
05 August 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

New Techniques to Reduce the Execution Time of Functional Test Programs / Gaudesi, Marco; Pomeranz, Irith; SONZA
REORDA, Matteo; Squillero, Giovanni. - In: IEEE TRANSACTIONS ON COMPUTERS. - ISSN 0018-9340. - STAMPA. -
66:7(2017), pp. 1268-1273. [10.1109/TC.2016.2643663]

Original

New Techniques to Reduce the Execution Time of Functional Test Programs

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TC.2016.2643663

Terms of use:
openAccess

Publisher copyright

©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2666242 since: 2017-06-09T09:34:47Z

IEEE



0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2643663, IEEE

Transactions on Computers

IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID 1 

 

New Techniques to Reduce the Execution 
Time of Functional Test Programs 

M. Gaudesi, I. Pomeranz, Fellow, IEEE,  

M. Sonza Reorda, Fellow, IEEE, G. Squillero, Senior, IEEE 

Abstract— The compaction of test programs for processor-based systems is of utmost practical importance: Software-Based 

Self-Test (SBST) is nowadays increasingly adopted, especially for in-field test of safety-critical applications, and both the size and 

the execution time of the test are critical parameters. However, while compacting the size of binary test sequences has been 

thoroughly studied over the years, the reduction of the execution time of test programs is still a rather unexplored area of research. 

This paper describes a family of algorithms able to automatically enhance an existing test program, reducing the time required to 

run it and, as a side effect, its size. The proposed solutions are based on instruction removal and restoration, which is shown to 

be computationally more efficient than instruction removal alone. Experimental results demonstrate the compaction capabilities, 

and allow analyzing computational costs and effectiveness of the different algorithms. 

Index Terms— software-based self-test, test compaction, test generation, test program 

——————————   �   —————————— 

1 INTRODUCTION

N functional test, only the functional input signals of the 
unit under test are stimulated, and only its functional output 

signals are observed. A common approach to functional test 
for processor-based systems is Software-Based Self-Test (SBST) 
[3], which consists of forcing the CPU to execute a test pro-
gram and checking the results. SBST has some important 
properties:  

•  it allows testing the system at-speed, since the test program 
is executed at the same frequency of application programs;  

•  it does not require costly, high-speed testers, since low fre-
quency interfaces can be used to upload the test program 
into a memory accessible by the processor and to retrieve 
the results at the end of the test;  

•  it implicitly tests both the modules composing a system 
(such as processor, bus, memories, peripherals) and their 
interconnections;  

•  finally, such tests can be easily tweaked to tackle different 
types of defects, to match new constraints (e.g., related to 
power [35]), and to provide diagnostic information [6].  

Functional test based on SBST is widely adopted for the test 
of single devices such as Systems on a Chip (SoCs), boards, 
and complete systems [4]; its adoption spans from end-of-
manufacturing to qualification test and in-field testing. In the 
last case, the role of functional test is particularly relevant in 
safety-critical applications, where standards and regulations 
specify the target fault coverage to be achieved, and both 
minimum cost and minimal invasiveness on the application 
environment are highly desirable [32]. The constraints man-

dated by the ISO26262 for automotive applications are a par-
adigmatic example.  

Although SBST was originally intended to test processors 
and processor cores, some recent works show that it can be 
effectively adopted also to target memories [39], caches 
[38][41] and peripherals [40], as well as special kinds of pro-
cessors, such as VLIWs [37]. Several efforts are currently be-
ing done to develop effective techniques for writing test pro-
grams addressing common modules in a CPU, such as 
Branch Prediction Units [42], or for extracting test programs 
from existing application code [43]. 

A major limitation of SBST lies in the cost for the develop-
ment of suitable test programs. Although the first solutions 
for creating functional test programs were proposed more 
than three decades ago [1] [2], only recently research led to 
techniques that allow test engineers to reliably devise test 
programs achieving high fault coverage for processors and 
controllers [32].  

Lately, automatic approaches for generating a test program 
have been proposed [5][31], at least for small- and medium-
size microprocessors. However, most approaches still rely on 
manual effort and pseudo random generators [28], and in 
both cases test program size and duration are usually far 
from being optimal.  

This paper tackles the reduction of the execution time of 
functional tests, an important activity as the duration of the 
test is a critical parameter in many different contexts. For in-
stance, when a test program is run in the field, it often ex-
ploits the time slots left idle by the main application [33], and 
a long duration is likely to impair its applicability. Its dura-
tion also affects the required amount of power and energy, 
which may represent critical parameters in some cases, for 
example for nodes in Wireless Sensor Networks [36]. Simi-

xxxx-xxxx/0x/$xx.00 © 200x IEEE        Published by the IEEE Computer Society 

———————————————— 

•  M. Gaudesi is with Ominee, S.r.l.. E-mail: marco.gaudesi@ominee.com. 
•  I. Pomeranz is with Purdue University. E-mail: pomeranz@purdue.edu. 
•  M. Sonza Reorda and G. Squillero are with Politecnico di Torino. E-mail: 

matteo.sonzareorda@polito.it, giovanni.squillero@polito.it. 
 

I



0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2643663, IEEE

Transactions on Computers

2 IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID 

 

larly, when a test program is part of the end-of-manufactur-
ing test process, its duration directly influences the cost of the 
test process, and any reduction immediately turns into a 
money saving.  

Reducing the size or the execution time of a test is called 
“compaction”. Generally speaking, compaction techniques 
can be classified either as “dynamic” or “static”. Dynamic 
techniques work directly during test generation, while the 
static ones act on an existing test set in a separate phase after 
generation. The two types of approaches are not necessarily 
exclusive, and some authors proposed to mix them [18].   

