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New tolerance factor to predict the stability
of perovskite oxides and halides

Christopher J. Bartel1*, Christopher Sutton2, Bryan R. Goldsmith3, Runhai Ouyang2,

Charles B. Musgrave1,4,5, Luca M. Ghiringhelli2*, Matthias Scheffler2

Predicting the stability of the perovskite structure remains a long-standing challenge for the discovery of new
functional materials for many applications including photovoltaics and electrocatalysts. We developed an accurate,
physically interpretable, and one-dimensional tolerance factor, t, that correctly predicts 92% of compounds as perov-
skite or nonperovskite for an experimental dataset of 576 ABX3 materials (X = O2−, F−, Cl−, Br−, I−) using a novel data
analytics approach based on SISSO (sure independence screening and sparsifying operator). t is shown to generalize
outside the training set for 1034 experimentally realized single and double perovskites (91% accuracy) and is applied
to identify 23,314 newdouble perovskites (A2BB′X6) rankedby their probability of being stable as perovskite. Thiswork
guides experimentalists and theorists toward which perovskites are most likely to be successfully synthesized and
demonstrates an approach to descriptor identification that can be extended to arbitrary applications beyond perov-
skite stability predictions.

INTRODUCTION

Crystal structure prediction from chemical composition continues
as a persistent challenge to accelerated materials discovery (1, 2).
Most approaches capable of addressing this challenge require several
computationally demanding electronic-structure calculations for each
material composition, limiting their use to a small set of materials (3–6).
Alternatively, descriptor-based approaches enable high-throughput
screening applications because they provide rapid estimates of material
properties (7, 8). Notably, the Goldschmidt tolerance factor, t (9), has
been used extensively to predict the stability of the perovskite structure
based only on the chemical formula, ABX3, and the ionic radii, ri, of
each ion (A, B, X)

t ¼ rA þ rX
ffiffiffi

2
p

ðrB þ rXÞ
ð1Þ

The perovskite crystal structure, as shown in Fig. 1A, is defined as
any ABX3 compound with a network of corner-sharing BX6 octahedra
surrounding a larger A-site cation (rA > rB), where the cations,A and B,
can span the periodic table and the anion, X, is typically a chalcogen or
halogen. Distortions from the cubic structure can arise from size mis-
match of the cations and anion, which results in additional perovskite
structures and nonperovskite structures. The B cation can also be re-
placed by two different ions, resulting in the double perovskite formula,
A2BB′X6 (Fig. 1B). Single and double perovskite materials have excep-
tional properties for a variety of applications such as electrocatalysis
(10), proton conduction (11), ferroelectrics (12) (using oxides, X = O2−),
battery materials (13) (using fluorides, X = F−), as well as photovoltaics
(14) and optoelectronics (15) (using the heavier halides, X = Cl−, Br−, I−).

The first step in designing new perovskites for these applications is
typically the assessment of stability using t, which has informed the de-
sign of perovskites for over 90 years. However, as reported in recent

studies, its accuracy is often insufficient (16). Considering 576 ABX3

solids experimentally characterized at ambient conditions and reported
in (17–19) (see Fig. 1C for the A, B, and X elements in this set), t cor-
rectly distinguishes between perovskite and nonperovskite for only 74%
of materials and performs considerably worse for compounds con-
taining heavier halides [chlorides (51% accuracy), bromides (56%), and
iodides (33%)] than for oxides (83%) and fluorides (83%) (Fig. 2A, fig. S1,
and table S1). This deficiency in generalization to halide perovskites
severely limits the applicability of t for materials discovery.

In this work, we present a new tolerance factor (t), which has
the form

t ¼ rX

rB
� nA nA � rA=rB

lnðrA=rBÞ

� �

ð2Þ

where nA is the oxidation state ofA, ri is the ionic radius of ion i, rA > rB
by definition, and t < 4.18 indicates perovskite. A high overall accuracy
of 92% for the experimental set (94% for a randomly chosen test set of
116 compounds) and nearly uniformperformance across the five anions
evaluated [oxides (92% accuracy), fluorides (92%), chlorides (90%), bro-
mides (93%), and iodides (91%)] is achieved with t (Fig. 2B, fig. S1, and
table S1). Like t, the prediction of perovskite stability using t requires
only the chemical composition, allowing the tolerance factor to be
agnostic to the many structures that are considered perovskite. In addi-
tion to predicting if a material is stable as perovskite, t also provides a
monotonic estimate of the probability that a material is stable in the pe-
rovskite structure. The accurate andprobabilistic nature of t, aswell as its
generalizability over a broad range of single and double perovskites,
allows new physical insights into the stability of the perovskite structure
and the prediction of thousands of new double perovskite oxides and
halides, 23,314ofwhich are providedhere and rankedby their probability
of being stable in the perovskite structure.

RESULTS AND DISCUSSION

Finding an improved tolerance factor to predict
perovskite stability
One key aspect of the performance of t is how well the sum of ionic
radii estimates the interatomic bond distances for a given structure.

