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A thorough analysis of low convergence speed and ghosting artifacts in temporal high-pass filter correction has been
undertaken in this paper and it has found out that the keys of these problems are the interference of a large sum of
unrelated scene information in the nonuniformity correction (NUC) process. In order to overcome these drawbacks, a
new scene-based NUC technique based on bilateral filter has been developed. This method separates the original input
frames into two parts and it estimates the NUC parameters only by using the residuals. The experimental results have
shown that it can significantly increase convergence speed and reduce ghosting artifacts.
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1. Introduction

With the development of the infrared focal-plane array
(IRFPA) technology, the infrared imaging systems have
been widely applied in the fields of military, astronomy,
industry and so on. However, it is known to all that the
sensitivity of the infrared focal-plane array is greatly
influenced by the fixed-pattern noise (FPN), i.e., the
nonuniformity, which is generated by the IRFPA’s different
responses to the same input signal.1,2) In order to solve this
problem, the algorithm for nonuniformity correction (NUC)
should be applied.

NUC techniques can be classified into two categories:
calibration-based technique and scene-based technique. The
most well-known calibration-based NUC method is the two-
point correction, which employs two blackbodies at two
different known temperatures around the operation point in
order to estimate gain and offset related to each detector of
the IRFPA.3) Unfortunately, the nonuniformity is always
influenced by such external conditions as ambient temper-
ature, variation in the transistor bias voltage and the time-
dependent nature of the object irradiance. All these factors
have made each detector of the focal plane drift slowly with
the time lapse.4) Therefore, these calibration-based NUC
methods require the procedure to be periodically performed
so as to guarantee the correction of the temporal drift of the
FPN. To make up for the inconvenience, many scene-based
nonuniformity correction (SBNUC) techniques have been
proposed. Extensive studies and applications of temporal
high-pass filter technique (THPF-NUC),2,5) constant statis-
tics method (CS-NUC),6) and neural-network-based nonun-
iformity correction (NN-NUC)2) have been conducted
because of their relatively lower computational complexity,
smaller storage demands, and better real-time performance.

Almost all SBNUC algorithms are faced with one serious
problem: ghosting artifacts. When motion across the whole

image or part of it temporarily slows or halts, the static
objects will blend in the correction parameters. When
motion resumes, the old scene superimposed on the new
‘‘corrected’’ scene. A number of researchers have done a lot
of work that deal with the problem of ghosting. Harris and
Chiang7) developed a strategy to eliminate ghosting artifacts
in the CS-NUC method by employing a change threshold to
gate the update of the statistical parameter estimates. Vera
and Torres8) proposed an enhanced version of the NN-NUC
based on a learning-rate adaptively updated using the data
themselves. Qian9) presented a deghosting technique in the
THPF-NUC where the correction coefficients are calculated
by using only the high space-frequency part of the image.

This paper mainly analyzes the root cause of the
occurrence of low convergence speed and ghosting artifacts
in the THPF-NUC method and it has pointed out that the this
phenomenon is primarily caused by the interference of the
unrelated scene information in the NUC process. As a result,
the THPF-NUC algorithm has been modified to alleviate the
effects of the ghosting artifacts and improve the convergence
speed. This improved THPF-NUC algorithm is based on the
division of the raw image into two parts using of an edge-
preserving nonlinear spatial filter that replaces the average
filter proposed by Qian.9) The basic idea of this algorithm is
to eliminate the base part and the edges in the scene which
are the main responsibilities of low convergence speed and
the residuals are used to estimate the FPA’s nonuniformity.
In this way, improvement in convergence speed can be
achieved and effective removal of ghosting artifacts can be
attained.

