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Abstract

This paper describes the ATLAS (Automatically Tuned Linear Algebra Software)
project, as well as the fundamental principles that underly it. ATLAS is an instantiation
of a new paradigm in high performance library production and maintenance, which
we term AEOS (Automated Empirical Optimization of Software); this style of library
management has been created in order to allow software to keep pace with the incredible
rate of hardware advancement inherent in Moore's Law. ATLAS is the application of
this new paradigm to linear algebra software, with the present emphasis on the Basic
Linear Algebra Subprograms (BLAS), a widely used, performance-critical, linear algebra
kernel library.
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Part I

Introduction

The ATLAS (Automatically Tuned Linear Algebra Software) project is an ongoing research
e�ort focusing on applying empirical techniques in order to provide portable performance.
Linear algebra routines are widely used in the computational sciences in general, and sci-
enti�c modeling in particular. In many of these applications, the performance of the linear
algebra operations are the main constraint preventing the scientist from modeling more
complex problems, which would then more closely match reality. This then dictates an
ongoing need for highly e�cient routines; as more compute power becomes available the
scientist typically increases the complexity/accuracy of the model until the limits of the
computational power are reached. Therefore, since many applications have no practical
limit of \enough" accuracy, it is important that each generation of increasingly powerful
computers have optimized linear algebra routines available.

Linear algebra is rich in operations which are highly optimizable, in the sense that a
highly tuned code may run multiple orders of magnitude faster than a naively coded rou-
tine. However, these optimizations are platform speci�c, such that an optimization for a
given computer architecture will actually cause a slow-down on another architecture. The
traditional method of handling this problem has been to produce hand-optimized routines
for a given machine. This is a painstaking process, typically requiring many man-months
of highly trained (both in linear algebra and computational optimization) personnel. The
incredible pace of hardware evolution makes this technique untenable in the long run, par-
ticularly so when considering that there are many software layers (eg., operating systems,
compilers, etc), which also e�ect these kinds of optimizations, that are changing at a similar,
but independent rates.

Therefore a new paradigm is needed for the production of highly e�cient routines in
the modern age of computing, and ATLAS represents an implementation of such a set of
new techniques. We call this paradigm \Automated Empirical Optimization of Software",
or AEOS. In an AEOS-enabled package such as ATLAS, the package provides many ways
of doing the required operations, and uses empirical timings in order to choose the best
method for a given architecture. Thus, if written generally enough, an AEOS-aware pack-
age can automatically adapt to a new computer architecture in a matter of hours, rather
than requiring months or even years of highly-trained professionals' time, as dictated by
traditional methods.

ATLAS typically uses code generators (i.e., programs that write other programs) in
order to provide the many di�erent ways of doing a given operation, and has sophisticated
search scripts and robust timing mechanisms in order to �nd the best ways of performing
the operation for a given architecture.

One of the main performance kernels of linear algebra has traditionally been a standard
API known as the BLAS (Basic Linear Algebra Subprograms) [14, 17, 6, 7, 5] This API is
supported by hand-tuned e�orts of many hardware vendors, and thus provides a good �rst
target for ATLAS, as there is both a large audience for this API, and on those platforms
where vendor-supplied BLAS exist, an easy way to determine if ATLAS can provide the
required level of performance.
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Part II

AEOS

1 AEOS in Context

Historically, the research community has pursued two separate paths towards the goal of
making software run at near peak levels. The �rst and most generally successful of these
builds on research into compilers and their associated technologies. The holy grail of com-
pilation research is to take an arbitrary code as an input and produce completely optimal
code as output for given languages and hardware platforms. Despite the immense amount of
e�ort that has been poured into this approach, its success has been limited both by practical
time constraints (viz. users will not tolerate compile-times that extend into several days)
and by the amount of detailed information the compiler can obtain about the software to
be compiled and the hardware on which it is supposed to execute [16, 23, 24].

A second, complementary thrust has been to identify kernel routines that constitute the
dominant performance cost of a wide variety of applications. When such kernels can be
identi�ed and an API can be agreed upon by the members of the community, small groups
of programmers with the required level of technical knowledge can concentrate their e�orts
on producing optimized kernel libraries for architectures of interest. A prime example of
this kind of e�ort is the aforementioned BLAS. As experience with the BLAS has shown,
these libraries can be produced by some combination of hardware vendors (e.g. IBM,
Intel), independent software vendors (e.g. Kuck & Associates), and researchers, depending
in large measure on the level of importance the di�erent parties attach to the routines in
question. Developers who write their code to call these well-known APIs can then achieve
high performance across all supported architectures.

But just as there are currently boundaries to what can be done to achieve near peak
performance via compiler optimization, the library-oriented approach has signi�cant limi-
tations as well. For instance, it is clear that in order to elicit the kind of attention required
to create an optimized library for a given operation, the operation must be regarded as
widely useful by the members of a programming community, who are usually already over-
burdened. Moreover, once an API has been agreed upon, support for various architectures
becomes the dominant problem, especially since the kind of optimizations necessary to
achieve high performance are by their very nature non-portable. Such performance tuning
relies on a careful exploitation of the speci�c details the underlying hardware architecture;
if that hardware is changed, a previous optimization may now cause the program to execute
more slowly on the new platform.