1Department of Chemical and Biological Engineering, University of Colorado Boulder,
Boulder, CO 80309, USA. 2Fritz-Haber-Institut derMax-Planck-Gesellschaft, Faradayweg
4-6, D-14195 Berlin, Germany. 3Department of Chemical Engineering, University of
Michigan, Ann Arbor, MI 48109‑2136, USA. 4Department of Chemistry, University of
Colorado Boulder, Boulder, CO 80309, USA. 5Materials and Chemical Science and Tech-
nology Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
*Corresponding author. Email: ghiringhelli@fhi-berlin.mpg.de (L.M.G.); christopher.
bartel@colorado.edu (C.J.B.)

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Bartel et al., Sci. Adv. 2019;5 : eaav0693 8 February 2019 1 of 9

 o
n
 F

e
b
ru

a
ry

 1
9
, 2

0
1
9

h
ttp

://a
d
v
a
n
c
e
s
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m
 

http://advances.sciencemag.org/


Shannon’s revised effective ionic radii (20) based on a systematic
empirical assessment of interatomic distances in nearly 1000 com-
pounds are the typical choice for radii because they provide ionic
radius as a function of ion, oxidation state, and coordination number

for the majority of elements. Most efforts to improve t have focused
on refining the input radii (17, 19, 21, 22) or increasing the dimension-
ality of the descriptor through two-dimensional (2D) structure maps
(18, 23, 24) or high-dimensional machine-learned models (25–27).

Fig. 1. Perovskite structure and composition. (A) ABX3, in the cubic single perovskite structure (Pm�3m), where the A cation is surrounded by a network of corner-
sharing BX6 octahedra. (B) A2BB′X6, in the rock salt double perovskite structure (Fm�3m), where the A cations are surrounded by an alternating network of BX6 and B′X6
octahedra. In this structure, inverting the B and B′ cations results in an equivalent structure. While the ideal cubic structures are shown here, perovskites may also adopt
various noncubic structures. (C) Map of the elements that occupy the A, B, and/or X sites within the 576 compounds experimentally characterized as perovskite or
nonperovskite at ambient conditions and reported in (17–19).

Fig. 2. Assessing the performance of the improved tolerance factor, t. (A) A decision tree classifier determines that the optimal bounds for perovskite formability using the
Goldschmidt tolerance factor (t) are 0.825 < t < 1.059, which yields a classification accuracy of 74% for 576 experimentally characterized ABX3 solids. (B) t achieves a classification
accuracy of 92%on the set of 576ABX3 solids basedonperovskite classification for t <4.18,with this decision boundary identified using a one-nodedecision tree. All classifications
made by t and t on the experimental dataset are provided in table S1. The largest value of t in the experimental set of 576 compounds is 181.5; however, all points with t > 13 are
correctly labeled as nonperovskite and are not shown to highlight the decisionboundary. The outlying compounds at t >10 that are labeledperovskite yet have large t arePuVO3,
AmVO3, and PuCrO3, which may indicate poorly defined radii or incorrect experimental characterization. (C) Comparison of Platt-scaled classification probabilities, P(t), versus t.
LaAlO3 andNaBeCl3 are labeled to highlight the variation in P(t) at nearly constant t. (D) Comparison between P(t) and the decomposition enthalpy (DHd) for 36 double perovskite
halides calculated usingdensity functional theory (DFT) in theFm�3mstructure in (32) and 37 single anddouble perovskite chalcogenides andhalides in thePm�3mstructure in (33).
The legend corresponds with the anion, X. Positive decomposition enthalpy (DHd > 0) indicates that the structure is stable with respect to decomposition into competing
compounds. The green andwhite shaded regions correspondwith agreement and disagreement between the calculated DHd and the classification by t. Points of disagreement
are outlined in red. CaZrO3 and CaHfO3 are labeled because they are known to be stable in the perovskite structure, although they are unstable in the cubic structure (34, 35). For
this reason, the best-fit line for the chalcogenides (X = O2−, S2−, Se2− ) excludes these two points.
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However, all hitherto applied approaches for improving the Gold-
schmidt tolerance factor are only effective over a limited range of
ABX3 compositions. Despite its modest classification accuracy, t re-
mains the primary descriptor used by experimentalists and theorists to
predict the stability of perovskites.

The SISSO (sure independence screening and sparsifying operator)
approach (28) was used to identify an improved tolerance factor for pre-
dicting whether a given compound is perovskite [determined by exper-
imental realization of any structure with corner-sharing BX6 octahedra
(21) at ambient conditions] or nonperovskite [determined by exper-
imental realization of any structure(s) without corner-sharing BX6

