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Abstract—Power amplifier (PA) behavior is inextricably linked
to the characteristics of the transistors underlying the PA design.
All transistors exhibit some degree of memory effects, which must
therefore be taken into account in the modeling and design of these
PAs. In this paper, we will present new trends for the characteri-
zation, device modeling, and behavioral modeling of power tran-
sistors and amplifiers with strong memory effects. First the impact
of thermal and electrical memory effects upon the performance of
a transistor will be revealed by comparing continuous wave and
pulsed RF large-signal measurements. Pulsed-RF load–pull from
the proper hot bias condition yields a more realistic representa-
tion of the peak power response of transistors excited with modu-
lated signals with high peak-to-average power ratio. Next, an ad-
vanced device modeling method based on large-signal data from
a modern nonlinear vector network analyzer instrument, coupled
with modeling approaches based on advanced artificial neural net-
work technology, will be presented. This approach enables the gen-
eration of accurate and robust time-domain nonlinear simulation
models of modern transistors that exhibit significant memory ef-
fects. Finally an extension of the X-parameter (X-parameter is a
trademark of Agilent Technologies Inc.) behavioral model to ac-
count for model memory effects of RF and microwave components
will be presented. The approach can be used to model hard non-
linear behavior and long-term memory effects and is valid for all
possible modulation formats for all possible peak-to-average ratios
and for a wide range of modulation bandwidths. Both the device
and behavioral models have been validated by measurements and
are implemented in a commercial nonlinear circuit simulator.

Index Terms—Behavioral model, device modeling, large-signal

RF measurements, memory effects.

I. INTRODUCTION

P OWER transistor amplifiers express behavior that has as

its origin the memory effects of the transistor technology

on which they are built. The term memory is used here to de-
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scribe effects that vary on timescales much longer than those

associated with the RF period. Some causes of memory effects

in transistors are dynamic self-heating (always present due to

thermodynamic considerations), dynamic trapping (capture and

emission) effects, prevalent especially in some compound semi-

conductor material systems (e.g., GaN and GaAs), and parasitic

bipolar transistor effects in semiconductor-on-insulator (SOI)

MOSFETs. Inmicrowave components, the biasing circuit is also

known to introduce memory effects that must be considered in

behavioral modeling.

Self-heating plays a major role in power transistor operation.

Conversion of electrical energy to heat creates a change in de-

vice temperature that, in turn, affects key electrical device char-

acteristics, such as power gain. The device temperature distribu-

tion depends significantly on the class of operation, itself deter-

mined by dc-bias conditions, load conditions, and power levels

associated with the RF signals. Thermal boundary conditions

are also very important.

Trapping phenomena, in the bulk or at the surface of semi-

conductor material, are prevalent in III–V field-effect transistor

(FET) technologies, such as GaAs-based MESFETs and

pseudomorphic HEMTs (pHEMTs), and recently introduced

high-speed and power technologies based on GaN. Trapping ef-

fects of different types are claimed to be responsible for “power

slump,” “knee collapse,” and the phenomena of drain-lag and

gate-lag [1], [2].

Memory effects make it much more difficult to estimate, from

conventional transistor characterization data, the actual large-

signal transistor performance at RF frequencies and large-am-

plitude stimuli. It is generally impossible to infer, accurately,

the power or efficiency of a GaN transistor at large input power

from dc and linear -parameter measurements alone.

Multiple mechanisms producing long-term memory are often

present simultaneously in transistors, making it difficult to sep-

arately identify and model the independent contributions for a

particular device,

Over the past 20 years, pulsed bias and pulsed -parameter

measurement techniques have been deployed to provide in-

formation that device modelers could use to separate distinct

memory mechanisms for more comprehensive models. The

timescales (e.g., 100 ns) for such measurements are shorter

than the timescales for variation of a “slow” variable like

temperature or states related to trapping. Such “iso-thermal”

or “iso-dynamic” data gives a snapshot of the device currents
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and linear behavior at conditions set by the quiescent operating

point from which the pulses originate. However, all this infor-

mation is parameterized by the quiescent point. Converting this

into a comprehensive dynamic model is a very difficult task,

taking many additional steps, and many additional approxi-

mations. This is especially true for the details of how the trap

states affect both the current, and the output charge storage of

the device. Examples of such approaches, based on different

assumptions about how the traps modify the drain current,

are given in [1] and [7]. Much less work has concerned how

the trapping effects modify the model terminal charges, and

therefore the “high-frequency” memory of the intrinsic device.

Even though traps will not normally respond instantaneously to

an RF signal, the average trap occupation will still depend on

the dynamic load-line trajectory for large-signal excitations [8],

[9] due to cyclostationary effects. Indeed, as was demonstrated

in [10], the trap occupation is dependent on the time average

of the bias-dependent emission and capture rates along the

dynamic load-line trajectory.

Measurements revealing the impact of thermal and electrical

memory effects upon the large-signal RF response of a tran-

sistor will be presented in Section II. This will be achieved by

comparing continuous wave (CW) and pulsed RF large-signal

measurements for various hot-bias conditions and duty rates.

Pulsed-RF measurements are useful to obtain a more realistic

characterization of the RF response of a transistor at peak power

when excited with modulated signals with high peak-to-average

power ratio (PAPR) excitations.

Section III will present a systematic and accurate approach

to generating a detailed time-domain large-signal simulation

model directly from large-signal data from a modern nonlinear

vector network analyzer (NVNA) instrument. A complete

methodology will be used to convert the data directly into non-

linear constitutive relations of current and charge that include

detailed dependence on the temperature and the two trap states

considered.

