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In this work we present a newly constructed equation of state (EoS), applicable to stellar core collapse and

neutron star mergers including the entire baryon octet. Our EoS is compatible with the main constraints from

nuclear physics and, in particular, with a maximum mass for cold β-equilibrated neutron stars of 2M⊙ in agreement

with recent observations. As an application of our new EoS, we compute numerical stationary models for rapidly

(rigidly) rotating hot neutron stars. We consider maximum masses of hot stars, such as protoneutron stars or

hypermassive neutron stars in the postmerger phase of binary neutron star coalescence. The universality of I -Q

relations at nonzero temperature for fast rotating models, comparing a purely nuclear EoS with its counterparts

containing � hyperons or the entire baryon octet, respectively, is discussed, too. We find that the I -Q universality

is broken in our models when thermal effects become important, independent on the presence of entropy gradients.

Thus, the use of I -Q relations for the analysis of protoneutron stars or merger remnant data, including gravitational

wave signals from the last stages of binary neutron star mergers, should be regarded with care.
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I. INTRODUCTION

Neutron stars are among the most extreme objects in

the universe. They represent unique laboratories for probing

strongly interacting matter at ultrahigh densities, exceeding

that in atomic nuclei, as well as gravity for strong fields. They

are formed in a core-collapse supernovae (CCSN) and cool

down mainly by neutrino emission to form a catalyzed cold

neutron star on a time scale of several minutes. Thus, in the

early postbounce phase, as protoneutron stars (PNSs), they do

not contain only ultradense matter, but they are hot objects,

too, reaching temperatures of the order ∼50 MeV [1–3]. In

addition, matter in a PNS is not transparent to neutrinos, being

thus lepton rich. Temperature and lepton content are important

ingredients to describe the physics of PNSs, be it matter

composition and stability of the PNS against collapse to a black

hole [2,4–13] or dynamical properties such as frequencies and

damping times of quasinormal modes and consequently the

emitted gravitational wave signal [14].

In the postmerger phase of a binary neutron star coales-

cence, a rapidly rotating neutron star could be formed which

temporarily resists a black hole collapse [15], even if its mass

exceeds the maximum mass of a cold nonrotating neutron star.

Within these merger remnants, temperatures of the same order

as for CCSN and PNSs are reached. Both, PNSs and merger

remnants can rotate at rather high frequencies, with potentially

a differential rotation profile.

The temperatures of 50–100 MeV reached in these as-

trophysical environments are such that thermal effects on
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the equation of state (EoS) become important. They have in

particular a non-negligible effect on the composition, favoring

the production of non-nucleonic degrees of freedom such as

hyperons, nuclear resonances, or mesons. Even a transition to

the quark-gluon plasma could take place. The impact of these

additional particles on the evolution of PNSs has a long history;

see, e.g., [16] for an early review. Most models employ EoSs

for homogeneous matter, neglecting inhomogeneous matter in

the outer layers and the formation of a crust; see, e.g., [17–25].

Currently, only a few EoSs are available covering in a

consistent way the whole necessary domain in temperature T ,

baryon number density nB , and electron fraction, Ye = ne/nB

where ne is the electron number density. We will call them

general purpose EoSs. In the last years, a series of new

EoS models has been developed, see, e.g., [10,12,26–34],

focused mainly on the treatment of the inhomogeneous part

and correct nuclear abundances, and/or nuclear interactions

at high densities. Triggered by investigations of stellar black

hole formation, some effort has recently been devoted to extend

the existing purely nuclear models to include non-nucleonic

degrees of freedom—hyperons, pions or quarks—at high

densities and temperatures, too; see, e.g., [6,35–40]. The latter

are very important for the description of PNSs and merger

remnants in view of the high densities combined with high

temperatures which are attained within these objects. However,

up to now none of these extended models is really satisfactory,

since they are either not compatible with constraints from

nuclear physics or neutron star masses [41–43], or contain only

a limited selection of additional degrees of freedom, typically

� hyperons. Here, we will present for the first time an EoS

taking into account the entire baryon octet and being well

compatible with the main present constraints.

As an application of our new EoS, we will compute station-

ary models of (rotating) hot stars and study the influence of

hyperons on PNS and merger remnant properties. Most studies
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of PNS evolution are based on sequences of quasiequilibrium

models,1 an assumption which is well justified in view of

the hydrodynamic time scale (�10−3 s) being much smaller

than the time scale on which thermodynamic properties are

modified considerably (≈1 s); see, e.g., [1,5,45]. Although

merger remnants cannot be well approximated as being in a

quasiequilibrium state, interest in stationary models of these

stars arise in order to understand the physical mechanism sta-

bilizing the hypermassive star without performing a complete

numerical merger simulation.

Stationary models of (cold) relativistic stars have been

extensively explored in the literature. The first models, the

famous Tolman-Oppenheimer-Volkoff solutions, describing

spherically symmetric (therefore nonrotating) stars, date from

the late 1930s [46,47]. Hartle and Thorne proposed the first

axisymmetric rotating solutions from a perturbative approach

in the slow rotation approximation [48]. Nowadays several

publicly available codes are able to obtain precise numerical

solutions up to the mass shedding limit [49,50] at the

Kepler frequency; see, e.g., the textbook by Friedman and

Stergioulas [51]. However, all these solutions only treat cold

β-equilibrated stars with a barotropic EoS. Goussard et al.

[52,53] have introduced the first models including the effect

of finite temperature, restricting their solution however to the

isentropic or isothermal case in β equilibrium with several

fixed overall lepton fractions, where the EoS effectively

reduces to a barotropic one. References [54,55] propose

general solutions within a perturbative slow rotation approach.

In this work, we follow Ref. [45] to consistently compute

stationary rapidly rotating hot stars based on the publicly

available numerical library LORENE [56].

The paper is organized as follows. In Sec. II we present

the new EoS model and in Sec. III some of its properties and

in particular its compatibility with available constraints. In

Sec. IV we present the formalism to treat stationary rotating

relativistic stars at nonzero temperature. Section V shows first

applications of our models, discussing maximum masses of

hot stars and I -Q relations, i.e., universal relations among the

moment of inertia and the quadrupole moment. We conclude

in Sec. VI. Throughout the paper we use natural units with

c = h̄ = kB = 1 where appropriate.

II. EQUATION OF STATE

Although the transition to the quark-gluon plasma is very

interesting, as it could facilitate the supernova explosion [36],

explain some γ -ray bursts [57], or—within the scenario of

“quark-novae”—some unusual supernova light curves [58–

60], we will concentrate here on hyperonic degrees of freedom.

Presently available general purpose EoS models including

all hyperons and covering the entire range in baryon number

density nB , temperature T , and hadronic charge fraction

YQ = nQ/nB = Ye,2 necessary for applications in CCSN

or binary mergers, are either not compatible with some

constraints from nuclear physics and/or a neutron star

1However, see Ref. [44] for a first dynamical study.
2nQ represents the total hadronic charge density.

maximum mass of 2M⊙; see, e.g., [6,38] or consider only �

hyperons (e.g., [40]). Our new EoS, taking into account the

entire baryon octet, is well compatible with the main present

constraints; see Sec. III for details.

