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Abstract

Rheumatologists see patients with a range of autoimmune diseases. Phenotyping these diseases for
diagnosis, prognosis and selection of therapies is an ever increasing problem. Advances in
multiplexed assay technology at the gene, protein, and cellular level have enabled the
identification of `actionable biomarkers'; that is, biological metrics that can inform clinical
practice. Not only will such biomarkers yield insight into the development, remission, and
exacerbation of a disease, they will undoubtedly improve diagnostic sensitivity and accuracy of
classification, and ultimately guide treatment. This Review provides an introduction to these
powerful technologies that could promote the identification of actionable biomarkers, including
mass cytometry, protein arrays, and immunoglobulin and T-cell receptor high-throughput
sequencing. In our opinion, these technologies should become part of routine clinical practice for
the management of autoimmune diseases. The use of analytical tools to deconvolve the data
obtained from use of these technologies is also presented here. These analyses are revealing a
more comprehensive and interconnected view of the immune system than ever before and should
have an important role in directing future treatment approaches for autoimmune diseases.

Introduction

Biomarkers—biological characteristics that can be objectively evaluated as indicators of a
biological or pathological state—are being sought for many diseases. Biomarkers have the
potential to transform our basic understanding and clinical management of a wide range of
human illnesses. We have coined the term `actionable biomarkers' to describe biomarkers
that can inform clinical practice—that is, biomarkers upon which clinicians can act (Figure
1).

Actionable biomarkers are already used in the clinical management of certain diseases, most
notably cancer. A prime example is the BCR–ABL1 fusion gene of t(9;22) chromosomal
translocations, which, in the correct clinical context, can be used to identify patients with
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chronic myelogenous leukaemia who are likely to respond to therapy with drugs that target
the activity of the tyrosine protein kinase ABL1.1 Likewise, overexpression of the receptor
tyrosine-protein kinase erbB2 (also known as HER2) characterizes the subset of patients
with breast cancer who are likely to respond to treatment with a monoclonal antibody that
targets the erbB2 receptor.2 These two success stories illustrate how molecular
characteristics that are linked to disease pathogenesis, rather than clinical characteristics
(which are generally a disease epiphenomenon), are most likely to serve as actionable
biomarkers. In these examples a single biomarker suffices; in other cases, however, a panel
of multiple biomarkers is more useful as it can yield a more comprehensive picture (termed
a molecular signature) of a disease and its subtypes.3–6 In fact, in rheumatic diseases, only
profiling using multiple biomarkers has so far proven useful.

One potential use for actionable biomarkers is in diagnosing disease. First, by casting a wide
net, combinations of biomarkers might be identified that improve both the sensitivity and
specificity of disease detection and classification. Second, by revealing a molecular
signature of disease before the onset of definitive, characteristic symptoms, biomarkers
might enable earlier diagnosis and therefore earlier institution of therapeutic, or even
preventive, interventions. For example, biomarkers that can distinguish individuals with
early-stage rheumatoid arthritis (RA) from patients with undifferentiated arthritis—or better
yet from asymptomatic individuals who are genetically predisposed to develop RA—would
be invaluable as evidence suggests that early intervention with existing drugs could prevent
RA progression.7

As illustrated earlier, a potential use for actionable biomarkers is in predicting how an
individual's disease will develop. As all known rheumatic diseases are heterogeneous, they
do not manifest identically in all patients, nor do all patients respond to treatment in the
same way. For example, RA ranges from mild and self-limiting to severe and progressive. In
our opinion, stratification into subtypes is important for the clinical management of a disease
and we propose that actionable biomarkers could aid this subtyping. Stratification of disease
could help clinicians determine whether an individual's condition is likely to progress, and
therefore whether aggressive intervention is needed, as well as select and establish an
effective treatment strategy. For example, less than two-thirds of all individuals with RA
have an adequate response to anti-TNF therapy.8 Using appropriate biomarkers might enable
identification of non-responders before TNF-inhibitor therapy is initiated, thereby lowering
costs and preventing unwanted complications associated with a therapy that was not going to
be effective. Emerging reports of autoantibody profiles that can predict disease progression
in so-called incomplete lupus,9 predict which patients will develop RA,10 or predict which
patients with RA will respond to anti-TNF therapy,11 suggest that biomarker-based
predictive tests will become as much a mainstay in the management of rheumatic diseases as
they currently are in cancer.

Actionable biomarkers can also be used to monitor a patient's response to specific therapies.
Such pharmaco-dynamic biomarkers can accelerate clinical trials by serving as early
surrogate markers of the efficacy and safety of an investigational drug as well as guide
clinicians as to when a given therapy should be initiated.

Systems immunology

The nascent field of systems immunology, a branch of systems biology, uses computational
mathematical modelling to characterize the immune system and predict its response when a
specific component is affected. New technological approaches that can generate vast
multiplex datasets have enabled the development of this field. Indeed, more than 40,000
mRNA transcripts from the human genome can now be routinely measured in a single
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microarray (a technology that provides details on which genes are expressed in a tissue or
cell of interest). Multiplexed Luminex TM (Luminex Corporation, Austin, TX, USA) assays
can quantitate 50 or more proteins that are involved in inflammation (that is, cytokines and
chemokines) in a single small sample of tissue or blood; protein arrays can measure many
more.

Additionally, new flow-cytometric methods are now available to simultaneously analyze the
expression of 30 or more surface and intracellular proteins in individual cells. This
technology promotes the identification and enumeration of the various peripheral blood cells
in addition to revealing, for instance, which signalling pathways are activated in the different
cell types.

A successful systems immunology study requires that the assays employed are as
comprehensive as possible, and that they also possess sufficient resolution to distinguish the
changes that accompany differential outcomes. Investigators of systems immunology are
increasingly measuring a plethora of signals in response to an experimental intervention,
such as a vaccine.12 Complex signatures emerging from such studies can act as biomarkers,
and also provide clues to the mechanistic pathways that lead to specific outcomes, such as
protection from disease. In addition, sufficient assay standardization and sample handling,
including standardization of processing and storage protocols, are essential for a study to
achieve reproducible results over time. This standardization is particularly important for
studies in human immunology, which often involve longitudinal sampling, collection of
specimens from multiple sites, and/or subject recruitment that can span multiple years.

New approaches in systems immunology

New immunological technologies provide novel types of highly multiplexed readouts, with
the potential to measure the activation induced in vitro by a given intervention, as well as
resting immune phenotypes of cells (Figure 1). For example, individual differences in
activation-induced signalling, but not in resting expression levels of certain
phosphoproteins, correlate with disease outcome in acute myeloid leukaemia.13 Therefore,
measuring changes in activation-induced signalling in rheumatic autoimmune diseases,
using a flow cytometry based technique, might lead to changes in the clinical management
of these diseases.

Mass cytometry

Cytometry by time-of-flight (CyTOF) mass cytometry uses multiple antibodies, each tagged
with multiple copies of an individual heavy metal ion, and measures their binding to cells by
mass spectrometry.14 By contrast, fluorescence cytometry is used to measure the binding of
antibodies tagged with a fluorophore. The advantage of mass cytometry is that many more
antibodies can be used in combination to assay a single sample (such as whole blood or
single-cell suspensions from tissues), without the inherent spillover between fluorescence
spectra that is inherent in optical fluorescence systems.15 Such a system has already been
used to quantitate differences in cellular constitution and drug responses of individual cells
in a complex mixture of cells such as bone marrow.16

In one of the authors' laboratories, 36 different metal ions have been chelated to polymers
that have then been conjugated to antibodies, DNA dyes, or other markers (H. T. Maecker,
unpublished work). In most cases, the resolution and sensitivity of mass cytometry are
comparable to those of fluorescence flow cytometry, although generating a sufficiently
sensitive reagent has so far not been possible for a few cellular markers. As experience with
this approach increases, and with the availability of pre-made heavy metal ion-antibody
conjugates for mass cytometry, this problem should be resolved. Moreover, as the number of
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mass cytometry systems in use increases, mass cytometry is likely to become the preferred
method for initial multi-parameter flow-cytometric analysis, especially as the cost per
marker analyzed is similar to that of fluorescence systems.