Dynamic test compaction is known to be able to reduce both 
the size and the duration of a test program. Researchers in 
[35] and [44] proposed some techniques to consider test pro-
gram size during test program generation. However, the dy-
namic approach may significantly increase the complexity of 
the test generation process, and, more importantly, it cannot 
be used when the test set is already available. The possibility 
to reuse, with possible minor modification, existing sets of 
test programs (e.g., coming from the validation process, or 
including application code) is a key advantage, and a very 
popular strategy in practice. All such test programs need to 
be optimized after their creation. Furthermore, it has been 
shown that even after applying dynamic compaction there is 
still room for further improvement by a static test compac-
tion procedure [9].  

One approach to static test compaction is to pinpoint and re-
move the parts of a test that are not strictly necessary for 
achieving the target fault coverage. Dealing with test pro-
gram compaction, this means finding and omitting all the in-
structions that do not (directly or indirectly) contribute to the 
target fault coverage.  

Any test program can be translated into a sequence of binary 
stimuli, and such a sequence can theoretically be compacted 
resorting to well-known methods [8]-[21]. However, the re-
sulting binary sequence may not correspond to a valid se-
quence of instructions any more. Consequently, any test pro-
gram compaction methodology must operate at the level of 
assembly program, facing therefore specific problems that 
are not present in binary test sequence compaction: 

•  Test programs are executed on systems that include mem-
ories; hence, compaction should take care of a more com-
plex scenario when dealing with a test program. 

•  Test programs may include control-flow instructions im-
plementing loops and branches. Thus, differently from bi-
nary test sequences, the duration is not necessarily propor-
tional to the size of the test. Although removing an instruc-
tion is likely to decrease the time required to apply the test, 
a reduction in size does not necessarily turn into a reduc-
tion in test duration. For instance, the removal of key in-
structions, such as a conditional branch allowing to skip the 
execution of some instructions, can increase the overall ex-
ecution time. 

•  The removal of an instruction may trigger special events 
(e.g., exceptions, infinite loops) which in some cases hang 
the whole system, or force it into hard-to-manage situa-
tions.  

At present, there are few papers on test program compaction 

in the literature. In [7] a method was proposed, based on ex-
tracting from a test program a set of independent fragments, 
called spores. An evolutionary algorithm is then used to select 
the minimum sequence of spores whose execution allows 
achieving a given fault coverage.  The method is shown to be 
effective on blocks like the arithmetic unit, but can only be 
applied under strict constraints and requires an ad-hoc sim-
ulator to perform the analysis. The method proposed in [34] 
deals with the special case in which multiple test programs 
are available, and selects the subset that minimizes the dura-
tion, while keeping the same global fault coverage. 

This work is among the first proposing a generic and fully 
automatic procedure for removing instructions from an ex-
isting test program to reduce its duration without reducing 
its fault coverage. The scenario we consider is very common 
in practice: we do not assume the knowledge of any specific 
information about the test program itself, and we simply aim 
at compacting it while preserving the initial fault coverage 
with respect to a given fault model. 

We consider different solutions. As a baseline, we remove 
one instruction at a time from the test program, checking via 
fault simulation whether the resulting fault coverage remains 
the same. This approach, although sometimes very effective, 
requires high computational effort. We also propose more 
complex solutions based on instruction restoration: a group 
of instructions is initially removed from the test program; 
omitted instructions are then restored one by one until the 
initial fault coverage is achieved. In this way, we can reduce 
the required computational effort, while still achieving sig-
nificant compaction.  

Experimental results are reported using a MIPS-like proces-
sor as a test case, and considering test programs addressing 
faults in specific modules within the processor itself. The pro-
posed approach is applicable when fault simulation is com-
putationally feasible, and this is typically the case in embed-
ded system applications resorting to small- and medium-
sized microcontrollers and CPU cores. In the paper we also 
show that our technique can effectively work on one proces-
sor module at a time, thus reducing the required computa-
tional effort even more. Although our experiments targeted 
single stuck-at faults, the proposed approach is independent 
of the adopted fault model, if a fault simulation tool is avail-
able.  

The rest of the paper is organized as follows: Section II re-
views earlier works on test compaction. Section III describes 
the proposed method. Section IV presents experimental re-
sults. Section V draws some conclusions. 

2 BACKGROUND 

Extensive research has been performed on the compaction of 
binary test sequences. The first work to show that it is possi-
ble to omit a test vector from a given sequence without losing 
fault coverage is reported in [9], showing the usefulness of 
omitting test vectors even when test generation exploited dy-
namic test compaction. It also demonstrates that test genera-
tion procedures cannot avoid the inclusion of unnecessary 
test vectors in the sequence. Various implementations of test 
vector omission were described in [9]-[17].   



0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2643663, IEEE

Transactions on Computers

AUTHOR ET AL.:  TITLE 3 

 

In general, if the test vector at clock cycle u is omitted from a 
test sequence T, every fault that is detected by T at clock cycle 
u or higher may lose its detection. The procedure described 
in [9] simulates these faults in order to determine whether or 
not the test vector at clock cycle u can be omitted. To reduce 
the computational effort, if the test vector at clock cycle u can 
be omitted, the procedure applies binary search to compute 
the longest subsequence that can be omitted starting at clock 
cycle u.  

The restoration-based procedure described in [11] is a more 
efficient variation of test-vector omission. This procedure in-
itially removes a subset of test vectors from the sequence, 
then selectively restores them into the sequence to restore the 
original fault coverage. Test vectors are restored by consider-
ing one fault at a time. This contributes to the efficiency of 
the procedure. In the procedure described in [14], parallel 
pattern simulation is used to accomplish the restoration pro-
cess with a computational effort that is equivalent to that of 
fault simulation of the sequence.  