The expensive and hardware-relative nature of kernel optimizations becomes all the
more problematic when processor designs are changing at the remarkable pace dictated
by Moore's Law. These increases in processor performance are, however, largely wasted
unless the key libraries are updated at the same pace as the hardware. With ever-shrinking
hardware generation cycles, these updates become nearly impossible to do by hand. It is
a fact of the computing industry that by the time highly optimized code is available for a
given architecture, that architecture is generally well on its way towards obsolescence.

We believe the AEOS methodologies address this problem directly, and have the po-
tential to make a signi�cant impact on how high performance libraries are produced and
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maintained.

2 Basic AEOS Requirements

The basic requirements for supporting a library using AEOS methodologies are:

� Isolation of performance-critical routines. Just as with traditional libraries, someone
must �nd the performance-critical sections of code, separate them into subroutines,
and choose an appropriate API.

� A method of adapting software to di�ering environments Since AEOS depends on
iteratively trying di�ering ways of performing the performance-critical operation, the
author must be able to provide routines that instantiate a wide range of optimizations.
This may be done very simply, for instance by having parameters in a �xed code
which, when varied, correspond to di�ering cache sizes, etc, or it may be done much
more generally, for instance by supplying a highly parameterized code generator which
can produce an almost in�nite number of implementations. No matter how general
the adaptation strategy, there will be limitations or built-in assumptions about the
required architecture which should be identi�ed in order to estimate the probable
boundaries on the code's 
exibility. Section 3 discusses software adaptation methods
in further detail.

� Robust, context-sensitive timers Since timings are used to select the best code, it
becomes very important that these timings be accurate. Since few users can guarantee
single-user access, the timers must be robust enough to produce reliable timings even
on heavily loaded machines. Furthermore, the timers need to replicate as closely as
possible the way in which the given operation will be used. For instance, if the routine
will normally be called with cold caches, cache 
ushing will be required. If the routine
will typically be called with a given level of cache preloaded, while others are not, that
too should be taken into account. If there is no known machine state, timers allowing
for many di�erent states, which the user can vary, should be created.

� Appropriate search heuristic The �nal requirement is a search heuristic which auto-
mates the search for the most optimal available implementation. For a simple method
of code adaptation, such as supplying a �xed number of hand-tuned implementations,
a simple linear search will su�ce. However, with sophisticated code generators with
literally hundreds of thousands of ways of doing an operation, a similarly sophisti-
cated search heuristic must be employed in order to prune the search tree as rapidly
as possible, so that the optimal cases are both found and found quickly (obviously,
few users will tolerate heavily parameterized search times with factorial growth). If
the search takes longer than a handful of minutes, it needs to be robust enough to
not require a complete restart if hardware or software failure interrupts the original
search.

3 Methods of Software Adaptation

There are essentially two di�erent methods of software adaptation. The �rst is widely used
in programming in general, and it involves parameterizing characteristics which vary from
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machine to machine. In linear algebra, the most important of such parameters is probably
the blocking factor used in blocked algorithms, which, when varied, varies the data cache
utilization. In general, parameterizing as many levels of data cache as the algorithm can
support can provide remarkable speedups. With an AEOS approach, such parameters can
be compile-time variables, and thus not cause a runtime slowdown. We call this method
parameterized adaptation.

Not all important architectural variables can be handled by parameterized adaptation
(simple examples include instruction cache size, choice of combined or separate multiply
and add instructions, length of 
oating point and fetch pipelines, etc), since varying them
actually requires changing the underlying source code. This then brings in the need for
the second method of software adaptation, source code adaptation, which involves actually
generating di�ering implementations of the same operation.

There are at least two di�erent ways to do source code adaptation; Perhaps the simplest
approach is for the designer to supply various hand-tuned implementations, and then the
search heuristic may be as simple as trying each implementation in turn until the best is
found. At �rst glance, one might suspect that supplying these multiple implementations
would make even this approach to source code adaptation much more di�cult than the
traditional hand-tuning of libraries. However, traditional hand-tuning is not the mere ap-
plication of known techniques it may appear when examined casually. Knowing the size
and properties of your level 1 cache is not su�cient to choose the best blocking factor, for
instance, as this depends on a host of interlocking factors which defy a priori understanding
in the real world. Therefore, it is common in hand-tuned optimizations to utilize the known
characteristics of the machine to narrow the search, but then the programmer writes various
implementations and chooses the best.

