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Summary. We develop some new bounds on the effective moduli of TV-phase com-
posites. These new bounds are accurate up to and including terms of third order in
0(| — Kj\, |^ — Hj\), where Kt and n, are the bulk and shear modulus, respectively, of
phase i. These bounds use the same statistical information as McCoy's and Beran-
Molyneux's bounds but are tighter than, or at worst coincident with, the latter bounds.
We also present in the appendix a new perturbation solution for the effective moduli
which only requires that | <5|i | = 0(| — fij |) be small.

1. Introduction. We consider the theoretical determination of the effective moduli of
a composite material. The composite material in question is comprised of N phases dis-
tributed in such a way that the overall material is homogeneous in a statistical sense.
Each phase is assumed isotropically elastic and its Lame moduli are assumed known. The
problem has a long history and has been reviewed by Hashin [1], Hale [2], Watt et al.
[3] and McCoy [4]. In particular, we are concerned with the problem of determining
bounds on the effective shear modulus ne and the effective bulk modulus Ke of the com-
posite. These bounds may be conveniently classified by their width. That is, if the upper
and lower bounds on Ke, say Ku and Kt, respectively, differ by a term of the order
0(<5v"+'), where

<5v = max (\Kt - Kj\, | //, - /i,|,
»\ j

then the bounds are said to be of nth order. In the above and are the bulk and shear
modulus of phase i (i = 1, 2,..., N) respectively. An nth-order bound provides an estimate
to the effective property accurate up to and including terms of 0(c)v"). In this sense Reuss'
[5] and Voigt's [6] estimates are first-order, Hashin and Shtrikman's [7] and Walpole's
[8] bounds are second-order and Beran and Molyneux's [9] and McCoy's [10] bounds
are third-order. These third-order bounds for N = 2 have been simplified recently by
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Milton [11] who showed that in addition to the volume fractions one needs two geo-
metrical parameters which both lie in the interval [0, 1] and are given by some third-
order correlation function.

We have recently found some third- and fourth-order bounds on the effective moduli
of two-phase composites [12] and on the effective thermal conductivity of N-phase com-
posites (N > 2) [13]. Our new third-order bounds on ne for a two-phase composite are
tighter than those of McCoy [10], while the third-order bounds on Ke for a two-phase
composite are identical to those of Beran and Molyneux [9], Our third-order bounds on
the effective thermal conductivity of N-phase composites (N > 2) are tighter than those of
Beran [14], although for N = 2 they are identical to Beran's bounds. The fourth-order
bounds require more information about the microstructure. The extra microstructural
parameters are all related to a fourth-order correlation function.

In this communication we derive some new third-order bounds for the effective
moduli of N-phase composites. These new bounds are of the same order as McCoy's and
Beran and Molyneux's bounds but are tighter than those bounds. Our work is based on a
Fourier series representation outlined in [13], the essential features of which are recapitu-
lated below.

2. The phase vector. It suffices for the purposes of the present work to consider the
composite as a periodic material in x, y, z, with periods Lx, Ly,Lz. This point of view was
mentioned briefly by Brown [15] and is perfectly general as long as the periods Lx, Ly, Lz
(the size of the specimen) are much larger than a characteristic length of an inhomoge-
neity (grain size). This viewpoint plus the assumption of statistical homogeneity allow us
to equate ensemble averages to corresponding volume averages. For further discussion of
this point, the reader is referred to McCoy [4, 10].

The detailed microstructure information of the composite is contained in the phase
vector

".(*) = <5ab> if x is in phase b,

where <5ab is the Kronecker delta and all Roman subscripts take values from the indexing
set {1, 2, ..., N}. The normal summation convention will be used unless stated otherwise.
Denoting by the angular brackets the ensemble average, it is clear that

<n> = f,
where f = {fi,f2, ■ ■ ■ ,/n} is a vector whose component f is the volume fraction of phase i.
Expressing the fluctuating part of by a Fourier series (owing to the periodicity of the
composite), we have

n = f + si, n'(x) = X oM e'k'*> i2 = -1 (!)
k*0

In (1) and elsewhere the prime quantity is a fluctuating component and k, 1, m are wave
numbers; they are of the form {/c,, k2, k3} with ku k2, k3 being integers varying from
— oo to oo. Thus complete information about the microstructure is contained in co(k). We
list below some relations that to(k) must satisfy.