The procedure described in [15] modifies the test vectors in a 
sequence. The procedure described in [16] allows omitted 
test vectors to be reintroduced into the sequence. The goal of 
both approaches is to achieve test compaction beyond that 
achievable with the basic test vector omission or restoration 
procedures.  

A higher level, assertion-based dynamic test compaction pro-
cedure was described in [19]. The compaction of a set of bi-
nary test sequences was considered in [8], [20], [21].  

The first results of an approach similar to the one presented 
here were reported in [27]. However, in [27] we targeted the 
simpler problem of reducing the size of the test program, 
while here the focus is on the execution time. The two goals 
are clearly related, since a reduction in the test program size 
often translates into a reduction in its execution time. How-
ever, as seen before, this relationship is not always given, and 
there are cases in which a reduction in the size produces an 
increase in the execution time.  

Reducing the execution time is often more important in real 
applications than reducing the test program size, since it di-
rectly affects the test cost and feasibility (for in-field test). Un-
fortunately, the addressed problem is also much harder to 
solve. Moreover, this paper considers test programs address-
ing a whole processor, while in [27] we focused on test pro-
grams aimed at testing faults belonging to two modules, 
only.  

3 PROPOSED METHOD 

This work describes two approaches (denoted as A0 and A1) 
to compact SBST test programs. To evaluate the two ap-
proaches, we consider both their computational require-
ments and their compaction performance. Although the tar-
get of the test programs considered in this paper is the set of 
faults within a processor, the approaches can be easily gen-
eralized to test programs targeting other modules (e.g., pe-
ripheral components) within a processor-based system. 

We assume that the test program TP is already available. TP 
is a sequence of N instructions �� = ���, ��, … , �
�� 
 executed 

from a completely specified state, i.e., a state where all 
memory elements, such as RAM cells and flip-flops, have 
known values. TP achieves a fault coverage FC with respect 
to a given set of faults F. In the experiments reported in this 
paper we consider single stuck-at faults, but the proposed 
approaches can be applied to different fault models. 

In the experiments, we mark a fault as detected when a dif-
ference with respect to the fault-free system is observed on 
any output signal. This assumption does not match the real 
scenario if other observation mechanisms are adopted, such 
as looking at the values produced in user registers, cache 
lines, or memory. Nevertheless, the adopted mechanism for 
marking a fault as detected is able to provide results which 
are meaningful in many scenarios. For some low-frequency 
small microcontrollers SBST is used resorting to an ATE 
monitoring the output signals, and in SoC design it is becom-
ing popular to introduce a programmable MISR to observe 
the processor bus during SBST execution. Moreover, if the 
SBST test program is suitably written to store results in 
memory, the fault coverage figures that can be achieved ob-
serving the output signals or the final memory content are 
comparable.   

Our goal is to find a new test program ��′ = ���
� , ��

� , … , ����
�  
 

composed of a subset of the instructions of TP, in the same 
relative order, that achieves at least the same fault coverage 
when started from the same initial state, and minimizes the 
execution time. Being composed of a subset of the original 
instructions, as a side effect, the methodology will also re-
duce the size of the test program. 

We call “valid” a test program that can be safely executed, 
terminates correctly, accesses only legitimate memory loca-
tions, properly handles all exceptions, and does not violate 
the constraints imposed by the current scenario. We assume 
that TP is a valid SBST program. Even if we neglect addi-
tional constraints that could possibly exist on the behavior of 
the processor during the execution of the test, the removal of 
instructions may yield to invalid test programs. The most 
common problems are new exceptions (such as division by 
zero), and infinite loops. As the effect of the removal of a sin-
gle instruction cannot be foreseen with a static analysis, we 
identify these situations through simulation.  

3.1 Compaction by random instruction removal: A0  

The most straightforward solution to test program compac-
tion is based on single instruction removal. The first algo-
rithm we consider here, called A0, is a greedy local search, 
and follows the idea proposed in [9] for binary test se-
quences.  

The A0 algorithm is sketched in Fig. 1. In each step, one ran-
dom instruction �� ϵ �� is selected and removed, and the re-
sulting test program ��� = ��\���� fault simulated. If  ��′ is 
no longer a valid test program, or the attained fault coverage 
FC’ is less than the original one, or the execution time does 
not decrease, then ��

� is pushed back into TP’ and marked so 
it will never be chosen again. Otherwise, ��

� is permanently 
removed from TP’. The process is then repeated until all in-
structions have been considered. 

The number of steps required by A0 to compact TP is O(N). 



0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2643663, IEEE

Transactions on Computers

4 IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID 

 

In the generic i-th step (� ϵ [0, �-1]), the evaluation of the fault 
coverage involves the simulation of a test program composed 
of a sequence of N-i to N instructions. Fault simulation itself 
has at least a polynomial complexity in the size P of the unit 
under test, and represents the sole computationally demand-
ing step of the algorithm. Hence, the complexity of A0 is 
O(N2×Pß), where O(Pß) represents the computational com-
plexity of fault simulation. 

1 Fault simulate TP; let F be the set of faults detected by TP 

2 For every instruction Ii, selected in a random order { 
3 Let TP’= TP\{Ii} 

(i.e., let TP’ be the test program obtained by removing Ii from 
TP) 

4 Fault simulate TP’ 
5 If TP’ is a valid test program AND all the faults in F are de-

tected AND TP’ has a shorter execution time than TP then 
  TP = TP’ 

 } // end for 

Fig. 1. Pseudo-code for the A0 algorithm 

It is possible to identify cases, in which the removal of an in-
struction may increase the achieved fault coverage, for exam-
ple because the instruction was blocking the propagation of 
the fault effects to the output signals. Obviously, the chances 
to increase the fault coverage by removing instructions are 
generally low, but strongly depend on how the original test 
program was generated. This phenomenon was already ob-
served in [9]. 