octahedra, including, in some cases, failed synthesis of any ABX3

compound]. Of the 576 experimentally characterized ABX3 solids,
80% were used to train and 20% were used to test the SISSO-learned
descriptor. Several alternative atomic properties were considered as
candidate features, and among them, SISSO determined that the best
performing descriptor, t (Eq. 2 and Fig. 2B), depends only on oxidation
states and Shannon ionic radii (see Materials andMethods for an ex-
planation of the approach used for descriptor identification and a
discussion of alternative approaches). For the set of 576 ABX3 com-
positions, t correctly labels 94% of the perovskites and 89% of the
nonperovskites compared with 94 and 49%, respectively, using t.
The primary advantage of t over t is the remarkable reduction in
compounds that are predicted to be perovskite but are not experi-
mentally identified as stable perovskites, with false-positive rates
for t and t of 11 and 51%, respectively. Full confusion matrices along
with additional performance metrics for t and t are provided in table
S2. The large decrease in false-positive rate (from 51% to 11%) while
substantially increasing the overall classification accuracy (from 74%
to 92%) demonstrates that t improves significantly upon t as a reli-
able tool to guide experimentalists toward which compounds can be
synthesized in perovskite structures.

Beyond the improved accuracy, a crucial advantage of t is themono-
tonic (continuous) dependence of perovskite stability on t. As t de-
creases, the t-based probability of being perovskite, P(t), increases,
where perovskites are expected for an empirically determined range
of t < 4.18 (Fig. 2B; Materials and Methods for details). Probabilities
are obtained using Platt’s scaling (29), where the binary classification
of perovskite/nonperovskite is transformed into a continuous probability
estimate of perovskite stability, P(t), by training a logistic regression
model on the t-derived binary classification. Probabilities cannot sim-
ilarly be obtained with t because the stability of the perovskite structure
does not increase or decrease monotonically with t, where 0.825 < t <
1.059 results in a classification as perovskite (this range maximizes the
classification accuracy of t on the set of 576 compounds). While P(t) is
sigmoidal with respect to t because of the logistic fit (fig. S2), a bell-
shaped behavior of P(t) with respect to t is observed because of the
multiple decision boundaries required for t (Fig. 2C). This relationship
leads to an increase in P(t) (i.e., probability of perovskite stability using
t), with an increase in t until a value of t ~ 0.9. Beyond this range, the
probabilities level out or decrease as t increases further.

The disparity between the t-derived perovskite probability, P(t), and
the assignment by t can be significant, especially in the range where t
predicts a stable perovskite (0.825 < t < 1.059). A comparison of the
perovskite (LaAlO3) and the nonperovskite (NaBeCl3) illustrates the
discrepancy between these two approaches. t incorrectly predicts both
compounds to be perovskite (t = 1.0), whereas P(t) varies from <10%
for NaBeCl3 to >97% for LaAlO3, in agreement with the experimental
results. For NaBeCl3, instability in the perovskite structure arises

from an insufficiently large Be2+ cation on the B site, which leads
to unstable BeCl6 octahedra. This contribution to perovskite stability
is accounted for in the first term of t (Eq. 2, rX/rB = m

−1, where m is
the octahedral factor).

m is the typical choice for a second feature used in combination with
t (18, 19, 23) and was recently used to assess the predictive accuracy of
Goldschmidt’s “no-rattling” principle. In this analysis, six inequalities
dependent on t and m were derived and used to predict the formability
of single and double perovskites with a reported accuracy of ~80% (30).
Notably, training a decision tree algorithmon the bounds of t and m that
optimally separate perovskite from nonperovskite leads to a classifica-
tion accuracy of 85% for this dataset (fig. S3). In contrast to these 2D
descriptors based on (t, m), t incorporates m as a 1D descriptor yet still
achieves a higher accuracy of 92%, demonstrating the capability of the
SISSO algorithm to identify a highly accurate tolerance factor composed
of intuitively meaningful parameters.

The nature of geometrical descriptors, such as t or m, is fundamen-
tally different than that of data-driven descriptors, such as t. t and m are
derived from geometric constraints that indicate when the perovskite
structure is a possible structure that can form. However, these con-
straints do not necessarily indicate when the perovskite structure is
the ground-state structure and does form. For instance, if t = 1 and
the ionic limit on which t was derived is applicable (the interatomic
distances are sums of the ionic radii), these criteria do not suggest that
perovskite is the ground-state structure, only that the interatomic dis-
tances are such that the lattice constants in the A-X and B-X directions
can be commensurate with the perovskite structure. The fact that t does
not guarantee the formation of the perovskite structure is evident by the
high false-positive rate (51%) in the region of t where perovskite is
expected (0.825 < t < 1.059). Similarly, although m may fall within the
range where BX6 octahedra are expected based on geometric considera-
tions (0.414 < m < 0.732), the octahedra that form may be edge or face
sharing, and therefore, the observed structure is nonperovskite. In this
work, SISSO searches amassive space of potential descriptors to identify
the one that most successfully detects when a given chemical formula
will or will not crystallize in the perovskite structure, and because this is
the target property, t emerges as a much more predictive descriptor
than t or m.

Although the classification by t disagrees with the experimental
label for 8% of the 576 compounds, the agreement increases to 99%
outside the range 3.31 < t < 5.92 (200 compounds) and 100% outside
the range 3.31 < t < 12.08 (152 compounds). The experimental dataset
may also be imperfect as compounds can manifest different crystal
structures as a function of the synthesis conditions due to, e.g., defects
in the experimental samples (impurities, vacancies, etc.). These consid-
erations emphasize the usefulness of t-derived probabilities, in addition
to the binary classification of perovskite/nonperovskite, which address
these uncertainties in the experimental data and corresponding clas-
sification by t.