First it should be noted that not all of the Qa(x) are linearly independent. This is
because

X Qa(x) = !/„=!
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which implies
Z co„(k) = 0.
a

Furthermore, starting from the identities

(2Qa(x) - l)2 = 1 (a fixed)

and

we have

and

Qa(x)Q„(x) = 0 (a ± b),

Z ffl,(kK(-k) = rai) =/„( 1 -/„), if a = b
k*0

= ~fafb, if a±b (2)

Z W„(k - m)(ub(m) = (1 - 2fa)a>a(k), if a = b
m * 0, k

= —fa <Uf,(k) —fbcoa(k), if a±b. (3)

We also need the following identity:

Z Z ~ m)oj,,(ni)ajc(-k) = Aabc = (1 - 2fb)rbc, if a = b (no sum)
k*0 m*0,k

= -fa rfcc -fb rac, if a ± b. (4)

3. Effective moduli. If the phases are isotropically elastic the local constitutive rela-
tion takes the form

<r(x) = X tr el + 2/*e, (5)

where k and fi are the Lame constants at the point x, a is the stress tensor and £ is the
infinitesimal strain tensor which is obtained from the displacement vector u using

£ = |(Vu + Vu7),

where the superscript T denotes a transpose. With homogeneous boundary conditions,
which produce homogeneous stress and strain fields in a homogeneous elastic body, we
can decompose the fields into a mean and a fluctuating part:

u = <u> + u'; £ = <£> + £'; <r = <<r> + a'.

The effective Lame coefficients for the composite, ke and ne, are then defined by

<«r> = tr <£>1 + 2/ie<£>. (6)

This definition is, of course, equivalent to that derived from an energy consideration. Also,
instead of Xe, engineers are more interested in the effective bulk modulus Ke = Xe + \ne.
We now derive a third-order perturbation solution for Ke and ne. Fourth-order pertur-
bation solutions have been reported [12] for the special case of two-phase composites
(N = 2).

First, the fluctuating parts of field quantities are expressed as Fourier series in space:

{u'(x), e'(x), ff'(x)} = Z (U(k), E(k), S(k)}eik \
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Next, for a fixed q, 1 < q < iV, we define

SKa = Ka - Kq, Sna = iia - nq,

where Ka and na are the bulk and shear moduli of phase a, respectively. Noting that

K = KaQa, n = naSla

and keeping in mind (1), we obtain

K = (K} + 5K • SI, n = (n) + Sli- SI'. (7)
When (7) are used in the constitutive relation (5) and the resulting expression averaged,
one obtains, using (6),

Ke(s)I + 2/ie<e> = f<K><£> + SKa X coa(k)E(-k)) 1
V k*0 /

+ 2 (<M><E> + Stia X tt>a(k)E( - k)\ (8)

In (8) and elsewhere any second-order tensor, say E, is expressed as ^£1 + E, where E is
the trace of E and E is traceless. From (8) we can find the effective bulk modulus Ke and
the effective shear modulus ne if we know E. In order to find E we need the Fourier
component S(k) of a'. S can be found by substituting (7) into the constitutive relation (5),
multiplying the resulting expression by exp (ik • x) and averaging the final expression. One
thus obtains

S(k) = ( <K>£(k) + <e> <3K • co(k) + <5K • £ «Kk ~ m)£(m)) 1
V m*0,k /

+ 2 (</<>E(k) -I- <e> (5fi • a>{k) + ~ m)E(m)
V m*0

In a quasi-static deformation state the divergence of <r is zero everywhere. This implies
S(k) • k is identically zero in Fourier space. This information plus the definition of the
strain tensor in Fourier space:

E(k) = ii(kU(k) + U(k)k)

allows us to obtain, after some manipulation,

. 3SKa - 2Snaok+4,; ™-(k -m,m •u(m)

-' <3 rhry £}irk-U(mK(k" m) <9)
and

i<ju)U(k) = -<e> <5K • <o(k) ̂ - 2dn • co(k)<e> ̂
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- i*<3K + M>k • U(k) ̂  - %i(3SKa - 2<5/xa) Z km U(m) ̂  ^
K m*nk ^

^ mU(m) • k + U(m)k • m „
-iSna I  75 wa(k-m). (10)

m#0,k K

Expressions (9) and (10) for U(k) can, in principle, be solved to any order of accuracy in
<5v = 0(| <5K |, | <5(i |). In the appendix we show how to obtain an equation for U(k) which
can be solved to any order of accuracy in | <3(i |, without assuming | <5K | is small.

