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New Trellis Codes Based on Lattices 
and Cosets 

pi. R. CALDERBANK AND N. J. A. SLOANE, FELLOW, IEEE 

AMruct-A new technique is proposed for constructing trellis codes, 

which provides an alternative to Ungerboeck’s method of “set partitioning.” 

The new codes use a signal constellation consisting of points ,from an 

n-dimensional lattice A, with an equal number of hints from each coset of 

a sublattice A’. One part of the input stream drives a generalbed convolu- 

tional code whose outputs are co&s of A’, while the other part selects 

points from these cosets. Several of the new codes are better than those 

previously known. 

I. INTRODUCTION 

A TRELLIS, C,ODE [3], [4], [12], [25], [28]-[30] is a 
Atechnique for encoding a data stream into a sequence 
of real vectors that are transmitted over a noisy channel. 
Ungerboeck [25] constructed simple trellis codes that pro- 
vide the same noise immunity as would be obtained by 
increasing the energy of uncoded transmission by factors 
ranging from 2 to 4, i.e., have a coding gain of between 3 
and 6 dB. Ungerboeck’s method is to specify a (conven- 
tional) convolutional code, and a rule for mapping the 
output of the convolutional code into a fixed signal con- 
stellation in one- or two-dimensional Euclidean space. In 
Ungerboeck’s construction the output of the convolutional 
code is matched with the signal point using a technique 
known as set partitioning. This method of construction was 
also used by Forney et al. [12]. Calderbank and Mazo 
described trellis codes in a way that combined the two 
steps of the encoder into one in [3]. Further trellis codes 
were constructed in [4], [28], [29]. 

The novel feature of the present paper is the use of a 
generalized convolutional code, whose output symbols are 
cosets of a lattice. 

We do not claim that this technique will replace the 
construction by set partitioning, to which it is closely 
related. However it is a useful alternative and one that 
allows the coding theorist to work with larger constella- 
tions and more complicated lattices. As can be seen from 
the summary in Table XV at the end of the paper, some of 
the codes obtained are quite powerful. 

The general construction is described in Section II, and 
Section III contains a number of examples. We have not 
attempted to describe every code that can be obtained by 
this method. Instead we give a number of different exam- 
ples in order to illustrate the power of the method. Most of 
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the examples were found by first choosing a lattice and 
sublattice, constructing the signal constellation, and then 
finding the best convolutional code to match the constella- 
tion. The code in Example 2b, however, was found by 
taking the opposite point of view: the convolutional code 
was chosen first, and then the signal constellation was 
designed to match it. 

The asymptotic performance of these codes is studied in 
Section IV. The estimate given in Theorem 4 for the 
average energy of a spherical constellation of points in a 
lattice may be of independent interest. Also Theorem 9 
and Table XIV give the coding gain that is theoretically 
achievable simply by mapping messages directly into lattice 
points (without using a trellis code). The final section 
discusses the codes presented in the text and makes com- 
parisons. Table XV summarizes most of the codes con- 
structed. 

Although for logical reasons we give the general con- 
struction before the examples, the reader may find it 
easiest to consider some of the examples when reading the 
following section. For background information on lattices 
see [22]-[24], and on groups, rings, etc., see [14], [15], [27]. 

II. THE NEW CONSTRUCTION 

We shall construct a trellis code that maps a sequence of 
symbols from an input alphabet A (of size a) into a 
sequence of output points taken from a certain lattice A in 
n-dimensional Euclidean space R”. The set of all possible 
output points forms the signal constellation, which is a 
finite subset of A. (In Example la of Section III, which we 
use to illustrate this section, A is the familiar two-dimen- 
sional square lattice Z2 and the signal constellation is 
shown in Fig. 3.) We assume that A is a ring (see [15]). 
Most of our examples are binary codes, i.e., A = GF(2). 

The construction requires three ingredients besides the 
lattice A. 

1) A sublattice A’ g A. In all our examples A’ is ob- 
tained from A by applying an endomorphism 0 of A that 
magnifies distances by a factor of & (cf. [l], [2]). Then A 
is an abelian group, and A’ is a subgroup. We denote the 
quotient group A/A’ by R. The number of cosets of A’ in 
A, i.e., the order of R, or the index of A’ in A, is mn12. 
(In Example la, A’ is the sublattice spanned by the vectors 
(2,2) and (2, - 2). Here A’ = OR, where 

(1) 
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is an endomorphism that magnifies distances by fi. Then 
R = A/A’ has order 8, and representatives for the eight 
cosets of A’ in A may be found in Table II below.) 

A number of examples of R are listed in Table I. 2” 
denotes the n-dimensional integer (or cubic) lattice, A, is 
the familiar two-dimensional hexagonal lattice, and D4 is 
the densest lattice sphere packing in four dimensions (see, 
e.g., [17], [22], [24]). 2, denotes a cyclic group of order m. 
(Example la corresponds to the second line of the table.) 

TABLE I 
THE LATTICES A, ENDOMORPHISMS 8, AND 
QUOTIENTS R = A/A' = A/@A USED IN 

THIS PAPER. I DENOTES AN IDENTITY 
MAP. FOR LINE 4 SEE [23], WHERE IT Is 

ALSO SHOWN THAT A,/@, A, =: GF(3), 0, 
BEING AN ENDOMORPHISM OF A, THAT 

MULTIPLIES NORMS BY 3 

A 0 R = A/OA 

;i (:5 
z2 x z2 

z2 x z4 
41 24 x z4 

A2 21 GW 

;', ;; 
5 x z3 

z, x z, x z, x z, 

04 21 z, x z, x z, x z, 

TABLE II 
COSET REPRESENTATIVES, LABELS, NORMS, AND MULTIPLICITIES FOR THE 

COSETS OF A’ IN A FOR EXAMPLE la 

Coset Label in Coset Coset 
Representative Figs. 3,6,7 Norm Multiplicity 

640) 7 0 1 

g :; 
3 1 1 

@;A&) 

5 4 4 
1 1 1 

(1: 1) 

4 1 1 
0 2 2 

(-LO) 6 1 1 

(1, - 1) 2 2 2 

We assume that A and A’ are chosen so that the cosets 
of A’ in A are “compatible” with A. The precise condition 
we require is that it is possible to multiply cosets by 
elements of A. For all a E A and r E R, the product ar 
must be in R, and the distributive law 

a ( rl + r2) = ar, + ar, (4 

must hold.’ (However, we do not require the other distrib- 
utive law, (a, + a2)r = air + a2r, to hold. This law does 
not hold, for instance, in Example la.) We shall sometimes 
write the product as ra rather than ar. (This is more 
convenient when the elements of R are column vectors, as 
in the analysis of Example la.) In many cases, but not all, 
A is a field and R is a vector space over A. 

The second ingredient is the following. 
2) A convolutional code which has k, input symbols 

(taken from the alphabet A), and a single output symbol 

‘This makes A/A’ into a “group with operators” [14, p. 291, [27, p. 
1381, with elements of the input alphabet A acting as operators on A/A’. 

that is an element of R. In other words, the outputs from 
the convolutional code are cosets of A’ in A. The code is 
described by a generator matrix 

G = [gu,c,r-. -> g,,l. a. Igl+ * -> gnlgokl,- * .> go,] (3) 

with entries gij E R. The current output symbol depends 
on the current input block of size k, and on the previous IJ 
input blocks. If the input symbols are labeled uij as 
indicated in Fig. 1 (where uO1, uo2; . ., u,,~, is the current 
input block, uii, ui2; . 0, uik is the previous block, and so 
on), the current output is 

4 
r = i C uijgij? 

j=o j=l 

which by the assumptions in 1) is a well-defined element of 
R. The set of possible cosets that occur as outputs of the 
code will be denoted by T. In all except Examples 2b and 
8, T is equal to R. 

“01 “11 “21 l ** 

” 02 ” 12 ” 22 l -• C.$J-,ONAL rcR 

CODE 
. . . 

"Ok, “fk, “2k,“’ 

Fig. 1. Convolutional code showing input and output symbols. 

At each time instant, or epoch, there are akl possible 
inputs to the convolutional code and ITI possible outputs, 
where ITI is the number of elements in T. Therefore the 
rate of the convolutional code is k, log, a bits/coset, i.e., 
the fractional rate is 

Pl := k, log, a/log, ITI. (5) 

(In Example la the convolutional code has generator ma- 
trix (19) k, = 2, a = 2, T = R, ITJ = 8, and the rate p1 = 

213.1 
The final ingredient follows. 
3) The signal constellation, which consists of M = lTlak2 

points of A, partitioned into akz points in each coset in T. 
The complete trellis code is pictured in Fig. 2. The input 

stream, a sequence of symbols from A, is divided into 
blocks of size k = k, + k,. The first k, symbols from 
each block are fed to the convolutional code, producing an 
output symbol r E R, a coset of A’ in A. The remaining 
k, input symbols are used to select one of the ak2 points 
of the constellation that belong to coset r. The coordinates 
of this point are then transmitted over the channel. It is 
the overall rate of the code that is most important. This is 
k log, a bits/output symbol, or p = (k/n)log, a bits/di- 
mension. (Example la is described in Fig. 4. We have 
k, = 2, k = k, + k, = 4, n = 2, and the overall rate is 
p = 2 bits/dimension.) 

Note that increasing k, increases the number of states 
that can be reached from a given state, while increasing k, 



CALDERBANK AND SLOANE: NEW TRELLIS CODES 

k 
I NPUTS 

I = COSET 
SELECT I 

CONVOLL~~lONAL _ OF ok2 
SIGNAL 

OF A 
POINTS FROM POINT 

COSET r FROM A 

t 

4 

179 

Fig. 2. Overall trellis code. 

increases the number of ways to make the transition from 
one state to another. 

Memory 

The memory I/ of this code is the minimum number of 
previous inputs that are required to calculate the current 
output. From (3), V I ukl, but since some of the entries in 
the generator matrix may be zero, V may be less than vk,. 
The number of states in the encoder is a”. (In Example la 
the number of states is 24.) 

