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Abstract

With the increasing popularity of digital products, there
is a strong desire to protect the rights of owners against ille-
gal redistribution. Traditional encryption schemes alone do
not provide a comprehensive solution to digital rights man-
agement, since they do not prevent users who are authorized
to use a digital product for their own use from transfer-
ring the cleartext content to unauthorized users. However,
traceability schemes can be used to trace the illegitimate
redistributors effectively. Two types of traceability schemes
have been proposed in the literature - traceability codes (TA
codes), and codes with the identifiable parent properties
(IPP codes). TA codes are special IPP codes, and many TA
codes implement an efficient identification algorithm which
can determine at least one redistributor. However, many
IPP codes are not TA codes, in which case, no efficient iden-
tification algorithms are available.

In this paper, we generalize the definition of TA codes
to derive a new family of traceability codes that is much
larger than the family of traditional TA codes. By using ex-
isting decoding algorithms with respect to the Lee distance,
an efficient identification algorithm is proposed for general-
ized TA codes. Furthermore, we show that the identification
algorithm of generalized TA codes can find more redistrib-
utors than those of traditional TA codes.

1. Introduction

Detecting copyright infringement is a major global busi-
ness problem. Some approaches to detecting infringements
include monitoring P2P networks and blocking the data
transfer and/or identifying the end users [8]. However, since
some data transferred using P2P networks is licensed to per-
mit this, a heavy-handed approach to blocking all traffic is
not appropriate. Also, while it is possible to monitor the
content of (unencrypted) P2P traffic to search for matches
on particular hashes of known copyrighted data, maintain-

ing and distributing a list of all such files to all routers in
real-time is not feasible. Thus, it makes more sense to en-
capsulate intellectual property rights within the digital prod-
uct, and to ensure that access rights can be managed.

Traditional encryption schemes alone do not provide a
complete solution to this problem, because they do not pre-
vent authorized users from transferring the cleartext content
to other (unauthorized) users. Also, once the transfer has
been completed, then there is no means to trace the source
of the leak by any encryption scheme [2, 5]. We call the au-
thorized users who produce and redistribute illegal copies of
the digital product to unauthorized parties illegitimate redis-
tributors (or traitors in the literature).

Traceability schemes are an effective solution to this
problem [1, 4, 9, 10, 11]. Two types of codes for traceability
schemes which have been studied extensively in the litera-
ture are (1) codes with the identifiable parent property (IPP)
and (2) traceability (TA) codes. The family of IPP codes
includes the family of TA codes as a subset. However, IPP
codes usually only guarantee that at least one traitor can
be theoretically traced back from any pirate (i.e., an illegal
copy of a digital product), but an efficient identification al-
gorithm that traces the traitors is not always available. In
contrast, TA codes not only guarantee that a traitor can be
traced back, but also have efficient identification algorithms.

In the literature, TA codes are defined using the Ham-
ming distance, which is used in the theory of error-
control coding to measure the difference between two error-
correcting codewords. It is well known that for many
linear error-correcting codes (such as Reed-Solomon and
algebraic-geometric codes), there are efficient decoding al-
gorithms with high decoding capability in terms of the
Hamming distance. These linear codes can be used as TA
codes, and their decoding algorithms can be adapted to (or
directly used as) identification algorithms (see [1, 10, 11]).

However, as shown in the literature, many IPP codes are
not TA codes. For those IPP codes, no efficient identifi-
cation algorithms are available, and this represents a barrier
for those IPP codes to be used in digital rights management.
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Also, the TA codes that are designed from error-control
codes and have efficient decoding algorithms only form a
small subset of the whole family of the IPP codes. So, a
major theoretical challenge is to extend TA codes - based
on the Hamming distance - to yield more efficient identifi-
cation algorithms. Any solution to this theoretical challenge
would clearly provide a solution for practical applications in
DRM.