Behavioral modeling of microwave components is an alter-

nate approach to device modeling, which is of great interest

to the designers of amplifiers that are used in today’s wireless

communication infrastructure. An important problem faced by

these engineers is the difficulty to characterize, describe, and

simulate the nonlinear behavior of amplifiers that are stimu-

lated by signals that have a high peak-to-average ratio and that

stimulate the amplifier at a power range covering the full oper-

ating range. This is problematic for at least two reasons. Firstly,

the amplifier behavior may be driven into full saturation and is

as such strongly nonlinear. A good overview of existing tech-

niques for the behavioral modeling of microwave amplifiers can

be found in [11]. Most of the existing approaches are based on

Volterra theory and as such rely on polynomial approximations.

Polynomial approximations cannot easily handle hard nonlinear

behavior such as saturation. Secondly, the amplifier behavior

shows memory effects as previously discussed. Unfortunately

approaches that can handle hard nonlinear behavior, such as a

simple compression and AM-to-PM characteristic or a more ad-

vanced poly-harmonic distortion (PHD) model [12], [13], have

no straightforward way of dealing with memory effects.

Section IV of this paper will present an original behavioral

model that is not based on polynomials and that can easily

handle memory effects. One of the advantages of the new

approach, called dynamic X-parameters, is that the model can

be extracted by performing a simple set of measurements.

Another advantage is that the model remains valid for a wide

range of modulation bandwidths, which is typically not the

case for classic approaches.

II. PULSED AND CW LARGE-SIGNALMEASUREMENTS

Aswas discussed in Section I, various types of low-frequency

memory effects arise in transistors due to different physical pro-

cesses. Self-heating, trapping, and bipolar parasitic transistor

effects in MOSFETs are typically the main sources of low-fre-

quency memory effects with electrical time constants running

from 100 s to 100 ns. It is of interest to investigate the impact of

these memory effects on the performance of power amplifiers

(PAs) excited by signals with high PAPR.

Complex modulated signals such as WiMAX and long-term

evolution (LTE) exhibit large PAPR reaching 10 dB. How-

ever PAPRs larger or equal to 10 dB arise with a very small

probability (typically 10 ) and take place for short duration

on the order of 100 ns. Thus, most of the time the amplifier is

amplifying the modulated signals at the average power. This

raises questions about which characterization and modeling

techniques enable a realistic simulation of the device perfor-

mance for excitations with large PAPR.

Load–pull is a phenomenological technique that is often

used either in simulation or experimentally to design PAs. In

load–pull measurements, the multiharmonic terminations pre-

sented by the load and source networks are tuned to optimize

the power-added efficiency (PAE) of the PA while maintaining

its gain over the dynamic range of the output power. Conven-

tionally, load–pull relies on CW RF signals. However, CW

load–pull may not provide a reliable evaluation of the transistor

performance if the device exhibits strong memory effects.

To demonstrate this, let us first consider self-heating. For

amplifiers operating in class B, AB, or class F, the power dissi-

pated by the transistor increases with increasing input power.

However, considering that peak power is typically achieved

for a very short duration (100 ns), has a low probability of

occurrence, and thermal effects are usually relatively slow

s , the device will remain operating at the temperature

established by the average dissipated power. Therefore, CW

load–pull at the peak power may not yield realistic results due

to the comparatively much larger self-heating it will induce.

Next consider the impact of traps in devices such as GaN

HEMTs. Under low-power CW operation, the drain voltage

peak remains typically small and the traps are not activated.

However, for modulated RF signals, the instantaneous drain

voltage reaches intermittently large values (50–60 V). Traps in

GaN typically have very short capture time (ns) at high drain

voltages (50 V) and very long emission time (s) at lower drain

voltages 40 V . Therefore, traps charge during the brief

periods of peak power and do not have time to discharge during

the intervening time. The dominant response of the transistor

for the average input power is then directly affected by the
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Fig. 1. Pulsed I–V pulsed RF test bed used to perform both pulsed-RF RTALP
and pulsed active load–pull.

charged traps and associated “knee walkout” effect resulting

from these intermittent high power peaks of the modulated RF

signal. Thus, the dynamics of charge trapping for modulated RF

excitations cannot be captured by CW load–pull simulations

and measurements.

An increase of output noise can also be detected due to

the activated traps. Note that the state of the traps is not deter-

mined by the dc-bias condition, but by the RF load line (cy-

clostationary effect) [8]–[10]. Other memory effects such as the

slow parasitic bipolar in SOI-MOSFETmay also be expected to

be affected by the dynamic RF load lines.

The impact of memory effects on the transistor performance

excited by signals with high PAPR can be detrimental (trap case)

or beneficial [lower temperature of operation or reduced par-

asitic bipolar junction transistor (BJT)] depending on the par-

ticular dominant memory process. Since CW load–pull mea-

surementsmay not provide a realistic characterization approach,

other alternatives must be pursued. To more realistically char-

acterize the performance of a transistor for RF signals with high

PAPR modulation, pulsed RF large-signal measurements from

a well-defined hot-bias operating condition offers such an alter-

native. The pulsed I–V/RF testbed used in this section is shown

in Fig. 1. The pulsed measurements with the large-signal net-

work analyzer (LSNA) rely on the method of multiple recording

data acquisition [14], [9] to achieve 0% desensitization inde-

pendently of the duty rate. The new technique of pulsed-RF

real-time active load–pull (RTALP) [15], [16] measurements

was used to optimize the output load.

To investigate the use of pulsed-RF large-signal measure-

ments to characterize memory effects, we shall now consider

a sub-cell of a power SOI-MOSFET transistor. This device will

be initially tested for three different incident power levels of 1,

4, and 11 dBm at 1.9 GHz, for CW and pulsed RF signals of 1%

duty rate. The PAE contour plot obtained from pulsed-RTALP

is shown in Fig. 2 for an input power level of 0.4 dBm. The

optimal load selected for low-power operation

Fig. 2. Constant PAE contour obtained from pulsed-RTALP shown here for
0.4-dBm incident power at 1.9 GHz for class-AB operation.