For the simplest AEOS implementation, this process remains the same, but the pro-
grammer adds a search and timing layer which do what would otherwise be done by hand.
In the simplest cases, the time to write this layer may not be much if any more than the time
the implementor would have spent doing the same process in a less formal way by hand,
while at the same time capturing at least some of the 
exibility inherent in AEOS-centric
design. We will refer to this source code adaptation technique as multiple implementation.
Due to its obvious simplicity, this method is highly parallelizable, in the sense that multi-
ple authors can meaningfully contribute without having to understand the entire package.
In particular, various specialists on given architectures can provide a hand-tuned routines
without needing to understand other architectures, the higher level codes (e.g. timers,
search heuristics, higher-level routine which utilize these basic kernels, etc). This makes
multiple implementation a very good approach if the user base is large and skilled enough
to support an open source initiative along the lines of, for example, Linux.

The second method of source code adaptation is code generation. In code generation,
a code generator (i.e., a program that writes other programs) is produced. This code
generator takes as parameters the various source code adaptations to be made. As before,
simple examples include instruction cache size, choice of combined or separate multiply and
add instructions, length of 
oating point and fetch pipelines, and so on. Depending on
the parameters, the code generator produces source code with the requisite characteristics.
The great strength of code generators is their ultimate 
exibility, which can allow for far
greater tunings than could be produced by all but the best hand-coders. However, generator
complexity tends to go up along with 
exibility, so that these routines rapidly become almost
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insurmountable barriers to outside contribution.
It thus seems likely that the best approach will combine these two methods; in such a

system code generation will be harnessed for its generality, but it will be supplemented by
multiple implementation, allowing for the extension of the package beyond one designer's
vision via community collaboration.

4 Adapting to Constantly Changing Hardware and Software

Layers

As mentioned in the introduction, AEOS design for libraries is essentially an outgrowth of
the rapid pace of hardware evolution. However, all layers of software separating the AEOS
package from the hardware comprise what could be called the library-perceived architecture.
Therefore, AEOS-centric packages adapt to both software and hardware, which change at
only loosely related rates.

The history of the ATLAS project includes numerous examples of the lack of synchrony
between software and hardware releases. Gnu gcc on the UltraSparc shows one such case.
The �rst available release of gcc for this new (at the time) hardware still used a previous
ISA (instruction set architecture), so that only 16 of the available 32 
oating point registers
were addressable to codes written in C, as ATLAS is. This meant that at that point in the
hardware/software cycle, the best case of register blocking (an important optimization for

oating point intensive software) used roughly 16 registers, not the ISA limit of 32. Later
on, gcc was adapted to the new ISA, and ATLAS's new optimal case used the increased
numbers of registers to further improve the software.

In the traditional way of supporting libraries, this would have required the development
of two libraries, each requiring signi�cant investment of time and e�ort from highly trained
professionals. With ATLAS, the optimized library was available within hours of even a
relatively unsophisticated user gaining access to the new hardware or software.

Generally, the lower-level the language an AEOS package is implemented, the smaller
the gap between software and hardware release cycles are. For instance, it is likely that an
assembler would be able to address the new ISA before a compiler, such as C or Fortran77,
will. However, implementing in high level languages has at least two distinct advantages.
First, the software is much more portable, and secondly, the excellent and ongoing research
into compiler technology is leveraged automatically. Examples of the way that compiler
optimizations can aid AEOS programming abound. Compiler-controlled prefetch, loop
unrolling, pipelining and loop skewing are just a few of the obvious areas. Of course, many
such optimizations may be done explicitly by the code generator as well. In practice, a code
generator which can explicitly do such optimizations, while also being capable of generating
code without such optimizations in order to allow the compiler the opportunity to perform
them implicitly, will enjoy the most general success.

4.1 AEOS/Compiler Synergy

This brings us to an interesting topic, that of AEOS/compiler synergy. As previously
mentioned, AEOS can readily leverage the improvements inherent in compiler advancement.
The reverse is also true. As languages become higher level, they implicitly begin to rely
on standard libraries for a larger and larger proportion of their performance. An already
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existing example of this would be Fortran95's addition of matrix multiply and matrix-vector
multiplies as language primitives. These kinds of high-level abstractions will naturally call
a library, and AEOS techniques can provide the adaptability required in today's compiler
life cycles.

This kind of mixture of compiler, language, and libraries can be mined much more
extensively in the search for synergy between these disciplines, as with the research presently
being done on telescoping languages [16].

Finally, we believe that many of the empirical techniques incorporated in AEOS will
eventually make their way into compilers. For instance, if a very high level of optimizations
is set, a compiler could generate and time various unrollings, etc, just as is done presently in
ATLAS, in order to �nd the best for the given operation. I.e., in cases where heavy use makes
the cost worthwhile, the almost purely a priori techniques presently used by compilers can
be supplemented with what amounts to automated tuning on the 
y. Interpreted languages
using techniques similar to Java's hot-spot can iteratively improve code in a like manner
across multiple calls.

No matter how good compilers get, it is unlikely that the need for optimized libraries,
and thus of AEOS, will ever go away (although their use may no longer be apparent to
the programmer, as in a paradigm such as telescoping languages). The hard limits of
what a compiler can do will always be dictated by the amount of information the compiler
can extract from the provided code. Library building, where an operation is dictated (as
opposed to an implementation of that operation), with its associated enormously expanded
high-level understanding, allows for much greater variance in implementation.