Analyzing complex flow cytometry datasets

A number of new analysis platforms such as HyperCyt® (IntelliCyt Corporation, 9620 San
Mateo Blvd NE, Alberquerque, NM 87113, USA)17 and CyTOF16 are vastly increasing the
sample throughput and number of independent proteomic parameters that can be measured
at the single cell level. The data collected in a single day, if reviewed by conventional
methods, would require viewing many thousands of bivariate plots. This approach is not
only inefficient, but also results in an incomplete understanding of the multidimensional
relationships present in the underlying data. Effective automated gating and specialized tools
for visualizing high-dimensional flow cytometry data are crucial areas of development.

In 2009, two automated gating methods—flow analysis with automated multivariate
estimation (FLAME)18 and density-based merging (DBM)19—were developed, both of
which are highly promising but that use very different approaches (Figure 2). By contrast,
spanning-tree progression analysis of density-normalized events (SPADE),20 a tool
developed for visualizing high-complexity flow cytometry data, foregoes traditional gating
and bivariate plots altogether.

Automated gating methods—FLAME and DBM

FLAME is based on the assumption that a sample of flow cytometry data can be modelled as
a heterogeneous mixture of populations of cells (known as clusters) in which each cluster
can be described by a skewed Student's t distribution (skew-t distribution).18 The skew-t
distribution better fits asymmetrical populations than traditional gating approaches that are
based on Gaussian mixture modelling. FLAME is designed to create an optimal number of
clusters by comparing the average scale-free intracluster distance with the average scale-free
intercluster distance. If the optimal number of populations has been assigned, the average
scale-free intracluster distance will be smaller than the average scale-free intercluster
distance (Figure 2).

FLAME seems to be effective when the populations can be distinguished by surface markers
whose expression is binary. However, certain combinations of markers, such as those used
in the study of cell cycle and differentiation, have staining patterns that are too irregular to
be well-approximated by the skew-t distribution. These combinations include distributions
with concave perimeters or distributions with `U', `L', or `S' shapes. Fortunately, DBM uses
the density contours of the data itself to define the gates for each population and is better-
suited for irregularly shaped distributions than FLAME.19 DBM detects inflection points in
the data, much as experienced immunologists do when gating manually. Unlike FLAME,
DBM becomes computationally inefficient beyond three dimensions.

FLAME and DBM are marked advances in automated cell-population gating, which is of
great importance for complex datasets that can require the gating of a large number of
distinct cell populations across each biological sample in the dataset. However, manually
reviewing all of the automatically assigned gates to confirm that they have been properly
applied can be time consuming.

Visualizing flow cytometry data—SPADE

As an alternative to automated gating approaches that attempt to approximate manual gating,
SPADE16,20 is a visualization tool that organizes clusters into a 2D tree representation on
the basis of their similarities across all markers selected by the user. By displaying clusters
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in a 2D tree structure, and using size and colour to denote cell density and marker
expression, SPADE enables users to rapidly review large, high-dimensional datasets (Figure
3). Importantly, the density-dependent down-sampling and agglomerative clustering
employed by SPADE can prevent rare cellular phenotypes from being `drowned out' by
more highly represented cell types.21

One caveat of SPADE is that the user must specify the number of clusters to be found in the
dataset, rather than have the number of clusters be driven by the data itself. In our
experience, the user must specify that SPADE find a large number of clusters in order to
ensure that rare cellular phenotypes are represented in the ensuing SPADE trees. This
requirement causes SPADE to overcluster the data. We think, therefore, that SPADE needs
to implement a formal methodology for determining when a single cluster cannot be further
subdivided on the basis of the data being analyzed. This methodology should, at a minimum,
take into consideration the empirically determined resolution limit of the detection platform,
whether it be CyTOF or conventional fluorescence-based flow cytometry. If all differences
between cells in a cluster fall below this resolution limit, then no further division into
subclusters would be permitted. In addition, SPADE should enable groups of files to be
compared using the same tree structure (such as comparing patients with healthy controls in
which the tree structure is defined by data from the healthy controls). Currently, groups of
files can only be compared if all data files are submitted to the program at one time, and no
group-level statistical comparisons are available.

Protein and peptide microarrays

Microscope-slide-based linear antigen arrays were developed over a decade ago and have
proven particularly useful for studying antibody responses to a large panel of different
antigens in autoimmune, rheumatologic, and allergic diseases.22 The initial methodology
was simple and involved printing purified or recombinant peptides or proteins on glass
microscope slides coated with materials such as poly-L lysine, epoxy, and nitrocellulose to
enhance noncovalent binding of the printed target peptides to the slide surface.22–25 Printing
was, and still is, usually performed using contact printing and standard robotic
microarrayers, but has evolved to include delivery using piezoelectric arrays, among other
methods. Array content for the characterization of autoantigens has also progressed to
include arrays of proteins, peptides, carbohydrates, and even lipids.26–28

Many groups still construct their own custom microarrays for individual diseases and
applications. Investigators who lack the instrumentation or expertise to set up an array
facility can purchase commercially available large-scale arrays containing over 10,000
recombinant proteins.29,30 The majority of array methodologies employ fluorescence or
chemiluminescence for detection; new technologies for detection include multiplexed
surface plasmon resonance,31 Raman spectral measurement,32,33 and magnetic particles on
giant magnetoresistive sensors.34 If antigen array techniques are to alter the clinical practice
of rheumatology, they will most likely do so in clinical laboratories or even at point-of-care
using sophisticated sensors to read out the array data.

Rheumatology has several factors that make it particularly well-suited to the use of protein
array technology. First, many rheumatic diseases are characterized by the presence of serum
autoantibodies that predate development of clinical disease. These proteins are useful for
diagnosis and prognosis, and, as some of them can be directly pathogenic, offer important
clues for understanding disease pathogenesis.35 Second, a large number of rheumatic and
other inflammatory diseases are thought to be autoimmune in nature, yet the target
antigen(s) have yet to be identified. Third, autoantibody identification might prove useful for
development of antigen-specific therapies36,37 or for selecting treatment modalities, such as
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belimumab or other biologic therapeutics, that are known to reduce levels of autoantibodies
in treated patients.