Comparing t to calculated perovskite stabilities
The precise and probabilistic nature of t, as well as its simple functional
form—depending only on widely available Shannon radii (and the
oxidation states required to determine the radii)—enables the rapid
search across composition space for stable perovskite materials. Before
attempting synthesis, it is common for new materials to be examined
using computational approaches; therefore, it is useful to compare the
predictions from t with those obtained using density functional theory
(DFT). The stabilities (decomposition enthalpies, DHd) of 73 single and
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double perovskite chalcogenides andhalideswere recently examinedwith
DFT using the Perdew-Burke-Ernzerhof (31) exchange-correlation
functional (DFT) (32, 33). t is found to agreewith the calculated stability
for 64 of 73 calculated materials. Importantly, the probabilities that re-
sult from classification with t linearly correlate with DHd, demonstrating
the value of the monotonic behavior of t and P(t) (Fig. 2D and table S3).

Although t appears to disagree with these DFT calculations for nine
compounds, six disagreements lie near the decision boundaries [P(t) =
0.5, DHd = 0 meV/atom], suggesting that they cannot be confidently
classified as stable or unstable perovskites using t or DFT calculations
of the cubic structure. Of the remaining disagreements, CaZrO3 and
CaHfO3 reveal the power of t compared with DFT calculations of the
cubic structure, as these two oxides are known to be isostructural with
the orthorhombic perovskite CaTiO3, from which the name perovskite
originates (34, 35). DHd < −90 meV/atom for these two compounds in
the cubic structure, indicating that they are nonperovskites. In contrast, t
predicts both compounds to be stable perovskiteswith ~65%probability,
which agrees with the experimental results. These results show that a
key challenge in the prediction of perovskite stability from quantum
chemical calculations is the requirement of a specific structure as an
input, as there are more than a dozen unique structures classified as
perovskite (i.e., those having corner-sharingBX6 octahedra) andmany
more that are nonperovskite.

Several recent machine-learned descriptors for perovskite stability
have been trained or tested on DFT-calculated stabilities of only the
cubic perovskite structure (33, 36–38). However, less than 10% of pe-
rovskites are observed experimentally in this structure (21), leading to
an inherent disagreement between the descriptor predictions and ex-
perimental observations. Recently, it was shown that of 254 synthesized
perovskite oxides (ABO3), DFT calculations in the Open Quantum
Materials Database (39) predict only 186 (70%) to be stable or even
moderately unstable (within 100 meV/atom of the convex hull) (27).
The discrepancy is likely associated with the difference in energy be-
tween the true perovskite ground state and the calculated high-symmetry
structure(s). Because t was trained exclusively on the experimental char-
acterization of ABX3 compounds, t is informed by the true ground-state
(ormetastable but observed) structure of eachABX3 and the potential for
these compounds to decompose into any compound(s) in the A-B-X
composition space. A principal advantage of t over many existing de-
scriptors is that its identification and validation were based on experi-
mentally observed stability or instability of a structurally diverse dataset.

Extension to double perovskite oxides and halides
Double perovskites are particularly intriguing as an emerging class of
semiconductors that offer a lead-free alternative to traditional perovskite
photoabsorbers and an increased compositional tunability for enhancing
desired properties such as catalytic activity (10, 16, 40). Still, the experi-
mentally realized composition space of double perovskites is relatively un-
explored compared with the number of possible A, B, B′, and X
combinations that can form A2BB’X6 compounds. The set of 576
compounds used for training and testing t is composed of 49 A cations,
67 B cations, and 5 X anions, from which >500,000 double perovskite
formulas, A2BB′X6, can be constructed. Comparison with the Inorganic
Crystal Structure Database (ICSD) (30, 41) reveals only 918 compounds
(<0.2%) with known crystal structures, 868 of which are perovskite.

Although t was only trained on ABX3 compounds, it is readily
adaptable to double perovskites because it depends only on composition
and not structure. To extend t toA2BB′X6 formulas, rB is approximated
as the arithmetic mean of the two B-site radii (rB, rB′). t correctly clas-