3.1 Effective bulk modulus. To solve for the effective bulk modulus we let <£> = 1
and <£> = 0. Thence, from (8),

Ke = (K} + SK- X«(k)£(-k). (11)
k*0

Now, from (9-10), to second-order in <5v we obtain

+ \2 (36K° ~ 23^SK* Z Ti w«(k -
m*0 K

6<3K + n) c cr, ^ k(k • m)2 „ 4 x-  ~2 X ,a 2 - mKM
<3K + 4/i>2 ™ °ra^,k k m

6dna 5Kb „ m(k • m)
<3K + 4/i> mf5jk k2m2

vufia ur^b ^ iiivk • hi;+ , ~ X ,2 2 (12)

From (12) one can determine E(k) and thus find that the effective bulk modulus is given
by using (11):

Ke = <K> - 3<5K 3K : T/<3K + 4#i>
+ 3<5K(3<5K - 2<5|i) £K | A/<3K + 4ji>2
+ 18fyi <5K <5K j A/<3K + 4/z>2 + 0(<5v4). (13)

In (13) the parameters T and A are defined in (2) and (4), the double and triple dots denote
tensorial contractions and the parameter A is defined as follows:

Aabc= Z Z ^k,2*"2 Ma(k - m)ajt(m)ajc(-k). (14)
k#0, m*0,k K m

Since Aabc is symmetric with respect to the last 2 indices there are at most \N{N — l)2
parameters contained in A. It is noteworthy that A also appears in the third-order bounds
on the effective thermal conductivity of N-phase materials [13].

3.2 Effective shear modulus. To solve for the effective shear modulus ne, we let
<£> = 0 and e0- =; 8n8j2 + Si2 Sjl in (8) from which we obtain

He = <^> + Z w(k)^i2(-k) (15)
k*0

Proceeding as before, a second-order solution for U(k) can be found and hence £. From
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(15) we find that the effective shear modulus is given by

6<K + 2/i > 2(3<5K - 2<5(i) <5(i <5u^>-5<,)<3K + 4,>r:^+ 5<3K + 4,)2

(5(1 (5(t (5(i t 16<3K + n}
15<//>2 :( 15</z>2<3/C + V>

4<3K + /i>2
15</i>2<3K + 4/i>;

(5(i (3(i (5(i: (3A, - A) + 0((5v4). (16)

In (16) we have appealed to the assumption of statistical isotropy which allows us to
evaluate various fourth-order tensors. Furthermore, the new parameter tensor A j is given
by 4

^la(.c=Z X (k,4 mj 0JJk - m)a}b(tn)a>c( - k). (17)
k*0 m*0,k K m

Again there are at most jN(N — l)2 parameters contained in A,. Apart from the obvious
need for the expressions (13) and (16) to compare our bounds with, these perturbation
results point out the type of statistical information that must be measured to characterize
the material. Indeed, by accurately measuring ne and K when (5v is small, we can partially
determine A and \v It is hoped that if this is done for a material with a range of struc-
tures, the physical significance of A and Aj may become clear.

3.3 Other forms for A and A,. To bring these perturbation results into line with
previous findings of Beran and Molyneux [9] and McCoy [10], the method of the Appen-
dix to [12] can be used to show that

d2 <ft'(0)ft'C)«'(s)> dlr dh. (18)" 16k2 Jj r3;s3 dr • ds
and

d2 ^rs ( H <ft'(0)ft'(r)n'(s)> dh dh. (19)

To make the connection with Miller's [10] symmetric cell materials as described by
Brown [17] and Hori [18], we note that

<il'(0)ft'(r)"'(s)) = A g(0, r, s),

where g(0, r, s) is the probability of a triangle (whose vertices are at 0, r and s) having all
three vertices lie in one cell when placed randomly in the composite. From (18) and (19)
we find

A = 3G A, Aj = E* A, (20)
where

G = '
16 n2

is the parameter introduced by Miller [16] and

a2

P? 9,°' '•s) d'' d's



THIRD-ORDER BOUNDS 65

is a constant which appears in Silnutzer's bounds [19]. For spherical cells G = E* =
for platelike cells, G = 3, E* = 1 and for needle-like cells G = E* =

We are now in a position to derive a new set of third-order bounds.