A. Statistical model for inhomogeneous matter

At subsaturation densities and low temperatures, nucleonic

matter is unstable with respect to variations in the particle

densities and becomes inhomogeneous, i.e., nuclei or more

generally nuclear clusters are formed. The critical temperature

is of the order ∼15 MeV just below saturation and decreases

to about 1 MeV at lower densities. Below a density of roughly

nB ∼ 10−4 fm−3, the cluster size is very small compared

with its mean free path, such that matter can be described

as a noninteracting gas of nuclei, nucleons, and leptons in

thermodynamic equilibrium. This approach is generally called

“nuclear statistical equilibrium” (NSE). In the last years sev-

eral models have been developed to go beyond a pure NSE and

take into account nucleon interactions and the interaction of

clusters with the surrounding medium at higher densities (see,

e.g., [27,28,31,61–64]). In stellar matter particular attention

has to be paid to the interplay between the short-range nuclear

interaction and the long-range Coulomb interaction, which de-

termines sizes and shapes of the nuclear clusters and influences

thus strongly the transition to homogeneous matter [65,66].

In the present EoS, clustered matter is described within

the extended NSE model of Hempel and Schaffner-Bielich

[10,28]. Nuclei are treated as classical Maxwell-Boltzmann

particles. For the description of nucleons, a relativistic mean

field (RMF) approach is employed (see Sec. II B for details)

with the same parametrization as for the description of homo-

geneous matter. Several thousands of nuclei are considered,

including light ones other than the α particle. If available,

nuclear binding energies are taken from experimental mea-

surements [67]. In particular for neutron rich nuclei, where

no measurement exists, they are complemented with values

from theoretical nuclear structure calculations [68]. Several

corrections are considered to describe the modifications of

cluster properties in medium: screening of the Coulomb

energies by the surrounding gas of electrons, excited states,

and excluded-volume effects.

B. Homogeneous matter

Homogeneous matter is described within a phenomeno-

logical RMF. The basic idea of this type of model is that

the interaction between baryons is mediated by meson fields

inspired by the meson exchange models of the nucleon-

nucleon interaction. Within RMF models, these are, however,

not real mesons, but introduced on a phenomenological basis

with their quantum numbers in different interaction channels.

The coupling constants are adjusted to a chosen set of nuclear

observables. Earlier models introduce nonlinear self-couplings

of the meson fields in order to reproduce correctly nuclear

matter saturation properties, whereas more recently density-

dependent couplings between baryons and the meson fields

have been widely used. The literature on those models is large

and many different parametrizations exist (see, e.g., [69]).
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In the present paper, we will use models with density

dependent couplings. The Lagrangian density can be written

in the following form:3

L =
∑

j∈B
−ψ̄j (γμ∂μ + mj − gσjσ − gσ ∗jσ

∗

− i gωjγμωμ − i gφjγμφμ − i gρjγμ �ρμ · �Ij )ψj

− 1

2

(

∂μσ∂μσ + m2
σσ 2

)

− 1

2

(

∂μσ ∗∂μσ ∗ + m2
σ ∗σ

∗2
)

− 1

4
W †

μνW
μν − 1

4
P †

μνP
μν − 1

4
�R†
μν · �Rμν

− 1

2
m2

ωωμωμ

− 1

2
m2

φφμφμ − 1

2
m2

ρ �ρμ · �ρμ, (1)

where ψj denotes the field of baryon j , and Wμν,Pμν, �Rμν

are the field tensors of the vector mesons, ω (isoscalar), φ

(isoscalar), and ρ (isovector), of the form

V μν = ∂μV ν − ∂νV μ. (2)

σ,σ ∗ are scalar-isoscalar meson fields, coupling to all

baryons (σ ) and to strange baryons (σ ∗), respectively.

Some models introduce an additional scalar-isovector

coupling via a δ meson, which we do not consider

here. The values of the baryon masses mj are cho-

sen as follows: mn = 939.565 346,mp = 938.272 013,m� =
1115.683,m� = 1190,m�− = 1321.68,m�0 = 1314.83 MeV.

In mean field approximation, the meson fields are replaced

by their respective mean-field expectation values, which are

given in uniform matter as

m2
σ σ̄ =

∑

j∈B

gσjn
s
j , (3)

m2
σ ∗ σ̄

∗ =
∑

j∈B

gσ ∗jn
s
j , (4)

m2
ωω̄ =

∑

j∈B

gωjnj , (5)

m2
φφ̄ =

∑

j∈B

gφjnj , (6)

m2
ρ ρ̄ =

∑

j∈B

gρi t3jnj , (7)

where ρ̄ = 〈ρ0
3 〉, ω̄ = 〈ω0〉, φ̄ = 〈φ0〉, and t3j represents the

third component of isospin of baryon j with the convention

3Note that we work here with a locally flat Minkowski metric ημν .

For the γ matrices, we use the anticommutation relation {γ μ,γ ν} =
2 ημν .

that t3p = 1/2. The scalar density of baryon j is given by

ns
j = 〈ψ̄jψj 〉

= 1

π2

∫

k2
M∗

j
√

k2 + M∗2
j

{f [ǫj (k)] + f̄ [ǫj (k)]}dk, (8)

and the number density by

nj = i 〈ψ̄jγ
0ψj 〉 = 1

π2

∫

k2(f [ǫj (k)] − f̄ [ǫj (k)])dk. (9)

f and f̄ represent here the occupation numbers of the respec-

tive particle and antiparticle states with ǫj (k) =
√

k2 + M∗2
j ,

and effective chemical potentials μ∗
j . They reduce to a step

function at zero temperature. The effective baryon mass M∗
j

depends on the scalar mean fields as

M∗
j = Mj − gσj σ̄ − gσ ∗j σ̄

∗, (10)

and the effective chemical potentials are related to the chemical

potentials via

μ∗
j = μj − gωj ω̄ − gρj t3j ρ̄ − gφj φ̄ − �R

0 . (11)

The rearrangement term �R
0 is present in models with density-

dependent couplings of meson M to baryon j ,

gMj (nB) = gMj (n0)hM (x), x = nB/n0, (12)

to ensure thermodynamic consistency. It is given by

�R
0 =

∑

j∈B

(

∂gωj

∂nj

ω̄nj + t3j

∂gρj

∂nj

ρ̄nj + ∂gφj

∂nj

φ̄nj

− ∂gσj

∂nj

σ̄ ns
j − ∂gσ ∗j

∂nj

σ̄ ∗ns
j

)

. (13)

The density n0 is a normalization constant, usually taken to be

the saturation density n0 = nsat of symmetric nuclear matter.

In the present paper we will consider the DD2 parametriza-

tion [27], where the following form for the density dependence

of the isoscalar couplings is assumed [27]:

hM (x) = aM

1 + bM (x + dM )2

1 + cM (x + dM )2
(14)

and

hM (x) = aM exp[−bM (x − 1)] − cM (x − dM ) (15)

for the isovector ones. The values of the parameters

aM , bM , cM , and dM are listed in Ref. [27].

Similar to many recent works [40,70,71], for the hyperonic

coupling constants, we will follow a symmetry inspired proce-

dure. The individual isoscalar vector meson-baryon couplings

are expressed in terms of gωN and a few additional parameters,

α,θ,z = g1/g8, see e.g., [72], as follows:

gω�

gωN

=
1 − 2z√

3
(1 − α) tan θ

1 − z√
3
(1 − 4α) tan θ

,

gφ�

gωN

= −
tan θ + 2z√

3
(1 − α)

1 − z√
3
(1 − 4α) tan θ

,
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gω�

gωN

=
1 − z√

3
(1 + 2α) tan θ

1 − z√
3
(1 − 4α) tan θ

,

gφ�

gωN

= −
tan θ + z√

3
(1 + 2α)

1 − z√
3
(1 − 4α) tan θ

,

gω�

gωN

=
1 + 2z√

3
(1 − α) tan θ

1 − z√
3
(1 − 4α) tan θ

,

gφ�

gωN

=
− tan θ + 2z√

3
(1 − α)

1 − z√
3
(1 − 4α) tan θ

,

gφN

gωN

= −
tan θ + z√

3
(1 − 4α)

1 − z√
3
(1 − 4α) tan θ

. (16)

Assuming an underlying SU(6) symmetry, we will take

tan θ = 1/
√

2, corresponding to ideal ω-φ mixing, α = 1, and

z = 1/
√

6. Extending the above procedure to the isovector

sector would lead to contradictions with the observed nuclear

symmetry energy. gρN is therefore left as a free parameter

and the remaining hyperonic isovector couplings are fixed by

isospin symmetry.