Part III

ATLAS

ATLAS is the project from which our current understanding of AEOS methodologies grew,
and now provides a test bed for their further development and testing. ATLAS was not,
however, the �rst project to harness AEOS-like techniques for library production and main-
tenance. As far as we know, the �rst such successful project was FFTW [11, 9, 10], and
the PHiPAC [3] project was the �rst to attempt to apply them to matrix multiply. Other
projects with AEOS-like designs include [18, 20, 19]. The philosophies, approach and appli-
cation success of these project varies widely, but they are all built around the idea of using
empirical results and some degree of automation to adapt libraries for greater performance.

The initial goal of ATLAS was to provide a portably e�cient implementation of the
BLAS. ATLAS now provides at least some level of support for all of the BLAS, and the
�rst tentative extensions beyond this one API have been taken (for example, the most recent
ATLAS release contained some higher level routines from the LAPACK [1] API). Due to
space limitations, this paper will concentrate on ATLAS's BLAS support.

The BLAS (Basic Linear Algebra Subroutines) are building block routines for perform-
ing basic vector and matrix operations. The BLAS are divided into three levels: Level
1 BLAS do vector-vector operations, Level 2 BLAS do matrix-vector operations, and the
Level 3 BLAS do matrix-matrix operations. The performance gains from optimized imple-
mentations is strongly a�ected by the level of the BLAS.
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Level 1 BLAS, where no memory reuse is possible, gain only minuscule speedups from
all but the best implementations (as a back of envelope estimate, consider these speedups
to typically be in the range of 0-15%). Essentially, the only optimizations to be done at
this level involve 
oating point unit usage, loop optimizations, etc. However, since these
routines are very simple, the compiler can usually do an excellent job of these optimizations,
so real performance gains are typically found only when a compiler is poorly adapted to a
given platform.

In the Level 2 BLAS, memory blocking can allow for reuse of the vector operands, but
not, in general, of the matrix operand (the exception is that some matrix types, for instance
symmetric or Hermitian, can e�ectively use each matrix operand twice). Reducing the
vector operands from O(N2) to O(N) represents considerable savings over naive code, but
due to the irreducible matrix costs, the memory load remains of the same order (O(N2)) as
the operation count. Therefore, the Level 2 BLAS can enjoy modest speedup (say, roughly
in the range of 10-300%), both because memory blocking is e�ective, and because the loops
are complex enough that more compilers begin having problems doing the 
oating point
optimizations automatically.

Finally, the Level 3 BLAS can display orders of magnitude speedups. To simplify greatly,
these operations can be blocked such that the natural O(N3) fetch costs become essentially
O(N2). Further, the triply-nested loops used here are almost always too complex for the
compiler to �gure out without hints from the programmer (eg, some explicit loop unrolling),
and thus the O(N3) computation cost can be greatly optimized as well.

The following sections discuss our handling of the Level 3 and 2 BLAS in ATLAS.
Because of the amount of e�ort required to provide high-quality AEOS software, it becomes
critical to �nd the smallest possible kernels which can be leveraged to supply all required
functionality. Thus, each section describes the low level performance kernels, the techniques
used to create them, and how these kernels are utilized to produce all required functionality.
The Level 1 BLAS are not discussed; at present ATLAS provides hand-tuned codes for these
operations, essentially relying on the compiler for the lion's share of the optimization.

5 Limits of ATLAS's Approach

As previously mentioned, any AEOS approach is bound to have some restrictions on its
adaptability. ATLAS is no exception, and the following assumptions need to hold true for
ATLAS to perform well:

1. Adequate ANSI C compiler ATLAS is written entirely in ANSI/ISO C, with the ex-
ception of the Fortran77 interface codes (which are simple wrappers written in ANSI
Fortran77, calling the C internals for computation). ATLAS does not require an
excellent compiler, since it uses code generation to perform many optimizations typ-
ically done by compilers. However, too-aggressive compilers can transform already
optimal code into suboptimal code, if 
ags do not exist to turn o� certain compiler
optimizations. On the other hand, compilers without the ability to e�ectively use
the underlying ISA (eg., inability to utilize registers, even when the C code calls for
them), will yield poor results as well.

2. Hierarchical memory ATLAS assumes a hierarchical memory is present. Best results
will be obtained when both registers and at least an L1 data cache are present.
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Of these two restrictions, the most important is the need for an adequate C compiler.
Lack of hierarchical memory would at worst turn some of ATLAS's blocking and register
usage into overheads. Even with this handicap, ATLAS's code adaptation may still yield
enough performance to provide an adequate BLAS. If the ANSI C compiler is poor enough,
however, this can result in the computational portion of the algorithms being e�ectively
unoptimized. Since the computational optimizations are the dominant cost of a blocked
Level 3 BLAS, this can produce extremely poor results.