New approaches in SLE

Systemic lupus erythematosus (SLE) is a model autoimmune disease that has been
extensively studied using multiplex assays. SLE is characterized by multisystem organ
involvement and the production of high-titre, highly specific autoantibodies directed against
molecules found in the nucleus (anti-nuclear antibodies).38 SLE is an extremely
heterogeneous disease and, as such, is poorly understood, has few good biomarkers, and had
no approved therapeutics until 2011. A striking finding in SLE and SLE-related diseases,
including dermatomyositis, polymyositis, and systemic sclerosis, is that a majority of
prominent autoantigens exist as particles containing one or more polypeptides that are
associated with nucleic acids, such as RNA and DNA.39 Antigen arrays, whether spotted
onto microscope slides or developed as bead-based arrays, have been used to simultaneously
measure antibodies directed against all of the particles, individual polypeptides from the
particles, and even linear epitopes modelled on each polypeptide, for both SLE and SLE-
related diseases.22,40–43

Peripheral blood mononuclear cells (PBMCs) from a large subset of patients with SLE
contain what has been referred to as an interferon biosignature.36,44 Several groups have
demonstrated that mRNA transcript profiles from this SLE subset are highly similar to
mRNA transcript profiles from PBMCs from healthy individuals that are exposed, in vitro,
to type I interferons (IFN-α and IFN-β).44,45 This observation led to the hypothesis that
defects in type I interferons and/or interferon-related signalling pathways could underlie the
disease a large subset of patients who develop SLE, and could lead to therapies targeting this
pathway.46,47

Multiplexed protein measurements have now been used to broadly characterize serum
analytes; patients with SLE who possess the interferon biosignature were identified as part
of the Autoimmune Biomarkers Collaborative Network,44 to test the hypothesis that, just as
interferon-inducible transcript profiles in PBMCs are strongly associated with SLE,
interferon-inducible serum cytokine and chemokine expression can be found in blood from
patients with SLE. Bauer et al.48 used a method called rolling circle amplification to
compare protein levels of a panel of 160 cytokines, chemokines, growth factors, and soluble
receptors in patients with SLE with those in healthy controls.48 The same analytes were also
measured in supernatants prepared from PBMCs from healthy donors that had been
stimulated for varying periods of time with IFN-α. Surprisingly, ~30 circulating factors
were markedly upregulated in blood from patients with SLE, many of them interferon-
inducible. This striking observation provided early biochemical evidence that the interferon
biosignature was not just an epiphenomenon, but rather was directly linked to the biology of
the underlying disease. Importantly, these findings seem to be clinically actionable, as
measurement of just three of the chemokines (namely CCL2, CCL19 and CXCL10,
performed using a high-throughput method chemiluminescent assay) accurately predicted
disease activity and clinically meaningful disease flares over a 1-year period in a cohort of
267 patients with SLE.49 In fact, measurement of these three chemokines proved to be
superior to standard clinical rheumatology assays including those that measure C3, C4,
double-stranded DNA, erythrocyte sedimentation rate, and C-reactive protein level.49 Taken
together, these results provide a rationale for multiplexed measurement of cytokines and
chemokines in other autoimmune diseases, including RA, in which a subset of cytokines
have been shown to be elevated and associated with aggressive disease,50 and multiple
sclerosis, in which a multiplexed bead-based assay demonstrated that IL-17F levels were
elevated in patients with multiple sclerosis who failed to respond to IFN-β treatment.51
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Are autoantibody profiles associated with the interferon signatures described above? The
research group of one of the authors (P. J. Utz) has used arrays containing over 100 antigens
to analyse the same serum samples used by Bauer et. al.,48 and demonstrated a strong
association with autoantibodies directed against particles associated with RNA and DNA;
this association has now been replicated in two additional SLE cohorts (P. J. Utz,
unpublished work). We hypothesize that immune complexes composed of these RNA-
containing and DNA-containing antigens are internalized by B cells and dendritic cells, at
which point the RNA and DNA moieties dissociate from the immune complexes and
activate proinflammatory Toll-like receptors including TLR3, TLR7, TLR8 and TLR9.52

Autoantibody profiles have been used by other groups to study cohorts of patients with SLE,
RA, and multiple sclerosis. Multiple ongoing studies by one of the authors (P. J. Utz) are
focused on characterizing antibody profiles in patients who are exposed to investigational
drugs, with the goal of identifying predictive biomarkers.53 Although beyond the scope of
this Review, antigen arrays have been extremely useful in studying mouse models of lupus,
particularly mice lacking genes encoding interferon signalling molecules, retrogenic mice,
and mice with altered MHC molecules.37,54–57

Clearly, multiplexed protein measurements will be crucial for elucidating pathogenic
mechanisms in rheumatic diseases. Newer methods, such as high-throughput
immunophenotyping using transcription (HIT) and Intel® (Intel Corporation, Santa Clara,
CA, USA) peptide arrays synthesized using photolithography on the surface of silicon
wafers, will enable more rapid and accurate measurement of serum analytes than ever
before.58,59

High-throughput DNA sequencing

Immunoglobulin and TCR profiling

Prior to the development of `next-generation' DNA sequencing instruments in the first
decade of the 21st century, sequencing costs limited the characterization of B-cell receptor
(BCR) and T-cell (TCR) populations. The experimental landscape has changed with the
commercialization of several sequencing technologies that now make it possible to obtain
thousands to millions of TCR or immunoglobulin sequences at a relatively low cost.40,60–68

Currently, the major issues are: how best to prepare immune-receptor-sequence libraries,
which sequencing technologies to use, how to analyze the data, and how to relate sequence
data with functional activities of the immunoglobulin or TCR complexes.

One can break down the kinds of analysis enabled by high-throughput DNA sequencing of
TCR or immunoglobulin rearrangements into three main categories. First, this method can
be used to measure overall repertoire features, including: V, D and J segment usage
frequencies (Figure 4); junctional properties, such as exonuclease digestion and non-
templated base addition; the pattern of amino acid usage in the CDR3 region; evidence of
receptor editing; heavy-chain isotype usage and hypermutation of rearranged gene segments
(in the case of antibodies); and the number of distinct sequences present, which can be used
to estimate repertoire diversity. Second, the receptors expressed by clonally expanded B
cells or T cells (Figure 4) can be detected and characterized, whether or not one knows the
antigen specificity or other functional features of the expanded clones. Third, B-cell or T-
cell clones of interest that have previously been identified and correlated with known
function can be tracked. Each of these kinds of analysis can yield insights into lymphocyte
populations but the features of T-cell and B-cell repertoires that distinguish autoimmune
disease patients from healthy individuals have not yet been fully explored.
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Sequencing methodologies

The key variables in high-throughput DNA sequencing are read length, throughput,
accuracy, and cost. Although this technology is rapidly developing, most published work on
high-throughput sequencing of immunoglobulin and TCR to date has used either the 454
platform (Roche, Basel, Switzerland), owing its long read lengths (~450 bases) and
moderate throughput (1 million reads per run), or the Illumina platform (Ilumina, San Diego,
CA, USA) with its higher throughput (tens to hundreds of millions of reads per run) for
comparable cost, but shorter read lengths (up to 150 bases from each end of a DNA
molecule). The 454 instrument can capture a full immunoglobulin heavy chain V(D)J
sequence in a single read, which is very helpful when studying patterns of hypermutation in
clonally related IgH.40,43,61,64,68–70 TCR sequences can be captured by shorter reads
covering the V(D)J junction, and can take advantage of the Illumina platform
throughput.62,65,71

The number of sequences that must be measured to provide meaningful data depends on the
biological question being asked. Features of the immune repertoire such as segment usage,
junctional nucleotides, hypermutation rates, and clonality can be analysed with thousands to
tens of thousands of sequences. Deeper sequencing can detect progressively rarer
populations. Typically, the detection of very rare sequences will only be meaningful if one
has a prior reason for being interested in them, such as knowing the binding activity of these
sequences, having previously observed clonally-related sequences in the same individual, or
having seen similar sequences in other individuals. In addition, the finite rate of sequencing
errors or PCR errors in a deep-sequencing experiment leads to the generation of artifactual
sequence variants that can complicate estimation of the true diversity of an immunoglobulin
or TCR library, particularly if the number of input B cells or T cells is not known, or if
conservative filtering and replicate sample sequencing steps are not taken.63,72