The information from hypernuclear data on hyperonic

single-particle mean field potentials is then used to constrain

the scalar coupling constants. The potential for particle j in

k-particle matter is given by

U
(k)
j (nk) = M∗

j − Mj + μj − μ∗
j . (17)

We will assume here standard values [40,70,73] in sym-

metric nuclear matter at saturation density nsat: U
(N)
� (nsat) =

−30 MeV, U
(N)
� (nsat) = −18 MeV, and U

(N)
� (nsat) =

+30 MeV. The resulting values are in the range obtained by

calculating directly properties of single � hypernuclei; see

Refs. [73,74].

Apart from a few light double-� hypernuclei, that constrain

only the low density behavior, almost no information is

available on the hyperon-hyperon (YY ) interaction and the

corresponding couplings, in particular σ ∗ and φ are only

very poorly constrained. As mentioned above, we fix the φ

couplings via the relations in Eqs. (16) and neglect σ ∗ for sim-

plicity in the main version of our EoS, named “DD2Y” here-

after. Without the coupling to σ ∗, the YY interaction is very

repulsive already at low densities. We obtain U
(�)
� (nsat/5) =

7 MeV, U
(�)
� (nsat/5) = 47 MeV, and U

(�)
� (nsat/5) = 26 MeV,

whereas the data on double-�-hypernuclei suggest a weakly

attractive potential at least for � hyperons, U
(�)
� (nsat/5) ≈ −1

to −5 MeV [73,75,76]. Although, as shown, e.g., in Refs.

[77,78], the σ ∗ has only a weak influence on the EoS and

(proto)neutron star properties, we include a second version

(named “DD2Yσ ∗” hereafter) of the EoS with a σ ∗ coupling

adjusted to have U
(�)
� (nsat/5) = −0.4 MeV, U

(�)
� (nsat/5) =

−0.4 MeV, and U
(�)
� (nsat/5) = −0.4 MeV. Table I summarizes

the values of the scalar meson hyperon couplings in both

models obtained from the above described procedure. Note

that the couplings to � in model DD2Y are the same as in

the BHB�φ EoS [40], where exactly the same procedure has

been followed.

TABLE I. Coupling constants of the scalar mesons to different

hyperons within the two models presented here, normalized to the

σN coupling from the DD2 parameter set, i.e., RMj = gMj/gσN .

Model Rσ� Rσ∗� Rσ� Rσ∗� Rσ� Rσ∗�

DD2Y 0.62 0 0.48 0 0.32 0

DD2Yσ ∗ 0.62 0.46 0.48 0.84 0.32 1.11

C. Combining different parts of the EoS

The HS(DD2) EOS contains the transition from inhomo-

geneous or clusterized matter to uniform nucleonic matter.

This is done via the excluded volume mechanism, which

suppresses nuclei around and above nuclear saturation density.

On top of that, for some thermodynamic conditions a Maxwell

construction over a small range in density is necessary; for

details see Ref. [10].

Here the situation is slightly more complicated, since

homogeneous matter might contain hyperons. In the simplest

case, hyperons appear within homogeneous (nucleonic) matter

and it is sufficient to minimize the free energy of the

homogeneous system to decide upon the particle content of

matter. Such a situation occurs at low temperatures and high

densities.

In some parts of the T -nB diagram, however, a transition

from inhomogeneous matter directly to hyperonic homoge-

neous matter is observed. This is the case at low densities

and high temperatures, i.e., the density regions up to the

bumps in Fig. 1. There, light clusters compete with hyperonic

degrees of freedom with only very small differences in free

energy which are of the order of the numerical accuracy of

the EoS calculation. To technically construct the transition in

this region, we follow a similar prescription as in Ref. [40]

and introduce a threshold value for the total hyperon fraction,

Yhyperons = ∑

j∈BY
nj/nB . We let hyperonic matter appear only

if Yhyperons > 10−6. Note that the hyperon fraction is not the

same as the strangeness fraction YS , defined as the sum of

all particle fractions multiplied by their respective strangeness

quantum numbers, YS = ∑

j∈B Sjnj/nB .

Although the above described procedure allows us to

construct a smooth transition between the different parts of

the EoS, it is of course not completely consistent. In principle,

whenever hyperons compete with light nuclear clusters, the

free energy of the system should be minimized allowing

simultaneously for all different possibilities, e.g., a coexistence

of light clusters with hyperons. In view of the tiny differences

in free energy and the small fractions of particles other than

nucleons, electrons, and photons in the transition region, a

completely consistent treatment is left for future work.

III. EQUATION OF STATE PROPERTIES

A. Compatibility with constraints

The interaction between nucleons can be constrained by

data of finite nuclei and nuclear matter properties. The

latter are chosen in general as the coefficients of a Taylor

expansion of the energy per baryon of isospin symmetric

nuclear matter around saturation. Values with a reasonable
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FIG. 1. The lines delimit the regions in temperature and baryon number density for which the overall hyperon fraction exceeds 10−4, which

are situated above the lines. The dark thick purple line corresponds to the BHB�φ model and light thin red line to the DD2Y model. Different

charge fractions are shown as indicated within the panels.

precision can be obtained for the saturation density (nsat),

binding energy (EB), incompressibility (K), symmetry energy

(Esym), and its slope (L). In addition, much effort has been

recently devoted to theoretical ab initio calculations of pure

neutron matter in order to constrain the equation of state.

This is particularly interesting for the EoS of compact stars,

completing the information about symmetric matter. The only

robust constraint on the interactions at supersaturation density

arises from the recent observation of two massive neutron stars,

indicating that the maximum mass of a cold, non-, or slowly

rotating (therefore spherically symmetric) neutron star should

be above 2M⊙. A summary and discussion of some of the most

important available constraints can be found, e.g., in Ref. [79].

The present parametrization, DD2, has been chosen since it

agrees well with most of the established constraints. The values

for nsat = 0.149 fm−3, EB = 16.0 MeV, and K = 243 MeV

are within standard ranges [79]. The compatibility of Esym

and L with ranges derived in Ref. [80] (light gray rectangle)

and in Ref. [79] (dark gray rectangle), respectively, are shown

in Fig. 2. For comparison we show the values for two other

interactions, that of the Lattimer and Swesty EoS (LS) [81]

and that for the TM1 parametrization [82], too. These two

interactions have been employed in other recently developed

general purpose EoSs, including non-nucleonic degrees of

freedom, e.g., [6,37,38].

In Fig. 3 pressure and energy per baryon for pure neutron

matter are shown below saturation density. The blue band rep-

resents the results from the ab initio calculations from Ref. [83]

including an estimate of the corresponding uncertainties. In

contrast to LS and TM1, the interaction DD2 employed here

is in reasonable agreement with the ab initio calculations.