Fig. 3. RF transfer obtained for CW (dashed lines) and pulsed (plain lines) RF
excitations with incident power of 1, 4, and 11 dBm and 1% duty rate at 1.9 GHz.

yields a maximum PAE of 66%. Note that a different drain load

of is used at 11-dBm incident power. The tran-

sistor is found to operate in quasi-class AB. Load–pull at the

second and third harmonic were verified to yield negligible PAE

improvements.

The RF transfer characteristic versus and dynamic

load lines versus obtained are shown in Figs. 3 and 4

and the performance of the device is summarized in Table I.

The gate voltage swing shown in Fig. 3 is seen to be about

the same for the various incident signals. The output drain cur-

rent is also similar for the 1- and 4-dBm incident power levels.

However, for 11-dBm incident power, the drain current swing is

much larger. The drain current under pulsed RF reaches a more

negative value indicating an increased power generation during

the RF cycle associated with the drain charge storage. Fig. 4

also shows a corresponding increased drain voltage swing. It is
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Fig. 4. Drain load lines obtained for CW (dashed lines) and pulsed (plain lines)
RF excitations at 1.9 GHz with incident power of 1, 4, and 11 dBm and 1% duty
rate.

TABLE I
CW AND PULSED RF TRANSISTOR PERFORMANCE AT 1.9 GHz

to be noted that the pulsed-RF load line reaches a lower knee

voltage than expected from the dc and pulsed I–V at V

(gray dashed and plain lines in Fig. 4). As indicated in Table I,

the pulsed RF measurements exhibit an improved PAE of 14%

compared to the CW measurement while maintaining the same

power gain.

To investigate the physical origin of this memory effect, we

shall now: 1) vary the dc-bias points of the pulsed-RF measure-

ments or 2) change the duty rate. The results are shown in Figs. 5

and 6 and the transistor performance summarized in Table II.

The previous pulsed RF load line (red line (in online version)

with top triangles) that was measured with the device at the

dc-bias temperature (no RF applied) and the CW load line (black

line with diamonds) are included for references. The pulsed RF

load lines with a higher hot-biasing current of 11.8mA (blue line

(in online version) with down triangles) that largely overesti-

mates the self-heating in CW operation is seen to remain similar

to the pulsed RF load line with the bias-point temperature (red

line (in online version) with up triangles). A resulting decrease

in PAE of only 2% with this overestimated operating tempera-

ture is obtained as shown in Table II. Clearly, self-heating is not

the dominant memory effect in this device.

Fig. 5. RF transfer at 1.9 GHz obtained for 11-dBm CW (black line with cir-
cles) and pulsed RF excitations for 1% (blue and red lines (in online version)
with up and down triangles) and 4% (magenta line (in online version) with
square) duty rate and different hot biases.

Fig. 6. RF dynamic load line at 1.9 GHz obtained for 11-dBm CW (black line
with circles) and pulsed RF excitations for 1% (blue and red lines (in online
version) with low and upper triangles) and 4% (magenta line (in online version)
with square) duty rate and different hot biases.

TABLE II
CW AND PULSED RF TRANSISTOR PERFORMANCE@ 11 dBm

Now increasing the duty rate from 1% to 4% (magenta line

(in online version) with squares) is seen to produce a dynamic

transfer characteristic and a dynamic load line that is bridging

the gap between the ones obtained from CW and pulsed RF in
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Figs. 3 and 4. The increased duty rate also yields a reduced PAE

increase of 8% instead of 14% in Table II.

In the particular case of the SOI technology considered, the

memory effects have a beneficial impact on the device per-

formance. Namely, under the transient peaks of the modulated

RF excitations, the transistor performed better than expected

from operation at CW peak power while maintaining the same

operating temperature. A similar trend was observed on dif-

ferent devices and on different wafers. The precise origin of this

memory effect is not known, but several assertions can be made.

Self-heating associated with the power dissipation in the device

was verified not to be the controlling factor. This is explained by

the relatively low thermal resistance of the substrate used. The

different gate voltage swing, drain voltage swing, and drain cur-

rent swing observed in Figs. 3 and 4 indicate that the gate and

drain charges under the channel are different under pulsed and

CW operations. The lower effective knee voltage observed in

pulsed operation compared to CW operation could arise from a

reduced effective channel resistance. The more negative drain

current observed in Figs. 3 and 4 under pulsed operation that

is associated with the improved PAE (negative power dissipa-

tion) is also indicative of a more efficient recovery of the charge

stored in the channel. Presumably under unrealistic CW opera-

tion at peak power, the steady-state impact ionization may lead

to charge accumulation adversely modifying the channel char-

acteristics of the transistors.

Note that memory effects do not always have a beneficial

impact like in the SOI MOSFET considered here. For example,

trapping in GaN HEMTs induced by the transient peaks of

the envelope of complex modulated RF excitations usually

degrades the device performance, as was discussed. In all the

cases, the impact of memory effects on the transistor perfor-

mance for RF signals with high PAPR needs to be carefully

assessed. This is particularly needed for a more realistic design

of PAs relying on some type of load modulation for improved

power efficiency. In such a case, pulsed-RF load–pull from the

proper hot bias condition will yield a more realistic represen-

tation of the peak power response of transistors excited with

modulated signals with high PAPR. The modeling of memory

effects will now be investigated in Sections III and IV.

III. TIME-DOMAIN DEVICE MODELING

A. State Equations for Dynamical Variables

In this section, we are concerned with the development of

a detailed time-domain large-signal simulation model directly

from large-signal data from a modern NVNA instrument.