Trellis Diagram 

As usual it is convenient to describe the convolutional 
code by a trellis diagram (cf. [19, $9.21). At each epoch 
there are a” possible states. Each state has akl edges 
leaving it in the trellis diagram, one edge for each possible 
input. The edges are labeled with the corresponding output 
symbols r, which are cosets of A’. A sequence of inputs 
thus determines a path through the trellis. 

It would also be possible to describe our overall trellis 
code by a diagram with multiple edges. The number of 
states is the same as in the previous diagram, but now each 
state has a k edges leaving it instead of ukl. However the 
simpler diagram is adequate for our analysis. 

Minimal Squared Distance 

The performance of the trellis code is determined by the 
minimal squared Euclidean distance d between output 
sequences corresponding to distinct input sequences (see 
[24]). The norm or energy (see [24]) of a point x = 

(Xl,. * *> x,) E R” is 

N(x) = xxi”. (6) 

The norm of a coset r E A/A’, r = A’ + a (say), is de- 
fined to be 

N(r)=min{N(x):xEA’+a}. 

If x E r, y E s (r, s E A/A’), then 

N(x - y) 2 iV(r - 3). 

Suppose 

(7) 

(8) 

. . . O,O, x(l), #); . . , df),o,O, . . . (di) E A), 

. . . o,(), y(l), p,. . .) y(f), o,o, . . . ( yW E A) 
(9) 

are output sequences corresponding to distinct inputs, 

where xci) E rci), yci) E ,ci) (rci), SC’) E A/A’) for all i. 
Then there are two possibilities: the corresponding se- 
quences of outputs of the convolutional code, 

. . . O,(), r(l), rC2),. . . , rCf),O,O, . . . 
(10) 

. . . o,o, s(l), ,m,. . .) ,(O, (),o, . . . 

may be distinct or they may be the same. If they are 
distinct, then we have two distinct paths through the trellis 
diagram for the convolutional code that begin and end in 
the same state. This is called an error euent. The minimal 
squared distance between the corresponding outputs is at 
least 

r erroF&ent $ N(x(‘) - Y”‘) , 
r=l 1 

which, using (8), we lower bound by 

d, := 

On the other hand, if the two sequences of cosets coincide, 
the squared distance between the corresponding outputs is 
at least 

d, := min { N(x) : x E A’, x # 0} . (14 

Let 1-1 be the minimal nonzero norm of a vector in A. Since 
the norms in A’ are m times the norms in A, 

d, = mp. (13) 

Finally we take 

d= min{d,,d,}. (14 

Figure of Merit 

We assume that the input symbols are independent and 
identically distributed with a uniform distribution over A, 
and that the code is such that all points of the constella- 
tion are equally likely. Let the average norm (or energy) of 
the constellation be P. Then as our figure of merit for the 
code we use 

d 

7 

We would like to make this as large as possible. 
This is admittedly an oversimplification. For example, 

one could consider imposing an additional constraint on 
the ratio of peak to average energy. A more realistic figure 
of merit would also take into account the path multiplicity, 
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which is the number of paths at minimal distance from a 
given path (cf. [25, eq. (7)]). 

The path multiplicity for one of our codes may be 
obtained from the path multiplicity of the associated con- 
volutional code as follows. For simplicity assume that the 
signal constellation is large and that the signal points 
x(l), x(2) . . . , x(~) fall in the interior of the constellation (if 
there are boundary points then there are fewer minimal 
distance paths). Given a coset r E A/A’ define the multi- 
plicity f (r) of the coset r to be the number of points x E r 
satisfying N(x) = N(r). Then there are 

lQf(r(i) - s(j)) (15) 

paths y(l), y(2),* . ., ycf), y ci) E ~(~1, at distance C:=,N(r(‘) 
- ,W) from x(l), x(2),. . .) x(t)* 

Suppose that T data bits are encoded as T/n n-dimen- 
sional signal points. If the probability that an error event 
begins is p, then the probability of correct transmission of 
the T data bits is (1 - P)~‘” = 1 - (T/n)p. For this rea- 
son we give the path multiplicity per two-dimensional 
signal point. (This can also be thought of as the number of 
channel uses per trellis stage.) 

Uncoded Transmission 

As a basis for comparison we use uncoded transmission 
at the same rate and in the same dimension, with a 
constellation in the shape of a cube. The number of points 
in the uncoded constellation is M’ = 2”~ = uk. If M’ is 
an n th power, say M’ = p”, we use either the constella- 
tion 

(x1,.-, x,,) with xi E { $-1, *3;.., +(2b - l)} 

(16) 

if p is even, p = 2b say (Fig. 5 below shows an example); 
or the constellation 

(Xl,. . . , xn) with xi E (0, z!E~, f4;.., k2b) (17) 

if p is odd, /3 = 2b + 1 say. If M’ is not an n th power we 
find the smallest integer /? such that p” > M’, construct 
the constellation (16) or (17), and remove p” - M’ points 
of largest norm. The minimal squared distance is d(“) = 4, 
and if the average norm is PC’), the figure of merit for 
uncoded transmission is 

d(“) 

p(u) * 

Then the nominal coding gain of our code is 

d d(“) 
1010&a p pcu, . 

il i 
(18) 

The Construction 

Most of the codes in Section III were found in the 
following way. We first choose a lattice A and an endo- 
morphism 0 that multiplies norms by m. This determines 
A’ = OR, the vector space R = A/A’, and d, = mp (see 

(13)). Usually we take T = R, so ITI = [RI = mn12. Know- 
ing R and the desired rate p we then choose the input 
alphabet A (with ]A] = a) and the parameters k, and k,. 

The second step is to choose a constellation of M = 
mn/2 . ak, points in A with ak2 points from each coset of 
A’. We usually found this constellation by the following 
“greedy algorithm”: we choose a center c, and then, for 
each coset of A’, take the akz points of the coset that are 
closest to c. Often there are several ways to choose the 
points in the outermost shell of the constellation. A good 
choice for the center c is a “deep hole” in A in the 
notation of [6], i.e., a point of R” maximally distant from 
A.’ This greedy algorithm is easily implemented on a 
computer. Our primary goal is to minimize the average 
signal power. When there are several possible ways to 
choose the points in the outermost shell, our choice is 
guided by the ease with which the lattice decoding al- 
gorithms described in [8]-[ll] can be implemented. For 
this reason we favor symmetric constellations. (However, 
we shall not discuss methods for modifying the signal 
constellations in order to permit differential encoding.) 

The third and last step is to find the convolutional code. 
The requirements are that the memory should be small, 
while the quantity d, (see (11)) should be as large as 
possible. In view of (14), there is limited advantage in 
making d, larger than d, (except perhaps to reduce the 
number of nearest neighbors, or to construct codes that 
provide unequal error protection). Just as in the case of 
ordinary convolutional codes, there seems to be no better 
method of construction than a systematic search, and that 
is how the convolutional codes in Section III were mostly 
found. 

III. EXAMPLES 

la) A I6-State Binary Code Using the Campopiano- 
Glazer Constellation that Gains 4.771 dB over Uncoded 
Transmission at Rate 4 Bits/Two-Dimensional Symbol: 
The lattice A is the square lattice Z2 and is spanned by 
the vectors (1,0) and (0,l). The sublattice A’ is spanned by 
the vectors (2,2) and (2, - 2). The lattice A’ is obtained 

from A by applying an endomorphism 0 = i -z 
( i 

that multiplies norms by 8. R = A/A’ is isomorphic to 
2, X 2, (see Table I), and d,, the minimal nonzero norm 
in A’, is 8. Coset representatives for the eight cosets of A’ 
in A are listed in Table II, together with the minimal norm 
of a vector in each coset. We take A = GF(2), and k, = k, 
= 2. 

The constellation contains M = 8 . 22 = 32 points and 
is shown in Fig. 3, with the points labeled 0,l; f ., 7 
according to the different cosets of A’. It is centered at the 
deep hole (l/2,1/2) in Z2. We note that the constellation 
is quite symmetric. The points in cosets 0, 3, 4, and 7 are 
all equivalent, under rotation through r/2, as are the 
points in cosets 1, 2, 5, and 6. (The fact that the signal 
constellation enjoys the same symmetries as the underlying 
lattice is an advantage in differential encoding; that is, in 
designing a coding scheme with built-in transparency to 
90” phase shifts. Particular methods of differential encod- 
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Fig. 3. Signal constellations of size 8, 16 and 32 for Examples la, lb 
and lc. Origin is in center, and x and y coordinates of points are 
*l/2, &3/2 or +5/2. 

ing are described in [3], [28].) Note also that the underlying 
configuration in Fig. 3 is the Campopiano-Glazer 32-point 
constellation [5]. The average norm of the 32 points is 
P = 5. (The differential encoding scheme described in [28] 
applies to an S-state code using the Campopiano-Glazer 
constellation.) 

The generator matrix for the convolutional code is 

where the columns of G are to be read as cosets of A’ in A 
according to Table II. If the input symbols are labeled uij 
as in Fig. 1, the output at time j is A’ + Gu(j) where 

‘(j>‘= b(j-2)23 u(j-2)1, u(j-l)29 ‘(j-l)13 ‘j29 ujl)P 

and the product Gu(j) is evaluated in R = 2, X Z, (see 
Section II). For this code, and most of the following 
examples, T = R. The rate is 2 bits/coset, i.e., the frac- 
tional rate is p1 = 2/3. The encoder is shown in Fig. 4. 

The generator matrix in (19), and other generator 
matrices in this paper, were found by a combination of 
hand calculation and computer search. In this example the 
search was simplified by requiring that only one column of 
G lie outside the subspace 

A* = {A’, A’ + (1, l), A’ + (1, -l), A’ + (0,2)}. (20) 

We now investigate various properties of this code. 
Lemma 1: The signal points are used equally often. 