The mass-radius relation of cold4 spherically symmetric

neutron stars within different general purpose EoS models is

displayed in Fig. 4. Purely nucleonic versions are shown with

solid lines, models including � hyperons with dotted lines,

4For convenience we have chosen a temperature of T = 0.1 MeV

for producing this figure. In the following discussion of our results

we always refer to this temperature upon speaking about “cold” stars.

and those including the entire baryon octet with dashed-dotted

lines. These are the LS EoS [81], its extension with �

hyperons (“LS220�”) [11], the EoS by Shen et al. (“STOS”)

employing the TM1 interaction [84], its extension with �

hyperons (“STOS�”) [37] and all hyperons (“STOSY”) [6],

as well as the two models including � hyperons within

the same nuclear model as the present one from Ref. [40],

(“BHB�”) and (“BHB�φ”). It is evident from the figure that

there are only two EoSs including hyperons compatible with

the 2M⊙ constraint: BHB�φ containing only � hyperons

and the present DD2Y. Both models are the same, except

for the particle content. The additional hyperonic degrees of

freedom in DD2Y slightly reduce the maximum mass with

respect to BHB�φ, but it remains above 2M⊙. The additional

attractive YY interaction in DD2Yσ ∗ reduces the maximum

mass to 1.87M⊙, thus slightly below the observational limit. A

summary of cold neutron star properties for the different EoSs

is given in Table II.

 20
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FIG. 2. Values of Esym and L in different nuclear interaction

models. The two gray rectangles correspond to the range for Esym

and L derived in Ref. [80] (light gray) and Ref. [79] (dark gray) from

nuclear experiments and some neutron star observations.
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FIG. 3. Pressure (left panel) and energy per baryon (right panel) of pure neutron matter as functions of baryon number density within

different nuclear interaction models compared with the ab initio calculations of Ref. [83], indicated by the blue band.

B. Hyperon content and thermodynamic properties

As already mentioned in Ref. [78], the overall hyperon

content within the EoS remains similar between the models

containing only � hyperons and the corresponding ones with

the full baryonic octet. For cold NSs, this can be seen from

Table II. In Fig. 1, the regions where the overall hyperon

fraction exceeds 10−4 are compared for BHB� and DD2Y.

Although, as expected, hyperons are slightly more abundant

in the full model, the shape of the regions remains the same

and only small quantitative differences are observed. The bump

in the curves, i.e., the part of the lines above approximately

20 MeV, where the abundance of hyperons is still below 10−4,

arises from the competition between light nuclear clusters and

hyperons in this particular temperature and density domain

and does not exist in the EoSs built on nuclear models without

light clusters; see Ref. [79].
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FIG. 4. Gravitational mass vs circumferential equatorial radius

for cold spherically symmetric neutron stars within different EoS

models. The two horizontal bars indicate the two recent precise NS

mass determinations, PSR J1614 − 2230 [41,43] (hatched gray) and

PSR J0348+0432 [42] (green).

In Fig. 5, the overall strangeness fraction is shown as

function of baryon number density for different values of

fixed temperature and electron fraction for both models,

BHB�φ and DD2Y. As mentioned before, the hyperon onset

density remains similar in both models and the decrease in �

fraction in DD2Y with respect to BHB�φ at high densities

is compensated by the presence of other hyperons such that

the overall strangeness fraction is larger in DD2Y. Note that

here the strangeness fraction YS has been taken and not

the hyperon fraction. Naturally, the difference between both

models increases with increasing temperature. With increasing

Ye, as expected, in both models the overall strangeness

fraction decreases. The effect is, however, less pronounced

in DD2Y since the population of neutral cascades and �+

compensates partially the suppression of other hyperonic

degrees of freedom.

Pressure and free energy per baryon are considerably

reduced above roughly 2–3 times nuclear saturation density in

the models with hyperons compared with the purely nucleonic

HS(DD2) EoS; see Figs. 6 and 7. It is not surprising that the

TABLE II. Properties of cold spherically symmetric neutron stars

in neutrinoless β equilibrium: Maximum gravitational and baryonic

masses, respectively, radius at a fiducial mass of Mg = 1.4M⊙,

the total strangeness fraction fS , representing the integral of the

strangeness fraction YS/3 over the whole star, defined as in Ref. [70],

and the central baryon number density. The latter two quantities

are given for the maximum mass configuration. In addition to the

EoSs presented here, for comparison the values for the purely

nucleonic version HS(DD2) [85] and the two versions including only

� hyperons from Ref. [40] are listed.

Model Mmax
g Mmax

B R1.4 fS n
(c)
B

(M⊙) (M⊙) (km) (fm−3)

HS(DD2) 2.43 2.90 13.27 0.84

BHB� 1.96 2.26 13.27 0.05 0.95

BHB�φ 2.11 2.47 13.27 0.05 0.96

DD2Y 2.04 2.36 13.27 0.04 1.00

DD2Yσ ∗ 1.87 2.15 13.27 0.04 0.98
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FIG. 5. Total strangeness fraction as function of baryon number density for different values of fixed temperature and electron fraction Ye

within BHB�φ (dotted lines) and DD2Y (solid lines) EoS. In (a)–(c), Ye = 0.3 and in (d)–(f), T = 30 MeV. For information, the � fraction

in model DD2Y is indicated, too (dash-dotted lines).

reduction is most important for high temperatures and low

electron fractions. The presence of the full baryon octet in

DD2Y leads only to a small further reduction with respect to

the model BHB�φ, containing only � hyperons. This is due

to the fact that the overall hyperon fraction is very similar in

both models; see the discussion above.

IV. TEMPERATURE DEPENDENT STELLAR STRUCTURE

In this section, we describe our strategy to solve for the star’s

structure, following Ref. [45]. Equilibrium equations will be

solved together with Einstein equations, assuming stationarity

and axisymmetry. In addition, the matter content (represented

by the energy momentum tensor) should fulfill the circularity

condition, i.e., the absence of meridional convective currents.

An EoS will close the system of equations. In full generality

the EoS depends on temperature and on the different particle

number densities or thermodynamically equivalent variables.

Conditions for electromagnetic and strong equilibrium reduce

the number of degrees of freedom in the EoS to 3, related to

baryon number density nB , electron number density ne, and

temperature T . In neutron stars older than several minutes, the

temperature can be considered as vanishing and neutrinoless

weak β equilibrium is achieved, such that the EoS becomes

effectively barotropic, i.e., depends only on baryon number

density or a thermodynamically equivalent variable. Neither

in PNSs nor in merger remnants are these conditions fulfilled

and in particular a nonzero temperature has to be considered.

Here, we will allow for an EoS with an explicit temperature

dependence. Under the current assumptions, in particular

stationarity, the most general solution for the star’s structure

becomes again barotropic, and a relation T (nB) (or thermo-

dynamically equivalent) has to be provided [45,52,53]. For

simplicity we will restrict the results within the present work

either to neutrinoless β equilibrium or to a constant lepton

fraction YL = (ne + nν)/nB = nL/nB (nν and nL being, re-

spectively, neutrino and lepton number densities). Following

the standard presentation of the formalism (see, e.g., [45,86]),

Latin letters i,j, . . . are used for spatial indices only, whereas

Greek letters α,β, . . . denote space-time indices.

A. Einstein equations

General-relativistic models shall be described within the

3 + 1 formulation, where space-time is foliated by a family

of spacelike hypersurfaces �t , labeled by the time coordinate

t . Introducing coordinates (xi) on each hypersurface, the line

element can be written as

ds2 = −N2dt2 + γij (dxi + β idt)(dxj + βjdt). (18)

N represents the lapse function, β i the shift vector, and γij

the three-metric on each hypersurface �t , thus defining the

space-time metric gαβ . More details can be found, e.g., in

[87].