For library preparation, multiplexed PCR reactions using large numbers of primers specific
to the families of genes that encode the V and J segments have the advantage of relatively
efficiently capturing sequences for amplification, but are difficult to optimize and usually
confer amplification bias to some sequences. Heavily hypermutated immunoglobulin
sequences are expected to be under-represented in all datasets owing to mutations in primer
binding sites. The use of a variety of primer sets, including primers located in the relatively
less-mutated leader regions of genes encoding the V segment, can alleviate this problem.73

An alternative strategy requires using a protocol involving rapid amplication of
complementary DNA ends (5' RACE), which does not rely on gene segment-specific
primers. Our current knowledge of human variation in immunoglobulin and TCR germline
loci is incomplete, and copy number variants (both deletions and amplifications), allelic
variants, and other germline locus features might affect detection strategies.74,75 Choice of
template can also affect data interpretation, as genomic DNA is normalized to one copy of a
V(D)J rearrangement per cell, and replicate libraries generated from genomic DNA aliquots
give information about distinct cell populations. As mRNA is present in multiple copies,
sequencing from cDNA actually limits the ability to distinguish between expanded clonal
populations compared with high levels of mRNA expression by a single cell.

BCR and TCR rearrangements in autoimmunity

The initiating events of human autoimmune disorders are uncertain, and, despite clear
evidence that adaptive immune responses have an important role in disease pathogenesis, it
remains unknown whether T cells or B cells, or neither, are the site of primary dysregulation
leading to immune-mediated damage of host tissues. Studies of the overall repertoire may
shed light on abnormal selection processes for T cells and B cells in patients with
autoimmune disease, as suggested by reports of alterations in the receptor repertoire
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following negative selection of self-reactive B cells, and impairment of selection
checkpoints in patients with SLE.42,76–78 DNA sequence-based understanding of the
underlying immunoglobulin and TCR repertoires, and of the receptors expressed by
expanded clonal B-cell and T-cell populations in patients, might offer important new
information for classification and monitoring of these diseases.

Will it transpire that the overall repertoires of immunoglobulin or TCR gene rearrangements
in patients with autoimmune diseases are pathognomonic in gene segment usage or detailed
sequence features, or that they have any other distinguishing parameter when compared with
the repertoires of healthy individuals? The answer is currently unknown. It is possible that
public TCR or immunoglobulin rearrangements (that is, identical receptors used to respond
to the same antigen in more than one person, despite the huge diversity of possible
receptors) could be essential pathologic features of some autoimmune diseases. However,
aberrant immune responses in different patients with the same diagnosis apparently target
multiple self-antigens, different subsets of self-antigens, and multiple epitopes on those
antigens, decreasing the likelihood that a particular immunoglobulin or TCR rearrangement
will be a highly specific or sensitive disease marker. Indeed, phage display of human single-
chain variable antibodies has shown that many distinct sequences can bind the same antigen;
over 1,000 distinct immunoglobulin heavy-chain rearrangements result in molecules that
bind human B-lymphocyte stimulator (BLyS, also known as TNF ligand superfamily
member 13B), with little overall stereotyping of this repertoire.79 Nevertheless, a high-
throughput DNA sequencing study of monozygotic twins showed that an individual's
germline genomic DNA sequence might be the strongest determinant of the usage of V, D
and J segments in the immunoglobulin repertoire, providing a potential mechanism for some
of the heritable predisposition to developing autoimmune disorders.80 Other results have
highlighted that extensive public rearrangements contribute to immunoglobulin light-chain
repertoires.81

If autoimmune disease-specific public TCR or BCR signatures prove difficult to identify,
tracking of clonally expanded (and presumably antigen-stimulated) B-cell or T-cell
populations over the course of disease and treatment could act as a filter, to identify clones
of cells that are likely to be involved in disease pathogenesis in a particular patient.
Persistence of particular clones of B cells or T cells, and their correlation with disease
activity, response to therapy, and likelihood of relapse, could guide immunosuppressive
medication regimens. Studies of lupus nephritis demonstrated that the T cells in renal
infiltrates are relatively oligoclonal, and that related clone members can also be detected in
blood samples.82–84 In one study, a clonal CD8+ T-cell lineage found in blood and renal
tissue samples from a patient with lupus nephritis was still detectable in a subsequent renal
biopsy sample taken 6 years later, suggesting that persistent and long-lived clones are a
relevant feature of this disease.84 Further investigation of these topics will be greatly
enhanced by the use of high-throughput DNA sequencing, by the more comprehensive
measurement of TCR or immunoglobulin rearrangements present in a given blood or tissue
sample, as well as by establishing age-adjusted normal-range measurements of the clonality
of T cells and B cells in healthy individuals. Elderly individuals have high rates of
oligoclonal and frequently cytomegalovirus-specific T-cell populations in the blood,
particularly in the CD8+ compartment.85,86 Ensuring that such persistent clonal expansion of
these T cells are interpreted with caution is an important factor in studies of
autoimmunity.85,86 Tracking of clonally related B cells and T cells in patient samples over
time, particularly if functional data have been obtained to identify pathologically important
cell lineages, might offer the best hope of monitoring disease in a patient-specific fashion.
This approach might be challenging, given the imperfect correlation or lag between the
presence of both B cells and T cells that express auto-reactive sequences, or the detection of
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autoantibodies in the serum, and the development of disease signs or symptoms in the
patient.35,77

In summary, high-throughput sequencing of immunoglobulin and TCR sequences offers a
number of opportunities to expand our knowledge of human autoimmune biology. Global
signatures might be present in some autoimmune diseases, but even in the absence of such
signatures, tracking of B-cell and T-cell clones in individual patients could be used to
monitor disease status and responses to therapy. We predict that the pairing of
immunoglobulin or TCR sequencing with other experimental methods (such as selection of
antigen-specific cells, or sorting of phenotypic lymphocyte populations of interest) should
be particularly powerful for evaluating disease phenotypes.

Heterogeneity of samples

In many cases, the biological samples analyzed by technologies such as microarrays are
heterogeneous; that is, they are composed of multiple different cell types, each with its own
gene and protein expression signatures. The frequency of different cell types might vary
markedly between specimens, as it does, for example, in peripheral blood samples (2–10-
fold differences in frequency among various cell types).87 In the case of gene expression
microarrays, for example, the tissue sample is lysed to isolate the mRNA, which is then
analysed by microarray. Traditional microarray analysis methods do not take into account
any information on cell-type heterogeneity in the sample and so cannot distinguish between
variations in gene expression attributable to an actual physiological change in a cell type and
those attributable to differences in actual cell-type frequency. Moreover, the contributions of
the different cell types to the total measured gene expression cannot be identified.88–90

Therefore, the ability of these methods to detect differentially expressed genes is strongly
affected by variation in the frequencies of different cell types in the sample;88,89,91

moreover, the interpretation of results is made difficult as transcripts are described as part of
a single system, without cellular boundaries or context (Figure 5A, right). Techniques to
circumvent this issue by isolating specific cell types and profiling each type separately affect
the underlying biology to a vary ing extent and make a strong underlying assumption on the
cell type of interest. As a result, the perspective of the overall system is missing; that is, any
information about non-profiled cell types is unknown and the effects of cell-to-cell
interaction are lost (Figure 5A, left).

