ {0, 1}b·λ where b ≥ 1.

• Send m to challenger.

• Receive {y(i) = {Y (i)
t,r }t∈[b], ρi}i∈[n].

• For each j ∈ [r], set xj =
⊕

t∈[b],i∈[n] Y
(i)
t,j .

• Send {xj}, {ρi} as state.

A2(1κ, pk′ = (C ′0, C
′
1, n),m, ({xj}, ρi))

• Divide m into b blocks of length λ, m = m1|| . . . ||mb

• For i ∈ [r], t ∈ [b]

– Compute Y
(i)
t,0 = H(ρi||t)⊕mt

• For j ∈ [r]

– Set {Y (i)
t,j }i∈[r],t∈[b] = C ′1({T(Y

(i)
t,j−1)}, xj)

• For i ∈ [r]

– Let y
(i)
r = Y

(i)
1,r || . . . ||Y

(i)
b,r and output (y

(i)
r , ρi)

Lemma 20. (A1,A2) use λ · o(b · n) + n · o(λ) space.

Proof. We observe that the state output is {xj}, {ρi}, which use r · λ, and κ · n space respectively. We use
the fact that r ∈ o(b · n) and λ ∈ ω(κ) to give us our result.

Lemma 21. ∀n ≥ 1, there exists a negligible function negl such that the probability that
∑
i vi = n in the

verification stage of SoundA1,A2
(κ, n) for adversaries (A1,A2) is 1− negl(κ).

Proof. We recall that C ′1 is simply an obfuscation of program Program f−1. Thus, as long as the collection

{z(i)t,j}t∈[b],i∈[n] is unique for every j ∈ [r] and xj is the ⊕ of {x(i)t,j}t∈[b],i∈[n], then C ′1 will successfully invert. By
the fact that H is a random oracle, and that T and f are permutations, we use the fact that a uniform random

variable under a permutation is uniformly random to get that {z(i)t,j}t∈[b],i∈[n] is a uniform and independently

random set. Thus, we can union bound the probability that any of them collide with
(
b·n
2

)
· 2−λ/2 ∈ negl(κ).

In addition, we know that xj is the aforementioned value by construction. Thus, we can inductively reason

that our adversary computes {Y (i)
t,j }i∈[r],t∈[b] correctly, and thus can recover the original encodings.

Lemma 22. When instantiated with a round function r ∈ o(b · n), the construction in Section 5 is not
s-sound for any constant functions s(κ, |m|) = c ∈ (0, 1).

49

Proof. Recall the definition of s-soundness as

Pr

[
(v, state,m)← SoundA1,A2

(κ, n), s.t.
|state| < v · s(κ, |m|) · len(κ, |m|)

]
≤ negl(κ).

We know by Lemma 21 that v = n with all but negligible probability, and from Lemma 20 that |state| ∈
λ · o(b · n) + n · o(λ). We recall that len(κ, |m|) = |m| + O(κ) > λ · b. From this, we can conclude that for
sufficiently large κ, |m|, we know

λ · o(b · n) + n · o(λ) < n · c · λ · b < v · s(κ, |m|) · len(κ, |m|)

with all but negligible probability, and so this scheme is not s-sound.

References

[1] Hamza Abusalah, Joël Alwen, Bram Cohen, Danylo Khilko, Krzysztof Pietrzak, and Leonid Reyzin.
Beyond hellman’s time-memory trade-offs with applications to proofs of space. In International Confer-
ence on the Theory and Application of Cryptology and Information Security, pages 357–379. Springer,
2017.

[2] Joël Alwen, Binyi Chen, Chethan Kamath, Vladimir Kolmogorov, Krzysztof Pietrzak, and Stefano
Tessaro. On the complexity of scrypt and proofs of space in the parallel random oracle model. In
Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages
358–387. Springer, 2016.

[3] Joël Alwen, Binyi Chen, Krzysztof Pietrzak, Leonid Reyzin, and Stefano Tessaro. Scrypt is maximally
memory-hard. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 33–62. Springer, 2017.

[4] Joël Alwen and Vladimir Serbinenko. High parallel complexity graphs and memory-hard functions. In
Proceedings of the forty-seventh annual ACM symposium on Theory of computing, pages 595–603, 2015.

[5] J Benet and N Greco. Filecoin: A decentralized storage network. Protoc. Labs, 2018.

[6] Juan Benet, David Dalrymple, and Nicola Greco. Proof of replication. Protoc. Labs, 2017.

[7] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In Hovav
Shacham and Alexandra Boldyreva, editors, Advances in Cryptology - CRYPTO 2018 - 38th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part
I, volume 10991 of Lecture Notes in Computer Science, pages 757–788. Springer, 2018.

[8] Kevin D Bowers, Ari Juels, and Alina Oprea. Proofs of retrievability: Theory and implementation. In
Proceedings of the 2009 ACM workshop on Cloud computing security, pages 43–54, 2009.

[9] Ethan Cecchetti, Ben Fisch, Ian Miers, and Ari Juels. Pies: Public incompressible encodings for
decentralized storage. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 1351–1367, 2019.