In this paper, we generalize the definition of TA codes
to obtain new traceability codes. The family of general-
ized TA codes is much larger than the family of traditional
TA codes. By using decoding algorithms with respect to
the Lee distance in our previous work [12, 13], an efficient
identification algorithm is given for generalized TA codes.
We will show that the identification algorithm of general-
ized TA codes can find more redistributors than those of
traditional TA codes.

2 IPP Codes and TA Codes

Let A be an alphabet with |A| = q. A code C of length
n is a subset of Qn, the set of all n-tuples with components
in Q. If |C| = M , we call C a q-ary (n,M) code. The ele-
ments of C are called codewords. In practical applications,
each codeword corresponds to a legitimate user of a digital
product (or a legal copy of the digital product). A pirate
(illegal copy) corresponds to an element ofQn. We call any
subset of the code, D ⊆ C, a group of users. If a group D
of users are suspected of colluding to produce a pirate, we
call D a coalition.

For a coalition D ⊆ C, a n-tuple x = (x1, x2, . . . , xn)
is called a descendant of D, provided that for all xi (i =
1, . . . , n),

xi = ai, for some (a1, . . . , ai, . . . , an) ∈ D.

The set of all descendants of D is denoted as desc(D).
Let t be a positive integer. We define

desct(C) =
⋃

D⊆C, and |D|≤t

desc(D).

That is, desct(C) is the set of n-tuples that could be pro-
duced by a coalition of size at most t.

In the literature, traceability codes (TA codes) are de-
fined based on the Hamming distance, which is used in the
theory of error-control coding to measure the differences
between two error-control codewords.

Definition 2.1 For any two n-tuples x =
(x1, . . . , xn), y = (y1, . . . , yn) ∈ Qn. The Ham-
ming distance between x and y is defined as

dH(x,y) = |{i | xi 6= yi}|

that is, the number of coordinates where x and y differ.

To define a t-IPP code or a t-TA code C, we need to
consider all the subsets of C of size at most t. It is easy
to calculate that for a code C of length n, the number of
subsets of size at most t is s =

∑t
i=1

(
n
i

)
.

Definition 2.2 Suppose C is a code of length n. Let
Di ⊆ C (i = 1, . . . , s) be all the subsets of C such that
|Di| ≤ t. For a positive integer t ≥ 2,

(1) C is a t-IPP code, provided that for all x ∈ desct(C)
it holds that ⋂

{i | x∈desc(Di)}

Di 6= ∅.

(2) C is a t-TA code, provided that for all Di and any x ∈
desc(Di) there exist at least one codeword y ∈ Di

such that

dH(x,y) < dH(x, z), for any z ∈ C −Di.

Denote by I(x,y) the set of coordinates where x and
y agree, that is, I(x,y) = {i | xi = yi}. Then,
|I(x,y)| = n− dH(x,y). The condition in the above def-
inition, dH(x,y) < dH(x, z), is equivalent to |I(x,y)| >
|I(x, z)|.

Remark 2.1: We explain the meaning of the definitions
of t-IPP codes and t-TA codes as follows.

• If C is a t-IPP code, then for any pirate x and any
coalition of size at most twhich can produce x, we can
(theoretically) trace back to at least one member of the
coalition, because at least one member of the coalition
also appears in all the other coalitions of size at most t
which can produce the pirate. However, the definition
of t-IPP codes does not suggest any algorithm or ap-
proach to find out such a member of the coalition, be-
cause for a general code there is no known algorithm
(except a brute-force search) to find all the coalitions
of size at most t which can produce the pirate.

• On the other hand, the definition of t-TA codes gives
us more information on how to find a suspected traitor.
By definition, an identification algorithm could be de-
signed to make use of an algorithm which can find a
codeword that is the nearest one (in terms of Hamming
distance) to the pirate. It is well known that there exist
error-control codes for which efficient decoding algo-
rithms have been found. These decoding algorithms
find the codeword which is the nearest one to a given
n-tuple x, or can even find all the codewords within a
given distance to x.