Proof: Observe that the subgroup A* is isomorphic to 
Z, X Z,, and that only one column of G is chosen from 
outside A*. The coset output at time j, A’ + Gu(j), is in 
A* if and only if ucj- 1)1 = 0. To prove that the cosets in 
R are used equally often we need only prove that the 
cosets in A* are used equally often. Given u(j), v(j) with 

u(j-l)l = v(j-l)l = 0, let x(j) = u(j) $ v(j) be the mod- 
ulo 2 sum of u(j) and v(j). Then since r + r = 0 for all 
r E A*, 

(A’ + Gu(j)) + (A’ + Gv(j)) = A’ + Gx(j), (21) 

i.e., the map into A* is linear. Since the map is also onto 
A*, the cosets in A* are used equally often. Points within 
a coset are equally likely to be selected and so the signal 
points are used equally often. 

Lemma 2: If u(j) and v(j) are inputs, then the norm 
of the coset (A’ + Gu( j)) - (A’ + Gv(j)) depends only 
on the modulo 2 sum u(j) $ u(j). 

Remark: This property, which we call regularity, makes 
calculation of the minimal squared distance much easier 
since it allows us to assume that one of the input sequences 
is the zero sequence. (Of course, this property automati- 
cally holds when A is a field and R is a vector space over 
A.) This property is shared by the superlinear codes intro- 
duced by Marsan et al. [20]. 

Proof: We shall show that 

N{(A’ + Gu(j)) - (A’ + Gv(j))} 

= N{ A’ + G(u(j) @ v(j))}. (22) 

It is clearly sufficient to prove this in the case when u(j) 
and v(j) have disjoint support. In that case we have 

(A’ + Gu(j)) - (A’ + Gv(j)) 

= (A'+ G(u(j)@ v(j))) - (A'+ 2Gu(j)), (23) 

and 
A’+ G(u(j)@ v(j))= A'+ Gu(j)+ Gu(~). (24) 

Note that in (23) 

A’ + 2Gv(j) = A' or A’ + (0,2). 

If 2Gu(j) E A’ then (22) is true, so we may suppose 
2Gv(j) E A’ + (0,2). Hence Gu(j) @ A* and vcj-l)l = 1. 
Since the supports of u(j) and v(j) are disjoint, we have 

U(j- 1)l = 0 and Gu(j) E A*. But, from Table II, adding 
A’ + (0,2) to a coset preserves the norm except when it is 
added to A’ or to itself. Therefore, if (22) does not hold, we 
see from (23), (24) that 

A’ + Gu(j) + Gv(j) = A' or h’ + (0,2) 
and so Gu(j) = Gu(j) E A*, which is a contradiction. 

“13 _ 

kz=2 ut4 

Fig. 4. Encoder for Example la. 



182 IEEE TRANSACTIONS ON INFORMATION THEORY,VOL. IT-33,N0. 2,MARCH1987 

TABLE III 
THE 16-STATE CODES IN EXAMPLE lb. ALL HAVE d = 6. 

THE OVERALL RATE p = k/2 $1 BITS/DIMENSION. 

FORTHEUNCODEDCONSTELLATIONS d(“) = 4 

Coded Uncoded Coding 
Gain 

4 M Constellation P Rate p M’ P(‘) Constellation (dB) 

0 8 Fig. 3 1.5 1 4 2 2 X 2 array 3.010 
1 16 Fig. 3 2.5 1.5 8 5 4.771 
2 32 Fig. 3 5 2 16 10 Fig. 5 4.771 
3 64 Fig. 6 10.25 2.5 32 20 Fig. 3 4.664 
4 128 Fig. 7 20.5 3 64 42 8 X 8 array 4.816 
5 256 40.69 3.5 128 82 Fig. I 4.804 
6 512 81.59 4 256 170 16 x 16 array 4.949 

To calculate the minimal squared distance d, we would 
normally have to use the trellis diagram of the convolu- 
tional code in order to find the minimal norm error event 
(see (11)). Because this code is regular, however, we 
may use a much smaller graph I. This is a directed graph 
with 16 vertices labeled by the possible inputs ( u~j-2)2, 

u(,-2)l% u(j-1)2, ‘(j-1)1 ). The vertex labeled (z+~)~, 
ucj-2)l, ucj-1)2, u~j-l)l) is joined to the four vertices 
(u(~-~)~, ucj-l)l, uj2, ujl), and the edge is weighted by 
N( A’ + Gu( j)). The edge from the vertex labeled (0, 0, 0,O) 
to itself is deleted. Then d, is the minimal cost of a path 
from (0, 0, 0,O) to itself. This can be calculated efficiently 
using Dijkstra’s algorithm [16], [21], by modifying Viterbi’s 
decoding algorithm [18, 512.41, [26], or in this case by 
hand. It is easily seen that d, = 6, and therefore d = 
min { d,, d2} = 6. 

Lemma 3: The convolutional code is not catastrophic. 

norm is 10 (see (58) below), and so the coding gain is 

6 4 
lOlog,, 3 lo = 4.771 dB. 

ii i 

lb) A Family of 16-State Binary Codes Based on the 
Convolutional Code of (19): The codes in this family are 
obtained from Example la by varying the parameter k, 
(and the signal constellation) and are shown in Table III. 
The lattices A, A’ and the convolutional code are the same 
as before, so d = 6 still. For example, the code obtained 
by taking k, = 3 has rate 5 bits/two-dimensional symbol, 
and the 64-point signal constellation is shown in Fig. 6, 
where there are now 2k2 = 8 points in each coset. The 
average norm is 10.25. Uncoded transmission at the same 
rate uses the Campopiano-Glazer constellation, i.e. the 
points in Fig. 3 (with the labels removed). Thus d(“) = 4, 

Proof: We must show that there are no zero cost 
loops in the graph I. The edges weighted by 0 are given 
below, and the lemma follows because there is no way to 
construct a loop out of these edges: 

0010 + 1001 
0100 -9 0011 
0110 -+ 1010 
1000 -+ 0010 
1010 --) 1011 
1100 --j 0001 
1110 + 1000. 

The performance of this trellis code is measured against 
that of uncoded transmission at rate 4 bits/two-dimen- 
sional symbol. The uncoded constellation contains M’ = 
16 points (see (16)) and is displayed in Fig, 5. The average 

Fig. 5. Uncoded 16-point constellation (called 16-QASK in [25]). Co- 
ordinates are f l/2, + 3/2. 

“I 
5 6 7 4 t 5 6 

I- 

2 3 0 1 -- 2 3 0 1 

6 7 4 5--6 7 4 5 

0 1 2 3 -- 0 1 2 3 

I I I I I I I I , I 

4 5 6 7 -- 4 5 6 7 

2 2 3 3 0 0 1 l--2 t 2 3 3 0 0 1 1 

6 6 7 7 4 4 5 5 -- 6 6 7 7 4 4 5 5 

Fig. 6. 64-point signal constellation used in Example lb. Coordinates 
are + l/2, + 3/2, &-S/2 etc. 

PC”) = 20, and the coding gain is 

lolog,, (&/;) = 4.664 dB. 

This is less than the gain obtained in Example la for two 
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reasons: the constellation of Fig. 6 can be seen by eye to 
be slightly inferior to that of Fig: 3 (for example the 
average norm has more than doubled), while the uncoded 
configuration with which we are comparing it is now very 
strong (namely Fig. 3 itself). 

When k, = 0 the g-point constellation consists of the 
eight points enclosed by the innermost line in Fig. 3, and 
the uncoded constellation consists of the four points 
(f 1, k 1). For k, = 1 the 16-point constellation is the 
4 x 4 array at the center of Fig. 3, and uncoded transmis- 
sion uses a 3 X 3 square array with one corner deleted (see 
(17)). For k, = 4 the 128-point constellation is given in 
Fig. 7. 

230123--012301 

6 74 5 6 7-45 6 74 5 

Fig. 7. 12%point signal constellation used in Example lb. Underlying 
constellation was given by Campopiano and Glazer [5]. 

It is shown in Section IV (see (62)) that as k, --f 00 the 
coding gain of these codes approaches lOlog,, ?T = 4.971 
dB. 

lc) Binary Codes Based on Different Convolutional Codes: 
These codes are obtained from Example la by changing 
the convolutional code. We specify the convolutional codes 
by giving generator matrices. As in Example la, only one 
column of the generator matrix is chosen from outside A*. 
It follows that each code is regular and that the signal 
points are used equally often. The minimal squared dis- 
tance d, may be calculated (by computer) as in Example 
la. The generator matrix 

[:I ii :,I: :I 
defines an g-state code with d, = 5, 
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[: “21 -: :I : -:I : -:I (26) 

defines a 64-state code with d, = 7, and 

[; :I: :I: :I: :I: :I (27) 
defines a 256~state code with d, = 8. The computer also 
verified that these codes (and in fact all the convolutional 
codes mentioned in Section III) are noncatastrophic. 

By varying k,, but using the same constellations as in 
Table III, we obtain the codes shown in Table IV. (The 
generator matrix 

[:I: -:I; :I: iI 
defines a 32-state code with d, = 6. This has the same 
value of d, as (19) but the multiplicity has been reduced 
from 56 to 16.) 

2a) A 4-State Binary Code Using the Campopiano-Glazer 
Constellation that Gains 3.010 dB over &coded Trans- 
mission at Rate 4 Bits/Two-Dimensional Symbol: Again 
the lattice A is Z2, but now we take A’ = 2Z2, so that 
h/R’ = Z, X Z, and m (the magnification factor) is 4. 
The cosets of Al are described in Table V and the 32-point 
constellation in Fig. 8. Again this is the Campopiano- 
Glazer configuration but with a different labeling. The 
average norm is 5. We take A = GF(2), k, = 1 and k, = 3; 
the overall rate will again be 4 bits/two-dimensional sig- 
nal, or p = 2 bits/dimension. 