4. Third-order bounds.

4.1 Upper bounds. In general, odd-order bounds on the effective thermal conduc-
tivity are generated when using classical variational principles whereas even-order bounds
on the same are obtained via Hashin and Shtrikman's [1] variational statements. We
expect this to be true for the present vector transport problem. To find upper bounds on

and on Ke we resort to the principle of minimum potential energy which states that of
the class of strain fields which satisfy compatibility, the field which also satisfies equilibri-
um is the one which minimizes

2W = (K(e')2 + 2/ie': ?>,
where

e' = -je'l + e'

is the trial strain field. Expressing

£' = <£> + X e(kyk *,
k*0

where e(k) = jel + e is the trial Fourier component of e\ one has, keeping (7) in mind,

2W = <X><£>2 + 2</i><i> : <e>
+ <K> X e(k)e(-k) + 2<» X e(k): e(-k)

k*0 k*0

+ 2(e) 5K • £ w(k)e(-k) + 46]i ■ £ to(k)<E> : e(-k)
k#0 k*0

+ <5K • Yj Z 0)(m ~~ k)£(k)e(— m)
k*0 m*0,k

+ 2<5f» • Yj Z t0(m ~ I'M'') :«{ — ">).
k*0 1X1*0, k

Letting <e) = 0 and <e> = 1, we find the following upper bound on Ke:

Ke<Ku = (K} + <K> X e(k)e(-k) + 2</i> X e(k): e(-k)
k*0 k*0

+ 2(5K • £«>(k)e(-k) + <5K- £ Z ©(m-kMkM-m). (21)
k*0 k*0 m*0, k

To find an upper bound on ne, we let <e) = 0 and

<Eij> = Sn Sj2 + <5i2 <5ji : He ̂  Vu

= </*> + £ e(kM-k) + Z m : e( —k)
k#0 k*0

+ 2<5n- £ «(k)e12(-k) + £<5K • £ £ co(m - k)e(k)e( - m)
k*0 k*0 m*0,k

+ ^-Z Z co(m - k)e12(k)e12(—m). (22)
k*0 m*0, k

4.1.1 Upper bound on Ke. We note that the strain field in the first-order perturbation
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solution for K„ takes the form
k
k2

Consequently we take for the trial strain field in Fourier space

kk
k2

<5K • co(k) jj x constant.

e(k) = a • to(k) yj ,

where a is a vector as yet undetermined. We choose <xq = 0, without any loss in generality,
since the u>a(k) are not all independent. The various terms in (21) can be evaluated with
the assumption of statistical isotropy and one finally obtains

Ku = <K> + i<3K + 4/z>r : aot + 2r : a<5K

+ A j (5Kaa + f(3A — A) J <5|iaa. (23)
The best upper bound, Keu, is found by setting dKJda = 0 to yield

Keu = <K> - 3<5K • T[<3K + 4/i>r + (3<5K - 2<5n) • A + 6<5fi • A]_1r • £K. (24)
In this equation it is implied that the matrices are truncated: each index a runs from
a = 1 to a = N, excluding a = q. The order of this upper bound can be found by ex-
panding (24) in powers of <Sv = 0{\ SK |, | <5/x |) and one finds that Kub = Ke + 0{5v4), where
Ke is given by (13). Thus (24) is a third-order bound on Ke.

4.1.2 Upper bound on p.e. To find an upper bound on ne one proceeds as in 4.1.1
except that the trial field is now taken from the first-order perturbation solution for ne
(Sec. 3.2):

e(k) = to(k) (k k + k + 2p • w(k)kk ̂ ^ ,

where <£0> = Sn SJ2 + Si2 <5,i and a, (J are two vectors, as yet undetermined. Note that we
may choose a, = /?, = 0 without any loss of generality. The various terms in (22) can be
evaluated with the assumption of statistical isotropy and one obtains

Hu = + tw(M : ota + 2N : ap + P : pp + 2La + fLp) (25)
where

M = 2<6K + 17/z>r + 6<5K • (3A — A) + dp • (21A + 13A),

N = 4<3K + 4^>r + 6<5K • (3A - A) + 4<5fi • (3A + A),

p = 4<3K + 4n}T + 6<SK • (3A - A) + 4<5ji • (9At - 6A + A),
and

L = 60r<5n.
The best upper bound on fie, neu, is found by setting dfijda. = dfijdp = 0, and one has

/icu = </<> + iW • r(5[A + 2[B)r • S,i, (26)
where

st = 12(P_1N - N_1M)~1(5N"1 - 2P"1),

<0 = 12(N~1P - -2N-1).
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Note that the matrices M, N and P are truncated: each index a runs from a = 1 to a = N,
excluding a = q. After some lengthy algebra, one can verify that (26) is a third-order
bound, viz., /ieu /xc + 0(<5v4).