We assume we can model the transistor by a set of coupled

nonlinear ordinary differential equations of circuit theory. This

means there is postulated a set of coupled nonlinear equiva-

lent circuits for the electrical, thermal, and other dynamical

variables (e.g., trap states) that determine the behavior of the

device model.

An intrinsic model of a III–V FET with thermal and trap-

ping dependent memory is presented in Fig. 7. A simple one-

pole thermal equivalent circuit is used to compute the junction

Fig. 7. Nonlinear equivalent circuit of III-V FET model with dynamic self-
heating and trapping.

temperature from knowledge of the dissipated electrical power.

More poles can be added if necessary to better model the dis-

tributed nature of heat propagation. Two species of trapping and

emission phenomena are described by the remaining equivalent

circuits in Fig. 7. These are of the form proposed in [1] to de-

scribe gate-lag and drain-lag phenomena, respectively, common

in III–VGaAs and GaN FETs. The key dynamical principle here

is that there are asymmetric fast capture processes (in the direc-

tions of the diode) and slow emission processes that depend on

both the direction and the rate of the applied fields (voltages).

The intrinsic electrical model for currents and charges depends

nonlinearly on five variables—the two instantaneous intrinsic

terminal voltages, the junction temperature, and the two trap

state voltages across the respective gate-lag and drain-lag ca-

pacitors, respectively.

The equations for the instantaneous drain current and the

other time-dependent dynamical variables associated with junc-

tion temperature, , and traps states for gate-lag and drain-

lag, respectively, and , are given in (1)– (4). Gate

current equations can be found in [3]

(1)

(2)

(3)

(4)

Equations (2)–(4) are state equations—first-order differential

equations for the evolution of the key dynamical (state) vari-

ables that are arguments of the electrical constitutive relations

appearing in (1). The functions and appearing in (3) and

(4), respectively, are diode-like nonlinearities that account for

preferential trapping rates when the instantaneous gate (drain)

voltage becomes more negative (positive) than the values of

and . The parameters and are characteristic emission

times, typically assumed to be very long compared to the RF

time scales.
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Fig. 8. Model identification process with explicit functional formulas for state
variable values.

B. State Variable Identification From Large-Signal Waveforms

The model identification process is then to define the detailed

nonlinear constitutive relations defining the current and charge

function, , and , respectively, in (1), as nonlinear func-

tions of all five independent variables.

Remarkably, it is possible to identify these complicated

multivariate dependencies directly from measured device

large-signal waveform data under purely steady-state condi-

tions. That is, by exciting the device with CW large-signal

sinusoidal inputs at each port, varying the input and output port

power, the relative phase between input and output port excita-

tions, dc-bias conditions, and backside (or case) temperatures,

it is possible to sample the detailed dependence of the current

and charge functions everywhere in the operating space of the

five independent variables [3].

To understand why this is true, we note that at typical RF

frequencies, the temperature cannot follow the RF signal. At

steady state, therefore, the junction temperature assumes a fixed

value equal to the increase over ambient temperature given by

the average dissipated power over an RF cycle, multiplied by the

thermal resistance (a parameter that can be extracted by other

techniques [5]). For each steady-state periodic large-signal RF

load line, the junction temperature can be calculated by the

simple formula in Fig. 8.

For trap capture rates much faster than the RF signal, and for

emission rates much slower than the RF signal, the trap circuits

operate as peak detectors. The value, under steady-state large-

signal conditions for these trap states, therefore, becomes the

minimum (maximum) of the excursion of the

waveforms over a given period.

Thus, the large-signal RF CW excitation sets the values of

the slow dynamical variables, but the measurement allows for

their computation using simple formulas. The present method-

ology associates a set of three auxiliary values for , , and

with each waveformmeasurement, one waveform per power,

dc bias, backside temperature, and complex load. That is, the

junction temperature value and values for the trap states are

functionals of the particular waveform. The model identifica-

tion flow is given by Fig. 8.

Fig. 9. Parametric plot of measured dynamic load lines used for large-signal
model generation: (top) versus and (bottom) versus

.

It is possible to engineer a complete set of dynamic load lines

by properly varying the load (through passive tuning or active

injection at port 2), RF power, dc-bias conditions, and backside

temperatures to cover the entire large-signal operating range of

the device.

An example of measured waveforms, in space and

space is given in Fig. 9. It is important to note that

this region extends far beyond the conventional region of dc op-

eration of a device. A great advantage of NVNA data is that the

extreme regions of the device operation can be characterized

with much less degradation of the transistor. This is because

the instantaneous voltages only enter the high-stress regions for

sub-nanosecond periods as the device is stimulated with signals

at 1 GHz or higher frequency. For the same reason, less energy

is dissipated in the device at high instantaneous power regions

than under dc conditions. The larger domain of device opera-

tion means the need for the final model to extrapolate during

large-signal simulation is dramatically reduced or even elim-

inated completely. Actual nonlinear data obtained under real-

istic operating conditions means the modeling process does not

have to “extrapolate” from linear and dc data to predict non-

linear RF behavior, as do the approaches based on small-signal

data parameterized by dc-bias conditions. Moreover, the NVNA

data provides detailed waveforms for comprehensive nonlinear

model validation without the need for additional instruments,

such as spectrum analyzers, that only give the magnitude of the

generated spectrum—the NVNA measures the magnitudes and

the phases of the distortion products.
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C. Constitutive Relation Approximation

The remaining task is to smoothly approximate the de-

vice-specific nonlinear constitutive relations from the sampled

values of the waveforms and dynamical variables obtained by

the procedure outlined in Section III-B. In principle, any of a

wide variety of fitting techniques can be used to fit the currents

and charges as nonlinear functions of each of the five indepen-

dent variables. In the work reported here, advanced artificial

neural network (ANN) training techniques were implemented

[3]. ANNs have a great many advantages over other methods

[6]. Unlike polynomials, ANNs have infinitely many nonzero

partial derivatives, useful for high-order distortion simulation at

relatively small amplitudes, and ANNs do not diverge beyond

the training region, a property useful for robust convergence

in nonlinear simulators. ANNs can be trained easily on the

scattered data in the multivariate space of independent vari-

ables. ANN-based nonlinear constitutive relations can be easily

compiled into standard nonlinear circuit simulators.