The assumptions of stationarity, axisymmetry, and asymp-

totic flatness imply the existence of two commuting Killing

vector fields, given as �ζ = ∂/∂t and �χ = ∂/∂ϕ in an adapted

coordinate system (t,x1,x2,ϕ). The two remaining coordinates
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FIG. 6. Pressure (d)–(f) and normalized free energy per baryon (a)–(c) as function of baryon number density for different values of fixed

temperature and Ye = 0.3 within the three different EoS, HS(DD2), BHB�φ, and DD2Y. For information, the pressure in the classical models

LS220 and STOS is displayed, too.

are chosen to be spherical, i.e., x1 = r,x2 = θ . These adapted

coordinates simplify the expression of the metric: βr =βθ =0

and γrϕ = γθϕ = 0. Finally, following [45,86] we use a quasi-

isotropic gauge, which additionally gives γrθ = 0, such that

the line element (18) becomes

ds2 = −N2dt2 + A2(dr2 + r2dθ2)

+B2r2 sin2 θ (dϕ2 + βϕdt)2, (19)

with the notations A2 = γrr = γθθ/r2 and B2 =
γϕϕ/(r2 sin2 θ ). All the metric potentials (N,βϕ,A,B)

are functions of the coordinates (r,θ ) only. Einstein equations

for these four gravitational potentials, under our symmetry

assumptions, reduce to a set of four elliptic (Poisson-like)

partial differential equations, in which source terms contain

both contributions from the energy-momentum tensor (matter)

and nonlinear terms with noncompact support, involving the

gravitational field itself. Explicit expressions and discussion

of these equations can be found in Ref. [86].

B. Equilibrium equations

Matter is described as a perfect fluid with an energy-

momentum tensor of the form

T αβ = (ε + p) uαuβ + p gαβ . (20)

ε denotes here the total energy density (including rest mass), p

the pressure, and uα is the fluid four-velocity; the fluid angular

velocity is then defined as � := uϕ/ut . We also introduce the

pseudolog enthalpy

H = ln

(

ε + p

mB nB

)

, (21)

with mB a constant mass, where we chose the value mB =
939.565 MeV. Conservation of the energy-momentum ten-

sor5∇αT αβ = 0 yields the equation for the fluid equilibrium

[52,53],

∂i(H + ln N − ln Ŵ) = Te−H

mB

∂isB − uϕut∂i�. (22)

Ŵ = Nut represents the Lorentz factor of the fluid with respect

to the Eulerian observer and sB the entropy per baryon in units

of the Boltzmann constant.

In this work, we will restrict ourselves only to the case

where matter is rigidly rotating (� = const), which means

that the last term in Eq. (22) is zero. This equation is then

integrable in three cases. First, for a constant sB , which is in

particular the case at zero temperature. The second case is the

isothermal one (constant T ∗ = T N/Ŵ) defined in Ref. [52].

Finally, the most general solution in rigid rotation is found

introducing the heat function [45],

Ĥ (nB) =
∫ nB

0

dp

dn

1

ε(n) + p(n)
dn, (23)

5∇α denotes here the covariant derivative associated to the four-

metric gαβ .
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FIG. 7. Same as Fig. 6, but for T = 30 MeV and different fixed values of Ye.

where a parametrization T (nB) has been assumed such that the

EoS effectively is again barotropic. Using Ĥ , the equilibrium

condition reduces to

Ĥ + ln N − ln Ŵ = const., (24)

which is pretty similar to the zero-temperature case [86]. It

is obvious that the heat function Ĥ reduces to the pseudolog

enthalpy H at zero temperature, up to a constant factor of

ln[mB/μB(nB = 0)], which can be absorbed in the right-hand

side of Eq. (24). For differentially rotating stars, allowing the

rotation law to depend on the entropy profile, in principle, the

condition of the EoS being barotropic could be relaxed. Such a

scheme is, however, beyond the purpose of the present paper.

We have implemented the above described scheme, with

a temperature dependent EoS within the numerical library

LORENE [56]; see also Refs. [45,86]. The resolution of elliptic-

type partial differential equations (Einstein equations in our

case) is based on multidomain spectral methods [88] and is

widely used for the computation of stationary rotating compact

objects. The equilibrium condition (24) is integrated in a

straightforward way and the heat function (23) computed using

the trapezoidal rule. Finally, we can use either an analytic

(polytropic type) EoS or a tabulated realistic one, which is

interpolated in a thermodynamically consistent way using the

scheme by Swesty [89].

Input parameters for a rigidly rotating neutron star model

are a temperature vs density profile, a prescription for the

lepton fraction (either β equilibrium or constant YL), an

EoS, a central value for the heat function Ĥ (r = 0), and a

value for the rotation frequency �. We can then compute

the numerical solution of all field equations described above

and deduce global quantities such as gravitational mass Mg

(from the asymptotic behavior of the gravitational potential

N ), angular momentum J (from the asymptotic behavior of

the gravitational potential βϕ), or circumferential equatorial

radius [from the integration of the line element (19) along the

star’s equator]. More details about these calculations can be

found in Ref. [86].

V. MODELS OF HOT STARS

Within this section we will discuss results for both nonro-

tating (maximal masses, Sec. V A) and rotating (I -Q relations,

Sec. V B) stars with nonzero temperatures, employing different

microscopic EoSs exposed in the preceding sections. For

the study of their properties, YQ will be fixed either by the

condition of β equilibrium and assuming that neutrinos freely

leave the system, i.e., a vanishing electron lepton number

chemical potential

μL = 0, (25)

or by fixing the electron lepton fraction YL = 0.4. This value

lies slightly above typical values obtained from simulations;

see, e.g., [17]. We have chosen it in order to maximize the

differences to the β-equilibrated case and thus show the

maximal effect we would expect from composition. Muons

will not be considered, although they might have a non-

negligible influence on the EoS at the very center of the PNS

[38]. Neither of these conditions might be very realistic, since

the hydrodynamic evolution should be coupled to neutrino

transport, fixing the corresponding evolution of Ye = YQ inside

the star. A more complete study of PNS evolution, combining

our models with neutrino transport, is left for future work.
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FIG. 8. Left: T (nB ) relations used for the computation of hot star models. For comparison, the profiles obtained for different values of

constant sB within the DD2Y EoS are shown, too. Right: sB (nB ) resulting from the two chosen T (nB ) relations within the DD2Y EoS.

Hence, we certainly do not pretend to give a completely

realistic picture of a PNS or a merger remnant. This simplified

setup is nevertheless sufficient for the purpose of the present

study, namely to demonstrate the usability of the newly

developed EoS within a numerical code, and to get some

ideas about the influence of hyperons on the properties of

hot stars. Results with different temperature profiles will

be presented: either yielding constant values of entropy per

baryon sB or profiles shown in Fig. 8 (left panel), inspired by

realistic calculations of PNS evolution. Profile T1 is within the

range of values from the “canonical” simulations of cooling

PNSs [3]. The maximum temperatures of profile T2 is slightly

above typical values from the aforementioned simulations

and corresponds to values reached for a PNS formed in the

collapse of a very massive progenitor star, close to the eventual

collapse to a black hole; see, e.g., Fig. 16 of Ref. [10].

Analytic expressions for both temperature profiles are given in

Appendix B. The corresponding entropy profiles are displayed

in the right panel of Fig. 8.