TABLE V 
COSETREPRESENTATIVES,LABELS,NORMS, 

AND MULTIPLICITIESFOR Z2/2Z2 

Coset Label Co.93 Coset 

Representative in Fig. 8 Norm Multiplicity 

(090) 0 0 1 

I? t; 
1 1 2 

0: 1) 

2 1 2 

3 2 4 

Notice that the norm of a coset is the Hamming weight 
of the coset representative. So we may use a conventional 
binary convolutional code, and the minimal squared dis- 
tance d, (see (II)) is equal to the free distance of the code. 
We use the familiar rate l/2 noncatastrophic code (code 
CC1 of [19, p. 2001) with generator matrix 

(28) 

TABLE IV 
THECODESCONSTRUCTEDINEKAMPLE~C 

Coding Gain If 
Rate Uncoded Coded d = 5 d=6 d=7 d=8 

kz P d/P P 8 States 16 States 64 States 256 States 

0 1 4/2 1.5 2.218 3.010 3.680 4.260 

1 1.5 4/5 2.5 3.979 4.711 5.441 6.021 

2 2 4/10 5.0 3.979 4.711 5.441 6.021 
3 2.5 4/20 10.25 3.872 4.664 5.333 5.913 

4 3 4/42 20.5 4.084 4.876 5.545 6.125 

5 3.5 4/82 40.687 4.013 4.804 5.474 6.054 
6 4 4/170 81.594 4.157 4.949 5.618 6.198 

03 co 4.180 4.971 5.641 6.221 
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Fig. 8. 32-point constellation in Z2/2Z2 used in Example 2a 

Then d, = 5, d, = 4 and d = min {5,4} = 4. Uncoded 
transmission at this rate was described in Example la, and 
d(“) = 4, PC’) = 10. The coding gain is 

= 3.010 dB. 

As in Example lb we could now obtain a family of 
codes by varying k,, but we leave this to the reader. In the 
limit as k, increases, it follows from Theorem 8 below that 
the gain approaches lOlog,, (2m/3) = 3.211 dB. 

2b) A I-State Code Using a 32-Point Constellation Not 
Derived from a Lattice that Gains 3.200 dB over Uncoded 
Transmission at Rate 4 Bits/Two-Dimensional Symbol: This 
example differs from the others in that we begin with a 
convolutional code and then find a constellation to match 
it. Consider the rate l/2 convolutional code (28) used in 
Example 2a. The outputs are assigned the weights listed in 
Table VI. The state diagram is shown in Fig. 9, where the 

TABLE VI 
WEIGHTSAND MULTIPLICITIES FORCONVOLUTIONAL CODE 

USEDIN-MPLE 2b 

output 

(07 0) 

(13 1) 
(031) 
(1.0) 

Weight 

0 
A 

Multiplicity 

1 
3 
2 
1 

vertices are labeled by the two previous inputs and the 
edges are labeled by the weight of the current output. Now 
we think of the output as picking out a set of eight signal 
points. We are interested in regular codes so we require 
that the distance between the sets corresponding to out- 
puts u and v depends only on the modulo 2 sum u @ v. A 
32-point constellation with this property is shown in Fig. 
10. Notice that A = 3, B = 2, and C = 1. The distance d, 
between points in the same subset is at least 8, so d = 8, 
and P = (l/8)(61 + 90) = 9.573. The coding gain is 
therefore 

lOlog,, (&/A) = 3.200 dB, 

which is slightly better than Example 2a. (A’ + Gu(j)) + (A’ + Gv(j)) = A’ + Gx(j), 

Fig. 9. State diagram of convolutional code used in Example 2b. 

(0,O) (O,I) 
I 

(0.0) (0.1) 
l 

‘J3+3/2’ 
. 

(o;l) (0,O) (O,I) 
1 

(0.0) (0,I ) (0,O) 
l 

h+l/2)’ 
. . 

(I,O) (I,11 (I,01 (1.1) 
l 1 

7x3 +3/2; 
. 

Fig. 10. 32-point constellation used in Example 2b. 

3a) A I6-State Code with Input Alphabet A = Z; that 
Uses a 64-Point Signal Constellation and Gains 4.664 dB 
over Uncoded Transmission at Rate 4 Bits/Two-Dimen- 
sional Symbol: Again A = Z2, but now R’ = 4Z2, so that 
A/R’ z Z, x Z, and m = 16. The cosets are described in 
Table VII, and the 64-point constellation (with 4 points in 
each coset) is given in Fig. 11. The average norm is 10.25. 
We take A = Z,, a = 4, k, = 1, k, = 1. The rate of the 
convolutional code (Fig. 12) is 2 bits/coset, i.e., p1 = l/2, 
and the overall rate is 4 bits/two-dimensional signal. 

The generator matrix of the convolutional code is 

(29) 

where the columns of G are to be read as cosets of A’ in 
A. The coset output at time j is A’ + Gu(j) where u(j) = 

('(j-2)1, u(jpl)l, ujI)? Given u(j), v(j) let x(j) = u(j) 
@ v(j) be the modulo 4 sum of u(j) and v(j). Then 
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TABLE VII 
COSETREPRESENTATIVES,LABELS,NORMS,AND MULTIPLICITIESFOR Z2/4Z2 

Coset Label Coset Coset Coset Label Coset Coset 
Representative in Fig. 11 Norm Multiplicity Representative in Fig. 11 Norm Multiplicity 

(O,O) 
(LO) 
CA 0) 

C-1,0) 
(0, - 1) 
(1, -1) 
(2, - 1) 

C-1, -1) 

3 0 1 11 4 2 
0 1 1 if2 ;; 

(2: 
8 5 2 

1 4 2 2) 9 8 4 
2 1 1 C-1,2) 10 5 2 
I 1 1 (091) 15 1 1 
4 2 1 (13 1) 12 2 1 

5 5 2 (231) 13 5 2 
6 2 1 (-Ll) 14 2 1 

0 I 2 3 

I 3 

t 

Fig. 11. Constellations of size 32 and 64 for Z2/4Z2. 

- 

from which it follows that the cosets of A’ in A are used 
equally often. Also the code is regular in the sense that the 
coset (A’ + Gu(j)) - (A’ + Gu(j)) depends only on the 
modulo 4 difference u(j) 8 u(j). This means that when 
calculating the minimal squared distance d, we may as- 
sume that one of the input sequences is the zero sequence. 
The directed graph used to analyze this code is a little 
different from the one used in Example la: the 16 vertices 
are labeled with the possible inputs (~~~-~)r, uCj-ijl) and 
the vertex (uCjP2)i, 

. . . 
uCj-ijl) is Joined to the four vertices 

labeled (uCjP2)t, uCj-rjl, ujl). It is easily seen, using the 
method of Example la, that d, = 12. (A little analysis 
shows that this is the best possible for a 16-state code). 
Then d = min {12,16} = 12. The zero-weighted edges in 

this graph are 
1 o-to -1 

2 o-to 2 

-1 o-to 1 
and since there is no way to construct a loop from these 
edges, the code is noncatastrophic. The coding gain is 

lOlog,,( &/$) =4.664 dB. 

3b) 4, 8, 64, and 12%State Codes with Input Alphabet 
A = Z,, and Rate 4 Bits/Two-Dimensional Symbol: The 
only difference between these codes and Example 3a is the 
choice of convolutional code. The generator matrix 

2 1 [I 1 1 2 (30) 

defines a 4-state code, and the trellis diagram is shown in 
Fig. 13. Then d, = 8 (which is the best possible for a 

Fig. 13. Trellis diagram for convolutional code of 
labeled with cosets of Z2/4Z2. 

“ llCZ4 CONVOLUTIONAL COSET SELECT I 
b OF THE 4 

SIGNAL 
k, =I , CODE WITH RATE . 

2 bi ts/COSET POINTS IN A POINT 

COSET 

k2= I 
"t2' z4 

Fig. 12. Convolutional code used in Example 3a. 

(30). Edges are 
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4-state code) and d = 8. The coding gain over uncoded 
transmission at the same rate is 

lolog,, (&/;) = 2.903 dB. 

Similarly. \ ’ ’ < 

[i I : I :I 
defines a 16-state code with d, = d = 11. However, since 

the final symbol matters, and the trellis diagram collapses 
to eight states. The coding gain is 4.286 dB. 

The generator matrix 

i:I :I iI :I (32) 

defines a 64-state code. The methods applied to Example 
3a show that cosets are selected equally often and that the 
code is regular. Here d, = 14, which is found using a 
directed graph on 64 vertices. Then d = 14, and the coding 
gain is 5.333 dB. 

Similarly the generator matrix 

(33) 

defines a 128-state code with d, = d = 16 and a coding 
gain of 5.913 dB. 

3~) Codes with 4, 8, 16, 64, and 128 States, Input Al- 
phabet Z,, and Rates 3 or 5 Bits/Two-Dimensional Symbol: 
These examples are obtained from Examples 3a and 3b by 
varying the parameter k,. The encoder is shown in Fig. 14. 
For k, = l/2 the rate is 3 bits/two-dimensional symbol. 
The 32-point constellation is defined by the inner line in 
Fig. 11, and has average norm 5.266. Uncoded transmis- 
sion at this rate was described in Example lb. The codes 
with 4, 8, 16, 64, and 128 states gain 2.785, 4.168, 4.546, 
5.216, and 5.795 dB, respectively. 

Similarly, with k, = 3/2 we use the 128-point constella- 
tion shown in Fig. 15 with P = 20.5 and obtain codes with 
rate 5 bits/two-dimensional symbol. The coding gains are 
the same as in Examples 3a and 3b. 

4) An g-State Binary Code Using 32 Signal Points Taken 
from the Hexagonal Lattice A, that Gains 3.529 dB over 
Uncoded Transmission at Rate 4 Bits/Two-Dimensional 
Symbol: The lattice A is the hexagonal lattice A, spanned 
by the vectors (1,O) and (-l/2, G/2). (Decoding al- 

8 9 IO II -- 8 9 IO II 

I2 I3 I4 I5 -- I2 I3 14 I5 

2 3 0 I 2 3--o I 2 3 0 I 

6 7 4 5 6 7--4 5 6 7 4 5 

IO II 8 9 IO II -- 8 9 IO II 8 9 

I4 I5 I2 I3 I4 I5 -- I2 I3 I4 I5 I2 I3 

2 3 0 I 2 3--o I 2 3 0 I 

6 7 4 5 6 7--4 5 6 7 4 5 

IO II 8 9 IO II 8 9 IO II 8 9 

I4 15 12 I3 I4 I5 12 I3 14 15 I2 13 

I 

01230123 

4567 4567 

Fig. 15. 128-point constellation in Z2/4Z2. 

gorithms for this lattice may be found in [8], [lo].) The 
sublattice A’ is 2A,. The quotient R = A/& z Z, X Z, 
(actually R is the field GF(4), but we make no use of the 
multiplicative structure). The map 

enables us to label the points of A, with pairs of integers. 
The four cosets of 2A, in A, can then be represented by 
the binary vectors (Sr, 12) = (0, 0), (0, l), (LO), (1, l), where 
({r, S2) denotes the coset 

. (34) 

The 32-point constellation is shown in Fig. 16, where the 
points are labeled (O,O), (0, l), (l,O), (1,l) corresponding 
to the different cosets. To minimize the average norm, the 
constellation is centered at the midpoint of an edge. The 
average norm P is 71/16, Note that every coset has 
norm 1. 