The following is an important result which shows that
the family of t-IPP codes includes the family of t-TA codes
as a subset. The proof of this result can be found in [11].
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Proposition 2.1 A t-TA code is a t-IPP code.

As discussed above, the definition of t-TA codes pro-
vides more information than that of t-IPP codes - that is,
the definition of t-TA codes not only guarantees that we
can trace back to at least one redistributor, but also pro-
vides information about designing an algorithm to find at
least one redistributor. It implies that the family of t-TA
codes is strictly smaller than the family of t-IPP codes. The
following example supports this fact.

Example 2.1 Let F11 be the finite field of 11 elements.
Let C be the following code of length 3 over the finite field
F11.

C = {(1, 0, 0), (4, 1, 1), (5, 1, 1)}.

The code C is a 2-IPP code; while it is not a 2-TA code.
In fact, the symbols in the first position of all the code-

words are different. Thus, for any pirate x ∈ F3
11, every

coalition of size at most 2 which can produce x must con-
tain the codeword which has the same first coordinate with
the pirate as a common codeword.

Consider a pirate x = (1, 1, 1). Obviously, it is a descen-
dant of the following coalition D = {(1, 0, 0), (4, 1, 1)}.
Now,

dH((1, 1, 1), (1, 0, 0)) = 2,

and
dH((1, 1, 1), (4, 1, 1)) = 1.

C−D = {(5, 1, 1)} and dH((1, 1, 1), (5, 1, 1)) = 1. Thus,
there is no codeword y ∈ D satisfying

dH(x,y) < dH(x, z), for any z ∈ C −D.

Therefore, C is not a 2-TA code. �

Actually, t-TA codes only form a small subset of the
whole family of t-IPP codes. There are a lot of t-IPP codes
that are not t-TA codes (see [10, 11]).

3 Generalized TA Codes

In this section, we generalize the definition of t-TA codes
to obtain new traceability codes.

Definition 3.1 Suppose C is a code of length n. Let t ≥
2 be an integer. LetDi ⊆ C (i = 1, . . . , s) be all the subsets
of C such that |Di| ≤ t. We call C a generalized t-TA code
(denoted by t-GTA code for short), provided that there exist
a well-defined distance d(·, ·), such that for all Di and any
x ∈ desc(Di), there exist at least one codeword y ∈ Di

such that

d(x,y) < d(x, z), for any z ∈ C −Di.

Remark 3.1: As the Hamming distance is a well-defined
distance, the definition above is obviously a generalization
of the definition of t-TA codes. Thus, the family of t-GTA
codes includes all the t-TA codes as special members. We
will give an example which shows that, on the other hand,
t-GTA codes are not necessary t-TA codes.

First let us introduce another useful distance, namely,
Lee distance. Let q be a prime power. Let Zq be the ring
of integers modulo q. For any a ∈ Zq , the Lee value of a,
denoted by |a|, is the nonnegative integer min{a, q − a}.
Consider the finite field Fq with q elements. We define the
Lee values of elements in Fq as follows. Let

Fq −→ Zq

α 7−→ ᾱ

be an appropriate one-to-one mapping. Then, the Lee value
|α| of α ∈ Fq is defined as |α| = |ᾱ|. For a n-tuple
x = (x1, x2, · · · , xn) ∈ Fn

q , the Lee weight is defined as

‖x‖L =
n∑

i=1

|xi|. The Lee distance between two n-tuples

x and y in Fn
q , denoted by dL(x,y), is defined as the Lee

weight of x− y.

Example 3.1 Consider the code over F11 given in Ex-
ample 2.1,

C = {(1, 0, 0), (4, 1, 1), (5, 1, 1)}.

It has been proven thatC is not a 2-TA code. Now, we prove
that with respect to the Lee distance, C is a 2-GTA code.

Let us consider the Lee distance dL(·, ·). The following
are all the subsets of C of size 2:

D1 = {(1, 0, 0), (4, 1, 1)},

D2 = {(1, 0, 0), (5, 1, 1)},

and
D3 = {(4, 1, 1), (5, 1, 1)}.