In principle, A0 can be iterated by running a new optimiza-
tion step against the test program obtained. This approach 
requires a significant computational effort, but according to 
our experience rarely produces a better result than A0.  

3.2 Restoration-based algorithms: A1xx 

An advantage in terms of CPU effort can be achieved by a 
family of algorithms (denoted as A1xx), which are based on 
first removing a given block of instructions, and then restor-
ing them one at a time until the original fault coverage is re-
covered. 

A1xx algorithms were considered in [27]; however, the target 
of the optimization was the reduction in the test program 
size, without considering its duration. The underlying idea is 
similar to the restoration-based procedure from [11], where it 
was applied to binary sequence compaction. However, in 
[11], all or most of the test vectors of a binary sequence are 
initially omitted. In the case of a test program, such an action 
is likely to create invalid programs, requiring the restoration 
of a large number of instructions before being able to evalu-
ate the fault coverage again. This issue, that does not exist 
with binary sequences, is avoided with test programs by re-
moving small blocks of instructions and restoring instruc-
tions from every block immediately after it is removed in or-
der to restore the fault coverage. Moreover, at every step the 
algorithm must check whether the current test program is 
still valid and still guarantees the same fault coverage and 
has the same or lower execution time. 

The pseudo-code of the generic A1xx algorithm is shown in 
Fig. 2. In the proposed algorithm the original test program is 
split into m segments (step 2) composed of adjacent instruc-
tions. For every segment Si (starting from the last), we first 

remove all the instructions it is composed of, thus typically 
reducing the fault coverage. Let Φi be the set of faults that are 
detected by the segments Si to Sm-1, i.e., faults that may be-
come undetected due to the removal. Then, we start restoring 
one instruction from Si at a time until all the faults in Φi are 
detected again, and the execution time is not increased. 

As A0, A1xx algorithms are based on a preliminary fault sim-
ulation (step 1). Then, the algorithm performs as many itera-
tions as the number of segments. For every iteration, the al-
gorithm triggers one fault simulation step (step 6) for each 
instruction restoration. Hence, in the worst case (no instruc-
tion removed) the number of fault simulation steps (and thus 
the required computational effort) for A1xx is the same as for 
A0. However, the advantage of A1xx algorithms over A0 lies 
in the fact that the number of fault simulations may become 
lower than the number of instructions (like in A0), because 
iterations corresponding to instructions that do not need to 
be restored (because the fault coverage has already been re-
stored with the same or lower execution time) are not per-
formed. As a consequence, the computational advantage of 
A1xx algorithms with respect to A0 is greater when the 
achieved compaction is higher. 
Step 4 does not require any computational effort, since the 
computation of Φi (i.e., the set of faults to be considered at 
each iteration) can be performed once during step 1. Simi-
larly, the cost for the test in step 7 to check whether the new 
test program is valid or not has a very limited cost. In fact, 
every fault simulation in step 6 requires a preliminary fault-
free simulation, which can easily determine whether the con-
sidered program is valid or not.  
 
1 Fault simulate TP; let F be the set of faults detected by TP. Mark 

each fault with the instruction that first detects it  
2 Split TP into m segments S0 … Sm-1  
3 For every segment Si, starting from the last one { 
4 Let Φi be the set of faults which are first detected by the in-

structions in the segments from Si to Sm-1 (included) 
5 Let TP’ be the test program initially obtained by removing 

from TP all instructions belonging to Si  
6 Fault simulate TP’ 
7  If TP’ is a valid test program AND it detects all the faults in Φi 

AND it has the same or lower execution time then 
  set TP = TP’ 
  goto 3 (next iteration) 

8  Select one instruction I from Si 
9  TP’ = TP’  ∪  I (i.e., restore I) 
10 goto 6 
 } // end for 

Fig. 2. Pseudo-code for the generic A1xx algorithm 

Segments are selected starting from the last one in the pro-
gram. The advantage of this approach is that the fault simu-
lation cost of the first steps is rather low, since they require 
the fault simulation of faults belonging to the selected seg-
ment and the following ones, only. In the following steps, the 
computational cost typically decreases due to the performed 
compaction. Thus, the algorithm delivers useful results with 
lower computational effort, enabling the user to trade off be-
tween cost and quality. 

Several versions of A1xx are possible, depending on how the 
segments are defined (step 2), and how the instructions of the 
generic segment are selected for restoration (step 8).  



0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2643663, IEEE

Transactions on Computers

AUTHOR ET AL.:  TITLE 5 

 

Concerning the former point, here we only consider the algo-
rithms for which the original test program T is partitioned 
into m segments, each composed of a fixed number n of con-
secutive instructions (apart from the last). Hence, the first 
segment S0 will be composed of the first n instructions in T 
(I0 to In-1), the second segment of the instructions In to I2n-1, and 
so on. Clearly, the choice of the optimum value for n may be 
relevant. The A1xx variants with segments of variable size are 
not analyzed here, as they were shown to be unlikely to yield 
satisfactory results [27].  

Concerning the order according to which instructions be-
longing to the current segment are restored, the following 
policies are considered: 

•  Forward (A1Fn): instructions are restored one by one start-

ing from the first in the segment. 

•  Back (A1Bn): instructions are restored starting from the last 

in the segment. 

•  Random (A1Rn): instructions are restored following a ran-

dom order. 

These three variants, with n ranging from 2 to 10, have been 
thoroughly evaluated and the results are summarized in Sec-
tion 4.2. Thanks to the analysis performed in [27], in this pa-
per we do not analyze the effect of applying different resto-
ration techniques in sequence. 

As mentioned before, when removing the instructions be-
longing to a given segment Si, the algorithm only needs to 
simulate faults originally detected by instructions in seg-
ments Si to Sm-1. The identification of the instruction that first 
detects each fault is done as a byproduct of step 1. 