The convolutional ‘code is an 8-state code with rate 
p1 = l/2 and generator matrix 

(35) 

Fig. 14. Convolutional code used in Example 3c. 



CALDERBANK AND SLOANE:NEWTRELLlS CODES 187 

KEY 

(0,O) (LO) (O,I) (l,l) 

Fig. 16. 32-point constellation in A,/2A,. Distinctive symbols have 
been used for cosets in order to emphasize symmetry among cosets. 

We may regard this code as a conventional binary con- 
volutional code with a nonstandard weighting of outputs. 
It is easily seen that the minimal squared distance d, = 4. 

Thus d = 4. The coding gain is 

5) A 9-State and a 27-State Code with Input Alphabet 
A = GF(3) and Rate 4log,3 = 6.340 Bits/Two-Dimen- 
sional Symbol: We take A = A,, A’ = 3A,, so that h/R’ 
= Z, x Z, and m = 9. The cosets may be represented by 
ternary vectors (ci, 12) with li E Z,, again using (34) (see 
Table VIII). The 35 = 243 point constellation is shown in 

TABLE VIII 
COSETNAMES,LABELS,ANDNORMSFOR A,/3A, 

Coset Label Coset 

(31, Pz) in Fig. 17 Norm 

(O>O) 0 0 

(130) 1 1 

(Ll) 2 1 

(031) 3 1 

(-LO) 4 1 
5 1 

6 1 
7 3 

8 3 

Fig. 17. This is centered at the midpoint of a triangle (a 
deep hole) in A,, and P = 33.519. We take A = Z, 
(= GF(3)), k, = 1 and k, = 3; the overall rate is 4 log 2 3 
= 6.340 bits/two-dimensional symbol. 

The convolutional code is a 9-state code with rate pi = 
l/2 and generator matrix 

(36) 

0 I b 0 I 4 

6 7 5 6 7 5 6 7 5 6 

8 3 2 8 3 2 8 3 2 8 3 

01401401401401 

5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 

2 8 3 2 8 3 2 8 3 2 8 3 2 8 3 2 

140140140140140 

6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 

8 3 2 8 3 2 8 3 2 8 3 2 8 3 2 8 3 

4014014014014014 

567567567567567 

2 8 3 2 8 3 2 8 3 2 8 3 2 8 3 2 

140140140140140 

75675675675675 

2832832832832 

140140140140 

5 6 7 5 6 7 5 6 7 

8 3 2 8 3 2 8 3 

I 4 I 
I 

Fig. 17. 243-point constellation in A,/3A, 
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If G(U) denotes the output sequence corresponding to the 
ternary input vector u then 

so this is a conventional convolutional code over GF(3) 
with a nonstandard weighting of outputs (given by Table 
VIII). The code has d, = 7 (which is the best possible for a 
9-state code). Since d, = 9 we have d = 7. Similarly the 
generator matrix 

defines a 27-state code with d, = d = 8. 
Uncoded transmission at this rate uses the 81-point 

constellation shown in Fig. 18, and d(“) = 4, PC’) = 
1390/47 = 51.481. The coding gain of the 9-state code is 
4.294 dB and that of the 27-state code is 4.874 dB. 

. . . . 1 
. . . .--. . . . 

. . . .--. . . . 

. . . . .--0 . . . . 

. . . . .--. . . . . 

. . . . .--0 . . . . 

. . . . .--. . . . . 

. . . . . . . . 
t . . . . . . . . 
I . . . . . 

Fig. 18. Uncoded Il-point constellation, obtained by omitting 19 points 
of greatest norm from 10 X 10 square array (see (17)). 

As usual by increasing k, we obtain two infinite se- 
quences of codes. The lattice A, has density a/ m (see 
[12]), so from Theorem 8 the limiting gain of these codes is 
4.505 dB for the 9-state codes and 5.085 dB for the 
27-state codes. 

6) A Family of %-State Binary Codes Using Signal Points 
Taken from the Four-Dimensional Odd d teger Lattice (22 

+ 1j4: This family of codes is describ 4 more fully in [4]. 
(See also [12] for a different k = 8 code.) A = Z4, A’ = 
2Z4, R = A/A, 7 Z, x Z, x Z, X Z,, and m = 4. The 

map 

allows us to represent cosets of A’ by binary 4-tuples. The 
norm of a coset is the Hamming weight of the coset 
representative. To minimize the average energy, the signal 
constellations are all centered at the deep hole 
(l/2,1/2,1/2,1/2). If we multiply by 2 in order to clear 

fractions, every signal point is in (22 + 1)4. This multi- 
plies norms by 4, so now d, = 4m = 16. We take A = 
GF(2), k, = 3, and let k, vary, the cases k, = 5 or 9 
being of greatest interest (see [4]). 

The convolutional code is an 8-state code with rate 
pi = 3/4 and generator matrix 

r0i0 0 011 0 01 

This may be regarded as a conventional binary convolu- 
tional code (it is described by Lin and Costello [12, fig. 
10.3, p. 2921) with a nonstandard weighting of outputs 
(four times the Hamming weight). It has free distance 4, so 
d, = 4 x 4 = 16 = d. 

The points of the lattice (22 + 1)4 lie in shells around 
the origin consisting of 16 vectors of norm 4, 64 vectors of 
norm 12, and so on. The 2k+1 signal points for coded 
transmission are obtained by taking all points of energy 
4,12,20, . * * and just enough points of a final shell to 
bring the total number up to 2k+1. The signal constellation 
is partitioned into 16 cosets (according to the congruence 
class of the entries modulo 4) and each coset contains 2k-3 
signal points. The parameters of the first codes in this 
family are listed in Table IX. A has density A = 1r2/32, so 
from Theorem 8 the gain approaches lOlog,, ?T = 4.971 
dB as k, + co. This was also established (by direct calcu- 
lation) in [4]. 

TABLE IX 
CODESCONSTRUCTEDIN[~]FROMTHELATTICE (22 + 1)4 

Coding 
Rate Gain 

k = k, + k, (bits/dimension) M d/P d(“)/P(“’ (dB) 

8 2 29 M/27 4/20 4.717 
12 3 213 16/108.625 4/84 4.904 

Remark: We may regard transmission of a four-dimen- 
sional signal as one use of the channel since a four-dimen- 
sional signal space can be realized by using two space- 
orthogonal electric field polarizations to communicate on 
the same carrier frequency. Of course it is also possible to 
regard each four-dimensional symbol as two consecutive 
two-dimensional symbols. 

7a) A 64-State Binary Code that Gains 6.131 dB over 
Uncoded Transmission at Rate 8 Bits/Four-Dimensional 
Symbol: The lattice A is the four-dimensional lattice D4 
which is spanned by the vectors (l,l, O,O), (O,l, - LO), 
(O,O, 1, -l), and (O,O, 0,2) [17]. The sublattice A’ is 2D,, 
so R = A/A’ z Z, x Z, X Z, X Z, and m = 4. A has 
minimal norm 2, so A’ has minimal norm d, = 2m = 8. 
The map 

i-1 1 0 01 

c = (&&,~3,&) + A’+ 5 8 I ; -; -; I 

(39) 

00 0 2 

allows us to identify binary cl-tuples with cosets of A’. The 
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cosets and coset norms are listed in Table X. The third 
column of the table gives an example of a vector of D4 in 
each coset. A bar indicates a negative number. These 
vectors are in the standard version of D4 given at the 
beginning of this paragraph, in which the origin of the 
coordinates is at a lattice point. To get a signal constella- 
tion of minimal energy, as usual we shift the origin. In this 
case we shift the origin to the point (l/2,1/2,1/2,1/2), a 
deep hole in D4 [7], and multiply the coordinates by 2 to 
clear fractions. For example, in the new coordinates there 
are eight lattice points around the origin, with coordinates 
( +_ 1, f 1, + 1, f l), with an even number of minus signs. 
The fourth column of Table X gives an example of a lattice 
point in each coset of 2 D4 in the new coordinates. 

TABLE X 
COSET NAMES, NORMS, AND MULTIPLICITIES FOR DJ2 D4. THE 

LAST Two COLUMNS GIVE EXAMPLES OF POINTS IN THE 

COSETS USING COORDINATES IN WHICH THE ORIGIN IS 

EITHER AT A LATTICE POINT (COLUMN 3) OR AT A 

DEEP HOLE (COLUMN 4) 

Coset Name Coset Coset Vector 

GiiMt4) Norm Multiplicity (Origin) (Hole) 

0000 0 1 0000 1111 

0001 4 8 0002 3 111 

1010 4 8 ill1 3111 

1011 4 8 1111 1111 

0010 2 2 000 3ill 

0011 2 2 0011 1111 

1001 2 2 ilO 113i 

1000 2 2 1100 1111 

0110 2 2 OlOi 3lii 

0111 2 2 0101 1111 

1101 2 2 io10 7111 
-- 

1100 2 2 1010 1111 

0100 2 2 oil0 3111 

0101 2 2 0110 illi - 
1111 2 2 iool 3111 

1110 2 2 1001 1111 

TABLE XI 
512-POINT CONSTELLATION IN DA/2 DA 

Norm Vector Number 

4 
12 
20 
28 
28 
36 
36 
44 
52 
52 
52 
60 

1111 

3111 

3311 
5111 

3331 
5311 
3333 
5331 
5511 
5333 
7111 
5531 

1’ 23 = 8 

4. 23 = 32 
6. 23 = 48 
4' 23 = 32 
4' 23 = 32 

12 . 23 = 96 
23 = 8 

12 . 23 = 96 
6. 23 = 48 
4. 23 = 32 

16 
64 

We take A = GF(2), k, = 3, k, = 5; the convolutional 
code has rate pi = 3/4, and the overall rate is 8 
bits/four-dimensional symbol. 