A. Maximal masses of nonrotating hot stars

The maximum baryonic mass a hot star can support is in-

teresting both for the merger remnant of a binary coalescence,

and for the PNS after the bounce occurs in a core collapse

event, in order to determine the conditions for the formation of

a black hole. Different mechanisms were evoked for stabilizing

these objects against collapse to a black hole. First, these

objects are supposed to be rotating and, as rotational effects on

the maximum mass have been examined elsewhere, see, e.g.,

Refs. [52,53,90], we do not discuss them here. In addition, for

the merger remnant and the PNS in the case of collapse of

fast spinning progenitor stars, the rotation profile is strongly

differential. Although it is not clear what are the time scales

driving toward rigid rotation, strong differential rotation can

help in supporting very massive configurations [90–92].

Next, in PNSs, the lepton rich environment certainly

contributes to support a higher mass [3,16] and it is not

only the cooling, but also the deleptonization via neutrino

emission of the star which causes a potential collapse to a

black hole. In a merger remnant, which is supposed to be close

to β equilibrium, this mechanism cannot play the same role.

Finally, canonical calculations suggested that thermal pressure

is unlikely to be able to stabilize the star [3,16,93]; it might even

slightly reduce the maximum mass due to the population of

additional degrees of freedom at finite temperature. However,

these studies were restricted to rather low entropy values. For

PNSs formed in core collapse of massive progenitors, which

eventually are expected to collapse to a black hole, it was found

in Refs. [10,12] that thermal effects can increase the maximal

gravitational mass by up to 0.6M⊙, where neutrinoless β

equilibrium and a constant entropy per baryon of sB = 4 was

considered.

When studying the maximum mass, previous works were

considering cold stars [92,94], or a very restricted set of EoS,

containing only homogeneous matter [3,16] or only nucleonic

matter [10,12,90,93]. Our new EoS including hyperonic

degrees of freedom allows us to check the influence of these

new degrees of freedom on the mass, treating consistently

nuclear clustering at low densities and temperatures. A recent

study of PNSs with EoSs containing antikaons can be found

in Ref. [95].

In order to discuss maximum masses, we have to consider

the stability of the computed stellar configurations. At zero

temperature for nonrotating stars, stable configurations verify

simply dMg/dn
(c)
B � 0. This criterion is a special case of

the result by Friedman et al. [96], who have established a

turning point criterion for determining whether a rotating

star becomes secularly unstable with respect to axisymmetric

perturbations. Here, we have to use an extended version for

hot (nonrotating) stars.

For the following considerations, we will consider a more

general case for hot rotating stars and we will denote by J the

total angular momentum of the star and S the total entropy. J

is defined as [86]

J =
∫

A2B2(E + p)Ur3 sin2 θdrdθdφ. (26)

E denotes the energy density as measured by a locally

nonrotating observer, E = Ŵ2(ε + p) − p, and U the fluid
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TABLE III. Maximum gravitational and baryonic masses in units of solar mass for nonrotating stars and different values of constant total

entropy. The central temperature of the maximum mass configuration is given, too. Since the entropy per baryon sB is constant for each

configuration, its value for the respective maximum mass configurations can be obtained simply by dividing S by Mmax
B ; see Eq. (27). The

upper part assumes neutrinoless β equilibrium and in the lower part YL = 0.4. For sake of an easier comparison the maximum masses in the

cold β-equilibrated case are recalled in the first two columns. No values are given for DD2Y and the β-equilibrated case at S = 3M⊙ and

S = 5M⊙ since at high central densities the electron fraction lies below the limiting value of the table (Ye < 0.01). The corresponding curves

in Fig. 9 do not show a maximum; we could thus not determine the maximum masses.

Model S = 0M⊙ S = 3M⊙ S = 5M⊙ S = 7M⊙ S = 9M⊙

Mmax
g Mmax

B Mmax
g Mmax

B T (c) Mmax
g Mmax

B T (c) Mmax
g Mmax

B T (c) Mmax
g Mmax

B T (c)

(M⊙) (M⊙) (M⊙) (M⊙) (MeV) (M⊙) (M⊙) (MeV) (M⊙) (M⊙) (MeV) (M⊙) (M⊙) (MeV)

HS(DD2) 2.42 2.90 2.43 2.88 41 2.43 2.83 68 2.45 2.77 90 2.50 2.73 108

BHB�φ 2.11 2.47 2.11 2.42 41 2.13 2.39 67 2.18 2.37 91 2.27 2.39 107

DD2Y 2.04 2.35 2.02 2.15 81 2.11 2.17 96

HS(DD2) 2.37 2.70 32 2.38 2.67 53 2.40 2.64 71 2.44 2.61 89

BHB�φ 2.17 2.42 27 2.18 2.39 49 2.21 2.37 65 2.27 2.36 86

DD2Y 2.17 2.43 22 2.16 2.36 39 2.16 2.30 55 2.20 2.27 70

velocity as measured by the same observer. The latter is related

to the factor Ŵ as Ŵ = (1 − U 2)−1/2. S can be expressed in a

similar way by

S =
∫

A2BŴnBsBmBr2 sin θdrdθdφ. (27)

As shown in Ref. [52], based on the work by Sorkin [97], a

meaningful criterion for a configuration being secularly stable

can be obtained for rigidly rotating stars with a constant sB (or

T ∗) throughout the star. In the former case, i.e., for constant

sB , the total entropy is simply given by S = sB MB . Following

Ref. [52], a star becomes unstable at the extremal points,
(

∂J

∂n
(c)
B

)

MB ,S

= 0,

(

∂MB

∂n
(c)
B

)

J,S

= 0,

(

∂S

∂n
(c)
B

)

MB ,J

= 0.

(28)

Obviously, upon varying the central baryon number density

(or equivalently the central heat function) at constant angular

momentum, the rotation frequency changes; see, e.g., the

textbook [51], i.e., sequences at constant rotation frequency

do not allow us to distinguish stable from unstable solutions.

Equivalently, for sequences at constant total entropy, the

entropy per baryon sB is not constant, and sequences at

constant sB do not allow us to identify stable and unstable

configurations.

We are mainly interested here in thermal effects on the

star’s mass, corresponding to the maximum mass a cooling

star can support, i.e., the second criterion of Eq. (28) is the

most interesting one. It determines the maximum mass at

different given values of constant total entropy and angular

momentum. In the following, we restrict the discussion to

nonrotating stars, for which J = 0 and is therefore constant.

Since the criterion for distinguishing secularly stable from

unstable configurations is meaningful only for constant sB (or

T ∗), we will restrict our investigations of maximum masses to

models with constant sB , too.

The different values of the maximum mass are summarized

in Table III. In the upper part, neutrinoless β equilibrium is

assumed, in the lower part a constant YL = 0.4.

1. Thermal effects

In Fig. 9 we thus display the gravitational mass versus

central baryon number density obtained for nonrotating stars

and different values of total entropy S. Results for three

different EoSs are shown: the purely nucleonic one, HS(DD2),

the one containing � hyperons, BHB�φ, and the new EoS

considering the entire baryon octet, DD2Y. We do not show

results for DD2Yσ ∗ here since it does not respect the cold

neutron star maximum mass constraint. β equilibrium is

assumed for all calculations.