This paper is organized as follows. In §2, a brief review of
the THPF-NUC algorithm is given and the concrete causes
of ghosting are analyzed. In §3, the image separation
methods using average filter and bilateral filter are com-
pared, and a new bilateral filter based temporal high-pass
filter NUC (BFTH-NUC) is presented. In §4, experimental
results are displayed. Finally, there comes the conclusion
in §5.�E-mail address: surpasszuo@163.com

OPTICAL REVIEW Vol. 18, No. 2 (2011) 197–202

197



2. THPF-NUC and Its Problems

2.1 THPF-NUC algorithm
It is held in the THPF-NUC2,5) that high-frequency

information belongs to the scene while low-frequency
information belongs to fixed pattern noise when studying
each pixel over time. Hence, estimates of the FPN can be
obtained by low-pass filtering the image sequence along the
temporal axis. NUC can be achieved when the estimate of
FPN is subtracted. The whole process resembles a temporal
high-pass filter. A temporal average f ðnÞ of the image
sequence is generated by a recursive IIR filter and subtracted
from the current frame xðnÞ

yðnÞ ¼ xðnÞ � f ðnÞ; ð1Þ

where

f ðnÞ ¼
1

M
xðnÞ þ 1�

1

M

� �
f ðn� 1Þ: ð2Þ

Here x is the input frame and y is the output of correcting, n
is frame index. M is the time constant of filter.

2.2 Convergence speed and ghosting artifacts
In most cases, the THPF-NUC method is just a simple and

effective way to correct the FPN, but it has two short-
comings: being motion dependent and sensitive to extreme
scene,2) i.e., if there are insufficient random motions or
excessively strong scene values in the frames, the processor
will essentially fade out the stationary image and affect the
convergence process. A burn-in effect still comes out even if
the extreme values will not stay long.

Nonrandom motion includes insufficient global motion,
local motion, directed motion, etc. If some part of the scene
remains motionless for several algorithm iterations, it will
be considered to be fixed pattern noise and be blended into
the background. When this part continues its motion, it will
leave an inverse ghost image in its original place. Besides,
ghosting artifacts may occur when the image motion is one-
direction-oriented. For example, a view of ghost image may
be generated when the sensor suddenly changes its horizon-
tal motion into a vertical one.

Extreme scene values also affect the convergence speed
seriously. Although the scene may be in continuous move-
ment, the extreme values will also leave ghosting-like
artifacts due to their high digital levels, which have a greater
effect on correction parameters than other parts.

The ghosting caused by insufficient global motion can be
reduced by the change detection mechanism which halts the
updating of the correction parameters when motion of the
scene is insufficient. However, this method is useless for
ghosting in other situations. It is known to all that it is the
infrared photon flux collected by the detector that is the main
reason for the changes of FPA’s response when compared to
the FPN and the temporal noise. Therefore, the dynamic
range of the scene irradiation is much greater than that of the
noise. If all parts of the raw image are used to estimate the
nonuniformity, the correction will be very susceptible to
external irradiation because of the great sum of scene

information, especially the ‘‘strong’’ objects contained in the
raw image frames. For example, when an object with strong
irradiation enters the scene, the correction coefficients in the
object region will increase dramatically, making the object
gradually ‘‘melt’’ into the background. When it leaves its
original position, a reverse ghost image will appear owing to
skew offset estimation and the normal convergence process
will be seriously affected.

From the previous analysis, it is stated that the root cause
of low convergence speed and ghosting artifacts in the THPF
algorithm lies in the interference of the amount of unrelated
scene information in the NUC process. Thus, if scene
information from the original image can be erased as much
as possible, especially the strong objects, and the residual
part can be used to estimate nonuniformity parameters. By
combining these together can the adverse effects of non-
random motion and strong scene values be minimized. In
this way, the speed of convergence can be increased and
ghosting artifacts can be reduced. Therefore, the biggest
problem now is how to separate the noise from the scene
effectively.

3. Bilateral Filter Based Temporal High-Pass Filter
NUC

3.1 Image separation based on bilateral filter
The simplest method of image separation is to use a linear

low-pass filter to separate the image into two parts: low
spatial frequency (LSF) and high spatial frequency (HSF).
The LSF of the image includes most scene information while
the HSF contains most noise. According to this theory, Qian
put forward a NUC algorithm called space low-pass and
temporal high-pass (SLTH),9) which uses an average filter to
divide the space frequency into two parts and only process
the HSF part of the non-uniformity. The algorithm can be
expressed as follows:

yðnÞ ¼ xðnÞ � f ðnÞ; ð3Þ

where

f ðnÞ ¼
1

M
XHSFðnÞ þ 1�

1

M

� �
f ðn� 1Þ; ð4Þ

xHSFðnÞ ¼ xðnÞ � xLSFðnÞ ¼ xðnÞ � xðnÞ � A: ð5Þ

XHSF
ij ¼

xHSF
ij jxHSF

ij j < Th

0 jxHSF
ij j � Th

(
ð6Þ

A is an average filter and � is a convolution operator. Since
average filtering is an average of the intensity of the adjacent
positions, so it is impossible to distinguish the noise from the
edge of the scene. In this way, a threshold value is
introduced. If a pixel’s xHSF

ij is larger than Th, the pixel
will be considered as the edges of the scene and won’t be
involved in the calculation of correction parameters. SLTH-
NUC to a great degree has made up for the THPF-NUC’s
deficiency since it only handles the HSF of the raw image.
This method improves the convergence speed and consid-
erably reduces the ghosting artifacts. Nevertheless, there are
three problems existing in the separation method based on
average filter with a threshold:
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1) It is difficult to find a proper threshold to separate the
edges of the scene features and the noise. A lager
threshold will lead some strong edges in the scene to
the HSF part, which will affect the convergence speed.
Conversely, a lower threshold will not be able to
remove the nonuniformity efficiently.

2) The HSF part of image obtained by linear filters will
lead to halo artifacts10) where large intensity variations
are present and they can also affect the convergence
speed and generate ‘‘ghost contours’’.

3) If the HSF parts which are larger than the threshold are
set to zero, these parts will not participate in the
calculation of nonuniformity. However, the nonuni-
formity of these positions still exists. If the HSF of
some parts of an image exceeds the threshold by
several frames, the corresponding nonuniformity pa-
rameters will not get updated for long and get smaller.
Therefore, the nonuniformity will gradually reappear in
the corresponding part of the image.

To overcome the shortcomings of the linear filters, many
nonlinear filters11,12) have been proposed. Bilateral filter was
developed by Tomasi and Manduchi12) as an alternative to
anisotropic diffusion.11) It is a nonlinear filter whose output
is a weighted average of the input. Similar to the Gaussian
convolution, the bilateral filter is also defined as a weighted
average of pixels. But the difference is the bilateral filter has
taken the variation of intensities into account to preserve
edges. The rationality of bilateral filtering lies in its decision
of the resemblance of two pixels, which tests whether their
spatial distance is close enough and whether their intensity
values are similar enough. When an input image I is given,
the output of the bilateral filter for a pixel ði; jÞ is

IBFðx; yÞ ¼

X
ði; jÞ2Sx;y

wði; jÞIði; jÞ

X
ði; jÞ2Sx;y

wði; jÞ
: ð7Þ

The total mask of the weights wði; jÞ is obtained from the
product of two different masks in the spatial and intensities
domains as wsði; jÞ and wrði; jÞ respectively

wsði; jÞ ¼ exp �
d2
s fði; jÞ; ðx; yÞg

2�2
s

� �

¼ exp �
ði� xÞ2 þ ð j� yÞ2

2�2
s

� �
; ð8Þ

wrði; jÞ ¼ exp �
d2
r fði; jÞ; ðx; yÞg

2�2
r

� �

¼ exp �
fIði; jÞ � Iðx; yÞg2

2�2
r

� �
; ð9Þ

hence,

wði; jÞ ¼ wsði; jÞ �wrði; jÞ; ð10Þ

where �s and �r are two standard deviation parameters
defining the extension of the two Gaussian kernel. It can be
observed that the weights depend on both the Euclidean
distance dsfði; jÞ; ðx; yÞg and difference in intensity value

drfði; jÞ; ðx; yÞg. The bilateral filter is controlled by �s and �r,
which control the decay of the two weight factors. As the
range parameter �r increases, the bilateral filter becomes
closer to Gaussian blur. When both two parameters are large
enough, the bilateral filter will be changed to an average one.