The generator matrix 

! 

1010000100 
0010001001 
1000010100 

! 

(42) 

0010100010 

defines a 64-state convolutional code. If cp(u) denotes the 
output sequence corresponding to the binary input vector 
u then 

444 @ 444 = Gb @ 4, (43) 

where @ denotes modulo 2 addition. We may therefore 
regard the code defined by (42) as a conventional binary 
convolutional code with a nonstandard weighting of out- 
puts (given by Table X). It can be shown that d, = 4 x 8 
= 32, so d = d, = d, = 32. Uncoded transmission at this 
rate uses the constellation (16) with n = 4, b = 2, and 
d(“) = 4, Pc”j = 20. The coding gain is 

dB. 

The original version of D4 consists of the points with 
coordinates 

( Xl, x2, x3, x4), xi integers, xi + x2 + xg + xq even, 

while the shifted version consists of the points 

x3, x4), xi odd integers, 

P-9 

x1 + x2 + x3 + x4 = 0 (mod4). (41) 

The 512-point signal constellation is described using the If we increase k, from 5 to 9 a 213-point signal constella- 
new coordinates in Table XI. The second line, for example, tion is required. This may be obtained by extending Table 
refers to the 4 . 23 points obtained from (+ 3, & 1, + 1, f 1) XI, and has P = 153.75 (we do not list the code here). 
by taking all possible permutations and all sign combina- Combining this constellation with the convolutional codes 
tions that satisfy (41). There are 32 points in each coset of of (44) and (42) we obtain codes of rate 12 bits/four- 
20,, and the average norm is P = 39. On this scale the dimensional signal with coding gains of 5.156 and 6.406 
minimal nonzero norm in a coset is d, = 32. dB, respectively. 

7b) Other Four-Dimensional Codes: As in Examples 
la-lc we obtain further codes from Example 7a by chang- 
ing either the convolutional code or the parameter k,. The 
generator matrix 

cl10 0 01 I 0 01 

defines a 16-state code with d, = 4 X 6; and when used 
with the signal constellation of Table XI produces a code 
of rate 8 bits/four- dimensional symbol with a coding gain 
of 4.881 dB. 
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If we increase k, further we find from Theorem 8 (since 
D4 has density m2/16 [12]) that the gain of the 16-state 
code approaches 5.227 dB and the gain of the 64-state 
code approaches 6.477 dB. 

8) 4- and &State Binary Codes with Rate 2 Bits/One-Di- 
mensional Symbol: The lattice A is the integer lattice Z 
and A’ = 2n2, so d, = 4n2. The g-point signal constella- 
tion is a translate of the constellation shown in Fig. 19. 

A. 
i-2n -n i-n 

Y 
i n n+i 2n 

Fig. 19. 8-point constellation used in Example 8. 

The constellation involves only 4 cosets of A’ in A. We 
take A = GF(2) and k, = k, = 1. The rate of the con- 
volutional code is 1 bit/coset, and the remaining bit 
selects one of two points in a coset. The generator matrix 
of the code is 

G = [nliln], (45) 

and so the cosets involved in the signal constellation are 
A’, A’ + n, A’ + i, and A’ + (n + i). Observe that A* = 
{ A’, A’ + n } = Z, and that only one column of G is 
chosen from outside A*. As in Lemma 1 the cosets are 
used equally often. 

Next we prove that the code is regular in the sense that 
if u(j), u(j) are inputs then the norm of the coset (A’ + 
Gu( j)) - (A’ + Gu(j)) depends only on the modulo 2 
sum u(j) CB u(j). The argument is similar to the proof of 
Lemma 2. 

If x(j), z(j) are input sequences with disjoint support 
then we must prove that 

N(R’ + G(x(j) - z(j))) = N(A’ + G(x(j) + z(j))). 

(46) 

Now 

R’ + G(x(.d - z(j)) 

= (A’ + G(x(j) + z(j))) - (A’ + 2Gz(j)), 

where 

A’ + 2Gz(j) = A’ or A’ + 2i. 

If 2Gz( j) E A’ then we are done, so we may suppose 
2Gz(j) E A’. Hence Gz(j) $Z A* and zj-i = 1. Since the 
supports of x(j), z(j) are disjoint we have xj-i = 0, 
Gx( j) E A*. The four possibilities are considered in Table 
XII. Regularity follows from the symmetry of coset norms 
about A’ + n. 

TABLE XII 

Coset Representatives for 

WA WA G(4.A - z(j)) G(4.A + z(j)) 

0 i 
-(ii i) 

i 
0 tl+i n+i 
n i n-i n+i 
n n+i -i i 

The squared distance d, is calculated as in previous 
examples. The first three rows in Table XIII present in- 
stances of this construction. Uncoded transmission at this 
rate uses the constellation (16) with n = 1, b = 2, d(“) = 
4, PC’) = 5. The third code in Table XIII was given by 
Ungerboeck [25], as were the last two codes, which il- 
lustrate that the coding gain can be increased by increasing 
the memory of the convolutional code (always remem- 
bering to choose only one column of G from outside A*), 

IV. ASYMPTOTIC BEHAVIOR 

In this section we analyze the asymptotic behavior of 
these codes as the size of the signal constellation increases 
while the lattice and sublattice are kept fixed. 

We use the notation of Section II. The determinant of 
the lattice A is denoted by det A, A is the density of A, p 
is the minimal norm, and V, = a”12/r((n + 2)/2) is the 
volume of a unit sphere (see [22], [24]). 6 = A/v, is the 
center density. These quantities are related by the formula 

(47) 

We assume that A is a rational lattice, in other words that 
there is a constant (p such that +x . y E Z for all x, ‘y E A 
[13, p. 1151. (This assumption of rationality could easily be 
dropped, at the cost of only slightly weakening the error 
terms in Theorem 5.) 

TABLE XIII 
ONE-DIMENSIONALCODESDESCRJBEDINEXAMPLE~ 

Generator 
Matrix G Constellation 

Coding 
d, do d P Gain 

[3,2,3]+ { +1, +2, +4,15} 
46 

20 36 20 T 3.312 

,3 &7 +13 +17 
- 2’2 -,2,7 3.518 

&I +3 &5 *7 21 
- 

2’2 -‘2, y 
9 16 9 

4 
3.310 

21 
P, 2,1,2] * ,I 10 16 10 4 3.768 

P,Z 0, 1,21* I, 

+ Found by Calderbank and Mazo [3]. 
*Found by Ungerboeck [25]. 

2i 
11 16 11 

4 
4.181 
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Constellations of Minimal Norm tion is centered at a lattice point and 2) the total number 
.s 

We first analyze a constellation of minimal total norm, 
of points in the sphere of-radius \li is exactly N. The 

chosen without regard to how many points fall into each 
corrections needed for the general case can be shown to be 

coset of A’. Let a constellation of M points in A be 
of lower order; we omit the details.) From Abel’s formula 

constructed by the following process. Choose an arbitrary 
for summation by parts, 

center c, draw a sphere around c of the smallest possible 
radius, say fi, such that there are at least M lattice points 
inside or on the sphere, and then discard enough points 
from the boundary of the sphere so as to leave exactly M 
points. The radius fi and the average norm P of the 
resulting configuration are given by the following theorem. 

Theorem 4: As M + 00, 

(48) 

i ma,(m) = t&(t) - ‘2’S,(m). 
m=O m=O 

(54) 

Equation (49) follows from (53), (54), and Corollary 6. 
For example, Theorem 4b asserts that, for two-‘dimen- 

sional constellations, doubling the number of points in the 
constellation also roughly doubles the average energy. But 
for four-dimensional constellations the average energy is 
multiplied by about 6 when the number of points in the 
constellation is doubled. 

Constellations with Equal Numbers of Points in Each Cost 

The leading term in (48) may also be expressed in terms of We now consider constellations of the type needed for 

the density A, using (47): our trellis codes. Let A be a rational lattice, and let A’ be 
a sublattice of index i. Suppose a constellation of M = iv 

( Ey2’n = $( !y. (50) 
points is constructed by the following process. Choose an 
arbitrary center c and draw a sphere around c of the 
smallest possible radius, say fi, such that the sphere 

The proof is based on the following result, which combines contains at least u points from each coset of A’. Discard 
the work of a number of mathematicians (see Fricker [13]). points from the outside of the sphere so as to leave exactly 
Let a*(t) denote the number of points in A of norm t, u points in each coset, 
and let 

&W = c %h). 
rnlf 

Theorem 7: Equations (48) and (49) apply to the con- 
stellation just described. 

Sketch of Proof: A’ is itself an n-dimensional lattice 
Theorem 5: For a rational lattice A, with det A’ = i . det A. Applying (51) to A’, we see that a 

s*(t) = +J(l + e), 
sphere just large enough to contain u points of A’ has 

ast-+co, (50 radius fi determined by 

where the error term 8 satisfies 

8 = o(r2’3), if n = 2, 

8 = o(t-3’4), ifn=3, 

I9 = O((log t)2’3/t), if n = 4, 

8 = o(t-l), ifn25. 

Corollary 6: For a rational lattice A, 

s*(t) = & tn’*(l + o(t-2’3)). (52) 

Proof: Corollary 6 follows from Theorem 5 since the 
error term is weakest when n = 2. 

Sketch of Proof of Theorem 4: a) By solving (52) for t 
we obtain (48). b) The total norm of the constellation is 
given by 

miComaAb4(l + 4)). (53) 

(The total norm is exactly C’,,,maA(m) if 1) the constella- 

M K 
u=-= P/2(1 + o(t-““)), (55) 

i idet A 

and therefore is given by (48). Since the cosets of A’ are 
also translates of A’, t need only be increased by a factor 
(1 + o(1)) in order to include u points from each coset. 
Thus the radius of this constellation is essentially the same 
as the constellation considered in Theorem 4. The formula 
for the average norm then follows as in Theorem 4. 