6 Level 3 BLAS Support in ATLAS

As previously mentioned, all Level 3 BLAS routines (for each real data type there are six
Level 3 BLAS, and nine routines for each complex data type) can be e�ciently implemented
given an e�cient matrix-matrix multiply (hereafter shortened to matmul, or the BLAS mat-
mul routine name, GEMM). Thus the main performance kernel is GEMM. As subsequent
sections show, however, GEMM itself is further narrowed down to an even smaller kernel
before code generation takes place.

The BLAS supply a routine GEMM, which performs a general matrix-matrix multipli-
cation of the form C  �op(A)op(B) + �C, where op(X) = X or XT . C is an M � N
matrix, and op(A) and op(B) are matrices of size M �K and K �N , respectively.

In general, the arrays A, B, and C will be too large to �t into cache. Using a block-
partitioned algorithm for matrix multiply it is still possible to arrange for the operations to
be performed with data for the most part in cache by dividing the matrix into blocks. For
additional details see [8].

Using this BLAS routine, the rest of the Level 3 BLAS can be e�ciently supported, so
GEMM is the Level 3 BLAS computational kernel. ATLAS supports this kernel using both
parameterized adaptation and code generation. There are hand-written high-level codes
that use compile- or run-time variables to adapt to machines. These high level codes utilize
a generated L1 (Level 1) cache-contained matrix multiply as their kernel.

6.1 Building the General Matrix Multiply From the L1 Cache-contained
Multiply

This section describes the non-generated code, whose only variance across platforms come
from parameterization. These codes are used to form the BLAS's general matrix-matrix
multiply using a L1 cache-contained matmul (hereafter referred to as the L1 matmul).

Section 6.2 describes the L1 matmul and its generator in detail. For our present dis-
cussion, it is enough to know that ATLAS has at its disposal highly optimized routines
for doing matrix multiplies whose dimensions are chosen such that cache blocking is not
required (i.e., the hand-written code discussed in this section deals with cache blocking; the
generated code assumes things �t into cache).

When the user calls GEMM, ATLAS must decide whether the problem is large enough
to tolerate copying the input matrices A and B. If the matrices are large enough to support
this O(N2) overhead, ATLAS will copy A and B into block-major format. ATLAS's block-
major format breaks up the input matrices into contiguous blocks of a �xed size NB , where
NB is chosen as discussed in section 6.2 in order to maximize L1 cache reuse. Once in
block-major format, the blocks are contiguous, which eliminates TLB problems, minimizes
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cache thrashing and maximizes cache line use. It also allows ATLAS to apply alpha (if alpha
is not already one) to the smaller of A or B, thus minimizing this cost as well. Finally,
the package can use the copy to transform the problem to a particular transpose setting,
which for load and indexing optimization, is set so A is copied to transposed form, and
B is in normal (non-transposed) form. This means our L1-cache contained code is of the
form C  ATB, C  ATB + C, and C  ATB + �C, where all dimensions, including

the non-contiguous stride, are known to be NB . Knowing all of the dimensions of the loops
allows for arbitrary unrollings (i.e., if the instruction cache could support it, ATLAS could
unroll all loops completely, so that the L1 cache-contained multiply had no loops at all).
Further, when the code generator knows leading dimension of the matrices (i.e., the row
stride), all indexing can be done up front, without the need for expensive integer or pointer
computations.

If the matrices are too small, the O(N2) data copy cost can actually dominate the
algorithm cost, even though the computation cost is O(N3). For these matrices, ATLAS
will call an L1 matmul which operates on non-copied matrices (i.e. directly on the user's
operands). The non-copy L1 matmul will generally not be as e�cient as the copy L1 matmul;
at this problem size the main drawback is the additional pointer arithmetic required in order
to support the user-supplied leading dimension.

The choice of when a copy is dictated and when it is prohibitively expensive is an AEOS
parameter; it turns out that this crossover point depends strongly both on the particular
architecture, and the shape of the operands (matrix shape e�ectively sets limits on which
matrix dimensions can enjoy cache reuse). To handle this problem, ATLAS simply compares
the speed of the copy and non-copy L1 matmul for variously shaped matrices, varying the
problem size until the copying provides a speedup (on some platforms, and with some
shapes, this point is never reached). These crossover points are determined at install time,
and then used to make this decision at runtime. Because it is the dominant case, this paper
describes only the copied matmul algorithm in detail.

There are presently two algorithms for performing the general matrix-matrix multiply.
The two algorithms correspond to di�erent orderings of the loops; i.e., is the outer loop
over M (over the rows of A), and thus the second loop is over N (over the columns of B),
or is this order reversed. The dimension common to A and B (i.e., the K loop) is currently
always the innermost loop.