4.2 Lower bounds. To find lower bounds on Ke and ne we start with the principle of
minimum complementary potential energy. This principle states that, among the class of
trial stress fields a' = ^<x'l -I- a' that satisfy equilibrium, the one which satisfies compati-
bility is that which minimizes the integral

2W = <iK(a')2 + ifia': <r<>,

where we have defined

K = l/K, fi = 1 /n.
For any fixed q,l<q<N, define also

3Ka=l/Ka-l/Kq, 8fia = \/na — l/nq;
then we have

K = <X> + (5K • SI', fi = </2> + £0 • ft
On expressing the trial stress field a' by

<*' = <«> + Z t(k)eik'x,
k*0

where t(k) = %t(k)l + t(k) is the trial Fourier stress field, one has

2W = i<KX*2> + i<fi><6> : <«>

+ i<K> £ t(k)t(-k) + i</2> X t(k): t( — k)
k#0 k#0

+ |<CT> <5K • Z ®(k)t(-k) + • Z <o(k)<®) : t(-k)
k*0 k#0

+ 9^ - Z Z C0(in — k)£(k)£( — m)
k*0 m*0, k

+ i<5A" Z Z to{m - k)t(k): t(-m).
k*0 m*0, k

Putting (a) = 1 and <(?> = 0 we find the following lower bound on Ke (upper bound on
k;1):

Ke < K, = </?> + </C> Z t(kW-k) + §</!> Z t(k): t(-k)
k*0 k*0

+ 2SK • Z®(kM-k) + 5fi' Z Z co(m-k)t(k)t(-m)
k*0 k*0 m = 0, k

+ PA- Z Z <a(m - k)t(k): t(-m). (27)
k*0 m*0,k

Similarly, by putting <cr) = 0 and <<rl7) = Sn Sj2 + Si2 Sjl9 we find the following lower
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bound on fie:

fie < fit = </2> + Z f(k)t(-k) + Hfi) Z *(k): t(-k)
k*0 k*0

+ 25fi ■ ̂  co(k)ti2( — k) + ^<5K - Z Z co(m — k)f(k)t( — m)
k*0 k#0 m*0, k

+ W- Z Z co(m — k)t(k): t( — m). (28)
k#0 m*0, k

4.2.1 Lower bound on Ke. To proceed further we take the trial Fourier stress field as

t(k) = ^a • co(k)
kk]-t?J'

where a is a constant vector to be determined. Without loss of generality we choose
txq = 0. Note that this trial field is a generalized form of the first-order Fourier stress field
in the perturbation solution for Ke. Various terms in (27) can be evaluated and one
obtains

Ke<K, = <K> + i<4K + 3/2>F : aa + 2F : c5Ka
+ (<5fi • A + • (3A - A)): aa. (29)

The best bound is easily found to be Kel, where

Kel = <K} - 8<5fi • T(2<4K + 3/2>F + 8d£ • A
+ 3<5£.(3A-A))-1r-<5K, (30)

in which it is implied that the matrices are truncated. Again, this bound is third-order in
<5v.

4.2.2 Lower bound on ne. To find a third-order bound on fj.e we use the trial Fourier
stress field

kk /kk
k2 (k

( kk kk kk+ p • to(k)( <d>F + <6> - <d> ~ <«> : p 1

t(k) = a • a>(k)<d> : 77 77 - 1

which is a generalized form of the first-order Fourier stress field in the perturbation solu-
tion for /ie. Proceeding as before, we find

fie < fit = </2> + T35(M! : aa + 2Nt : ap + Pj : pp + 2Lt • a - • P), (31)
where

M, = 4<4K + 3/2>r + 8c>K • (3A - A) + 3<5£ • (9Aj - 6A + A),
Nj = 2<4K + 3/2>F + 4<5K • (3A - A) + 6<5fi • (3A - 2A),
Pj = <4/C + 57/2>r + 2<5ft • (3A - A) + 3(5£ • (21A - 2A),

Lj = 18r <5A
Again it is implied that the matrices M„ Nt and P! are truncated. The best lower bound,
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fiel = </2> + • r(2A - 5B)r . sA, (32)

(33)

A = 9(P1"1N1 -Nr1M1)-1(5Pf1 + 2NJ"1),

B = 9(Nr1Pi -Mf'NrTHSNr1 + 2MJ-1).