It is obvious that for S = 3M⊙, corresponding to config-

urations with sB roughly between 1 and 2, thermal effects

on the maximum mass are small, and almost no difference

can be observed with respect to the result for cold stars. A

slight reduction of the gravitational mass for BHB�φ and,

in particular, DD2Y, is due to the population of additional

degrees of freedom at finite temperature for these two EoSs

allowing for non-nucleonic particles. These findings confirm

previous investigations, see, e.g., Refs. [3,16,93]. At low

central densities, thermal effects are more important. This

can be understood since for total entropy constant, with

decreasing gravitational mass, the entropy per baryon sB of

the configurations increases, reaching almost sB = 3 at the

lower end of the curves, modifying considerably the EoS.

In contrast, at S = 9, thermal effects on the gravitational

masses are clearly non-negligible for all three EoSs. The

maximum mass is increased by 4% for HS(DD2), 8% for

BHB�φ, and 7% for DD2Y, respectively. These values are of

the same order as those expected for rigid rotation [86]. The

temperatures and entropies of these configurations are reached

typically for PNSs in the postbounce phase of core-collapse

events with massive progenitors. The importance of thermal

effects can be seen also from the shift in central density of the

maximum mass configurations compared with the cold result.

The central density is reduced with increasing value of S since

the hot star becomes less compact due to thermal excitations.

It should be pointed out that for a given entropy per baryon

the temperature is significantly lower within an EoS including

hyperons than in a purely nuclear one; see, e.g., [78]. This
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FIG. 9. Gravitational mass vs central baryon number density for nonrotating stars for three different EoSs, without hyperons (left), with �

hyperons (middle), and the complete baryon octet (right). Different values of constant total entropy S have been used, indicated in units of solar

masses. β equilibrium has been assumed. For comparison, the cold result is shown, too. For DD2Y, at S = 3M⊙ and S = 5M⊙, the curves end

at some central density above which no longer any β-equilibrated solution is found. The reason is that the electron fraction becomes lower than

the limiting value of the EoS table (Ye = 0.01). No maximum could be determined in this case.

is a trivial thermodynamic effect: the appearance of hyperons

implies that the energy is shared among an increased number

of degrees of freedom, with consequently reduced thermal

excitations for each of them. Therefore, although the value

of sB for the maximum mass configurations is higher for the

EoS with hyperons than for the purely nuclear one, the central

temperature with DD2Y is only 96 MeV, whereas it is 108 MeV

for HS(DD2).

2. Composition

It is known that a lepton rich environment disfavors

hyperonic degrees of freedom and that generally with in-

creasing hadronic charge fraction YQ, the EoS becomes stiffer

due to the reduced number of degrees of freedom present

[3,16,78,79,98]. Therefore neutrino trapping has been evoked

for a long time already as one of the main mechanisms

to stabilize a PNS with hyperons (or pions/kaons) against

collapse to a black hole. From Fig. 10 it is evident that our

results confirm previous findings. We display the gravitational

mass of nonrotating stars as a function of central baryon

number density for the three previously considered EoSs.

A fixed lepton fraction of YL = 0.4 and high temperatures

(S = 9) or low temperatures (S = 3) is compared with the

respective β-equilibrated results for cold stars.

As expected, for DD2Y, the lepton rich environment with

YL = 0.4 clearly contributes to increasing considerably the

gravitational mass supported by the star. To a lesser extent,

this is true for BHB�φ, too. The difference between DD2Y

and BHB�φ becomes small since � hyperons, being charge

neutral, are less affected by the higher electrons fraction than

charged hyperons, essentially �−. In contrast, for the purely

nucleonic EoS HS(DD2) almost no difference between the

lepton rich and the β-equilibrated case is observed at S = 3

and only a moderate increase for S = 9. The combination of

thermal and composition effects leads to a maximum mass of

Mg = 2.2M⊙ for DD2Y with S = 9 and YL = 0.4, 0.16M⊙
(≈8%) above the cold β-equilibrated maximum mass.

It should be noted, however, that with increasing temper-

ature the hyperon suppression in a lepton rich environment

becomes less pronounced. Therefore, for DD2Y—and to a

lesser extent for BHB�φ, too—the increase in maximum

gravitational mass with increasing total entropy is moderate

at YL = 0.4. This can be seen from Fig. 11, too, where the dif-

ferent particle fractions for the maximum mass configurations

are shown. For S = 9, corresponding to sB = 3.96 with DD2Y,

all different hyperonic species have non-negligible fractions at

the center of the star due to the high temperatures reached.

B. I- Q relation

It has been shown [99,100] that there exist relations between

the moment of inertia (I ), the tidal deformability (λ), and

the quadrupole moment (Q) of neutron stars which are

approximately independent of the internal composition and

the EoS. Originally proposed for slowly rotating cold neutron
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FIG. 10. Same as Fig. 9, comparing stars with YL = 0.4 at different constant total entropy values with the β-equilibrated result for cold

stars.
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stars, they remain EoS independent for fast rotation, too, and

universal fits with a functional form,

ln y = a + b ln x + c (ln x)2 + d (ln x)3 + e (ln x)4, (29)

can be established [99,100]. The coefficients a,b,c,d,e are

frequency dependent [101] but do not depend on the EoS. x

and y represent any couple of the normalized quantities Ī ,Q̄,λ̄,

Ī = I

M3
g

, Q̄ = Q

M3
g

(

J/M2
g

)2
, λ̄ = λ

M5
g

, (30)

with Mg being the star’s gravitational mass and J its angular

momentum. We will employ here the numerical values for the

fit coefficients obtained from a fit to the results for cold stars

with the APR EoS [102], the reference EoS in most papers in

the literature. They are listed in Table IV.

TABLE IV. Values of the fit parameters in Eq. (29) relating the

normalized moment of inertia and quadrupole moment obtained from

the results for cold slowly rotating neutron stars with the APR EoS

[102].

a b c d e

1.5196 0.4372 0.0687 0.013 0.000 897

Considering the difficulty of defining Love numbers for the

case of a rapidly spinning object (see, e.g., Pani et al. [103]),

we will focus here on the Ī -Q̄ relation. Nevertheless, a loss of

universality in this relation would imply a loss of universality

in the more general Ī -λ̄-Q̄, too. The results for different EoSs

are shown in Fig. 12.

Results for cold stars are shown in Fig. 12(a), for slow

and fast rotating stars; see the symbols for sB = 0. Different

colors represent different EoSs. In addition to the classical

nuclear LS and STOS EoSs, we include other general purpose

models, not only purely nucleonic but, respectively, with �

hyperons and the entire baryon octet, too, always assuming

neutrinoless β equilibrium. The present results, considering

in addition hyperonic EoSs, clearly confirm previous findings

that I -Q relations are independent of the EoS with frequency

dependent fit coefficients [101].

In Ref. [54] a study of this relation has been performed,

employing purely nuclear EoSs from Refs. [3,17], this time

assuming different realistic entropy per baryon and electron

fraction profiles for the PNS evolution during the minute

following bounce. The main result the authors found was that

universality of the so-called I -Love-Q relations is violated in

the early phases of PNS evolution and recovered as soon as

the entropy gradients smooth out and the star becomes more

or less isentropic. It should then be independent of the exact

value of sB .
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FIG. 12. Normalized moment of inertia vs quadrupole moment for different EoSs. The color coding corresponds to different EoS models

whereas different symbols indicate rotation frequencies and entropy per baryon of the stars. In panel (a) different nucleonic and hyperonic

EoSs are shown for cold stars, in β equilibrium, for the slow as well as fast rotating case, respectively. The LS220 EoS and the counterpart

with � hyperons are thereby shown by red symbols, STOS EoS with and without hyperons by green symbols, and the three EoSs based on

DD2, HS(DD2), BHB�φ, and DD2Y by violet symbols. For the latter three EoSs in addition the results for slowly rotating configurations

with sB = 4 are displayed. In the three other panels the cold reference case with the HS(DD2) EoS is displayed by black symbols and different

situations are considered with the three EoSs, HS(DD2), BHB�φ, and DD2Y, indicated by violet symbols: constant YL = 0.4 (b), profile T2

(c), profile T1 (d).