A methodological innovation is to use statistical deconvolution techniques to achieve a
middle ground between cell-type specific and system-wide information levels (Figure 5A,
middle; Figure 5B). This approach exploits the fact that the majority of genes are expressed
to a varying degree in multiple cell types. By tracking how gene expression fluctuates
between samples in relation to cell-frequency changes, the average gene expression of each
cell type within an analyzed group of samples, as well as the cell-type specific expression
differences between groups, can be accurately estimated in silico.92–94 The sensitivity of
cell-type specific expression analysis performed in this manner is often orders of magnitude
higher than that obtained by analyzing heterogeneous tissue samples, yet is likely to be
lower than that achieved by isolating the individual cell types. Moreover, as the
deconvolution methodology does not require any cell separation, the cell type responsible
for any detected differences in expression can be identified whilst avoiding the requirement
to isolate the cell type of interest. In contrast to traditional techniques, increased variation in
cell frequencies between samples actually improves the performance of statistical
deconvolution in accurately estimating cell-type specific expression and group differences.94

Groups of specific cell types have been shown to be reliably detected for cells whose
frequency in the sample is as low as 5–10%, though the minimal cell-type frequency for
which detection of group differences is possible can only be determined empirically owing
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to the large number of factors involved.94 Notably, statistical deconvolution-based
techniques are not restricted to microarray gene expression but may be easily adapted to a
large number of other assays (including deep sequencing, intracellular flow cytometry, mass
cytometry, and protein arrays, as well as bead-based profiling) in which the biological
samples analyzed are heterogeneous with respect to cell type.

As in all analyses performed in humans, a large amount of variability exists between
samples, which is attributable to genetic differences, environmental factors, medical
conditions and medication taken. A balanced experimental design between study groups to
control for major factors (such as gender, age, BMI and so on)is recommended, yet
accounting for all factors within the study is nearly impossible. We therefore recommend a
combined solution comprising: a careful and detailed documentation of as many
confounding variables as possible; rigorous statistical testing to measure the effects of the
confounder variables at the start of the analyses, and the introduction of the major variables
into the statistical model, sample size allowing, as per the classical statistical literature; post-
discovery retesting of the relationship between findings and confounder variables; and
follow-up experiments aimed at testing detected relationships between main findings and
confounder variables.

Conclusions

In this Review, we have discussed new technologies that will be used in future immune
phenotyping analyses: mass cytometry, peptide and protein arrays, and BCR and TCR
sequencing. These novel assays offer the promise of new information to improve the
management of autoimmune disease and represent the latest methodology for analyzing
cells, soluble proteins, and genes, respectively. New technologies for the analysis of gene
expression in whole blood samples and for deconvolution of the resultant datasets enable the
expression of specific genes to be assigned to cell subsets, without isolation and
manipulation of the blood cells; in this way they offer a much improved method of looking
for actionable biomarkers. From such highly multiplexed analytical approaches, panels of
actionable biomarkers will undoubtedly be extracted that will be useful for diagnosis,
prognosis, clinical subtyping, and selection and monitoring of therapy. Given the complexity
of the immune system and the high degree of crosstalk between cells, biomarkers would be
expected to be not only of a single measure, but also of relationships between measures. It
may be too early to tell which of these new methods will prove most practical and useful,
but we strongly believe that future clinical decisions may be guided, in part, by biomarkers
that can only be defined at as high dimensional. Hence, we advocate for increased training in
quantitative methods.

Acknowledgments

The authors wish to thank Dr Hongwu Du for his advice on the systems immunology section of the article and for
assistance with editing the manuscript.

References

1. Capdeville R, Buchdunger E, Zimmermann J, Matter A. Glivec (STI571, imatinib), a rationally
developed, targeted anticancer drug. Nat. Rev. Drug Discov. 2002; 1:493–502. [PubMed:
12120256]

2. Nahta R, Esteva FJ. HER-2-targeted therapy: lessons learned and future directions. Clin. Cancer
Res. 2003; 9:5078–5084. [PubMed: 14613984]

3. LaGasse JM, et al. Successful prospective prediction of type 1 diabetes in schoolchildren through
multiple defined autoantibodies: an 8-year follow-up of the Washington State Diabetes Prediction
Study. Diabetes Care. 2002; 25:505–511. [PubMed: 11874938]

Maecker et al. Page 11

Nat Rev Rheumatol. Author manuscript; available in PMC 2012 August 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



4. van der Woude D, et al. The ACPA isotype profile reflects long-term radiographic progression in
rheumatoid arthritis. Ann. Rheum. Dis. 2010; 69:1110–1116. [PubMed: 20439289]

5. Zethelius B, et al. Use of multiple biomarkers to improve the prediction of death from
cardiovascular causes. N. Engl. J. Med. 2008; 358:2107–2116. [PubMed: 18480203]

6. Maclaren N, et al. Only multiple autoantibodies to islet cells (ICA), insulin, GAD65, IA-2 and
IA-2β predict immune-mediated (Type 1) diabetes in relatives. J. Autoimmun. 1999; 12:279–287.
[PubMed: 10330299]

7. Goekoop-Ruiterman YP, et al. Clinical and radiographic outcomes of four different treatment
strategies in patients with early rheumatoid arthritis (the BeSt study): a randomized, controlled trial.
Arthritis Rheum. 2005; 52:3381–3390. [PubMed: 16258899]

8. Moreland LW, et al. Treatment of rheumatoid arthritis with a recombinant human tumor necrosis
factor receptor (p75)-Fc fusion protein. N. Engl. J. Med. 1997; 337:141–147. [PubMed: 9219699]

9. Li QZ, et al. Protein array autoantibody profiles for insights into systemic lupus erythematosus and
incomplete lupus syndromes. Clin. Exp. Immunol. 2007; 147:60–70. [PubMed: 17177964]

10. Sokolove J, et al. Autoantibody Epitope Spreading in the Pre-Clinical Phase Predicts Progression
to Rheumatoid Arthritis. PLoS ONE. in press.

11. Hueber W, et al. Blood autoantibody and cytokine profiles predict response to anti-tumor necrosis
factor therapy in rheumatoid arthritis. Arthritis Res. Ther. 2009; 11:R76. [PubMed: 19460157]

12. Querec TD, et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine
in humans. Nat. Immunol. 2009; 10:116–125. [PubMed: 19029902]

13. Irish JM, et al. Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell.
2004; 118:217–228. [PubMed: 15260991]

14. Bandura DR, et al. Mass cytometry: technique for real time single cell multitarget immunoassay
based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 2009;
81:6813–6822. [PubMed: 19601617]

15. Ornatsky O, et al. Highly multiparametric analysis by mass cytometry. J. Immunol. Methods.
2010; 361:1–20. [PubMed: 20655312]

16. Bendall SC, et al. Single-cell mass cytometry of differential immune and drug responses across a
human hematopoietic continuum. Science. 2011; 332:687–696. [PubMed: 21551058]

17. Edwards BS, Oprea T, Prossnitz ER, Sklar LA. Flow cytometry for high-throughput, high-content
screening. Curr. Opin. Chem. Biol. 2004; 8:392–398. [PubMed: 15288249]

18. Pyne S, et al. Automated high-dimensional flow cytometric data analysis. Proc. Natl Acad. Sci.
USA. 2009; 106:8519–8524. [PubMed: 19443687]