4.3 Two-phase composites. For N = 2, only two microstructural parameters (in addi-
tion to volume fractions) are needed in evaluating the bounds: A = Altl and Ai — Alltl.
Specifically, the bounds on Ke and ne are, respectively,

3fj2 SK2 3fJ2 SK2
< > 3<K> + 4<^-1>?-1- > 3<K> + 4</x>;'

, , 6/1/2 V . . , , 6fj2 S»2
+ (34)

where <5K = — K2,Sn = and we have defined the following:

Ci = i(3/i + lA/fifj —f2) = 1 — C2>
rii = £(/, + (4/1, - 3i4)//1/2 +/2 /5) = 1 — f/2,

_ 3</i>/6K + 7/i)c - 5</z),2
<2K - M>{ + 5<ji>, '

_ _ 5</2)c<6K - /2>c + </2>.</e + 21/2)c
" <128X + 99/i>? + 45</2>I?

and we also define the following "averages" for (ip = K11 or /i*'):

<<A> = <Al/2 + ^2/l. <"A>C = •/'iCl + *I'2C2, <"A>, = Ml + 'Z'2'72-
It is noteworthy that both parameters and i}{ lie in the interval [0, 1], Bounds (33) are
precisely those of Beran and Molyneux [9] as simplified by Milton [11]; bounds (34)
have been reported in our previous work [12]. In [12] we showed that

2bh-5C1>0, 21t/2 — 5C2 > 0
and we constructed second-order bounds on /xe from (34) which are tighter than Walpole's
bounds (when the latter are applicable). The new second-order bounds on ne reduce to
Hashin and Shtrikman's [7] bounds when Sfi> 0 and

SK > -(3Ki + &Hi)2 S\i/\2\i\,

SK > —(3K2 + 8HifKy Sn/42mn2K2.
Here, starting with the bounds (33) on Ke, we show how Hashin and Shtrikman's and
Walpole's bounds on the same can be derived. We define

\iH = max <ji>c,
Ci e[0, 1]

K = max </^_1)c-
Cie[0, 1]
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Clearly, if <5/i > 0 then = /i, and /!„, = /if1 and when <5/i < 0 then = /i2 and /2„ =
/if1. Because the microstructural parameter (i lies in [0, 1], we have the following bounds
on Ke, from (33):

y./» tK* y,/,
<*> - 3<«> + £ K- £ <K> " 3<£> + 4/i, ' (35)

For <5/i > 0 the bounds (35) are equivalent to Hashin and Shtrikman's bounds (see [11])
and when <5/i < 0 they are equivalent to Walpole's bounds. Note that (35) uses only
volume fraction information and are second-order in SK, <5/z. The possibility of using
these second-order bounds in bracketing the volume fraction fi from experimental data
on Ke and ne have been discussed elsewhere [20].

5. Comparison with existing bounds. There are two sets of third-order bounds on the
effective moduli of composite materials. One set is on Ke and due to Beran and Molyneux
[9] and the other is on fie and due to McCoy [10].

5.1 Beran-Molyneux's bounds. Beran-Molyneux's bounds are given by

8 (K'Ky2 y1 „
^ ~ 8<K'2K> - 3<K'2/2> + 9J'J ~ e~

3 <K'2)2

where

1J = 16tt2 J

J dh d3
dr • ds

<3K + 4n}(K'2} + 3<A'X'2> + 2J '

2</i'(0)K'(r)X'(s)>,

1 CCd'r d3s ( d32 \2

X " 16? JJ — [iTSs)
In our notation

<K'2) = <5K SK : = <5K <5K : T, (X'K'2} = i(3<5K - 2<5ji) SK SK \ A,
J = <5ji <5K <5K | /4, <K'K> = <5K <5K : I\

<K'2K> = (K}SK <5K : T + <5K <5K <5K: A, J' = </z"><5K <5K : T + <5fi <5K <5K : A.
Thus Beran-Molyneux's upper bound becomes