sifies 91% of these 918 A2BB′X6 compounds in the ICSD (compared
with 92% on 576 ABX3 compounds), recovering 806 of 868 known
double perovskites (table S4). The geometricmean has also been used to
approximate the radius of a site with two ions (42).We find that this has
little effect on classification with t, as 91% of the 918 A2BB′X6 com-
pounds are also correctly classified using the geometric mean for rB,
and the classification label differs for only 14 of 918 compounds using
the arithmetic or geometric mean. Although t was identified using 460
ABX3 compounds, the agreement with experiment on these com-
pounds (92%) is comparable to that on the 1034 compounds (91%) that
spanABX3 (116 compounds) andA2BB′X6 (918 compounds) formulas
andwas completely excluded fromthedevelopment of t (i.e., test set com-
pounds). This result indicates pronounced generalizability to predicting
experimental realization for single and double perovskites that are yet to
be discovered. With t thoroughly validated as being predictive of exper-
imental stability, the space of yet-undiscovered double perovskites was
explored to identify 23,314 charge-balanceddouble perovskites that t pre-
dicts to be stable at ambient conditions (of >500,000 candidates). These
compounds are provided in table S4 including assigned oxidation states
and radii along with t and t, predictions made using each tolerance
factor, and classification in the ICSD where available. There are thou-
sands of additional compounds with substitutions on the A and/or
X sites, AA′BB′(XX′)3, that are expected to be similarly rich in yet-
undiscovered perovskite compounds.

Two particularly attractive classes of materials within this set of
A2BB′X6 compounds are double perovskites withA = Cs+,X = Cl− and
A= La3+,X=O2−, which have garnered substantial interest in a number
of applications including photovoltaics, electrocatalysis, and ferro-
electricity. The ICSD contains 45 compounds (42 perovskites) with
the formula CsBB′Cl6, 43 of which are correctly classified as perovskite
or nonperovskite by t. From the high-throughput analysis using t, we
predict an additional 420 perovskites to be stable with 164 having at
least the probability of perovskite formation as the recently synthesized
perovskite, Cs2AgBiCl6 [P(t) = 69.6%] (43). A map of perovskite prob-
abilities for charge-balanced Cs2BB′Cl6 compounds is shown in Fig. 3
(lower triangle). Within this set of 164 probable perovskites, there is an
opportunity to synthesize double perovskite chlorides that contain
3d transition metals substituted on one or both B sites, as 83 new
compounds of this type are predicted to be stable as perovskite with
high probability.

While double perovskite oxides have been explored extensively for a
number of applications, the small radius and favorable charge of O2−

yields a massive design space for the discovery of new compounds.
For La2BB′O6, ~63% of candidate compositions are found to be
charge-balanced compared with only ~24% of candidate Cs2BB′Cl6
compounds. The ICSD contains 85 La2BB′O6 compounds, all of which
are predicted to be perovskite by t in agreement with the experiment.
We predict an additional 1128 perovskites to be discoverable in this
space, with a remarkable 990 havingP(t)≥ 85% (Fig. 3, upper triangle).
All 128ABX3 compounds in the experimental set that meet this thresh-
old are experimentally realized as perovskite, suggesting that there is
ample opportunity for perovskite discovery in lanthanum oxides.

Compositional mapping of perovskite stability
In addition to enabling the rapid exploration of stoichiometric pe-
rovskite compositions, t provides the probability of perovskite sta-
bility, P(t), for an arbitrary combination of nA, rA, rB, and rX, which
is shown in Fig. 4. For each grouping shown in Fig. 4, experimen-
tally realized perovskites and nonperovskites are shown as single
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points to compare with the range of values in the predictions made from
t. Doping at various concentrations presents a nearly infinite number of
A1−xA′xB1−yB′y(X1−zX′z)3 compositions that allows the tuning of technol-
ogically useful properties. t suggests the size and concentration of dop-
ants on the A, B, or X sites that likely lead to improved stability in
the perovskite structure. Conversely, compounds that lie in the high-
probability region are likely amenable to ionic substitutions that de-
crease the probability of forming a perovskite but may improve a
desired property for another application. For example, LaCoO3, with
P(t) = 98.9%, should accommodate reasonable ionic substitutions (i.e.,
A sites of comparable size to La or B sites of comparable size to Co)
and was recently shown to have enhanced oxygen exchange capacity
and nitric oxide oxidation kinetics with stable substitutions of Sr on
the A site (44).

The probability maps in Fig. 4 arise from the functional form of
t (Eq. 2) and provide insights into the stability of the perovskite struc-
ture as the size of each ion is varied. The perovskite structure requires
that theA and B cations occupy distinct sites in theABX3 lattice, withA
12-fold and B 6-fold coordinated by X. When rA and rB are too similar,
nonperovskite lattices that have similarly coordinated A and B sites,
such as cubic bixbyite, become preferred over the perovskite struc-
ture. On the basis of the construct of t, as rA/rB→ 1, P(t)→ 0, which
arises from the +x/ln(x) (x = rA/rB) term, where limx→1

x
lnðxÞ ¼ þ∞

and larger values of t lead to lower probabilities of forming perov-
skites. When rA = rB, t is undefined, yet compounds where A and B
have identical radii are rare and not expected to adopt perovskite
structures (t = 0.71).