Figure 1(a) shows an uncorrected infrared image, serious
striping effects are shown and it is probably caused by the
readout electronics. The output of the average filter (filter
size D ¼ 15 pixels) and its residual are shown in Figs. 1(b)
and 1(c), while the output of the bilateral filter (filter size
D ¼ 15 pixels, �s ¼ 2:5, �r ¼ 130) and its residual are
shown in Figs. 1(d) and 1(e). The perfect situation for the
separation task is that only noise and the nonuniformity are
contained in the residual. Nevertheless, besides the noise, the
residual after average filtering contains most of the edges in
the scene and the obvious halo artifacts around the strong
edges. Bilateral filter yields a more acceptable result because
the edges visible in the residual are much fainter and there
is no halo artifact.

To illustrate it in a simplified manner, a row of the 1D
signal [Fig. 2(a)] has been extracted to represent the pixels’
digital levels along the row 195 of the IR images shown in
Fig. 2(b). This row is a nice example because of its
containing of large signal variations, strong edges of the
structures and enough strip nonuniformity. From Figs. 2(c)
and 2(d), it can be observed that most of the noise and

Fig. 1. Image separation results. (a) Uncorrected infrared image.
(b) Output of the average filter (D ¼ 15). (c) Residual of the
average filter. (d) Output of the bilateral filter (D ¼ 15, �s ¼ 2:5,
�r ¼ 130). (e) Residual of the bilateral filter.
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nonuniformity (represented by small fluctuations) can be
filtered to the residual effectively through average filtering,
but the strong edges of the image (represented by steep
zooms or drops) become much smoother, and the height of
narrow peak in Fig. 2(a) (caused by a billboard’s sunlight
reflection) is reduced a lot in Fig. 2(c), which becomes
ripples and peaks in the corresponding area in Fig. 2(d). A
threshold value between 100 and 150 can be used to truncate
the residual, but there still remain some peaks and ripples
close to the threshold that can not be effectively removed. If
a smaller threshold is used, the separation result will be
affected because of the exclusion of some high spatial
frequency nonuniformity from the residual. From Figs. 2(e)
and 2(f), the strong edges of the scene are excluded from the
residual of bilateral filter to make most of it tiny details of
the image, most of noise and nonuniformity included.
Therefore, a more stable and accurate estimation can be
obtained by using the residual of bilateral filter to calculate
the NUC parameters.

3.2 Bilateral filter based temporal high-pass filter NUC
As is discussed from the above, most scene information

and strong edges can be excluded from the residual effec-

tively by the bilateral filter. Moreover, quicker convergence
and fewer ghosting artifacts can be obtained by only proc-
essing the residual. So the algorithm is expressed as follows:

yðnÞ ¼ xðnÞ � f ðnÞ; ð11Þ

where

f ðnÞ ¼
1

M
xBFrðnÞ þ 1�

1

M

� �
f ðn� 1Þ; ð12Þ

xBFrðnÞ ¼ xðnÞ � xBFðnÞ: ð13Þ
Here x is the input frame, y is the output of correcting, and n

is frame index. xBF; xBFr represent the output of bilateral
filter and the residual. Referring to §3.1, it is known that
there are two parameters controlling the behavior of the
bilateral filter, �s and �r, representing the spatial and
intensity domain behaviors respectively. The spatial param-
eter �s can be chosen according to the spatial frequency
feature of the device’s nonuniformity. The typical size of
bilateral filter is D ¼ 15, and �s ¼ 2:5 to keep the Gaussian
effect. The choice of the range parameter �r is more crucial.
It has to take the level of nonuniformity into consideration,
and this can be measured in the laboratory. In order to obtain
the best performance, the �r can be set as 2 to 4 times of the
standard deviation of the nonuniformity.

3.3 Convergence
In this section, a mathematical analysis is undertaken,

which explains the reason why the proposed algorithm can
converge faster than the THPF-NUC and SLTH-NUC. As a
recursive equation is adopted to estimate the true value of
nonuniformity offset, eq. (2) can be rewritten as follows:

m̂mxðnÞ ¼
1

M
xðnÞ þ 1�

1

M

� �
m̂mxðn� 1Þ; ð14Þ

where m̂mxðnÞ is the estimated offset which replaces the f ðnÞ
in eq. (2). The mean-square error (MSE) of the recursive
nonuniformity offset estimation can be written as