3(<5K <5K: T)2
K = S K^>  -  

" w <3K + 4/j.ySK <5K: T + (3<5K - 2<5n)<5K <5K j A + 6<5fi <5K SK \ A
and their lower bound is

KBM = ((R, 8(^K <5K : n2
' V 2<4^ + 3/5>r : <5(i <5n + 8<5ft <5K <5K : A + 3<5£ <5K SK \ (3A - A)

To show that our bounds on Ke, (24) and (30), are tighter than Beran-Molyneux's
bounds, we optimize the expression (23) for the upper bound on Ke subject to the con-
straint a = a <5K. The resulting best upper bound is identical to Beran-Molyneux's bound.
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Similarly, if we optimize the expression for the lower bound on Ke, (29), subject to the
same constraint a = a <5K, then the resulting best lower bound is identical to Beran-
Molyneux's bound. Thus, by construction, our bounds on Ke are always more restrictive
than Beran-Molyneux's bounds. For N = 2, the two sets of bounds are identical.

5.2 McCoy's bounds. McCoy's bounds on ne are given in terms of various fourth-
order tensors. These can be simplified as in the preceding subsection and one has for
McCoy's upper bound

= <Ji> - 4<3A + 8/i>2(r : dp V)2/5<fi,
and for McCoy's lower bound

Oifr1 = </2> - 9<!U + 14/i>2/15<A,
where

<p = 6<^></l + 2ji><3A + 8^>r : <5ji c)fi + 6<^>2<5K S\i <5ji | (3A - A)

+ <5n ; (21A + 13A)<A + 2/i>2 — 8<A + + 2/i><5ji <5ji

j (3A + A) + 4<A + (5fi <5(i; (9Aj — 6A -I- A)

^ = |4<A + //>2(4<4K + 3/2>r + 8<5fi • (3A — A) + 3(5>i • (9AX - 6A + A))

-4 ^ +^\ K8* + 6^>r + 4(5K • (3A ~ A) + 6<5£ • (3A - 2A))<2 + 2 n>

+ <4K + 57/2>r + 2<5R • (3A - A) + 3<5£ • (21A - 2A)J : <5fi

If, in our expression for the upper bound on ne, (25), we set

a = m"<itv>"-
and optimize the resulting expression, then the best upper thus obtained is precisely that
of McCoy. Furthermore, if in the expression for the lower bound on ne, (31), we set

°=-27liP = ̂<A + 2^t>
and optimize the resulting expression, then the resulting best lower bound is precisely that
of McCoy. Thus our bounds on ne are always more restrictive than McCoy's bounds,
even when N = 2 [12].

In summary, we have presented some third-order bounds on the effective moduli of
N-phase composites. These new third-order bounds are tighter, or at worst coincident
with, existing third-order bounds due to McCoy and Beran and Molyneux. The main
results are given in (24), (26), (30) and (32) and involve an inversion of some second-order
tensors of material geometrical parameters. These bounds may be simplified further if one
assumes additional information about the composite. For instance, for Miller's symmetric
cell materials we have the relations (20) and only two parameters (G and E*) are required
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to evaluate the bounds. Finally the question of attainability of the second-order bounds
on the effective properties of iV-phase composites (N > 2) has been discussed in some
detail in the recent work of Milton [21] to which the interested reader is referred.
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Appendix: a new perturbation solution for the effective moduli. The perturbation
solutions for (ie and Ke presented in Sees. 3.1 and 3.2 assume that both |<5K| and |<5|i| are
small. Here we show how perturbation solutions for (ie and Ke can be developed which
require only that | <3|x | be small. For simplicity we will consider only two-phase com-
posites (N = 2).