Our results including hyperonic EoS confirm that indeed,

the Ī -Q̄ relation for an isentropic star with sB = 1 or sB = 2

agrees with the result for cold stars. The same is true for

fast rotation, and assuming β equilibrium or a constant

lepton fraction YL does only induce a small scatter in the

results. The results with constant sB = 4—see Figs. 12(a) and

12(b)–although they remain universal in the sense that there

is only a small difference between different EoSs, deviate,

however, clearly from the results for cold stars. This can be

seen from Fig. 13, too, where we have plotted for the DD2Y

EoS the relative difference between the numerical results and

the fit function of Eq. (29), �Ī/Īfit = (Ī − Īfit)/Īfit at different

values of constant entropy per baryon. For sB = 1 or sB = 2,

the deviations remain below 2%, whereas at sB = 4, they can

exceed 10%.

Both temperature profiles with entropy gradients—see

Figs. 12(c) and 12(d)–display obvious deviations from the

results for cold stars, too. With increasing temperature, the

differences induced by the lepton fraction increase, too.

In Ref. [54] the observed deviations from universality in the

early stages of PNS evolution were attributed to the presence

of entropy gradients. Our results suggest a slightly modified

picture, in the sense that universality is not a question of

entropy gradients, but of thermal effects. As we have seen

also during the preceding discussion on maximum masses,

at sB = 1 or sB = 2, which are typical values in the late

stages of PNS evolution probed in Ref. [54], thermal effects

on the EoS and thus on the star’s structure remain small. At

higher entropies, thermal effects start to influence the EoS,

thus the star’s structure and universality of Ī -Q̄ relations

are modified. Such entropy values can be reached in PNSs

or merger remnants, depending on many factors such as the

progenitors, rotation, or metallicity.

Since the Ī -Q̄ relation still seems independent of the

employed EoS, it might be tempting to try to obtain another

“universal” fit, depending this time on rotation frequency

and entropy/temperature. In contrast to the former, neither

temperature nor entropy of the star are quantities which are
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for cold slowly rotating stars—and the results at different constant sB

values for the DD2Y EoS, assuming neutrinoless β equilibrium.

observationally accessible. Therefore such a law would not

help for data analysis and we refrain from giving one here.

Anyway, in view of the present results doubts are allowed

concerning the relevance of Ī -Q̄ relations for analysis of

PNS or merger remnant data, including gravitational wave

signals from the last stages of binary neutron star mergers.

Let us stress here that entropy values of the order of sB = 4

are quite realistic in such cases; see, e.g., the simulations in

Refs. [10,12,104].

VI. SUMMARY AND CONCLUSIONS

In this paper we have presented a new consistent general

purpose EoS, including in particular thermal effects. The new

EoS, including the entire baryon octet, is compatible with

present constraints from nuclear physics and neutron star

observations. The complete new EoS as function of T ,nB ,Ye

will be made publicly available in tabulated form on the

COMPOSE database [105]; see Appendix A for details.

We have demonstrated the applicability of the new EoS,

investigating maximum masses of hot stars, comparing a

purely nuclear EoS with one including � hyperons and the

new one with all hyperons. To that end we have applied a

numerical code able to provide stationary models of relativistic

rotating stars, including the effect of nonzero temperature. The

main motivation for studying hot (rotating) stars is the birth

of neutron stars, i.e., the evolution of PNSs, and the neutron

star created in the aftermath of a binary neutron star merger.

In order to correctly identify the configurations which are

secularly stable, we have constructed sequences at different

values of constant total entropy S in contrast to many previous

works considering constant entropy per baryon sB .

As we have seen, thermal effects and a lepton rich environ-

ment can considerably increase the maximally supported mass

to a degree depending on the EoS. The lepton rich environment

is important in particular if hyperons are present. If the

entropy per baryon exceeds roughly sB = 2, thermal effects

become important in the EoS, too. Thus for a total entropy

roughly above 5M⊙ thermal effects on the maximum mass

become noticeable. These high temperatures can be reached in

both merger remnants and PNSs depending on the particular

conditions. Let us recall again that previous works [90–92]

suggest that the main effect stabilizing a merger remnant

or a PNS above the maximum mass of its nonrotating cold

neutrinoless β-equilibrated counterpart is differential rotation,

which we did not consider here.

Following the work by Martinon et al. [54], the universality

of I -Q relations has been tested for fast rotating hot stars,

retrieving their results that a low constant nonzero entropy

does not modify the relations. Universality, tested before only

for purely nuclear models, is maintained in the presence of

hyperons, too. This is, however, no longer true if thermal

effects in the EoS become non-negligible, independently of

the presence of entropy gradients, i.e., it also occurs for high,

but constant entropies.
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APPENDIX A: TECHNICAL ISSUES

OF THE NEW EOS TABLE

The new EoS in its version DD2Y is provided in a tabular

form in the COMPOSE data base, http://compose.obspm.fr

as a function of T ,nB ,Ye. The contribution from electrons

is included. Note that the COMPOSE software allows us to

calculate additional quantities, such as, e.g., sound speed, from

those provided in the tables. Please see the COMPOSE manual

[105] and the data sheet on the web site for more details about

the definition of the different quantities:

(i) The grid is specified in Table V.

(ii) Thermodynamic quantities provided:

(1) pressure divided by baryon number density p/nB

(MeV),

(2) entropy per baryon s/nB ,

(3) scaled baryon chemical potential μB/mn − 1,

(4) scaled charge chemical potential μQ/mn,

(5) scaled (electron) lepton chemical potential

μL/mn,

(6) scaled free energy per baryon f/(nBmn) − 1,

(7) scaled energy per baryon e/(nBmn) − 1;

(iii) Compositional data provided:

(1) particle fractions of baryons and electrons, Yi =
ni/nB ,

(2) particle fractions of deutons (2H), tritons (3H),
3He, and α particles (4He),

(3) fraction of a representative (average) heavy nu-

cleus, together with its average mass number and

average charge.

Please note that only nonzero particle fractions are

listed.
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TABLE V. EoS tables are provided using the above grid for the

thermodynamic parameters.

T nB Ye

No. of points 80 302 59

Minimum value 0.1 MeV 10−12 fm−3 0.01

Maximum value 158.5 MeV 1.202 fm−3 0.6

Scaling logarithmic logarithmic linear

(iv) Effective Dirac masses M∗ of all baryons with nonzero

density are provided within homogeneous matter.

APPENDIX B: EXPRESSIONS FOR

THE TEMPERATURE PROFILES

Although they are inspired by results from simulations,

for computational simplicity, analytic parametrizations for the

TABLE VI. Parameter values for the two analytic temperature

profiles, see Eq. (B1).

a b c d α

(MeV fm3) fm6 (MeV fm3α) (MeV fm3)

T1 10.01 26.21 77.39 −65.15 0.35

T2 470.0 26.21 77.39 −65.15 1

3

temperature profiles, T1 and T2, are employed of the form

T (nB) = c nα
B + d nB + a nB

1 + exp[b (nB − n0)2]
. (B1)

n0 indicates here the saturation density, n0 = 0.155 fm−3, and

the values of the other parameters are listed in Table VI.
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