19. Walther G, et al. Automatic clustering of flow cytometry data with density-based merging. Adv.
Bioinformatics. 2009:686759. [PubMed: 20069107]

20. Qiu P, et al. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE.
Nat. Biotechnol. 2011; 29:886–891. [PubMed: 21964415]

21. Stanford University Gary P. Nolan Laboratory. CytoSPADE: cytoscape-driven spanning tree
progression of density-normalised events. 2011. [online], http://cytospade.org/

22. Robinson WH, et al. Autoantigen microarrays for multiplex characterization of autoantibody
responses. Nat. Med. 2002; 8:295–301. [PubMed: 11875502]

23. Bussow K, et al. A method for global protein expression and antibody screening on high-density
filters of an arrayed cDNA library. Nucleic Acids Res. 1998; 26:5007–5008. [PubMed: 9776767]

24. Ekins RP. Multi-analyte immunoassay. J. Pharm. Biomed. Anal. 1989; 7:155–168. [PubMed:
2488616]

25. Joos TO, et al. A microarray enzyme-linked immunosorbent assay for autoimmune diagnostics.
Electrophoresis. 2000; 21:2641–2650. [PubMed: 10949141]

26. Kanter JL, et al. Lipid microarrays identify key mediators of autoimmune brain inflammation. Nat.
Med. 2006; 12:138–143. [PubMed: 16341241]

27. Wang D, Liu S, Trummer BJ, Deng C, Wang A. Carbohydrate microarrays for the recognition of
cross-reactive molecular markers of microbes and host cells. Nat. Biotechnol. 2002; 20:275–281.
[PubMed: 11875429]

Maecker et al. Page 12

Nat Rev Rheumatol. Author manuscript; available in PMC 2012 August 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

http://cytospade.org


28. Quintana FJ, et al. Antigen microarrays identify unique serum autoantibody signatures in clinical
and pathologic subtypes of multiple sclerosis. Proc. Natl Acad. Sci. USA. 2008; 105:18889–
18894. [PubMed: 19028871]

29. Michaud GA, et al. Analyzing antibody specificity with whole proteome microarrays. Nat.
Biotechnol. 2003; 21:1509–1512. [PubMed: 14608365]

30. Zhu H, et al. Global analysis of protein activities using proteome chips. Science. 2001; 293:2101–
2105. [PubMed: 11474067]

31. Tabakman SM, et al. Plasmonic substrates for multiplexed protein microarrays with femtomolar
sensitivity and broad dynamic range. Nat. Commun. 2011; 2:466. [PubMed: 21915108]

32. Chen RJ, et al. Noncovalent functionalization of carbon nanotubes for highly specific electronic
biosensors. Proc. Natl Acad. Sci. USA. 2003; 100:4984–4989. [PubMed: 12697899]

33. Chen Z, et al. Protein microarrays with carbon nanotubes as multicolor Raman labels. Nat.
Biotechnol. 2008; 26:1285–1292. [PubMed: 18953353]

34. Gaster RS, et al. Quantification of protein interactions and solution transport using high-density
GMR sensor arrays. Nat. Nanotechnol. 2011; 6:314–320. [PubMed: 21478869]

35. Arbuckle MR, et al. Development of autoantibodies before the clinical onset of systemic lupus
erythematosus. N. Engl. J. Med. 2003; 349:1526–1533. [PubMed: 14561795]

36. Garren H, et al. Phase 2 trial of a DNA vaccine encoding myelin basic protein for multiple
sclerosis. Ann. Neurol. 2008; 63:611–620. [PubMed: 18481290]

37. Robinson WH, et al. Protein microarrays guide tolerizing DNA vaccine treatment of autoimmune
encephalomyelitis. Nat. Biotechnol. 2003; 21:1033–1039. [PubMed: 12910246]

38. Tan EM, et al. The 1982 revised criteria for the classification of systemic lupus erythematosus.
Arthritis Rheum. 1982; 25:1271–1277. [PubMed: 7138600]

39. von Muhlen CA, Tan EM. Autoantibodies in the diagnosis of systemic rheumatic diseases. Semin.
Arthritis Rheum. 1995; 24:323–358. [PubMed: 7604300]

40. Campbell PJ, et al. Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing.
Proc. Natl Acad. Sci. USA. 2008; 105:13081–13086. [PubMed: 18723673]

41. Liu F, Whitton JL, Slifka MK. The rapidity with which virus-specific CD8+ T cells initiate IFN-
gamma synthesis increases markedly over the course of infection and correlates with
immunodominance. J. Immunol. 2004; 173:456–462. [PubMed: 15210805]

42. Meffre E, et al. Immunoglobulin heavy chain expression shapes the B cell receptor repertoire in
human B cell development. J. Clin. Invest. 2001; 108:879–886. [PubMed: 11560957]

43. Weinstein JA, Jiang N, White RA 3rd, Fisher DS, Quake SR. High-throughput sequencing of the
zebrafish antibody repertoire. Science. 2009; 324:807–810. [PubMed: 19423829]

44. Baechler EC, et al. Interferon-inducible gene expression signature in peripheral blood cells of
patients with severe lupus. Proc. Natl Acad. Sci. USA. 2003; 100:2610–2615. [PubMed:
12604793]

45. Crow MK, Kirou KA, Wohlgemuth J. Microarray analysis of interferon-regulated genes in SLE.
Autoimmunity. 2003; 36:481–490. [PubMed: 14984025]

46. Lau CM, et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/
Toll-like receptor 7 engagement. J. Exp. Med. 2005; 202:1171–1177. [PubMed: 16260486]

47. Rifkin IR, Leadbetter EA, Busconi L, Viglianti G, Marshak-Rothstein A. Toll-like receptors,
endogenous ligands, and systemic autoimmune disease. Immunol. Rev. 2005; 204:27–42.
[PubMed: 15790348]

48. Bauer JW, et al. Elevated serum levels of interferon-regulated chemokines are biomarkers for
active human systemic lupus erythematosus. PLoS Med. 2006; 3:e491. [PubMed: 17177599]

49. Bauer JW, et al. Interferon-regulated chemokines as biomarkers of systemic lupus erythematosus
disease activity: a validation study. Arthritis Rheum. 2009; 60:3098–3107. [PubMed: 19790071]

50. Hueber W, et al. Proteomic analysis of secreted proteins in early rheumatoid arthritis: anti-
citrulline autoreactivity is associated with up regulation of proinflammatory cytokines. Ann.
Rheum. Dis. 2007; 66:712–719. [PubMed: 16901957]

51. Axtell RC, et al. T helper type 1 and 17 cells determine efficacy of interferon-beta in multiple
sclerosis and experimental encephalomyelitis. Nat. Med. 2010; 16:406–412. [PubMed: 20348925]

Maecker et al. Page 13

Nat Rev Rheumatol. Author manuscript; available in PMC 2012 August 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



52. Green NM, Marshak-Rothstein A. Toll-like receptor driven B cell activation in the induction of
systemic autoimmunity. Semin. Immunol. 2011; 23:106–112. [PubMed: 21306913]

53. Sharp V, Utz PJ. Technology insight: can autoantibody profiling improve clinical practice? Nat.
Clin. Pract. Rheumatol. 2007; 3:96–103. [PubMed: 17299447]

54. Holst J, et al. Scalable signaling mediated by T cell antigen receptor-CD3 ITAMs ensures effective
negative selection and prevents autoimmunity. Nat. Immunol. 2008; 9:658–666. [PubMed:
18469818]

55. Richez C, et al. IFN regulatory factor 5 is required for disease development in the FcγRIIB−/−Yaa
and FcγRIIB−/− mouse models of systemic lupus erythematosus. J. Immunol. 2010; 184:796–806.
[PubMed: 20007534]

56. Thibault DL, et al. IRF9 and STAT1 are required for IgG autoantibody production and B cell
expression of TLR7 in mice. J. Clin. Invest. 2008; 118:1417–1426. [PubMed: 18340381]

57. Thibault DL, et al. Type I interferon receptor controls B-cell expression of nucleic acid-sensing
Toll-like receptors and autoantibody production in a murine model of lupus. Arthritis Res. Ther.
2009; 11:R112. [PubMed: 19624844]

58. Kattah MG, Coller J, Cheung RK, Oshidary N, Utz PJ. HIT: a versatile proteomics platform for
multianalyte phenotyping of cytokines, intracellular proteins and surface molecules. Nat. Med.
2008; 14:1284–1289. [PubMed: 18849997]

59. Price J. “On silico” peptide microarrays for high resolution mapping of antibody epitopes and
diverse protein-protein interactions. Nat. Med. in press.