Our aim is to manipulate the expression (10) for U(k) so that the right-hand side does
not incorporate U in the terms which are zeroth-order in 8/i. Operating on both sides of
(9) by £k*o, „ — k) where n =/= 0, we obtain after some manipulation and relabelling

k k-
<1 + 2/i)k • U(k) = 3i iSKX^co^k) -I- 2i <5/z<e,7> -jj2 co^k)

<5/1
3i SK(e)(f2 -/!)«,(k) + 2i 6/*<£,•,•> £

m*0,k m<1 + 2/i>
■ co^k — mjcojfm) + d/lco^k)// — 6kfyf2k • U(k)

v v n. ^ (m • n)n • U(m)-26(1 2, L a)i(k - njcu^n - m) ■
n*0, k m*0, n n2

„c v- „ (mk)k • U(m)— 26(i X coi(k-m) —2 , (36)
m*0,k K
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where
A = /£-§/*, SK = Kl-K2, 5h = h1-h2,

<A + 2/i> = <A> + 2(n) =fi^2 +fi^i + 2/i/ii + 2/2 ̂ 2 >
and

H= £k.U(kK(-k).
k* 0

In obtaining (36) we have taken N = q = 2 and used the identities (2) and (3). By multi-
plying both sides of (9) by cot( — k) and summing over k^O we find an alternative ex-
pression for H :

31 SKfJ2(ey 2 dfi y y (m • k)k • U(m)
H = \ 7T7t~\ L L wi(k ~ mjoj^-k) 73——

<A + 2/j> <1 + 2//) k*0 m^0,k &

Substituting this in (36) gives

, 3i «5/^<e> cw^k) 2 ^<1 + 2/i> ^ , (m • k)k • U(m)
k • U(k) = —/? L T \ n TT} wi _L->/ \A 2. wi(k - m) T5 + 2[i} (ylj -f 2<//))(i2 + 2</i» m^0,k ^

+ 2i «5Ju<e0>

(At + 2</i»(A2 + 2<^»
\k
kn1 <«i(k)<X + 2h>

— <5/ £ m' ̂ i; co^k — mjaj^m)
m =£ 0, k m

2 <5A <5/i+
(At + 2</i»(A2 + 2</i»
co,(k) <5A

V- V- „ , , , (m • n)n • U(m)I I «i(k - - m) 2 
1*0, k m*0, n "

2/i) n,to m^O.n

Next by inserting (37) back into (10) we have

v- v- , , „ (m • n)n • U(m)~]L L wi(n - mW - n)  2  .
i^O m^O.n H J

(37)

T, \ 3i' sk<e> «i(k)^i , 2i Sf! coj(k)
Ut(k) =  ,2/7 , ^ v  +

+

fc2<A + 2/Z> </*>

H Sn^k,
(A, + 2</i»(A2 + 2<Ju»/c2

<%> - tt" <«'.,>

y,
k7^ <A~ + 2/x>«1(k)

— <5A £ m" (o^k — mjco^m)
m*0,k m

2£A
(At + 2</i»(A2 + 2(n))k

^ ^ , (m • n)n • U(m)
L L wi(k - n)£0i(n - m) — 2 

.n * 0, k m 0, n n

, cu^k) <5A ̂  ^ / Jm • n)n • l/(m)]+ <TT«.5. "n) ? J
"TT I <Oi(k - m)
\/V m*0,k

(m • k)t/, (m) + mt k • U(m) — 2(m • k)k • U(m)fcj/fe2
k2

2 <5ju<A + 2n)kt ^ (m • k)k • U(m) ,,ON U L  12 • (38)
(A, + 2</i»(A2 + 2</i»/c
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This achieves our aim: the zeroth-order term in Sfi on the right-hand side of (38) does not
incorporate U. This equation can in principle be used to solve for I/, (k) to any order in
<5/i, assuming <5/i is small. It is not required that Sk or SK be small. By following the
method outlined in Sees. 3.1 and 3.2 we can then obtain expressions for Ke and ne correct
up to any order in Sfi. Specifically, we find that to first order in Sn,

... ... , 12/,/j 6K' <SMf, -ft)
OK+ 4x) OR + iny • (39)

and to second order in Sfi,

( 6/1/2 V[<* + 2/x><3K + 4/i> - 3fJ2SK2 - 2<At)(C1 ~h) SK]
e 5</x>(3K1 + 4(/i)X3K2 + 4(/i)) 1 '

where

The expansion (39) is consistent with the bounds (33), which coincide to first order in Sfi.
Similarly the expansion (40) is consistent with the bounds on fie, presented in Eq. (47) of
[12], which coincide to second order in Sfi. We remark that there is a typographical error
in Eq. (47) of [12]; it should read

* / x 6 V/1/2
tib = <A*>

6</i> + H2 "A2