Previously, specific and simplified assumptions about how

the trap state values affect the shape of the current and charge-

storage characteristics had to be assumed, typically by modi-

fying the intrinsic terminal voltages or parameters in the con-

stitutive relations such as threshold voltage [1], drain resistance

[2], or adding simple self back-gating equivalent circuits [17].

There is great insight that can be obtained by looking at the

constructed constitutive relations based on large-signal steady-

state waveforms. Two examples of generated intrinsic constitu-

tive relations for different sets of trap states are shown in Fig. 10.

The model current constitutive relations corresponding to ex-

treme trap states [see Fig. 10 (top)] bears a striking resemblance

to pulsed bias characterization from quiescent bias points asso-

ciated with the trap state biases [4]. The advantage of the NVNA

approach is that themodel characteristics are inferred fromDUT

responses to signals typically three or more orders of magnitude

faster than what can be measured with most pulsed systems that

are typically limited from 0.1 to 1 m.

The complete model solves for the trap states, junction

temperature, and currents self-consistently during simulation.

When embedded back into the parasitic model, final compar-

ison can be made to measured data. Fig. 11 shows the validation

with measured dc I–V curves. Note how different the static

nonisothermal I–V curves in Fig. 11 are from the intrinsic model

constitutive relations under the conditions of Fig. 10 (top) and

(bottom).

Although not shown here, the dependence of the key con-

stitutive relations on five state variables provides sufficient de-

grees of freedom to fit the bias dependence of the small-signal

model over the entire bias space at both dc and high frequen-

cies [3]. That is, frequency dispersion phenomena are predicted

accurately under small- and large-signal conditions as a con-

sequence of incorporating properly both dynamic trapping and

electrothermal effects. Models with just electrothermal effects

are not capable of such good fits to both dc and high-frequency

behavior at all biases.

Fig. 12 shows the nonlinear validation results for the ad-

vanced FET model for power-dependent gain and bias current

versus power. The distinctive car-shaped gain compression

Fig. 10. intrinsic model constitutive relation. (top) For large fixed trap state
values indicating knee collapse. (bottom) When trap states move with dc bias.

Fig. 11. Simulation of full model (solid line) and measured (symbols) compar-
ison of extrinsic dc I–V curves.

characteristic and significant nonmonotonic dependence of the

bias current with power is a result of the dynamics of drain-lag

and the detailed constitutive relation obtained with the ANN

training.

Fig. 13 shows the model validation of distortion versus power

for this device, validating both the dynamical description and

accuracy and robustness of the ANN approach to modeling the

complicated constitutive relations.

Fig. 14 shows the model simulation and NVNA waveform

validation measurement of a steady-state dynamic load line at a

complex output impedance not used in the ANN training. Also

shown is the set of dc-bias conditions demonstrating how much



ROBLIN et al.: NEW TRENDS FOR NONLINEAR MEASUREMENT AND MODELING OF HIGH-POWER RF TRANSISTORS AND AMPLIFIERS 1971

Fig. 12. Modeled and measured gain versus , and dc-bias current versus
.

Fig. 13. Measured and modeled fundamental and harmonic output power
versus input power.

Fig. 14. Simulated (dashed line) and independently measured large-signal dy-
namic load line (circles) extending beyond dc I–V data (plain line).

more of the device operating range is accessible by NVNA char-

acterization methods.

IV. DYNAMIC BEHAVIORAL MODELING

Behavioral modeling of microwave components provides an

alternate modeling approach that bypasses the need for detailed

device and circuit modeling of the circuits involved.

Unfortunately as was discussed in Section I, behavioral

models that can handle hard nonlinear behavior, like AM-to-PM

characteristic or the PHD model, have no straightforward way

of dealing with memory effects. As explained in [20], memory

effects can be classified as either short term or long term.

Short-term memory effects are caused by physical dynamics

that occur at the timescale of the carrier. This is, for ex-

ample, the case with frequency dispersion in filters. Long-term

memory effects are caused by physical dynamics happening

at a much longer timescale. This is, for example, the case for

dynamic self-heating or self-biasing effects. In this section, a

new behavioral model that can easily handle long-term memory

effects for a wide range of modulation bandwidths is presented.

A. Introduction of the Model Equations

Unlike existing approaches that deal with long-term memory,

the approach we present is not derived from Volterra theory, but

is derived from simple first principles. The result is a model that

describes hard nonlinear behavior, as well as long-term memory

effects. In all of the following, a simple matched system will be

considered, having only one input signal , the incident fun-

damental, and one output signal, , typically the amplified

signal. Note that all signals are considered to be complex enve-

lope representations of a modulated carrier. All of the concepts

can be extended toward mismatched conditions by including the

incident and scattered wave signals, and , at both

signal ports, and can be extended towards harmonic effects like

the models described in [12] by including the harmonics of the

carrier signal. The above extensions are outside the scope of this

paper. It will be assumed that the input signal can be represented

as a modulated carrier with a fixed frequency. Our model is a

so-called low-pass equivalent model that only processes the en-

velope information signal [11]. The new model equation, which

will be derived later, is

(5)

The basic idea of the new approach is that can be written

as the superposition of a static part, represented by the nonlinear

function , and a dynamic part, represented by a simple in-

tegral over time of a nonlinear function . Note that ,

as well as the integrated function , are a function of the in-

stantaneous amplitude of the input signal . The dependency

on the phase of the input signal is represented as a separate mul-

tiplicative vector . To simplify the mathemat-

ical notation, introduce .