Let us de�ne the input matrix looped over by the outer loop as the outer or outermost
matrix; the other input matrix will therefore be the inner or innermost matrix. Both
algorithms have the option of writing the result of the L1 matmul directly to the matrix,
or to an output temporary Ĉ. The advantages to writing to Ĉ rather than C are:

1. address alignment may be controlled (i.e., the code can ensure during the malloc that
Ĉ begins on a cache-line boundary)

2. Data is contiguous, eliminating possibility of unnecessary cache-thrashing due to ill-
chosen leading dimension (assuming a non-write-through cache)

The disadvantage of using Ĉ is that an additional write to C is required after the L1
matmul operations have completed. This cost is minimal if GEMM makes many calls to the
L1 matmul (each of which writes to either C or Ĉ), but can add signi�cantly to the overhead
when this is not the case. In particular, an important application of matrix multiply is the

11



rank-K update, where the write to the output matrix C can be a signi�cant portion of the
cost of the algorithm. For the rank-K update, writing to Ĉ essentially doubles the write
cost, which is clearly unacceptable. The routines therefore employ a heuristic to determine
if the number of times the L1 matmul will be called in the K loop is large enough to justify
using Ĉ, otherwise the answer is written directly to C.

Regardless of which matrix is outermost, both algorithms try to allocate enough space
to store NB � NB output temporary, Ĉ (if needed), 1 panel of the outermost matrix, and
the entire inner matrix. If this fails, the algorithms attempt to allocate smaller work arrays,
the smallest acceptable workspace being enough space to hold Ĉ, and 1 panel from both A
and B. The minimum workspace required by these routines is therefore 2KNB , if writing
directly to C, and NB

2 + 2KNB if not. If this amount of workspace cannot be allocated,
the previously mentioned non-copy code is called instead.

If there is enough space to copy the entire innermost matrix, there are several bene�ts
to doing so:

� Each matrix is copied only one time.

� If all of the workspaces �t into L2 cache, the algorithm enjoys complete L2 reuse on
the innermost matrix.

� Data copying is limited to the outermost loop, protecting the inner loops from un-
needed cache thrashing.

Of course, even if the allocation succeeds, using too much memory might result in
unneeded swapping. Therefore, the user can set a maximal amount of workspace that
ATLAS is allowed to have, and ATLAS will not try to copy the innermost matrix if this
maximum workspace requirement is exceeded.

If enough space for a copy of the entire innermost matrix is not allocated, the innermost
matrix will be entirely copied for each panel of the outermost matrix (i.e., if A is our
outermost matrix, ATLAS will copy B dM=NBe times). Further, our usable L2 cache is
reduced (the copy of a panel of the innermost matrix will take up twice the panel's size in
L2 cache; the same is true of the outermost panel copy, but that will only be seen the �rst
time through the secondary loop).

Regardless of which looping structure or allocation procedure used, the inner loop is
always along K. Therefore, the operation done in the inner loop by both routines is the
same, and it is shown in �gure 1.

C3;2 A3;1A3;2

M

N

C  M

K

A

N

K� B

B1;2

B2;2

B3;2

Figure 1: One step of matrix-matrix multiply

If GEMM is writing to Ĉ, the following actions are performed in order to calculate the
NB �NB block Ci;j, where i and j are in the range 0 � i < dM=NBe, 0 � j < dN=NBe:
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1. Call L1 matmul of the form C  AB to multiply block 0 of the row panel i of A with
block 0 of the column panel j of B.

2. Call L1 matmul of form C  AB + C to multiply block k of the row panel i of A
with block k of the column panel j of B, 8k; 1 � k < dK=NBe. The L1 matmul is
performing the operation C  AB+C, so as expected this results in multiplying the
row panel of A with the column panel of B.

3. Ĉ now holds the product of the row panel of A with the column panel of B, so ATLAS
now performs the block write-back operation Ci;j  Ĉi;j + �Ci;j.

If ATLAS is writing directly to C, this action becomes:

1. Call L1 matmul of the correct form based on user-de�ned � (eg. if � == �1, use
C  AB �C) to multiply block 0 of the row panel i of A with block 0 of the column
panel j of B.

2. Call L1 matmul of form C  AB + C to multiply block k of the row panel i of A
with block k of the column panel j of B, 8k; 1 � k < dK=NBe.

Building from this inner loop, ATLAS has di�ering loop orderings which provide two al-
gorithms for the full matmul. Figures 2 and 3 give the pseudo-code for these two algorithms,
assuming the write is directly to C (writing to Ĉ is only trivially di�erent). For simplic-
ity, this pseudo-code skips the cleanup necessary for cases where dimensions do not evenly
divide NB . The matrix copies are shown as if coming from the notranspose, notranspose
case. If they do not, only the array access on the copy changes.
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work = allocate((M+NB)*K)

if (allocated(work)) then

PARTIAL_MATRIX = .FALSE.

copy A into block major format

else

PARTIAL_MATRIX = .TRUE.