4 EXPERIMENTAL EVALUATION 

4.1 Experimental setup 

To experimentally validate the proposed algorithms, we im-
plemented them in a prototypical tool written in Java (about 
2,000 lines of code). To evaluate the fault coverage, Synopsys 
TetraMAX is used. 

In the experiments we tackle a MIPS-like processor [22]: its 
architecture is based on 32-bit registers and addresses, and 
includes a five-stage pipeline, accounting for about 250k 
equivalent gates when synthesized using the FreePDK45 Ge-
neric Open Cell Library from NanGate [23]. The size and com-
plexity of the considered processor is comparable with the 
one of several microcontrollers (e.g., Intel 8051 or ARM M0) 
which are popular for many safety-critical applications in ar-
eas like automotive, space and avionics. 

4.2 Algorithm tuning 

We first performed a preliminary analysis aimed at compar-
ing various A1xx alternatives. In particular, we first com-
pared the forward (A1Fx), backward (A1Bx), and random 
(A1Rx) restoration schemes with different sizes of the seg-
ments.  

The results of this preliminary analysis, which are not re-
ported here in detail due to space limitations, suggest that 
the choice of the parameters of A1xx is not so critical. Gener-
ally speaking, looking at the compaction, the A1Fx version 

appears able to deliver slightly higher compaction than A1Bx 
and A1Rx, and smaller block sizes are more effective. On the 
other hand, looking at the computational effort, smaller 
block sizes yield longer runs, as the resulting algorithms are 
more similar to A0. 

The result can be intuitively explained as follows: each seg-
ment requires an initial fault simulation (step 6 in Fig. 2) 
when all its instructions have been removed; hence, the 
choice of smaller segments will involve a higher number of 
these fault simulation runs; at the same time, operating at 
finer granularity increases the possibilities to detect useless 
instructions. In fact, our algorithm is able to remove a single 
instruction from a segment only if this instruction is the last 
to be restored. The smaller the segment size is, the higher this 
probability is. 

Based on the above results, for the following experiments we 
selected A1F3. To provide the reader with a better under-
standing of the behavior of A1F3 with respect to A0, we plot-
ted in Figure 3 a paradigmatic example of the achieved com-
paction (CR) with respect to the CPU time (COST) during a 
compaction run of a difficult module. Both indicators are rel-
ative: CR is the ratio between the execution time of the opti-
mized test program and the original one; COST is the ratio 
between the computational effort required to optimize the 
test program and one full fault simulation of the original test 
program on the target module. In this way the reported re-
sults are less dependent on the effectiveness of the adopted 
fault simulator, which in its current version is not optimized 
for dealing with functional test programs. Finally, the inter-
action between our tool and the fault simulator is far from 
being optimized in this version of our environment, thus re-
quiring an amount of CPU time which could be easily re-
duced in a more engineered version. 

In Figure 3, the performance of A0 (in red) is compared 
against the performance of A1F3 (in blue) in terms of 
achieved compaction after every fault simulation: it is appar-
ent that A13F is superior when the CPU budget is limited, 
while in the long period A0 is able to achieve a better com-
paction result.  

4.3 General results on single processor modules 

We report results obtained with the proposed methodology 
on the different modules of the target microprocessor. In the 
experiments, test programs have been generated manually 
by a test engineer, focusing on each module independently, 
which corresponds to a quite common industrial practice 
[32]. 

By addressing separately the compaction of the test program 
for each single module, we reduce the computational cost 
compared to the situation where we compact the test pro-
gram for the whole processor. We show that combining the 
compacted programs we can achieve nearly equivalent re-
sults with higher efficiency and scalability. 

Table I lists the considered modules, together with the corre-
sponding number of faults; the table also shows the size of 
the relevant test program (in instructions), its length (in clock 
cycles), and the stuck-at fault coverage (FC) it achieves.  



0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2643663, IEEE

Transactions on Computers

6 IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID 

 

  

Fig. 3. Performance comparison between A0 (in red) and A1F3 (in blue) 
on the bypass unit. 

We are not considering the compaction of the test programs 
for the register bank and the execution stage, as the test pro-
grams for these two modules are very specific and can hardly 
be optimized. In particular, the test of the former unit can be 
written in a minimal form by following the deterministic al-
gorithm described in [29], while the test of the latter unit can 
effectively be performed resorting to the algorithm proposed 
in [30], which directly leads to an optimized test program.  

The low coverage for the memory access stage is due to con-
straints imposed for the test: only a small portion of the 
memory was available during the test and therefore address-
able. 

Globally, test programs attain a fault coverage of 79.10% on 
the listed modules, and the coverage increases to 92.39% 
when the Execution Unit and the Register Bank are also con-
sidered, as these two modules contain a high number of easy-
to-test faults.  

We ran the tools implementing the A0 and A1F3 algorithms, 
computing the same figures used in the previous sub-section: 
compaction ratio (CR) and computational cost (COST).  

Table II shows the results obtained by applying the consid-
ered algorithms to the test programs addressing each of the 
considered modules in the processor. For each module the 
statistics are reported about the attained test program execu-
tion time reduction (CR) and computational cost (COST), as 
defined above.  

Results in Table II show that the considered algorithms can 
reduce the duration of each test program down to about 70% 
of its original duration. A1F3 produces on the average a com-
pacted test program that is about 5% longer than A0, but is 
21% faster in getting the result. Given the significant compu-
tational effort required by test program compaction, this rep-
resents a remarkable result. 

In our experiments, we worked on a set of test programs, 
each developed to maximize the stuck-at fault coverage in a 
different module. By construction, the compaction process 
does not decrease this  fault coverage figure. However, it is 
possible that the test program for a module also detects faults 

in another module. By compacting each test program sepa-
rately, it may happen that the global test coverage on the 
whole processor is slightly decreased. We experimentally 
evaluated this loss and found it is very limited, correspond-
ing to fault coverage reduction from 92.39% to 92.28%. 