60. Bentley DR, et al. Accurate whole human genome sequencing using reversible terminator
chemistry. Nature. 2008; 456:53–59. [PubMed: 18987734]

61. Boyd SD, et al. Measurement and clinical monitoring of human lymphocyte clonality by massively
parallel VDJ pyrosequencing. Sci. Transl. Med. 2009; 1:12ra23.

62. Freeman JD, Warren RL, Webb JR, Nelson BH, Holt RA. Profiling the T-cell receptor β-chain
repertoire by massively parallel sequencing. Genome Res. 2009; 19:1817–1824. [PubMed:
19541912]

63. Glanville J, et al. Precise determination of the diversity of a combinatorial antibody library gives
insight into the human immunoglobulin repertoire. Proc. Natl Acad. Sci. USA. 2009; 106:20216–
20221. [PubMed: 19875695]

64. Margulies M, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature.
2005; 437:376–380. [PubMed: 16056220]

65. Robins HS, et al. Comprehensive assessment of T-cell receptor β-chain diversity in αβ T cells.
Blood. 2009; 114:4099–4107. [PubMed: 19706884]

66. Venturi V, et al. A mechanism for TCR sharing between T cell subsets and individuals revealed by
pyrosequencing. J. Immunol. 2011; 186:4285–4294. [PubMed: 21383244]

67. Wang C, et al. High throughput sequencing reveals a complex pattern of dynamic
interrelationships among human T cell subsets. Proc. Natl Acad. Sci. USA. 2010; 107:1518–1523.
[PubMed: 20080641]

68. Wu YC, et al. High-throughput immunoglobulin repertoire analysis distinguishes between human
IgM memory and switched memory B-cell populations. Blood. 2010; 116:1070–1078. [PubMed:
20457872]

69. Liao HX, et al. Initial antibodies binding to HIV-1 gp41 in acutely infected subjects are
polyreactive and highly mutated. J. Exp. Med. 2011; 208:2237–2249. [PubMed: 21987658]

70. Wu X, et al. Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep
sequencing. Science. 2011; 333:1593–1602. [PubMed: 21835983]

71. Robins H, et al. Ultra-sensitive detection of rare T cell clones. J. Immunol. Methods. 2011;
375:14–19. [PubMed: 21945395]

72. Warren RL, et al. Exhaustive T-cell repertoire sequencing of human peripheral blood samples
reveals signatures of antigen selection and a directly measured repertoire size of at least 1 million
clonotypes. Genome Res. 2011; 21:790–797. [PubMed: 21349924]

73. Lebecque SG, Gearhart PJ. Boundaries of somatic mutation in rearranged immunoglobulin genes:
5' boundary is near the promoter, and 3' boundary is approximately 1 kb from V(D)J gene. J. Exp.
Med. 1990; 172:1717–1727. [PubMed: 2258702]

Maecker et al. Page 14

Nat Rev Rheumatol. Author manuscript; available in PMC 2012 August 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



74. Boyd SD, et al. Individual variation in the germline Ig gene repertoire inferred from variable
region gene rearrangements. J. Immunol. 2010; 184:6986–6992. [PubMed: 20495067]

75. Wang Y, et al. Genomic screening by 454 pyrosequencing identifies a new human IGHV gene and
sixteen other new IGHV allelic variants. Immunogenetics. 2011; 63:259–265. [PubMed:
21249354]

76. Wardemann H, et al. Predominant autoantibody production by early human B cell precursors.
Science. 2003; 301:1374–1377. [PubMed: 12920303]

77. Yurasov S, et al. Persistent expression of autoantibodies in SLE patients in remission. J. Exp. Med.
2006; 203:2255–2261. [PubMed: 16966430]

78. Yurasov S, et al. Defective B cell tolerance checkpoints in systemic lupus erythematosus. J. Exp.
Med. 2005; 201:703–711. [PubMed: 15738055]

79. Edwards BM, et al. The remarkable flexibility of the human antibody repertoire; isolation of over
one thousand different antibodies to a single protein, BLyS. J. Mol. Biol. 2003; 334:103–118.
[PubMed: 14596803]

80. Glanville J, et al. Naive antibody gene-segment frequencies are heritable and unaltered by chronic
lymphocyte ablation. Proc. Natl Acad. Sci. USA. 2011; 108:20066–20071. [PubMed: 22123975]

81. Jackson KJ, et al. Divergent human populations show extensive shared IGK rearrangements in
peripheral blood B cells. Immunogenetics. 2011; 64:3–14. [PubMed: 21789596]

82. Massengill SF, Goodenow MM, Sleasman JW. SLE nephritis is associated with an oligoclonal
expansion of intrarenal T cells. Am. J. Kidney Dis. 1998; 31:418–426. [PubMed: 9506678]

83. Murata H, et al. T cell receptor repertoire of T cells in the kidneys of patients with lupus nephritis.
Arthritis Rheum. 2002; 46:2141–2147. [PubMed: 12209519]

84. Winchester R, et al. Immunologic characteristics of intrarenal T cells: Trafficking of expanded
CD8 T cell β-chain clonotypes in progressive lupus nephritis. Arthritis Rheum. http://dx.doi.org/
10.1002/art.33488.

85. Gillespie GM, et al. Functional heterogeneity and high frequencies of cytomegalovirus-specific
CD8(+) T lymphocytes in healthy seropositive donors. J. Virol. 2000; 74:8140–8150. [PubMed:
10933725]

86. Hadrup SR, et al. Longitudinal studies of clonally expanded CD8 T cells reveal a repertoire
shrinkage predicting mortality and an increased number of dysfunctional cytomegalovirus-specific
T cells in the very elderly. J. Immunol. 2006; 176:2645–2653. [PubMed: 16456027]

87. Janeway, C., et al. Immunobiology: The Immune System in Health and Disease. 5th edition.
Garland Science; New York: 2001.