We show that C is a 2-GTA code with respect to the Lee
distance, by proving that all Di satisfy the condition: For
any x ∈ desc(Di), there is a codeword y ∈ Di such that
dL(x,y) < dL(x, z), for any z ∈ C −Di.

First, considering D1 we have

desc(D1) = {(1, 0, 0), (4, 1, 1), (1, 0, 1), (1, 1, 0),
(1, 1, 1), (4, 0, 0), (4, 0, 1), (4, 1, 0)}.

For (1, 0, 0) and (4, 1, 1), as they are in D1, they have Lee
distance 0 to themselves. Thus, the condition above is sat-
isfied. Look at (1, 0, 1),

dL((1, 0, 1), (1, 0, 0)) = 1 < dL((1, 0, 1), (4, 1, 1)) = 4
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and

dL((1, 0, 1), (1, 0, 0)) = 1 < dL((1, 0, 1), (5, 1, 1)) = 5.

Thus, for x = (1, 0, 1) ∈ desc(D1), the codeword
(1, 0, 0) ∈ D1 is such a y satisfying the above condi-
tion. Now, for any of (1, 1, 0), (1, 1, 1), (4, 0, 0), (4, 0, 1),
(4, 1, 0), we can similarly find a y ∈ D1 such that
dL(x,y) < dL(x, z), for any z ∈ C − D1. Therefore,
D1 satisfies the above condition.

Similarly, we can prove that D2 and D3 both satisfy the
above condition. Therefore, C is a 2-GTA code with respect
to the Lee distance. �

We now present an interesting result.

Theorem 3.1 Any t-GTA code is a t-IPP code.

Proof: SupposeC is a t-GTA code with respect to a well-
defined distance. Let x ∈ desct(C). Then there is a subset
Di ⊆ C, where |Di| = t, such that x ∈ desc(Di). Let
y ∈ Di such that d(x,y) ≤ d(x, z) for every z ∈ Di. Then
d(x,y) ≤ d(x, z) for any z ∈ C by the definition of t-GTA
code.

We shall prove that for any Dj ⊆ C with |Dj | ≤ t, if
x ∈ desc(Dj) then y ∈ Dj . In fact, if y 6∈ Dj , then there is
a w ∈ Dj such that d(x,w) < d(x,y) by the definition of
t-TA codes. This contradicts the fact that d(x,y) ≤ d(x, z)
for any z ∈ C. �

From Example 3.1 and Theorem 3.1, we see that the t-
GTA codes have the following two advantages:

• The family of t-GTA codes includes the family of t-
TA codes as a subset. There exist t-GTA codes that
are new traceability codes (that is, they are not tradi-
tional t-TA codes). So for applications to digital rights
management, using t-GTA codes, the digital industries
have more choices than using t-TA codes.

• t-GTA codes are still members of the family of t-IPP
codes. Inheriting the property of t-IPP codes, t-GTA
codes guarantee that at least one traitor can be traced
back.

In next section, we will see a third advantage of t-GTA
codes, that is, there exist an identification algorithm for t-
GTA codes which can reveal more traitors than those of t-
TA codes.

4 Identification Algorithms of Generalized
TA Codes

In this section, we propose an efficient identification al-
gorithm for t-GTA codes with respect to the Lee distance.

We also compare our identification algorithm with the iden-
tification algorithm for t-TA codes in [10], which was de-
signed making use of the well-known list-decoding algo-
rithm [7].

The main result on identification algorithm in [10] is as
follows. (The identification algorithm in [10] is applicable
for TA codes based on Reed-Solomon, algebraic-geometric,
and concatenated codes. For simplicity, we only state the
result for TA codes based Reed-Solomon codes.)

Proposition 4.1 Let C be a [n, k] Reed-Solomon code.
Let t be an integer and t <

√
n

k−1 .

(1) C is a t-TA code.