During the optimization process, faults on lines connected 
with the address bus are not considered, because to detect 
them it is necessary to execute instructions located in specific 
memory locations and, consequently, a general approach for 
compaction would not be able to reduce the size of the test. 
Moreover, the procedure for detecting faults on lines con-
nected with the address bus is strongly dependent on the cir-
cuitry and the compaction algorithm does not use any 
knowledge about the architecture of the modules. Indeed, 
the global fault coverage figure achieved by all test programs 
before and after compaction has been computed by consid-
ering these faults, too. 

Based on the results of Table II we can also observe that the 
computational cost of the compaction algorithm (as given by 
the COST parameter) basically depends on the number of in-
structions composing the target test program: the COST pa-
rameter is maximum for the Bypass unit and the Address cal-
culation stage, whose test programs are significantly longer 
than the others. Clearly, the computational time for compac-
tion directly depends on the size of the target module and on 
the execution time of the corresponding test program (be-
cause they directly affect the time for fault simulating the 
original test program). However, the number of fault simu-
lation steps required by the compaction algorithm (and re-
flected by the value of COST) mainly grows with the size of 
the original test program. Finally, further experimental re-
sults not reported here for lack of space confirm that the com-
putational effort decreases when the achieved compaction is 
higher. 

4.4 General results on the whole processor 

In this sub-section we focus on the case, in which a single test 
program targeting the faults in the whole microprocessor is 
considered. Such a monolithic test program can be com-
pacted by the proposed approach as well.  

In Table III the row labeled “Monolithic” shows data for a 
test program tackled as a whole. This test program has been 
designed by an expert test engineer and its execution time is 
particularly reduced, being heavily based on loops. Its origi-
nal fault coverage is about 92%. 

On the other side, the row labeled “Module by module” re-
ports the results on the whole microprocessor that have been 
obtained by optimizing one test program from the test set at 
a time, and eventually concatenating them, following the ap-
proach reported in the previous sub-section.  

In both lines, columns 2 and 3 report the size and duration of 
the original test program. The following columns report the 
behavior of the two compaction algorithms we consider in 
this paper and show that they are able to effectively compact 
test programs both working module by module and in a 
monolithic way. 

It should be noted that the “COST” column reports the rela-
tive costs compared to a full fault simulation of the original 

0,8

0,82

0,84

0,86

0,88

0,9

0,92

0,94

0,96

0,98

1

0 50 100 150 200 250 300

C
R

COST



0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2643663, IEEE

Transactions on Computers

AUTHOR ET AL.:  TITLE 7 

 

test program, and not the absolute values. Hence, figures in 
different rows cannot be directly compared.  

5 CONCLUSIONS 

Test program compaction is crucial, especially when SBST is 
used for in-field test of safety-critical applications. In this sce-
nario, small- and medium-sized microcontrollers are often 
adopted, possibly within a SoC. For such devices, fault sim-
ulation is feasible, although computationally expensive. 
Compaction can be tackled by resorting to different strate-
gies, characterized by different figures in terms of achieved 
compaction and required computational effort. This paper 
showed approaches aiming at compacting existing test pro-
grams: the first one is based on instruction removal alone; the 
others are based on instruction removal and restoration, and 
require a significantly lower computational effort.  

Experimental results show first that test programs can be ef-
fectively compacted using an algorithm exclusively based on 
the results of fault simulation. Secondly, we experimentally 
demonstrated that the removal-restoration approaches rep-
resent a reasonable trade-off between the achieved compac-
tion and the required computational effort. Other solutions 
(e.g., [7]) may achieve higher compaction with a much higher 
computational effort, preventing their usage on a complete 
processor.  Similarly, one could even imagine  to  adopt  com-
pletely  different  solutions, e.g., based on modifying instruc-
tions in the test program, thus probably achieving an even 
higher compaction.  However,  this  would  increase  even  
further  the  complexity  of  the  compaction algorithm. 

Test program compaction requires significant computational 
effort, and most of its cost is due to fault simulation. The test 
set is commonly composed of many different test programs 
targeting different functional units, developed at different 
times. We showed that such programs can be optimized in-
dependently, considering only faults in the unit they were 
intended to tackle. In this way we can tame the computa-
tional requirements and improve scalability. We also demon-
strated that the proposed approach is effective even when the 
test is composed of a single monolithic program targeting the 
whole microprocessor. 

The method can be easily extended to deal with other fault 
models, provided that a fault simulation tool is available, 
able to provide the fault coverage figure corresponding to 
each considered subset of instructions. 

We are currently working on the development of further op-
timization techniques, which may increase the achieved com-
paction while limiting the computational cost.  

REFERENCES 

[1] S. Thatte, J. Abraham, “Test Generation for Microprocessors”, IEEE Trans-
actions on Computers, vol. 29, no. 6, pp. 429–441, 1980 

[2] D. Brahme, J. Abraham , “Functional testing of microprocessors”, IEEE 
Transactions on Computers, vol. C-33, no. 6, pp. 475 - 485, 1984 

[3] M. Psarakis et al., “Microprocessor Software-Based Self-Testing”, IEEE 
Design & Test of Computers, vol. 27, no. 3, 2010, pp. 4-19 

[4] A. Jutman et al., “High Quality System Level Test and Diagnosis”, IEEE 
Asian Test Symposium (ATS), 2014 

[5] A.  Riefert et al.,  “An  effective  approach  to  automatic  functional pro-
cessor  test  generation  for  small-delay  faults”,  Design,  Automation  and  
Test  in  Europe Conference (DATE), 2014 