As shown in [12], this phase dependency can be explained by

the principle of time-delay invariance. The static part behaves

like a classic PHD model. The dynamic part is original as it rep-

resents the long-term memory effects. These are described as

the integral effect of a general nonlinear function of the instan-

taneous amplitude of the input signal , the past values of

the input signal , and how long ago that past value oc-

curred (variable ). The model (5) can be derived by using the

notion of hidden variables [18].

B. Derivation of the Model Equation

To derive (5), one starts with writing the simple static PHD-

model equation, as described in [12], which is equivalent to a
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simple compression and AM-to-PM characteristic. This results

in

(6)

In (6), the function represents the mapping from the am-

plitude of the input signal to the corresponding output signal am-

plitude and phase, whereby the dependency on the phase of the

input signal is represented as a separate multiplicative vector.

As described in [18], memory effects can be introduced

by making use of one or more hidden variables. The idea is

that, in a system with memory, the mapping from the input

signal to the output signal is no longer a function of the

input signal amplitude only, but is also a function of an arbi-

trary number of a priori unknown hidden variables, denoted

. These variables represent time varying

physical quantities inside the component, such as temperatures,

bias voltages or currents, trapping states, that influence the

mapping from the input signal to the output signal. With the

introduction of the hidden variables, (6) becomes

(7)

To make (7) useful in the context of a black-box modeling

approach, one further needs to make an assumption regarding

the relationship between the hidden variables and the input

signal. Note that one could use a priori information on the

physics of the device-under-test (DUT) to find this relationship.

The black-box assumption on the relationship between the input

signal and the hidden variables is mathematically expressed as

(8)

Equation (8) expresses that the th hidden variable is gen-

erated by a linear filter operation, characterized by its impulse

response , which operates on a nonlinear function of

the input signal amplitude , can be interpreted as a

source term that describes how the input signal is related to the

excitation of a particular hidden variable; in general, this is a

nonlinear relationship. A good example could be, e.g., that

describes the power dissipation as a function of the input signal,

whereby is the temperature. The impulse response

describes the actual dynamics of a hidden variable, e.g.,

could describe a thermal relaxation. Note that the model as de-

scribed in [13] is actually a special case of the above equations

whereby there is only one hidden variable with

or

and

In [13], the equations are physically related to the assumption

that the amplitude squared relates to the bias current flowing

through a first-order linear bias circuit, which causes a variation

of the bias voltage, which modulates the PHD model. One can

easily imagine many other physical effects that are described by

(8), such as trapping effects and self-heating, whereby the dissi-

pated power is a nonlinear function of and causes tempera-

ture changes, which are linearly related to the dissipated power,

and which modulate the PHD model.

The link with (5) is then made by assuming that one can lin-

earize (7) in the hidden variables . In order to linearize, we

need to choose an operating point. In the following, we choose

to linearize around the steady-state solution for the hidden vari-

ables that corresponds to the instantaneous amplitude . In

other words, we linearize around the steady-state solution that

the system would reach assuming that we keep the input am-

plitude constant for all future time instants, the amplitude being

equal to the instantaneous input amplitude. This linearization

implicitly assumes that the deviations of the hidden variables

from their steady-state solution are always small enough not to

violate the superposition principle. These steady-state solutions

are a function of the input signal amplitude and are noted in

the following by . For example, the value of

is equal to the asymptotic value of the hidden variable

when one applies a constant input signal amplitude equal to .

Note that the argument of is a signal amplitude, whereas

the argument of the hidden variable is time. The functions

are easily calculated by simply substituting by a

constant in (7)

(9)

with

(10)

Equation (7) can then be rewritten as

(11)

with

(12)

In (12), the new variable represents the deviation of

the hidden variable from its steady-state solution corre-

sponding to the instantaneous input signal amplitude. It is now

further assumed that (7) can be linearized in these deviations

from steady-state . This results in

(13)

with

(14)

and

(15)
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The functions represent the sensitivity of the output

signal to variations of the th hidden variable. For example, if

represents the temperature, represents how sensitive

the output signal is to temperature changes. Note that is

a general nonlinear function of the instantaneous input signal

amplitude. It is perfectly possible for example that the output

signal is highly sensitive to temperature changes for small input

signals (corresponding to a temperature-dependent small-signal

gain), but not at all for high input signals whereby the output is

fully saturated.

In the structure of (13), one can distinguish a static part, rep-

resented by and a dynamic part, represented by the

summation over the hidden variables index “ .” The static part,

which can be derived from by using (14), corresponds to a

classic static PHD model. Note that the subscript “ ” is used

in since this function corresponds to the response of

the DUT to a single-tone CW excitation. Substitution of

in (12) using (8) and subsequently substitution of in (13)

using (12) results in

(16)

Using (10) and changing the order of summation and integra-

tion, one can write

(17)

In general, one may neither know what the hidden variables

are, nor how many there are or how they interact with the

system. Nevertheless, one can always define the multivariate

function by

(18)

such that

(19)

which is identical to (5). As such, we have been able to derive

(5) from a hidden variables approach, which was the goal of this

paragraph.

Equation (18) reveals that the multivariate function

is not arbitrary since the following relationship

will always be valid:

(20)

Aswill be shown next, this property is key in the experimental

determination of the function .

C. Model Identification

An important question is how one can determine the model

functions and from experiments. As will be shown

in the following, the model can completely be identified from

measuring a simple set of large-signal step responses. The set

of input step signals should be such that one switches, at time

zero, from one value to another value, covering the whole range

of possible input signal values.