(2) Suppose x ∈ desct(C). Then, there exists an code-
word y ∈ C such that dH(x,y) ≤ n − n/t. And for
every y ∈ C satisfying dH(x,y) ≤ n− n/t,

y ∈
⋂

x∈Di, |Di|≤t

Di.

Thus, y is a traitor.

(3) The identification algorithm finds all the traitors y ∈
C that satisfy

dH(x,y) ≤ n− n/t.

Example 4.1 Consider a [n, k] Reed-Solomon code
over the finite field F13. Suppose n = 12 and k = 2. Let
t = 3. It is easy to verify the condition

t = 3 <
√

n

k − 1
=
√

12.

Thus, from the proposition above, C is a 3-TA code. For
any x ∈ desc3(C), the identification algorithm in [10] can
finds the traitors y ∈ C satisfying dH(x,y) ≤ n−n/t = 8.

Now, consider the coalition

D = {(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)} ⊆ C.

x = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0) is a pirate, and x ∈
desc(D). We have

dH(x, (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)) = 10,

and

dH(x, (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) = 2 < 8.

Thus, the identification algorithm in [10] can find the traitor
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), but can not find the traitor
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). �
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In [12, 13], generalizing the list-decoding algorithm
[7], an efficient decoding algorithm is proposed for Reed-
Solomon and algebraic-geometric codes with respect to the
Lee distance. (See [12, 13] for the algorithm and complex-
ity evaluation). The decoding capability of the algorithm is
given as follows.

Theorem 4.2 Let C be a [n, k] Reed-Solomon code or
algebraic-geometric code over Fq . Then, for any word x ∈
C, the decoding algorithm finds all the codewords y ∈ C
that satisfy dL(x,y) ≤ τ , where

τ = (u+ 1)(n−
⌊√

(2u+ 1)n(k − 1)
⌋
− 1),

where u is any integer with 0 ≤ u ≤ (q − 1)/2− 1.

Now an efficient identification algorithm for t-GTA
codes with respect to the Lee distance is given as follows.

Identification Algorithm: For a t-GA code C based on
a Reed-Solomon code or an algebraic-geometric code, the
decoding algorithm in [12, 13] is used directly as an identi-
fication algorithm. For any pirate x, the identification algo-
rithm can find all the traitors y ∈ C satisfying

dL(x,y) ≤ (u+ 1)(n−
⌊√

(2u+ 1)n(k − 1)
⌋
− 1).

In the following example, we show that the identifica-
tion algorithm can find more traitors than the identification
algorithm in [10].

Example 4.2 Consider the same 3-TA code in Example
4.1. Let u = 1. Then

τ = (u+ 1)(n−
⌊√

(2u+ 1)n(k − 1)
⌋
− 1) = 10.

The identification algorithm can find all the traitors y satis-
fying

dL(x,y) ≤ 10.

Now,

dL(x, (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)) = 10,

and

dL(x, (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) = 2.

Thus, the identification algorithm finds both the
traitor (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) and the traitor
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). In this case, the identifica-
tion algorithm outperforms the identification algorithm in
[10]. �

5 Applications in DRM Systems and Mal-
ware Proliferation

In this section, we consider the applications of traceabil-
ity codes to electronic data distribution systems, pay-TV
systems, pay services on the Web, and other DRM systems.

There are two traitor-tracing models for various DRM
systems. The first model was proposed by Chor et al. [4]
to protect ownership rights in electronic data distribution
systems. To do so, Chor et al. introduced a new form of
cryptography that uses one key to encrypt the content. And
there are multiple distinct decryption keys; each of them can
decrypt the ciphertext.