The octahedral term in t (rX/rB) alsomanifests itself in the probability
maps, particularly in the lower bound on rB where perovskites are
expected as rX is varied. As rX increases, rB must similarly increase to
enable the formation of stable BX6 octahedra. This effect is noticeable
when separately comparing compounds containingCl− (left), Br− (center),
and I− (right) (bottom row of Fig. 4), where the range of allowed cation
radii decreases as the anion radius increases. For rB << rX, rX/rB becomes
large, which increases t and therefore decreases the probability of stability
in the perovskite structure. This accounts for the inability of small B-site
ions to sufficiently separate X anions in BX6 octahedra, where geometric
arguments suggest that B is sufficiently large to form BX6 octahedra only
for rB/rX > 0.414. Because the cation radii ratios strongly affect the prob-
ability of perovskite, as discussed in the context of x/ln(x), rX also has a
noticeable indirect effect on the lower bound of rA, which increases as
rX increases.

The role of nA in t is more difficult to parse, but its placement dic-
tates two effects on stability—as A is more oxidized (increasing nA),
−nA

2 increases the probability of forming the perovskite structure, but
nA also magnifies the effect of the x/ln(x) term, increasing the impor-
tance of the cation radii ratio. Notably, nA=1 formost halides and some
oxides (245 of the 576 compounds in our set), and in these cases, t ¼
rX
rB
þ rA=rB

lnðrA=rBÞ � 1for all combinations ofA,B, andX andnAplays no role
as the composition is varied.

This analysis illustrates how data-driven approaches not only can be
used to maximize the predictive accuracy of new descriptors but also
can be leveraged to understand the actuating mechanisms of a target
property—in this case, perovskite stability. This attribute distinguishes

Fig. 3. Map of predicted double perovskite oxides and halides. Lower triangle: Probability of forming a stable perovskite with the formula Cs2BB′Cl6 as predicted by
t. Upper triangle: Probability of forming a stable perovskite with the formula La2BB′O6 as predicted by t. White spaces indicate B/B′ combinations that do not result in
charge-balanced compounds with rA > rB. The colors indicate the Platt-scaled classification probabilities, P(t), with higher P(t) indicating a higher probability of forming
a stable perovskite. B/B′ sites are restricted to ions that are labeled as B sites in the experimental set of 576 ABX3 compounds.
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t from other descriptors for perovskite stability that have emerged
in recent years. For instance, three recent works have shown that the
experimental formability of perovskite oxides and halides can be sepa-
rately predictedwith high accuracy using kernel support vectormachines
(26), gradient boosted decision trees (25), or a random forest of decision
trees (27).While these approaches can yield highly accuratemodels, the
resulting descriptors are not documented analytically, and therefore, the
mechanism by which they make the perovskite/nonperovskite classifi-
cation is opaque.

CONCLUSIONS

We report a new tolerance factor, t, that enables the prediction of ex-
perimentally observed perovskite stability significantly better than the
widely used Goldschmidt tolerance factor, t, and the 2D structure map
using t and the octahedral factor, m. For 576 ABX3 and 918 A2BB′X6

compounds, the prediction by t agrees with the experimentally observed
stability for >90% of compounds, with >1000 of these compounds re-
served for testing generalizability (prediction accuracy). The deficiency
of t arises from its functional form and not the input features, as the cal-
culation of t requires the same inputs as t (composition, oxidation states,
and Shannon ionic radii). Thus, t enables a superior prediction of perov-
skite stabilitywith negligible computational cost. Themonotonic and 1D
nature of t allows the determination of perovskite probability as a con-
tinuous function of the radii and oxidation states of A, B, and X. These
probabilities are shown to linearly correlatewithDFT-computeddecom-
position enthalpies andhelp clarify how chemical substitutions at each of
the sites modulate the tendency for perovskite formation. Using t, we
predict the probability of double perovskite formation for thousands
of unexplored compounds, resulting in a library of stable perovskites
ordered by their likelihood of forming perovskites. Because of the sim-
plicity and accuracy of t, we expect its use to accelerate the discovery and
design of state-of-the-art perovskite materials for applications ranging
from photovoltaics to electrocatalysis.

MATERIALS AND METHODS

Radii assignment
To develop a descriptor that takes as input the chemical composition
and outputs a prediction of perovskite stability, the features that com-
prise the descriptor must also be based only on composition. However,
it is not known a priori which cation will occupy the A or B site given
only a chemical composition, CC′X3 (C and C′ being cations). There-
fore, we developed a systematic method for determining which cat-
ion is A or B to enable t to be applied to an arbitrary new material.
First, a list of allowed oxidation states is defined for each cation based
on Shannon’s radii (20). All pairs of oxidation states forC andC′ that
charge-balance X3 are considered. If more than one charge-balanced
pair exists, a single pair is chosen on the basis of the electronegativity
ratio of the two cations (cC/cC′). If 0.9 < cC/cC′ < 1.1, the pair that
minimizes |nC – nC′| is chosen, where nC is the oxidation state for C.
Otherwise, the pair that maximizes |nC – nC′| is chosen. With the
oxidation states of C and C′ assigned, the values of the Shannon radii
for the cations occupying theA and B sites are chosen to be closest to
the coordination number of 12 and 6, which are consistent with the
coordination environments of the A and B cations in the perovskite
structure. Last, the radii of the C and C′ cations were compared, and
the larger cation is assigned as the A-site cation. This strategy repro-
duced the assignment of the A and B cations for 100% of 313 exper-
imentally labeled perovskites.