MSEðnÞ ¼ E½ðm̂mxðnÞ � mÞ2�

¼
1

M2
E½ðxðnÞ � mÞ2�

þ
2ðM � 1Þ

M2
E½ðxðnÞ � mÞðm̂mxðn� 1Þ � mÞ�

þ 1�
1

M

� �2

E½ðm̂mxðn� 1Þ � mÞ2�;

ð15Þ

where E½�� is statistical expectation operator, m is the true
nonuniformity offset. If the scene in continuous movement,
the signals of each pixel along the temporal axis xðnÞ can be
viewed as a group of independent and identically distributed
random variables. So xðnÞ and m̂mxðn� 1Þ are statistically
independent, and the second part of eq. (15) can be rewritten
to

2ðM � 1Þ
M2

E½ðxðnÞ � mÞðm̂mxðn� 1Þ � mÞ�

¼
2ðM � 1Þ

M2
ðE½xðnÞ� � mÞE½m̂mxðn� 1Þ � m�: ð16Þ

Fig. 2. (Color online) Row 195 [indicated in (b)] filtering results.
(a) Raw infrared signal. (c) Output of the average filter (D ¼ 15).
(d) Residual of the average filter. (e) Output of the bilateral filter
(D ¼ 15, �s ¼ 2:5, �r ¼ 130). (f) Residual of the bilateral filter.
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Based on constant statistics constraint,6) the true nonuni-
formity offset m should be equal to E½xðnÞ�. Thus

2ðM � 1Þ
M2

ðE½xðnÞ� � mÞE½m̂mxðn� 1Þ � m� ¼ 0: ð17Þ

So eq. (15) can be simplified to

MSEðnÞ ¼
1

M2
E½ðxðnÞ � mÞ2�

þ 1�
1

M

� �2

E½ðm̂mxðn� 1Þ � mÞ2�

¼
1

M2
�2
x þ 1�

1

M

� �2

MSEðn� 1Þ;

ð18Þ

where �x is the standard deviation of xðnÞ. Equation (18) is
recursive and can be traced back to

MSEðnÞ ¼
1

2M � 1
1� 1�

1

M

� �2n
" #

�2
x

þ 1�
1

M

� �2n

MSEð0Þ; ð19Þ

where MSEð0Þ is the initial error of the offset which depends
on the initial value of m̂mxð0Þ, if we use eq. (12) instead of
eq. (2):

MSEBFrðnÞ ¼
1

2M � 1
1� 1�

1

M

� �2n
" #

�2
xBFr

þ 1�
1

M

� �2n

MSEBFrð0Þ: ð20Þ

Similarly, in SLTH-NUC, the MSE of the HSF of the offset
can be rewritten as:

MSEHSFðnÞ ¼
1

2M � 1
1� 1�

1

M

� �2n
" #

�2
xHSF

þ 1�
1

M

� �2n

MSEHSFð0Þ: ð21Þ

It has been noted that the second parts of the three equations
are only related to M and exponentially decrease from initial
error to zero as n increases. Only the first parts which
dominate the MSE when n is large enough are discussed. It
can be seen that the first parts are in proportion to �2

x , �2
xHSF ,

and �2
xBFr , and it means smaller standard deviation is, the faster

and more precise the convergence will be. As is mentioned
in §3.1, the �2

xBF is much smaller than the corresponding
�2
xHSF and �2

x under the same condition. Therefore in order to
reach the same error of offset estimate, the proposed method
needs fewer samples than the THPF-NUC and SLTH-NUC.

4. Experimental Procedure

In this section, the proposed BFTH-NUC is tested with
infrared data corrupted with simulated nonuniformity. The
infrared sequences with artificial nonuniformity are gener-
ated from a clear 2000 frame infrared video sequence,
and the corrupted video sequences are obtained by using a
synthetic offset with a zero-mean Gaussian distribution with

a standard deviation of 50. For the first 80 frames, the camera
moves in a steady and consistent manner in prevention of
any burn-in. Then, the camera will be moved more slowly
and towards a more complicated scene. Around Frame 850,
the camera is shifted to a scene with many extreme values
caused by sunlight reflection. After frame 1650, the scene
motion is increased and the extreme scene goes away.