We apply Theorem 7 to the codes constructed in Section 
II, where i = mn12, v = akz, d, = mp, and obtain 

d d d2 
-=-.- 

P d, P 

d n+2 
=d,+w n 2’n;(l + o(1)) 

2/n 
(1 + 00)). (56) 
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Uncoded Constellations 

For comparison we analyze an uncoded constellation of 
M’ = aklik2 points. We assume2 that M’ has the form 
M’ = (2b)“, and use (16) as the uncoded constellation. 
The minimal squared distance is d(“) = 4, and the total 
norm is 

cc -** x(x;+ *** +xn”) 
Xl x2 %I 

= 2n (2b)“-‘(12 + 32 + * * * + (2b - 1)‘) 

= tn(4b’ - 1)(2b)“. (57) 

Therefore, 

1 
PC”) = Tn(4b2 - 1) (58) 

= in(M’)2/“(l + o(l)), 

and the asymptotic formula for the uncoded figure of 
merit is 

d(u) 

- = g(“1’)-‘/“(1 + o(1)). 
PC’) n (60) 

Theorem 8: As k, -+ cc the coding gain of the codes 
described in Section II approaches 

n+2 d 
3 ~A2”‘mPl dB (61) 

2 

where A is the density of A and pi (see (5)) is the 
fractional rate of the convolutional code. 

Proof. The proof follows from (la), (56), (60), using 
(5) to write a2kJn = mpl. 

Example: For the codes in Example la of Section III, 
A = Z2, det A = 1, t.t = 1, A = m/4 and d/d, = 6/8, so 
from (61) the gain approaches 

10 log,, 7r = 4.971 . * * ask,+ cc. (62) 

The following useful formula describes the coding gain 
that is theoretically achievable simply by mapping mes- 
sages directly into lattice points (without using a trellis 
code). 

Theorem 9: If messages are represented by a signal 
constellation of M points in an n-dimensional lattice A of 
density A (or center density S), a coding gain is attained 
that approaches 

n+2 
10 log,, 3 A2’” 

(63) 

I dB 

as M-, 00. 

Proof: The proof follows directly from (49), (50), (59), 
or as a special case of Theorem 8. 

2This assumption does not affect our final estimate. 

Table XIV shows the coding gains theoretically achiev- 
able from various known lattices according to Theorem 9. 

TABLE XIV 
POTENTIALCODINGGAINSOFVARIOUSLATTICES 

(SEETHEOREM~).~ = CENTERDENSITY 

Gain 

Dimension 6 Name Reference W 

2 W\lj;) 4 P71 0.825 

4 l/8 04 1171 1.961 

6 l/(86) Es [171 2.832 

8 l/16 -% P71 3.739 

12 l/27 Kl2 P71 4.514 

16 l/16 A 16 1171 5.491 

24 1 A 24 1171 7.116 

40 16 A [171 7.843 

48 214.039 P4Tq 1171 9.037 

64 222 PI 9.397 

80 236 - 
;:; 

10.070 
128 288 - 11.557 

V. DISCUSSION 

The Main Table: In Table XV we have collected the 
trellis codes of rates 1.5, 2, 2.5, and 3 bits/dimension 
constructed in Section III, together with some codes of 
Ungerboeck [25]. The latter are distinguished by the letter 
U in column 1. Codes found by Calderbank and Mazo 
(mentioned in Example 8) have a C in column 1. The third 
column gives the number of states in the convolutional 
code, and the fourth column gives the number of points in 
the signal constellation. The sixth column gives the path 
multiplicity per two-dimensional signal point, and the last 
column either gives the example in Section III where the 
code can be found or a reference. 

Remarks: 1) In Ungerboeck’s Table III, in the column 
headed m = 3, the g-point uncoded constellation used for 
comparison is his constellation 8-AMPM. Fortunately, this 
has the same ratio of d(“)/P(“) = 4/5 as our S-point 
uncoded constellation (a 3 X 3 array with one corner 
removed), so we are able to use his values for the coding 
gain of his codes. For the codes taken from the column 
headed m = 5 of Ungerboeck’s Table III we have calcu- 
lated the coding gain by subtracting 0.2 dB from Un- 
gerboeck’s figure, since his standard of comparison is the 
32-AMPM constellation whereas our standard of compari- 
son is the Campopiano-Glazer configuration. 2) Forney 
et al. [12] give a code similar to code ,27, but with a gain 
of only 4.5 dB. 3) The performance of codes 
15U, 24U, 29U, 34U, 38U can be improved by changing 
the signal constellation from 32-AMPM to the Campo- 
piano-Glazer constellation (Fig. 3). For example the cod- 
ing gain of code 29U is increased from 4.559 to 4.771 dB. 

Comparisons 

Table XV shows that, although in some cases 
Ungerboeck’s codes have a higher coding gain than ours3 
(compare codes 1 and 2 or 41 and 42, for example), there 
are many cases where our codes have a slightly higher gain 

3A precise comparison is difficult because the coding gains in [25] are 
only given to one decimal place. The path multiplicities for these codes 
are not given in [25] but may be found in [29]. 
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TABLE XV 
SUMMARY OF TRELLIS CODES HAVING RATES~.~, 2, ~.~,AND 3 BITS/DIMENSION 

Rate Number of Gain Path Convolutional Signal 
Number (bits/dimension) States M (dB) MuIt$icity A Code Constellation 0 

1 ,1.5 4 32 2.785 4 
2u 1.5 4 16 3.0 4 
3 1.5 8 16 3.979 16 
4u 1.5 8 16 4.0 16 
5 1.5 8 32 4.168 32 
6 1.5 16 32 4.546 48 
7 1.5 16 16 4.771 56 
8U 1.5 16 16 4.8 56 
9 1.5 64 32 5.216 48 

1ou 1.5 64 16 5.4 56 
11 1.5 64 16 5.441 48 
12 1.5 128 32 5.795 228 
13u 1.5 128 16 6.0 344 
14 1.5 256 16 6.021 112 

15u 2 4 32 2.8 
16 2 4 64 2.903 
17 2 4 32 3.010 
18 2 4 32 3.200 
19u 2 4 8 3.310 
2oc 2 4 8 3.312 
21c 2 4 8 3.518 
22 2 8 32 3.529 
23U 2 8 8 3.768 
24U 2 8 32 3.768 
25 2 8 32 3.979 
26 2 8 64 4.286 
27 2 8 512 4.717 
28U 2 16 8 4.181 
29U 2 16 32 4.559 
30 2 16 64 4.664 
31 2 16 32 4.771 
32 2 16 512 4.881 
33u 2 6.4 8 5.2 
34u 2 64 32 5.2 
35 2 64 64 5.333 
36 2 64 32 5.441 
37 2 64 512 6.131 

38U 2 128 32 5.8 
39 2 128 64 5.913 
4d 2 256 32 6.021 

4 
4 

32 
27 
- 

- 

16 
- 

16 
16 
32 
44 
- 

56 
48 
56 

i52 
- 
56 
48 
48 

828 

j44 
228 
112 

41u 2.5 4 64 2.8 
42 2.5 4 128 2.903 
43u 2.5 8 64 3.8 
44 2.5 8 64 3.872 
45 2.5 8 128 4.286 
46U 2.5 16 64 4.6 
47 2.5 16 64 4.664 
48 2.5 16 128 4.664 
49u 2.5 64 64 5.2 
50 2.5 64 64 5.333 
51 2.5 64 128 5.333 
52U 2.5 128 ti4 5.8 
53 2.5 128 128 5.913 
54 2.5 256 64 5.913 
55 3 8 128 4.084 
56 3 8 2’3 4.904 
51 3 16 128 4.876 
58 3 16 213 5.156 

j9 3 64 128 5.545 
60 3 64 213 6.406 

61 3 256 128 6.125 

4 
4 

16 
16 
32 
56 
56 
48 
56 
48 
48 

344 
228 
112 
16 
44 

1:62 

48 
828 

112 

(30) 

6) 

r:19i 

(19) 

(32) 

ii 
(33) 

6) 

(30) 
WI 
(28) 

Table XIII 
Table XIII 
Table XIII 

(35) 
Table XIII 

;ij 

(38) 
Table XIII 

(29) 
(19) 
(44) 
- 

(32, 
(26) 
(42) 

& 
(27) 

(30) 

(25) 
(31) 

ii 
(29) 

(26) 
(32) 

6) 
(27) 
(25) 
(38) 

iti; 

g;; 

(27) 

Fig. 11 
l6-OASK 

Fi:g. 3 
16-QASK 

Fig. 11 
Fig. 11 
Fig. 3 

16-QASK 
Fig. 11 

16-QASK 
Fig. 3 

Fig. 11 
16-GASK 

Fig. 3 

32-AMPM 
Fig. 11 
Fig. 8 
Fig. 10 

Table XIII 
Table XIII 
Table XIII 

Fig. 16 
Table XIII 
32-AMPM 

Fig. 3 
Fin. 11 

kl 
Table XIII 
32-AMPM 

Fig. 11 
Fig. 3 

Table XI 
8-AM 

32-AMPM 
Fig. 11 
Fig.. 3 

Tabie XI 

32-AMPM 
Fig. 11 
Fig. 3 

64-QASK 
Fig. 15 

64-QASK 
Fig. 6 
Fig. 15 

64-QASK 
Fig. 6 
Fig. 15 

64-QASK 
Fig. 6 
Fig. 15 

64-QASK 
Fig. 15 
Fig. 6 
Fig. 7 

PI 
Fig. 7 

- 

Fig. 7 
- 

Fig. 7 

(3c) 
[251 

;:; 

(3c) 
(3c) 
(lb) 
[251 

;;i; 

g; 

Gl 
(14 

~251 
(3b) 
Q-4 
(2b) 

ii; 

(8) 

ii; 

~251 
(14 
(3b) 
(6) 
(8) 
1251 

1: 4 

(7:) 
[251 
~251 

‘:1”1 

(7:) 