Selection of t
For the identification of t among the offered candidates, the ox-
idation states (nA, nB, nX), ionic radii (rA, rB, rX), and radii ratios
(rA/rB, rA/rX, rB/rX) comprise the primary features, F0, where Fn

refers to the descriptor space with n iterations of complexity as de-
fined in (28). For example, F1 refers to the primary features (F0),
together with one iteration of algebraic/functional operations applied
to each feature in F0. F2 then refers to the application of algebraic/
functional operations to all potential descriptors in F1, and so forth.

Fig. 4. The effects of ionic radii and oxidation states on the stability of single and double perovskite oxides and halides. Top row: X = O2− (left to right: nA = 3+, 2+, 1+).
Bottom row: nA = 1+ (left to right: X = Cl−, Br−, I−). The experimentally realized perovskites LaGaO3, Sr2FeMoO6, AgNbO3, Cs2AgInCl6, (MA)2AgBiBr6, and MAPbI3 are
shown as open circles in the corresponding plot, which are all predicted to be stable by t. The experimentally realized nonperovskites InGaO3, CoMnO3, LiBiO3,
LiMgCl3, CsNiBr3, and RbPbI3 are shown as open triangles and predicted to be unstable in the perovskite structure by t. The organic molecule, methylammonium
(MA), is shown in the last two panels. While (MA)2AgBiBr6 and MAPbI3 are correctly classified with t, only inorganic cations were used for descriptor identification;
therefore, rA = 1.88 Å (Cs+) is the largest cation considered. The gray region where rB > rA is not classified because, when this occurs, A becomes B and vice versa
based on our selection rule rA > rB.
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Note that Fm contains all potential descriptors within Fn<m, with a
filter to remove redundant potential descriptors. For the discovery of
t, complexity up to F3 is considered, yielding ~3 × 109 potential de-
scriptors. An alternative would be to exclude the radii ratios from F0

and construct potential descriptors with complexity up to F4. How-
ever, given the minimal F0 = [nA, nB, nX, rA, rB, rX], there are ~10

8

potential descriptors in F3, so ~1016 potential descriptors would be
expected in F4 (based on ~102 being present in F1 and ~1 × 104 in
F2), and this number is impractical to screen using available comput-
ing resources.

The dataset of 576 ABX3 compositions was partitioned randomly
into an 80% training set for identifying candidate descriptors and a
20% test set for analyzing the predictive ability of each descriptor.
The top 100,000 potential descriptors most applicable to the perovskite
classification problemwere identified using one iteration of SISSO with
a subspace size of 100,000. Each descriptor in the set of ~3 × 109 was
ranked according to domain overlap, as described byOuyang et al. (28).
To identify a decision boundary for classification, a decision tree clas-
sifier with amaximumdepth of twowas fit to the top 100,000 candidate
descriptors ranked based on domain overlap. Domain overlap (and not
decision tree performance) was used as the SISSO ranking metric be-
cause of the much lower computational expense associated with ap-
plying this metric. Notably, t was the 14,467th highest ranked
descriptor by SISSO using the domain overlap metric, and hence, this
defines the minimum subspace required to identify t using this ap-
proach. Without evaluating a decision tree model for each descriptor
in the set of ~3 × 109 potential descriptors, we cannot be certain that
a subspace size of 100,000 is sufficient to find the best descriptor. How-
ever, the identification of twithin a subspace as small as 15,000 suggests
that a subspace size of 100,000 is sufficiently large to efficiently screen
themuch larger descriptor space.We have also conducted a test on this
primary feature space (F0 = [nA, nB, nX, rA, rB, rX, rA/rB, rA/rX, rB/rX])
with a subspace size of 500,000. Even after increasing the subspace size
by 5×, t remains the highest performing descriptor (a classification ac-
curacy of 92% on the 576-compound set). An important distinction be-
tween the SISSO approach described here and by Ouyang et al. (28) is
the choice of sparsifying operator (SO). In this work, domain overlap
was used to rank the features in SISSO, but a decision tree with a max-
imum depth of two was used as the SO (instead of domain overlap) to
identify the best descriptor of those selected by SISSO. This alternative
SO was used to decrease the leverage of individual data points, as the
experimental labeling of perovskite/nonperovskite is prone to some am-
biguity based on synthesis conditions, defects, and other experimental
considerations.

The benefit of including the radii ratios in F0 was made clear by
comparing the performance of t to the best descriptor obtained using
the minimal primary feature space with F0 = [nA, nB, nX, rA, rB, rX].
Repeating the procedure used to identify t yields a F3 with ~1 × 108

potential descriptors. The best 1Ddescriptorwas found to be rB
nXðrA�rBÞ þrB

rA
� rX

rB
, with a classification accuracy of 89%.