Consider the application of a step input signal, whereby

for and for . The solution

for such a large-signal step response will be noted as

and is then given by

(21)

(22)

Equations (20) and (22) can be rewritten as

(23)

Taking the derivative versus “ ” at both sides of the above

equation results in

(24)

(25)

Note that, as a consequence of the inherent causality of (5),

only needs to be defined for positive values of “ .”

Equation (25) has important consequences. First of all, it allows

for a straightforward measurement of the function by

taking the inverse of the derivative of the step response when

starting with input amplitude “ ” and switching to input ampli-

tude “ ” at time 0.
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A second important consequence is that there is a one-to-one

mapping between the model and the step responses. Given that

one can measure all possible large-signal step responses, one

could apply the principle of Ockham’s razor and raise the ques-

tion “what is the simplest nonlinear dynamic model that is able

to generate the measured large signal step responses?” The an-

swer is the model as described by (5). This is definitely a signif-

icant advantage of the new modeling approach when compared

to existing black-box memory modeling methods.

D. Simplification in Case of Fast Varying Input Envelopes

As explained in [19], an interesting case occurs when the

input envelope varies fast relative to the timescale of the

kernel and whereby the input envelope has ergodic

properties (this means that the statistical characteristics are con-

stant over time). The model will then be seemingly static, but

with a static characteristic that is determined by the probability

density function of the input envelope.

Consider (5),

(26)

For a fast variation of , one can write the dynamic memory

term on the right-hand side of (26) as follows [19]:

(27)

with equal to the probability density function of the input

envelope amplitude, which is now considered to be a stochastic

variable denoted by “ .” Changing the order of integration on

the right-hand side of (27) leads to

(28)

Next we will calculate the inner integral of the right-hand side

of (28) by using identity (25)

(29)

whereby one notes that the integral operator at the right-hand

side annihilates the derivative operator. The result is

(30)

As , subsequent substitu-

tion of (30) in (28) and in (26) results in

(31)

From (31), one can conclude that the relationship between the

input envelope and the output envelope will be given

by a seemingly static characteristic. This static characteristic is

equal to a weighted average of the large-signal step responses

evaluated at time zero, using as a weight function the proba-

bility density function of the envelope input values. Since this

simplified dynamic X-parameter model is typically valid for a

wideband modulation, which is equivalent to a fast varying en-

velope, it is called a wideband X-parameter model.

E. Experimental Model Identification and Validation

The dynamicX-parameter model and the widebandX-param-

eter model were first experimentally validated using aMini-Cir-

cuits ZFL AD packaged microwave amplifier. Two mea-

surement platforms were used for the extraction of the model, as

well as for the validation of the model. A first measurement plat-

formwas based on a customized PNA-X, a secondmeasurement

platform was based on a PXA digital spectrum analyzer in com-

bination with an ESG or MXG digital synthesizer, all from Agi-

lent Technologies Inc., Santa Rosa, CA. Note that the model ex-

traction is based on using large-signal steps as excitation signals,

whereas the model validation is based on using two-tone sig-

nals, as well as a periodically modulated signals with WCDMA

characteristics.

The model extraction, as well as the model validation was

also performed using a carrier frequency equal to 1.75 GHz.

Measured results of the model extraction are represented in

Figs. 15–17.

For the large-signal step experiments, the values of and

are both swept from close to zero to . Note that the

maximum input value of corresponds to about 5 dB of

compression. Fig. 15 shows the large signal output steps for a

fixed value of for and for sweeping . Note the

rather slow frequency ringing in the step response.

Both the static X-parameter kernel and the memory

kernel are extracted from the above-mentioned set of large-

signal step measurements. The corresponds to a classic

AM–AMAM–PM characteristic. The new memory kernel

is hard to visualize, as it is defined as a complex number defined

on a square prism (two sides correspond to the amplitude ranges

of and , the third side corresponds to the time duration of

the memory). Fig. 16 shows the amplitude of the memory kernel

at a fixed time instant (equal to 50 ns) as a function of

and . Fig. 17 shows the time evolution of the kernel for

a small and a large . The upper graphic has a time range

of 60 s, where as the bottom graphic zooms in on the first 5 s

only.

Validation results are shown in Figs. 18 and 19. The first ex-

periment is based on two-tone signals with a tone separation of

19.2 kHz, repeated for four different power levels. The mea-

sured input signals are also used to stimulate the extracted dy-
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Fig. 15. Measured large-signal output steps for a fixed large value of (
swept).

Fig. 16. Memory kernel at fixed ns for Mini-Circuit ZFL AD am-
plifier.

Fig. 17. Memory kernel (V s) versus time ( s) for a step transition from
low (0.01 ) to high (0.2 ) input amplitude. (solid real part; dashed
imaginary part).

namic X-parameter model inside the ADS2009 envelope sim-

ulator. The simulated output signals, as well as the measured

output signals, are represented in Fig. 18. One notes the skewing

of the output waveform, due to long-term memory effects, and

the accuracy of the model to predict this behavior.

An interesting way to look at this data is the dynamic com-

pression characteristic shown in Fig. 19. It is a plot of the instan-

taneous output amplitude versus the instantaneous input ampli-

tude for the four two-tone experiments. The modeled and the

measured results are shown. As one notes, there is a significant

looping effect for the higher power level, a clear manifestation

of long-term memory effects, which is accurately modeled by

Fig. 18. Measured and modeled amplitude of the output envelope (19.2-kHz
tone spacing) (solid measured, dots modeled).

Fig. 19. Measured and modeled dynamic compression characteristic (mea-
sured: solid, modeled: dashed).