[6] P.  Bernardi et al., “An  Effective  technique  for  the  Automatic Generation 
of Diagnosis-oriented Programs for Processor Cores”, IEEE  Trans.  on  
Computer-Aided  Design , vol. 27, pp. 570-574, 2008 

[7] E. Sánchez et al., “Enhanced Test Program Compaction Using Genetic Pro-
gramming”, IEEE Congress on Evolutionary Computation (CEC), pp. 865-
870, 2006 

[8] T. M. Niermann et al., “Test compaction for sequential circuits”, IEEE 
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, pp. 260 - 267, 1992 

[9] I. Pomeranz, S. M. Reddy, “On Static Compaction of Test Sequences for 
Synchronous Sequential Circuits”, Design Automation Conf. (DAC), 1996, 
pp. 215-220 

[10] M. S. Hsiao et al., “Fast Algorithms for Static Compaction of Sequential 
Circuit Test Vectors”, VLSI Test Symp., 1997, pp. 188-195 

[11] I. Pomeranz, S. M. Reddy, “Vector Restoration Based Static Compaction 
of Test Sequences for Synchronous Sequential Circuits”, IEEE Int’l Con-
ference on Computer Design (ICCD), 1997, pp. 360-365 

[12] M. S. Hsiao, S. T. Chakradhar, “State Relaxation Based Subsequence Re-
moval for Fast Static Compaction in Sequential Circuits”, Design Automa-
tion and Test in Europe (DATE), 1998, pp. 577-582 

[13] S. K. Bommu et al., “Static Compaction using Overlapped Restoration and 
Segment Pruning”, IEEE International Conference on Computer-Aided De-
sign (ICCAD), 1998, pp. 140-146 

[14] X. Lin et al., “SIFAR: Static Test Compaction for Synchronous Sequential 
Circuits Based on Single Fault Restoration”, IEEE VLSI Test Symposium 
(VTS), 2000, pp. 205-212 

[15] I. Pomeranz, S. M. Reddy, “Vector Replacement to Improve Static Test 
Compaction for Synchronous Sequential Circuits”, IEEE Trans. on Com-
puter-Aided Design, Feb. 2001, pp. 336-342 

[16] I. Pomeranz, S. M. Reddy, “Enumeration of Test Sequences in Increasing 
Chronological Order to Improve the Levels of Compaction Achieved by 
Vector Omission”, IEEE Trans. on Computers, July 2002, pp. 866-872 

[17] I. Pomeranz,  S. M. Reddy, “Vector Restoration Based Static Compaction 
using Random Initial Omission”, IEEE Trans. on Computer-Aided Design, 
Nov. 2004, pp. 1587-1592 

[18] S.N. Neophytou, M.K. Michael, “Test Set Generation with a Large Number 
of Unspecified Bits Using Static and Dynamic Techniques”, IEEE Trans-
actions on Computers (vol. 59, no. 3), 2010, pp. 301-316 

[19] J.G. Tong et al., “Test compaction techniques for assertion-based test gen-
eration”, ACM Trans. on Design Automation of Electronic Systems 
(TODAES), December 2013, pp. 1-29 

[20] I. Pomeranz, “Concatenation of Functional Test Subsequences for Im-
proved Fault Coverage and Reduced Test Length”, IEEE Transactions on 
Computers, vol. 61, no. 6, 2012, pp. 899-904 

[21] I. Pomeranz, “Two-Dimensional Static Test Compaction for Functional 
Test Sequences”, IEEE Transactions on Computers, vol. 64, no. 10, 2015, 
pp. 3009-3015 

[22] “miniMIPS Overview,” opencores.org, [Online]. Available at http://open-
cores.org/project,minimips 

[23] “NanGate FreePDK45 Generic Open Cell Library”, [Online]. Available at 
https://www.si2.org/openeda.si2.org/projects/nangatelib 

[24] P. Bernardi et al., “On the Functional Test of the Register Forwarding and 
Pipeline Interlocking Unit in Pipelined Processors”, 14th Int.l Workshop on 
Microprocessor Test and Verification, 2013, pp. 52-57 

[25] P. Bernardi et al., “On the in-Field Functional Testing of Decode Units in 
Pipelined RISC Processors”, IEEE Intl. Symp. on Defect and Fault Toler-
ance in VLSI and Nanotechnology Systems, 2014, pp. 298-303 

[26] E. Sanchez et al., Evolutionary Optimization: the µGP toolkit, Springer, 
2011 

[27] M. Gaudesi et al., “On Test Program Compaction”, IEEE European Test 
Symposium (ETS), 2015 

[28] P. Parvathala et al., “FRITS - a microprocessor functional BIST method”, 
IEEE International Test Conference (ITC), 2002, pp. 590-598 

[29] D. Sabena et al., “A new SBST algorithm for testing the register file of 
VLIW processors”, Design, Automation and Test in Europe Conference 
(DATE), 2012, pp. 412 – 41 

[30] D. Gizopoulos et al., “An effective BIST scheme for arithmetic logic units”, 
IEEE International Test Conference (ITC), 1997, pp. 868 – 877 

[31] S. Gurumurthy et al., “Automatic generation of instruction sequences tar-
geting hard-to-detect structural faults in a processor”, IEEE International 
Test Conference (ITC), 2006 

[32] P. Bernardi et al., “Development Flow for On-Line Core Self-Test of Au-
tomotive Microcontrollers”, IEEE Transactions on Computers, 2016, Vol. 
65, Issue 3, pp. 744 – 754 



0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2643663, IEEE

Transactions on Computers

8 IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID 

 

[33] A. Merentitis et al., “Directed Random SBST Generation for On-Line Test-
ing of Pipelined Processors”, 14th IEEE International On-Line Testing 
Symposium, pp. 273 – 279, 2008 