[10] Yuanxi Dai and John Steinberger. Indifferentiability of 8-round feistel networks. In Annual International
Cryptology Conference, pages 95–120. Springer, 2016.

[11] Ivan Damg̊ard, Chaya Ganesh, and Claudio Orlandi. Proofs of replicated storage without timing assump-
tions. In Advances in Cryptology – CRYPTO 2019, pages 355–380, Cham, 2019. Springer International
Publishing.

50

[12] Yevgeniy Dodis, Salil P. Vadhan, and Daniel Wichs. Proofs of retrievability via hardness amplification.
In Omer Reingold, editor, Theory of Cryptography, 6th Theory of Cryptography Conference, TCC 2009,
San Francisco, CA, USA, March 15-17, 2009. Proceedings, volume 5444 of Lecture Notes in Computer
Science, pages 109–127. Springer, 2009.

[13] Cynthia Dwork, Moni Naor, and Hoeteck Wee. Pebbling and proofs of work. In Annual International
Cryptology Conference, pages 37–54. Springer, 2005.

[14] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof Pietrzak. Proofs of space.
In Annual Cryptology Conference, pages 585–605. Springer, 2015.

[15] Stefan Dziembowski, Tomasz Kazana, and Daniel Wichs. One-time computable self-erasing functions.
In Theory of Cryptography Conference, pages 125–143. Springer, 2011.

[16] Ben Fisch. Tight proofs of space and replication. Cryptology ePrint Archive, Report 2018/702, 2018.
https://eprint.iacr.org/2018/702.

[17] Ben Fisch, Joseph Bonneau, Juan Benet, and Nicola Greco. Proofs of replication using depth robust
graphs. Blockchain Protocol Analysis and Security Engineering, 2018, 2018.

[18] Philippe Golle, Stanislaw Jarecki, and Ilya Mironov. Cryptographic primitives enforcing communica-
tion and storage complexity. In International Conference on Financial Cryptography, pages 120–135.
Springer, 2002.

[19] Thomas Holenstein, Robin Künzler, and Stefano Tessaro. The equivalence of the random oracle model
and the ideal cipher model, revisited. In Lance Fortnow and Salil P. Vadhan, editors, Proceedings of
the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011,
pages 89–98. ACM, 2011.

[20] Ari Juels and Burton S Kaliski Jr. Pors: Proofs of retrievability for large files. In Proceedings of the
14th ACM conference on Computer and communications security, pages 584–597, 2007.

[21] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In Moni Naor, editor, Theory of
Cryptography, First Theory of Cryptography Conference, TCC 2004, Cambridge, MA, USA, February
19-21, 2004, Proceedings, volume 2951 of Lecture Notes in Computer Science, pages 21–39. Springer,
2004.

[22] Tal Moran and Daniel Wichs. Incompressible encodings. Manuscript, 2020.

[23] Kazuo Ohta and Tatsuaki Okamoto. On concrete security treatment of signatures derived from identi-
fication. In Annual International Cryptology Conference, pages 354–369. Springer, 1998.

[24] Krzysztof Pietrzak. Proofs of catalytic space. Cryptology ePrint Archive, Report 2018/194, 2018.
https://eprint.iacr.org/2018/194.

[25] Ling Ren and Srinivas Devadas. Proof of space from stacked expanders. In Theory of Cryptography
Conference, pages 262–285. Springer, 2016.

[26] Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with composition: Limitations
of the indifferentiability framework. In Kenneth G. Paterson, editor, Advances in Cryptology - EURO-
CRYPT 2011 - 30th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings, volume 6632 of Lecture Notes in Computer
Science, pages 487–506. Springer, 2011.

[27] Hovav Shacham and Brent Waters. Compact proofs of retrievability. In International Conference on
the Theory and Application of Cryptology and Information Security, pages 90–107. Springer, 2008.

51

https://eprint.iacr.org/2018/702
https://eprint.iacr.org/2018/194

[28] Marten Van Dijk, Ari Juels, Alina Oprea, Ronald L Rivest, Emil Stefanov, and Nikos Triandopoulos.
Hourglass schemes: how to prove that cloud files are encrypted. In Proceedings of the 2012 ACM
conference on Computer and communications security, pages 265–280, 2012.

52

	1 Introduction
	1.1 Our Contributions
	1.2 Our Techniques
	1.3 Additional Prior Work
	1.4 Concurrent Work

	2 Preliminaries
	2.1 Trapdoor permutations

	3 Defining Replica Encoding
	4 Lemmas on Random Functions and Permutations
	5 Replica Encoding in the Ideal Permutation Model.
	5.1 Construction
	5.2 Security of Replica Encoding Scheme

	6 Replica Encodings in the Random Function Model
	6.1 Construction
	6.2 Proof of Security

	7 Counterexample for Round Function Independent of Blocks
	7.1 Preliminaries
	7.2 Construction
	7.3 Proofs
	7.4 Attack on Replica Encoding Scheme