[?51 

i:; 

(14 

;:s; 

(lb1 
(3c) 
~251 

(compare codes 4 and 5, 10 and 11, 15 and 16, for mensional constellation (32-AMPM). By using a 64-point 

example). Codes 28-32, all of which have rate 2 bits/di- constellation in Z2 with sublattice 4Z2 we obtain 4.66 
mension and use a 16-state convolutional code, illustrate dB, and with a 32-point constellation in Z2 with sublattice 
this. Code 28, from [25], gives a gain of 4.18 dB using a OZ2, where 0 is the endomorphism defined in (l), we 
one-dimensional constellation, while code 29, also from obtain 4.77 dB. By going to the four-dimensional lattice D4 
[25], realizes a gain of 4.6 dB by using a 32-point two-di- and using a 512-point constellation we get 4.88 dB (this 
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gain is obtained by reducing the average transmitted en- 

ergy). 
The path multiplicity of code 32 is 152 (measured in 

channel uses per trellis stage) compared with only 56 for 
code 29. This does not mean that four-dimensional coding 
schemes are a bad idea. For example, by replacing (38) 
with the generator matrix 

i 

01001110 
10010101 

00000100 I 
11010111’ 

we obtain a 16-state code for the lattice (22 + 1)4, for 
which d, = 5, d, = 0, d = 4 and the nominal coding gain 
is unchanged at 4.717 dB. We have doubled the number of 
states to reduce the path multiplicity by a factor of 4, from 
48 to 12. A 16-state code with the same performance is 
described by Wei in [29]. 

The codes constructed by Ungerboeck all employ a 
constellation with twice as many signal points as are 
required for uncoded transmission at the same rate. Our 
table shows that in some cases increasing the expansion 
factor is profitable (compare codes 25 and 26) while in 
other cases it is not (compare codes 6 and 7). 

It is of course to be expected (see the discussion in 
Forney et al. [12]) that by using larger constellations and 
higher dimensional lattices a bigger gain will be obtained. 
On the other hand, in some cases the path multiplicity 
rises sharply when the dimension of the signal constella- 
tion is increased (from 2 to 4, for example, as in codes 36 
and 37), while in other cases it does not (compare codes 26 
and 27). We feel that the merit of the construction tech- 
nique described in this paper is that it permits the coding 
theorist to work with larger constellations and more com- 
plicated lattices than can be handled by set partitioning. 

The two methods are in any case very similar. This can 
be seen by considering [25, fig. 51. The successive partitions 
in this tree just pick out points that lie in different cosets 
of 2 2 under the endomorphism of 2 2 defined by 

o=; -;. i i 
In fact it was by consideration of such examples that we 
discovered the present construction. 

Choice of Lattice 

Some interesting conclusions concerning the choice of a 
lattice may be drawn from Theorem 8. In dimension 
n = 4, for example, the brackets in (61) contain a factor fi, 
where A is the density of the lattice. Since D4 is twice as 
dense as the cubic lattice Z4 [17], we may expect to gain 
1.5 dB by choosing the signal constellation from the denser 
lattice. This is borne out by a comparison of codes 27 and 
37 in the table. On the other hand, the convolutional code 
over D4 defined by (42) requires four times as many states 
as the convolutional code over Z4 defined by (38). 

In two dimensions, the ratio of densities of A, and the 
square lattice Z 2 is 2/o = 1.155, and so the potential 

gain is only 

lOlog,, (1.155) = 0.625 dB. 

Furthermore, it turns out to be more difficult to find good 
constellations in A, than in Z*, with the result that, as the 
table shows, trellis codes based on A, are not as successful 
as we initially hoped. 

As to the choice of sublattice A’, Theorem 8 shows that, 
other things being equal, the larger the magnification 
factor m, i.e. the larger the index JR] = IA/A’], the better. 
On the other hand, as the index increases it becomes more 
difficult to find the convolutional code. 

We are currently investigating higher dimensional 
lattices. Promising endomorphisms are known for the 
lattices E,, K12, Ai6, and A,, in 8, 12, 16, and 24 
dimensions, respectively [l], [2], [6] (see also [31]). 

ACKNOWLEDGMENT 

We thank J. E. Mazo and the referees for a number of 
very helpful comments. 

REFERENCES 

111 

PI 

131 

141 

151 

[61 

[71 

PI 

[91 

[W 

WI 

WI 

[I31 

P41 
[W 

WI 

[171 

WI 

E. S. Barnes and N. J. A. Sloane, “New lattice packings of 
spheres,” Can. J. Math., vol. 35, pp. 117-130, 1983. 
A. Bos, J. H. Conway, and N. J. A. Sloane, “Further lattice 
packings in high dimensions,” Mathematika, vol. 29, pp. 171-180, 
1982. 
A. R. Calderbank and J. E. Mazo, “A new description of trellis 
codes,” IEEE Trans. Infwm. Theoty, vol. IT-30, pp. 784-791, 
1984. 
A. R. Calderbank and N. J. A. Sloane, “Four-dimensional modula- 
tion with an eight-state trellis code,” Bell Syst. Tech. J., vol. 64, pp. 
1005-1018,1985. 
C. N. Campopiano and B. G. Glazer, “A coherent digital amplitude 
and phase modulation scheme,” IRE Trans. Commun. Syst., vol. 
CS-10, pp. 90-95,1962. 
J. H. Conway, R. A. Parker, and N. J. A. Sloane, “The covering 
radius of the Leech lattice.” Proc. Rov. Sot. London. Ser. A. vol. 
380, pp. 261-290, 1982. 
J. H. Conway and N. J. A. Sloane, “Voronoi regions of lattices, 
second moments of polytopes, and quantization,” IEEE Trans. 
Inform. Theory, vol. IT-28, pp. 211-226, 1982. 
_ “Fast quantizing and decoding algorithms for lattice quan- 
tizeri and codes.” IEEE Trans. Inform. Theory. vol. IT-28. DD. 
227-232,1982. 

, , IL 

_ “A fast encoding method for lattice codes and quantizers,” 
IEEi Trans. Inform. Theory, vol. IT-29, pp. 820-824, 1983. 
_ “On the Voronoi regions of certain lattices,” SIAM J. Alge- 
br&Discrete Methods, vol. 5, pp. 294-305, 1984. 
-, “Soft decoding techniques for codes and lattices, including 
the Golay code and the Leech lattice,” IEEE Trans. Inform. 
Theory, vol. IT-32, pp. 41-50, 1986. 
G. D. Forney, Jr., R. G. Gallager, G. R. Lang, F. M. Longstaff, and 
S. U. Qureshi, “Efficient modulation for band-limited channels,” 
IEEE J. Select. Areas Commun., vol. SAC-2, pp. 632-647, 1984. 
F. Fricker, Einftihrung in die Gitterpunktlehre. Boston, MA: 
Birkhsuser, 1982. 
M. Hall, Jr., The Theory of Groups. New York: Macmillan, 1959. 
I. N. Herstein, Topics in Algebra. Waltham, MA: Ginn and Co., 
1964. 
E. L. Lawler, Combinatorial Optimization: Networks and Matroids. 
New York: Holt, Rinehart and Winston, 1976. 
J. Leech and N. J. A. Sloane, “Sphere packing and error-correcting 
codes,” Can. J. Math., vol. 23, pp. 718-745, 1971. 
S. Lin and D. J. Costello, Jr., Error Control Coding. Englewood 
Cliffs, NJ: Prentice-Hall, 1983. 



CALDERBANK AND SLOANE: NEW TRELLIS CODES 

1191 

PO1 

WI 

P21 

~231 

1241 

R. J. McEliece, The Theory of Information and Coding. Reading, P51 
MA: Addison-Wesley, 1977. 
M. A. Marsan, G. Albertengo, S. Benedetto, and E. Giachin, 1261 
“Theoretical aspects and performance evaluation of channel encod- - 
ine with redundant modulator alnhabets. ” in Proc. IEEE Global 1211 
Telecommunications Conf., Nov. 1984, New York: IEEE Press, [28j 
pp. 688-692. 
E. M. Reingold, J. Nievergelt, and N. Deo, Combinatorial Al- 
gorithms: Theory and Practice. Englewood Cliffs, NJ: Prentice- [29] 
Hall, 1977. 
N. J. A. Sloane, “Binary codes, lattices and sphere packings,” in [30] 
Combinatorial Surveys, P. J. Cameron, Ed. New York: Academic, 
1977, pp. 117-164. 
_ “Self-dual codes and lattices,” in Relations Between Combina- 
torici und Other Parts of Mathematics, Proc. Sympos. Pure Math., 
vol. XXXIV. Providence, RI: Amer. Math. Sot., 1979, pp. 273-308. [31] 
_ “Tables of sphere packings and spherical codes,” IEEE 
Tran:. Inform. Theoty, vol. IT-27, pp. 327-338, 1981. 

195 

G. Ungerboeck, “Channel coding with multilevel/phase signals,” 
IEEE Trans. Inform. Theory. vol. IT-28. DD. 55-67. 1982. 
A. J. Viterbi and J. K. Omura, Principlesb> Di,&l’Communication 
and Coding. New York: McGraw-H?ill, 1979. - 
B. L. van der Waerden, Modern Algebra. New York: Ungar, 1953. 
L. F. Wei, “Rotationally invariant convolutional channel coding 
with expanded signal space-II: Nonlinear codes,” IEEE J. Select. 
Areus Commun., vol. SAC-2, no. 672-686. 1984. 
--, “Trellis-coded modulat~cm with multi-dimensional constella- 
tions,” IEEE Trans. Inform. Theory, to appear. 
S. G. Wilson, H. A. Sleeper, and N. K. Srinath, “Four-dimensional 
modulation and coding: An alternative to frequency-reuse,” in 
Science, Systems and Services for Communications. P. Dewilde and 
C. A. May, Eds. New York: IEEE/Elsevier-North Holland, 1984, 
pp. 919-923. 
A. R. Calderbank and N. J. A. Sloane, “An eight-dimensional 
trellis code,” Proc. IEEE, vol. 74, pp. 757-759, 1986. 