[34] A. Touati et al., “An effective approach for functional test programs com-
paction”, IEEE 19th International Symposium on Design and Diagnostics 
of Electronic Circuits & Systems (DDECS), 2016 

[35] Jun Zhou, H. -J. Wunderlich, “Software-Based Self-Test of Processors un-
der Power Constraints”, Design Automation & Test in Europe Conference 
(DATE), 2006  

[36] A. Merentitis et al., “Low Energy Online Self-Test of Embedded Processors 
in Dependable WSN Nodes,” IEEE Trans. on Dependable and Secure Com-
puting, vol. 9, no. 1, pp. 86-100, Jan.-Feb. 2012 

[37] D. Sabena et al., “On the Automatic Generation of Optimized Software-
Based Self-Test Programs for VLIW Processors,” IEEE Trans. on Very 
Large Scale Integration Systems, vol. 22, no. 4, pp. 813-823, April 2014 

[38] G. Theodorou et al., “Software-Based Self-Test for Small Caches in Micro-
processors,” IEEE Trans. on Computer-Aided Design, vol. 33, no. 12, pp. 
1991-2004, Dec. 2014 

[39] A. J. van de Goor et al., “Memory testing with a RISC microcontroller”, 
Design Automation and Test in Europe Conference (DATE), 2010 

[40] A. Apostolakis et al., “Test Program Generation for Communication Pe-
ripherals in Processor-Based SoC Devices”, IEEE Design & Test of Com-
puters, 2009, Vol. 26, Issue 2, pp. 52 – 63 

[41] G. Theodorou et al., “Software-Based Self Test Methodology for On-Line 
Testing of L1 Caches in Multithreaded Multicore Architectures”, IEEE 
Trans. on Very Large Scale Integration (VLSI) Systems, 2013, Vol. 21, Is-
sue 4, pp. 786 – 790 

[42] E. Sanchez, M. Sonza Reorda, “On the Functional Test of Branch Predic-
tion Units”, IEEE Trans. on Very Large Scale Integration (VLSI) Systems, 
2015, Vol. 23, Issue 9, pp. 1675 – 168 

[43] S.V. Kodakara et al., “Extracting effective functional tests from commer-
cial programs”, 33rd IEEE VLSI Test Symposium (VTS), 2015 

[44] N. Kranitis et al., “Low-cost software-based self-testing of RISC processor 
cores”, Design, Automation and Test in Europe Conference (DATE), 2003, 
pp. 714 - 719 

 
Giovanni Squillero received his M.S. and Ph.D. in computer science in 
1996 and 2001, and he is an Associate Professor in Politecnico di Torino, 
Italy. His research mixes bio-inspired metaheuristics with electronic CAD 
and computational intelligence, machine learning, games, and multi-
agent systems. Squillero is a member of the IEEE Computational Intelli-
gence Society Games Technical Committee. 
 
Marco Gaudesi received the B.S. and M.S. degree in Computer Engi-
neering at Università Palermo in 2007 and Politecnico di Torino in 2010 
respectively. He received his Ph.D. in 2015 from Politecnico di Torino. 
He is now a Data Scientist at Ominee S.r.l. in Torino.  
 
Matteo Sonza Reorda received his M.S. degree in Electronics in 1986 
and Ph.D. degree in Computer Engineering in 1990, respectively, both 
from Politecnico di Torino. He currently is a Full Professor at the Dept. of 
Control and Computer Engineering of the same University. He is a Fellow 
of IEEE. His research interests include test of SoCs and fault tolerant 
electronic system design. 
 
Irith Pomeranz received the B.Sc degree (Summa cum Laude) in Com-
puter Engineering and the D.Sc degree from the Department of Electrical 
Engineering at the Technion - Israel Institute of Technology in 1985 and 
1989, respectively. From 1989 to 1990 she was a Lecturer in the Depart-
ment of Computer Science at the Technion. From 1990 to 2000 she was 
a faculty member in the Department of Electrical and Computer Engi-
neering at the University of Iowa. In 2000 she joined the School of Elec-
trical and Computer Engineering at Purdue University. Her research in-
terests include testing of VLSI circuits, design for testability, synthesis 
and design verification. She is a Fellow of IEEE and a Golden Core Mem-
ber of the IEEE Computer Society. 

 

TABLE I.  MODULES AND RELATED TEST PROGRAMS 

Module 
Faults 

(#) 

Size 

(instr) 

Time  

(CC) 

FC 

(%) 

Address calculation stage 1,025 174 334 77.89 

Instruction extraction stage 1,096 47 139 90.28 

Instruction decoding stage  5,365 65 1,895 73.92 

Memory access stage  1,398 50 836 53.06 

Bypass unit   3,295 341 493 92.63 

Coprocessor system 4,652 55 194 80.43 

Bus controller  1,616 92 1,378 80.61 

Total 18,447 824 5,266 79.10 

TABLE II.  COMPACTION RESULTS (MODULE BY MODULE) 

 
A0 A1F3 

CR COST CR COST 
Address calculation stage 0.700 150.92 0.736 91.31 
Instruction extraction stage 0.706 40.37 0.711 28.04 
Instruction decoding stage  0.981 62.73 0.983 46.98 
Memory access stage  0.822 43.64 0.871 36.09 
Bypass unit   0.819 332.30 0.829 233.89 
Coprocessor system 0.736 44.73 0.860 40.84 
Bus controller  0.798 74.08 0.821 76.12 

TABLE III.  COMPACTION RESULTS (WHOLE PROCESSOR) 

 Instructions 
Clock 
Cycles 

A0 A1F3 

CR COST CR COST 

Module by module 824 5,266 0.859 748.77 0.881 553.27 
Monolithic  373 16,738 0.893 306.25 0.896 288.84 

 