work = allocate(NB*2*K)

if (.NOT.allocated(work)) call small_case_code

return

end if

NBNB = NB * NB

do j = 1, N, NB

Bwork = ALPHA*B(:,J:J+NB-1); Bwork in block major format

do i = 1, M, NB

if (PARTIAL_MATRIX) Awork = A(i:i+NB-1,:); Awork in block major format

ON_CHIP_MATMUL(Awork(1:NB*NB), Bwork(1:NB*NB), BETA, C(i:i+NB-1, j:j+NB-1), ldc)

do k = 2, K, NB

ON_CHIP_MATMUL(Awork((k-1)*NBNB+1:k*NBNB), Bwork((k-1)*NBNB+1:k*NBNB),

1.0, C(i:i+NB-1, j:j+NB-1), ldc)

end do

end do

end do

Figure 2: General matrix multiplication with A as innermost matrix

work = allocate(N*K + NB*K)

if (allocated(work)) then

PARTIAL_MATRIX = .FALSE.

copy B into block major format

else

PARTIAL_MATRIX = .TRUE.

work = allocate(NB*2*K)

if (.NOT.allocated(work)) call small_case_code

return

end if

NBNB = NB * NB

do i = 1, M, NB

Awork = ALPHA*A(i:i+NB-1,:); Awork in block major format

do j = 1, N, NB

if (PARTIAL_MATRIX) Bwork = B(:,J:J+NB-1); Bwork in block major format

ON_CHIP_MATMUL(Awork(1:NBNB), Bwork(1:NBNB), BETA,

Cwork(i:i+NB-1, j:j+NB-1), ldc)

do k = 2, K, NB

ON_CHIP_MATMUL(Awork((k-1)*NBNB+1:k*NBNB), Bwork((k-1)*NBNB+1:k*NBNB),

1.0, Cwork(i:i+NB-1, j:j+NB-1), ldc)

end do

end do

end do

Figure 3: General matrix multiplication with B as innermost matrix
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6.1.1 Choosing the Correct Looping Structure

When the call to the matrix multiply is made, the routine must decide which loop structure
to call (i.e., which matrix to put as outermost). If the matrices are of di�erent size, L2 cache
reuse can be encouraged by deciding the looping structure based on the following criteria:

1. If either matrix will �t completely into the usable L2 cache, put it as the innermost
matrix (algorithm gets L2 cache reuse on the entire inner matrix)

2. If neither matrix �ts completely into L2 cache, put largest matrix as the outermost
matrix (algorithm gets L2 cache reuse on the panel of the outer matrix, if it �ts in
cache, and memory usage is minimized)

The size of the usable L2 cache is not directly known by ATLAS (although the AEOS
variable CacheEdge described in section 6.1.2 will often serve the same purpose) and so these
criteria are not presently used for this selection. Rather, in order to minimize workspace,
and maximize the chance that condition one above occurs, the smallest matrix will always
be used as the innermost matrix. If both matrices are the same size, A is selected as the
innermost matrix (this implies a better access pattern for C).

6.1.2 Blocking for Higher Levels of Cache

Note that this paper de�nes the Level 1 (L1) cache as the \lowest" level of cache: the one
closest to the processor. Subsequent levels are \higher": further from the processor and thus
usually larger and slower. Typically, L1 caches are relatively small (eg., 8-32KB), employ
least recently used replacement policies, have separate data and instruction caches, and are
often non-associative and write-through. Higher levels of cache or more often non-write-
through, with varying degrees of associativity, di�ering replacement polices, and combined
instruction and data cache.

ATLAS detects the actual size of the L1 data cache. However, due to the wide variance
in high level cache behaviors, in particular the di�culty of determining how much of such
caches are usable after line con
icts and data/instruction partitioning is done, ATLAS does
not presently detect and use a explicit Level 2 cache size as such. Rather, ATLAS employs
a empirically determined value called CacheEdge, which represents the amount of the cache
that is usable by ATLAS for its particular kind of blocking.

Explicit cache blocking for the selected level of cache is only required when the cache size
is insu�cient to hold the two input panels and the NB �NB piece of C. This means that
users will have optimal results for many problem sizes without employing CacheEdge. This
is expressed formally below; Notice that conditions 1 and 2 below do not require explicit
cache blocking, so the user gets this result even if CacheEdge is not set.

Therefore, the explicit cache blocking strategy discussed in 4 below assumes that the
panels of A and B over
ow a particular level of cache. In this case, the problem can be
easily partitioned along the K dimension of the input matrices such that the panels of the
partitioned matrices Ap and Bp will �t into the cache. This means that we get cache reuse
on the input matrices, at the cost of writing C additional times.

It is easily shown that the footprint of the algorithm computing a NB �NB section of
C in cache is roughly 2KNB +NB

2, where 2KNB stores the panels from A and B, and the
section of C is of size NB

2. If the above expression is set equal to CacheEdge, and solved
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for K, it will yield the maximal K (call this quantity Km) which will, assuming the inner
matrix was copied up front, allow for reusing the outer matrix panel N=NB times. This
partitioning transforms the original matrix multiply into dK=Kme rank-Km updates.