88. Cobb JP, et al. Application of genome-wide expression analysis to human health and disease. Proc.
Natl Acad. Sci. USA. 2005; 102:4801–4806. [PubMed: 15781863]

89. Whitney AR, et al. Individuality and variation in gene expression patterns in human blood. Proc.
Natl Acad. Sci. USA. 2003; 100:1896–1901. [PubMed: 12578971]

90. Xu Q, et al. Investigation of variation in gene expression profiling of human blood by extended
principle component analysis. PLoS ONE. 2011; 6:e26905. [PubMed: 22046403]

91. Palmer C, Diehn M, Alizadeh AA, Brown PO. Cell-type specific gene expression profiles of
leukocytes in human peripheral blood. BMC Genomics. 2006; 7:115. [PubMed: 16704732]

92. Clarke J, Seo P, Clarke B. Statistical expression deconvolution from mixed tissue samples.
Bioinformatics. 2010; 26:1043–1049. [PubMed: 20202973]

93. Kuroda MJ, et al. Human immunodeficiency virus type 1 envelope epitope-specific CD4(+) T
lymphocytes in simian/human immunodeficiency virus-infected and vaccinated rhesus monkeys
detected using a peptide-major histocompatibility complex class II tetramer. J. Virol. 2000;
74:8751–8756. [PubMed: 10954578]

94. Shen-Orr SS, et al. Cell type-specific gene expression differences in complex tissues. Nat.
Methods. 2010; 7:287–289. [PubMed: 20208531]

95. van Lochem EG, et al. Immunophenotypic differentiation patterns of normal hematopoiesis in
human bone marrow: reference patterns for age-related changes and disease-induced shifts.
Cytometry B. Clin. Cytom. 2004; 60:1–13. [PubMed: 15221864]

Maecker et al. Page 15

Nat Rev Rheumatol. Author manuscript; available in PMC 2012 August 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

http://dx.doi.org/10.1002/art.33488
http://dx.doi.org/10.1002/art.33488


Key points

■ Antigen arrays are valuable for profiling autoantibodies in diverse rheumatic
autoimmune diseases and can be composed of most biomolecules including
proteins, peptides, protein complexes, sugars, nucleic acids and lipids

■ High-throughput DNA sequencing enables the tracking of disease-associated
clones of T cells and B cells in autoimmune diseases; changes in populations
of these cells can be correlated with therapeutic response

■ The analysis of peripheral blood cells following cellular activation might be
important in identifying clinically actionable biomarkers

■ New technologies enable analysis of gene and protein expression in whole
blood samples; deconvolution of datasets reveals which immune-cell subset
underlies a change without isolating or manipulating the cells
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Figure 1.
Application of new immune-monitoring technologies to rheumatology. Samples for
biomarker discovery can be generated during clinical research and actual clinical trials. For
comprehensive immune monitoring, these samples are subjected to multiple assays at the
proteomic and genomic level. Moreover, computational tools are applied to organize and
better analyze the complex data sets that are generated, as well as to integrate heterogeneous
data types. The end result should be the discovery of new actionable biomarkers, which aid
disease diagnosis, prognosis, therapeutic targeting and contribute knowledge to the
mechanism of action of a specific therapy. Abbreviations: CyTOF, cytometry by time of
flight; FACS, fluorescence-activated cell sorting; SNP, single nucleotide poymorphism.
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Figure 2.
Alternative analysis approaches for high-complexity flow cytometry data. a | Example of a
bivariate Gaussian distribution as used in Gaussian mixture modelling. b | Example of a
bivariate skew-t distribution as used in FLAME. c | Comparison of average intracluster
distance and average intercluster distance. The average distance between events within the
green gate (intracluster distance) is very large so it is likely to be composed of multiple
distinct populations. The average distance between events within the red gate or within the
blue gate (intracluster distance) is much smaller than the average distance between events in
the red and blue gates (intercluster distance). d | Illustration of flow cytometry data showing
normal human B cell development in bone marrow.95 Continuous distributions such as this
poorly fit with Gaussian mixture modelling, FLAME, or DBM, but the phenotypic
relationships are well-visualized by SPADE. Abbreviations: DBM, density-based merging;
FLAME, flow analysis with automated multivariate estimation; SPADE, spanning-tree
progression analysis of density-normalized events.
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Figure 3.
Example of a SPADE representation of CyTOF data from analysis of peripheral blood
mononuclear cells from two healthy individuals. The SPADE algorithm was used to perform
unsupervised clustering of cells according to their expression of 23 cell surface markers. The
algorithm then arranged the clusters into a consensus `tree' structure, to show which clusters
are most related to one another. Annotation of major cell lineages was added manually,
based on the observed expression of known lineage markers in each `branch' of the tree.
Cluster size is proportional to cell number in the sample analyzed. Colouring shows relative
CD45RA staining intensity in each cluster. Note the difference in CD45RA expression on
the surface of natural killer cells in the two different individuals (arrows). SPADE is thus a
powerful way to visualize differences between samples, without the bias introduced by
traditional flow cytometry gating and enables a much more defined subset analysis of cells.
Abbreviations: CM, central memory; CyTOF, cytometry by time-of-flight; EM, effector
memory; SPADE, spanning-tree progression analysis of density-normalized events.
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Figure 4.
The use of high-throughput DNA sequencing of immunoglobulin or T-cell receptor gene
rearrangements to detect dynamic changes in lymphocyte repertoire and clonal expansions.
In this example, the data show the response of a healthy individual to vaccination with a
meningococcal polysaccharide vaccine, with the upper panel showing the peripheral blood
B-cell repertoire prevaccination, and the lower panel showing the clonal B-cell response
stimulated by the vaccine at day 7 postvaccination. Immunoglobulin heavy-chain V(D)J
rearrangements were PCR-amplified from peripheral blood B cells from each sample, in
sixfold replicate, using genomic DNA as the PCR template. Approximately 2,000-3,000
V(D)J rearrangements were sequenced from the libraries generated from each sample. If
sequences with the same V, D, and J segments and junctions are detected in more than one
replicate library from a sample, it provides evidence of a clonally expanded B-cell
population. Expanded B-cell clones are displayed as squares of progressively larger size and
warmer-spectrum (yellow, orange, red and white) colour. Clones detected in two replicates
are shown by a small yellow square; clones detected in all six replicates are shown by a
large white square. Small blue dots indicate VDJ combinations for which sequences were
found in only a single replicate. The x-axis indicates the V segment used for a particular
V(D)J rearrangement. The large y-axis rows show the J segment. The fine y-axis rows
within each J segment row indicate the D segment. This method can be used to detect
expanded clonal populations with a sensitivity limited mainly by the amount of sample
available, and by the depth of sequencing carried out. Application of this approach to study
the clonal populations of B cells and T cells in rheumatologic disorders should enable
detailed tracking of lymphocyte populations that are correlated with disease activity and
with therapeutic responses.
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Figure 5.
Statistical deconvolution enables detection of system-wide cell-type specific differences
between groups without cell-type isolation. a | The majority of biological samples comprise
multiple cell-types that can vary dramatically in frequency from one sample to another.
Traditional sample profiling, either by isolating specific cell-types of interest or by profiling
heterogeneous tissues, provide a system-level understanding or cellular context respectively.
Statistical deconvolution-based techniques offer a middle ground by providing system-wide
cell-type specific differences between groups. b | The csSAM methodology provides a high-
resolution and sensitive differential expression analysis that is localized to a specific cellular
context. Quantifying the frequency of the different cell-type subsets in each sample enables
the average gene expression profile of each cell type in each group to be estimated by
statistical deconvolution. These estimated expression profiles can then be utilized to detect
cell-type specific differences without sorting of the heterogeneous tissue, and reconstitute
whole tissue as individual samples that are independent of frequency variations associated
with cell type. Abbreviation: csSAM, cell type–specific significance analysis of microarrays.
Permission obtained for part b from Nature Publishing Group © Shen-Orr, S. et al. Nat.
Methods 7, 287–289 (2010).
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