The following three algorithms are compared in detail: the
THPF-NUC, SLTH-NUC and the BFTH-NUC proposed in
this text. The setting of the time constant M of all three
algorithms is 33 and the space low-pass and temporal high-
pass NUC algorithm uses a threshold of Th ¼ 150. Mean-
while, the BFTH uses D ¼ 15, �s ¼ 2:5, �r ¼ 150. The root-
mean-square error (RMSE) can be adopted for measurement
to have an objective evolution of the correction performance
of a certain NUC algorithm. RSME is defined as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

M � N

X
i; j

ðIij � ÎIijÞ2
s

; ð22Þ

where Iij is the ði; jÞ pixel value of the true frame while ÎIij is
ði; jÞ the pixel value of the corrected frame. M and N are
respectively the rows and columns of the image. The RMSE
versus frame numbers of the three SBNUC algorithms are
shown in Fig. 3. Figures 4 and 5 show the images of Frame
130 (slow motion) and Frame 1370 (extreme scene).
Figures 4(a) and 5(a) show the true radiance of the scene.
The images corrupted with simulated nonuniformity are
shown in Figs. 4(b) and 5(b). The outputs using the THPF,
SLTH, and BFTH are shown in Figs. 4(c)–4(e), and
Figs. 5(c)–5(e) respectively.

It can be noted from Fig. 3 that the SLTH method and
BFTH method significantly outperform the THPF method
due to their faster convergence speed and lower RMSE. In
the first 80 frames, as the global motion is adequate and the
scene is not very complicated, the curves of all the three
algorithms have a stable falling tendency. Among the falling
curves, the speed of the BFTH algorithm takes the lead and
its RMSE falls to 21.94 at the 80th frame. When the global
motion slows down, serious ghosting artifacts appear in
THPF’s output [Fig. 4(c)], meanwhile its RMSE bounce
above the initial value. In SLTH’s output, some ghost

Fig. 3. (Color online) RMSE versus frame number for the three
SBNUC algorithms.

OPTICAL REVIEW Vol. 18, No. 2 (2011) C. ZUO et al. 201



contours are also visible [Fig. 4(d)], which makes its RMSE
curve fluctuate to a large degree. However, we can hardly
see any ghost artifact in the BFTH’s output [Fig. 4(e)] and
the curve of its RMSE has shown the most stable tendency.
When the extreme objects enter into the field of view, the
RMSE of THPF suddenly rises above 90. The severe
ghosting artifacts deteriorate the image and make it difficult
to be observed normally [Fig. 5(c)]. The SLTH’s RMSE also
rebounds to 33.62. Besides, the nonuniformity reappears
around the neighborhood of the strong edges due to the
algorithm’s threshold cutout as analyzed in §3.1 [Fig. 5(d)].
While the BFTH still can keep a good output [Fig. 5(e)] and
a lower RMSE. From the above experimental results, it can
be concluded that BFTH has the fastest speed of conver-
gence and the most stable error during the whole process.
Moreover, only through the correction of BFTH can the
ghosting artifact be erased. Without considering the base
component of nonuniformity, the RMSE of BFTH keeps
around 20, and reaches 16.91 at the last frame.

5. Conclusions

In this paper, the main reasons for the problems in the
THPF-NUC are discussed and it is concluded that the scene
information of the image should be eliminated from the
calculation of NUC coefficients as much as possible. Based
on this analysis, a new NUC method called BFTH has been
proposed, which adopts a bilateral filter to divide the input
frame into two components and only the residual is used to

estimate the NUC coefficients. The separation based on
bilateral filter gives a more accurate estimation of FPN than
the one based on linear filter due to its edge-preserving
characteristic. Experiments have shown that the proposed
method offers the best performance when compared to any
other methods tested. Moreover, its ability to avoid the
production of ghosting artifacts is pretty impressive.
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Fig. 4. Frame 130 in the sequence. (a) Image with simulated
offset nonuniformity. (b) Uncorrupted image. (c) Corrected with the
THPF. (d) Corrected with the SLTH. (e) Corrected with the BFTH.

Fig. 5. Frame 1310 in the sequence. (a) Image with simulated
offset nonuniformity. (b) Uncorrupted image. (c) Corrected with the
THPF. (d) Corrected with the SLTH. (e) Corrected with the BFTH.
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