Fig. 20. Measured and modeled IM3 amplitude for two-tone experiment (solid
modeled, dots measured).

the dynamic X-parameter model. Whereas the tone spacing in

Fig. 18 was fixed at 19.2 kHz, it is interesting to check what

happens if one sweeps the tone spacing across a wide range, in

our case, almost four decades from 1.2 kHz to 10 MHz. Fig. 20

shows the measured and modeled third-order-intermodulation

(IM3) product amplitudes (both upper and lower) as a func-

tion of the frequency spacing, at a 10-dBm fixed input ampli-

tude level per tone. Note that the model predicts the resonance

around 60-kHz tone spacing very well. The model also predicts

the asymmetry in the lower and upper IM3 characteristics.

More advanced modulated signals were also applied, as

shown in Fig. 21. In this figure, we plot the modeled and

measured spectral regrowth when stimulating the amplifier

with a signal with WCDMA characteristics (matching mod-

ulation bandwidth and statistics). To show the improvement

of the dynamic X-parameter model over a static X-parameter

approach, the prediction based on a static (or CW) X-parameter
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Fig. 21. Spectral regrowth using a signal with WCDMA characteristics.

Fig. 22. Spectral regrowth prediction using wideband X-parameters (25-W
GaN amplifier of CREE @ 2-GHz carrier, LTE signal is used).

approach is included. One notes that the dynamic X-parameter

predicts the spectral regrowth with great accuracy with an error

less than 1 dB, whereas the CW X-parameter systematically

overestimates the spectral regrowth by about 5 dB.

Results on the validation of the wideband X-parameter mod-

eling approach, applied to the ZFL AD , can be found

in [19]. The wideband X-parameter model was also validated

using a CREE CMP2560025 F amplifier. This is a 25-W

2500–6000-MHz GaN monolithic microwave integrated circuit

(MMIC) PA. A setup using an MXG digital synthesizer and

an PXA digital spectrum analyzer were used for extracting the

wideband X-parameter kernel and for performing the validation

measurements using an LTE signal at a 2-GHz carrier. The

result is shown in Fig. 22. One notes that the spectral regrowth

is accurately predicted, with an error less than 0.3 dB across a

modulation bandwidth of about 40 MHz.

V. CONCLUSIONS

Low-frequency memory effects associated with self-heating,

traps, parasitic BJT, and biasing circuits can greatly impact the

large-signal RF performance of transistors and amplifiers ex-

cited by modulated RF signals. In this paper, the authors have

presented new synergetic approaches for the: 1) characteriza-

tion; 2) device modeling; and 3) behavioral modeling of power

transistors and amplifiers with strong memory effects.

In the first part of this paper (Section II), the use of CW

and pulsed RF large-signal measurements was investigated to

quantify the impact of thermal and electrical memory effects

upon the large-signal RF performance of transistors. Pulsed-RF

load–pull measurements from realistic average hot bias condi-

tion yield a more realistic representation of the peak power re-

sponse of transistors excited with modulated signals with high

PAPR than can be obtained by CW load–pull measurements. For

the SOI-MOSFET transistor considered, an improved efficiency

of 14% was observed under pulsed operation compared to CW

operation yielding a peak PAE of 73.7%. The results obtained

further demonstrated that slow memory effects do not respond

solely to the average bias or temperature, but can also depend

on the RF load lines. Similar effects have been observed in GaN

were intermittent high drain voltages can charges traps and in-

duce knee voltage walkout degrading in that case the average

performance of the transistor. The understanding of these pro-

cesses is critical for both the design and simulation of amplifiers

involving transistors exhibiting memory effects.

In the second part of the paper (Section III), an RF device

model capable of accounting for memory effects under large-

signal operation was presented. The methodology used is a sys-

tematic, general, and powerful approach for characterizing and

identifying an advanced self-heating and trap-dependent non-

linear simulation model directly from large-signal waveform

data from an NVNA. The detailed nonlinear model constitutive

relations for drain current and charge as functions of instan-

taneous terminal voltages, dynamic junction temperature, and

two species of trap states, are identified and constructed using

ANN modeling technology. The process is more procedural,

more general, and more accurate than previous methods based

on pulsed I–V/ -parameter data and simplified constitutive re-

lations based on particular assumed trapping mechanisms. The

model is implemented in a commercial nonlinear circuit sim-

ulator and is usable in all analysis modes (e.g., transient, har-

monic balance, circuit envelope, small-signal, etc.). The model

has been validated extensively for dc, linear, and large-signal

conditions.

In the third part of this paper (Section IV), dynamic X-pa-

rameters and a simplified version called wideband X-parame-

ters were introduced as novel ways to build behavioral models

for RF PAs that include long-term memory effects. The kernels

of these models can be extracted by using a set of large-signal

step response measurements, which are readily straightforward

to perform.

The resulting measurement-based models can be imple-

mented in a commercial complex envelope simulator and

accurately predict the behavior of the amplifier, including

long-term memory effects. Unlike any existing black-box

modeling approach, the dynamic X-parameter model is valid

for a wide range of signals: for high power and low power,

for slow as well as fast modulation, for pulsed signals, for

two-tone signals, and for wideband modulated signals like,

e.g., WCDMA and LTE. The model remains accurate for all

possible modulation formats, independent of the probability

density function or derived figures-of-merit (like, e.g., PAPR)

of the input signal.

The variousmeasurement andmodeling techniques presented

in this paper for transistors and amplifiers with strong memory

effects should benefit the PA community in multiple ways. The
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pulsed-RF load–pull characterization can be directly used for

amplifier design as in the case of load modulation [21] besides

being used for device model extraction or verification. The en-

hanced transistor model that accounts for memory effects pro-

vides more realistic simulations for PA design. Finally, the novel

PA behavioral model can greatly benefit the linearization of PAs

exhibiting memory effects.
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