Alternative features
We also considered the effects of including properties outside of those
required to compute t or t. Beginning with F0 = [nA, nB, nX, rA, rB, rX,
rcov,A, rcov,B, rcov,X, IEA, IEB, IEX, cA, cB, cX], where rcov,i is the empirical
covalent radius of neutral element i, IEi is the empirical first ionization
energy of neutral element i, and ci is the Pauling electronegativity of
element i, all taken fromWebElements (45), an aggregation of a number
of references that are available within. Repeating the procedure used to

identify t results in ~6 × 1010 potential descriptors inF3. The best per-

forming 1D descriptor was found to be
rA=rB�

ffiffiffiffi

cX
p

rcov;X=rB � rcov;A=rcov;X
with a clas-

sification accuracy of 90%, lower than t that makes use of only the
oxidation states and ionic radii and is only slightly higher than the ac-
curacy of the descriptor obtained using the minimal feature set.

Increasing dimensionality
To assess the performance of descriptors with increased dimensionality,
following the approach to higher dimensional descriptor identification
using SISSO described in (28), the residuals from classification by t
(those misclassified by the decision tree, Fig. 2B) were used as the
target property in the search for a second dimension to include with
t. From the same set of ~3 × 109 potential descriptors constructed to
identify t, the 100,000 1D descriptors that best classify the 41 training
set compoundsmisclassified by twere identified on the basis of domain
overlap. Each of these 100,000 descriptors was paired with t, and the
performance of each 2D descriptor was assessed using a decision tree
with a maximum depth of two. The best performing 2D descriptor was

found to be t;
jrArX=r2B � nBrA=rBj

jrArB=r2X � rA=rBþnBj

� �

, with a classification accuracy of 95%

on the 576-compound set. Improvements are expected to diminish as
the dimensionality increases further due to the iterative nature of SISSO
and the higher-order residuals used for subspace selection. Although
the second dimension leads to slightly improved classification per-
formance on the experimental set compared with t, the simplicity
and monotonicity of t, which enables physical interpretation and the
extraction of meaningful probabilities, support its selection instead of
themore complex 2Ddescriptor. The benefits and capabilities of having
ameaningfully probabilistic 1D tolerance factor, such as t, are described
in detail within the main text.

Potential for overfitting
The SISSO algorithm as implemented here selects t from a space of
~3 × 109 candidate descriptors, and the only parameter that is fit is
the optimum value of t that defines the decision boundary for clas-
sification as perovskite or nonperovskite, t = 4.18. This decision
boundary was optimized using a decision tree to maximize the classifi-
cation accuracy on the training set of 460 compounds. In this case, Gini
impurity was minimized to optimize the decision boundary, but
alternative cost functions based on Kullback-Leibler divergence or clas-
sification accuracy (e.g., l2) would find the same decision boundary. The
SISSO descriptor identification is done from billions of candidates, but
these functions comprise a discrete set, i.e., they form a basis in a large
dimensional space where the number of training points is the dimen-
sionality of the space, which is not densely covered by the functions.
Therefore, the selection of only one function, t, cannot overfit the data.
However, if some physical mechanism determining the stability of pe-
rovskites is not represented in the training set, it might bemissed by the
learned formula (here, t), and therefore, the generalizability of the
model would be hampered. However, the 94% accuracy achieved by t
on the excluded set of 116 compounds shows that t can generalize
outside of the training data.

Alternative radii for more covalent compounds
Ionic radii are required inputs for t (and t), and although the Shannon
effective ionic radii are ubiquitous in solid-state materials research, a
new set of B2+ radii was recently proposed for 18 cations to account
for how their effective cationic radii vary as a function of increased
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covalency with the heavier halides (19). These revised radii apply to
129 of the 576 experimentally characterized compounds compiled in
this dataset (62% of halides). Using these revised radii results in a
5% decrease in the accuracy of t to 86% for these 129 compounds com-
pared to a classification accuracy of 91% using the Shannon radii for
these same compounds. The application of t using Shannon radii for
presumably covalent compounds was further validated by noting that
t correctly classifies 37 of 40 compounds that contain Sn or Pb and
achieves an accuracy of 91% for 141 compoundswithX=Cl−, Br−, or I−.
In addition to the higher accuracy achieved by t when using Shannon
radii, we note that the Shannon radii are more comprehensive than the
revised radii in (19), applying to more ions, oxidation states, and co-
ordination environments, and are thus recommended for the calcu-
lation of t.

Computer packages used
SISSO was performed using Fortran 90. Platt’s scaling (29) was used to
extract classification probabilities for t by fitting a logistic regres-
sion model on the decision tree classifications using threefold cross-
validation. Decision tree fitting and Platt scaling were performed
within the Python package scikit-learn. Data visualizations were
generated within the Python packages Matplotlib and Seaborn.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/2/eaav0693/DC1
Table S1. The 576 ABX3 used for training and testing t.
Table S2. Confusion matrices for t (above) and t (below).
Table S3. Additional information associated with Fig. 2D.
Table S4. Double perovskite oxides and halides.
Fig. S1. Comparing the performance of t and t by composition.
Fig. S2. Sigmoidal relationship between P(t) and t.
Fig. S3. (t, m) structure map for 576 ABX3 solids.
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