Prior to being distributed, the digital product is divided
into multiple segments. The i-th segment is encrypted by
using an encryption key ei. There are multiple distinct
decryption keys, d(1)

i , d
(2)
i , d

(3)
i . . . ; any of them can be

used as a decryption key to recover the i-th segment. In
this model, each legitimate subscriber, uk, is given a se-
quence of n decryption keys d(k)

1 , d
(k)
2 , . . . , d

(k)
n , where n

is the number of segments. The user uk uniquely corre-
sponds to a key-set (d(k)

1 , d
(k)
2 , . . . , d

(k)
n ), which is actu-

ally a codeword of a TA or generalized TA code C. A
coalition D = {u1, . . . , uk, . . .} can make a pirate key-set
(d1, d2, . . . , dn), where each di, i = 1, . . . , n, is an decryp-
tion key belonging to some member in D. Once a pirate
key-set has been observed, by using an identification algo-
rithm, at least one traitor can be traced back and legal means
can be taken.

However, this model works only under the assumption
that traitors provide unauthorized users with decryption
keys capable of decoding the original content. It would
be ineffective if the traitors were simply to re-distribute the
original content.

A second model was proposed by Fiat and Tassa [6] to
overcome the shortcoming of the first model. Furthermore,
the second model is a dynamic model in terms of that the
feedback from the pirate broadcasting network is used, and
the traitors are blocked as soon as they are detected. This
model is effective for broadcast systems including pay-TV
systems and pay services on the Web. Another application
of the dynamic model to some conditional access schemes
was also discussed by Fiat and Tassa (see [6] for the detail).

In the second model, similarly the content consists of
multiple segments (e.g., a segment could be 1 minute’s
worth of video). Denote by P1, P2, . . . , Pn all the segments.
A traceability code C of length n is used. For any code-
word c = (c1, c2, . . . , cn) ∈ C, the i-th component ci is
inserted (by using a watermarking scheme) into the i-th seg-
ment Pi to generate a variant, denoted by Pi〈ci〉. Here the
components of the codewords are short enough and water-
marks are generated in a way such that all variants carry the
same information to the extent that humans cannot distin-
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guish between them easily. The legitimate subscriber who
gets the copy (P1〈c1〉, P2〈c2〉, . . . , Pn〈cn〉) uniquely corre-
sponds to the codeword c = (c1, c2, . . . , cn). As soon as a
pirate copy is observed, the watermarks in the pirate copy
would be retrieved, the identification algorithm would then
find out at least one of the codewords that contributed to the
pirate copy. Thus, a traitor is found; and the system would
then disable his access to the content.

A detailed description of the dynamic model (including
the issue of controlling what users get what variant of every
segment as well as an analysis of the broadcast overhead
for implementing such a traitor-tracing scheme) is given in
[6]. It is easy to see that to implement the dynamic model
for real-time traitor-tracing, the family of traceability codes
should meet the following two requirements: (1) The fam-
ily has many traceability codes; and (2) There are efficient
identification algorithms available for these TA codes. Our
results in previous sections extend the family of traceability
codes and provides much more effective traceability codes.
More importantly, our generalized TA codes with respect to
the Lee distance have efficient identification algorithms.

We are currently working on applying our generalized
TA codes to the problem of tracing changes in malware
code, such as rootkits - generated by distinct, ”off the shelf”
kits - to study the activity of different groups. Our in-
vestigation is focusing on tracking ”pirate” copies using a
honeynet-style approach, such that when a kit is actively
being used on the Internet, the identification algorithm can
find out at least one of the codewords that contributed to
the pirate copy. The forensic details of their activity can
be passed onto law enforcement authorities. The practical
problem is gaining access to malware sources to insert the
codes, without breaking the law by participating in a crime.

6 Conclusion

By generalizing the definition of TA codes, we have been
able to generate new traceability codes. The family of our
generalized TA codes is much larger than the family of tra-
ditional TA codes. By using a decoding algorithm with
respect to the Lee distance that we proposed in our previ-
ous work, an efficient identification algorithm is given for
generalized TA codes. We also show that the identifica-
tion algorithm for generalized TA codes can find more re-
distributors than those of traditional TA codes. Following
this work, we are studying the problem of designing iden-
tification algorithms for generalized TA codes with respect
to other metrics (see [3]), and practical applications.
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