Since the correct value of CacheEdge is not known a priori, ATLAS empirically de-
termines it at install time by using large matrices (whose panel sizes can be expected to
over
ow the cache, and thus induce the need for explicit, rather than implicit, L2 or higher
blocking), and simply tries various settings. Extremely large caches will probably not be
detected in this manner (i.e., if the user cannot allocate enough memory to cause a panel
to over
ow the cache, the large cache will not be detected), in which case CacheEdge will
not be set or used (very large caches will have implicit cache reuse for all but the largest
matrices anyway). Some caches will not give a clear enough optimization using CacheEdge

for timings to reliably detect the di�erence, and in these cases, where no noticeable bene�t
is detected, CacheEdge will not be set or used.

Assuming that matrix A is the innermost matrix, and we are discussing cache level L,
of size SL, and that main memory is classi�ed as a level of \cache" greater than L, there
are four possible states (depending on cache and problem size, and whether CacheEdge is
set) which ATLAS may be in. These states and their associated memory access costs are:

1. If the entire inner matrix, a panel of the outer matrix, and the NB �NB section of C
�ts into the cache (eg. MK +KNB +NB

2 � SL)

� K(M +N)+MN reads (of A, B and C, respectively ) from higher level(s) cache

� MNK
NB

writes to �rst level of non-write-through cache; higher levels of cache re-
ceive only the �nal MN writes

2. If the cache cannot satisfy the memory requirements of 1, it may still be large enough
to accommodate the two active input panels, along with the relevant section of C
(eg., (2KNB +NB

2 � SL AND ATLAS copies the entire inner matrix)
OR (3KNB +NB

2 � SL AND ATLAS copies a panel of the inner matrix in the inner
loop, thus doubling the inner panel's footprint in the cache))

� NK+MNK
NB

+MN reads (B, A and C, respectively) from higher level(s) of cache

� MNK
NB

writes to �rst level of non-write-through cache; higher levels of cache re-
ceive only the �nal MN writes

3. If the cache is too small for either of the previous cases to hold true, (eg., 2KNB +
NB

2 > SL) and CacheEdge is not set, and thus no explicit level L blocking is done,
the memory access becomes:

� 2MNK
NB

+MN reads (A, B, and C) from higher level(s) of cache

� MNK
NB

writes to �rst level of non-write-through cache; higher levels of cache re-
ceive only the �nal MN writes

4. Finally, if the �rst two cases do not apply (eg., 2KNB +NB
2 > SL), but CacheEdge

is set to SL, ATLAS can perform cache blocking to change the memory access from
that given in 3 to:

� NK + MNK
NB

+ MNK
Km

(B, A, C) reads from higher level(s) of cache
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� MNK
NB

writes to �rst level of non-write-through cache; higher levels of cache re-

ceive at most MNK
Km

writes

As mentioned above, case 4 is only used if CacheEdge has been set, and cases 1 and 2
do not apply (i.e, it is used as an alternative to case 3). At �rst glance, changing case 3
to 4 may appear to be a poor bargain indeed, particularly since writes are generally more
expensive than reads. There are, however, several mitigating factors that make this blocking
nonetheless worthwhile. If the cache is write-through, 4 does not increase writes over 3,
so it is a clear win. Second, ATLAS also does not allow Km < NB , and in many cases
Km � NB , so the savings are well worth having. With respect to the expense of writes,
the writes are not 
ushed immediately; This fact has two important consequences:

1. The cache can schedule the write-back during times when the algorithm is not using
the bus.

2. Writes may be written in large bursts, which signi�cantly reduces bus tra�c; this can
tremendously optimize writing on some systems

In practice, 4 has been shown to be at least roughly as good as 3 on all platforms. The
amount of actual speedup varies widely depending on problem size and architecture. On
some systems the speedup is negligible; on others it can be signi�cant: for instance, it can
make up to 20% di�erence on DEC 21164 based systems (which have three layers of cache).
Note that this 20% improvement is merely the di�erence between cases 3 and 4, not between
ATLAS and some naive implementation, for instance.

The analysis given above may be applied to any cache level greater than 1; it is not for
level 2 caches only. However, this analysis is accurate only for the algorithm used by ATLAS
in a particular section of code, so it is not possible to recur in order to perform explicit
cache blocking for arbitrary levels of cache. To put this another way, ATLAS explicitly
blocks for L1, and only one other higher level cache. If an architecture has 3 levels of cache,
ATLAS can explicitly block for L1 and L2, or L1 and L3, but not all three.

If ATLAS performs explicit cache blocking for level L, that does not mean that level
L + 1 would be useless; depending on cache size and replacement policy, level L + 1 may
still save extra read and writes to main memory through implicit cache blocking.

6.2 L1 Cache-contained Matmul

The only code generator required to support the Level 3 BLAS produces a L1 cache-
contained matmul. The operation supported by the kernel is still: C  �op(A)op(B)+�C,
where op(X) = X or XT . C is an M � N matrix, and op(A) and op(B) are matrices of
size M �K and K � N , respectively. However, by L1 cache-contained we mean that the
dimensions of its operands have been chosen such that Level 1 cache reuse is maximized (see
below for more details). Therefore, the generated code blocks for the L1 cache using the
dimensions of its operand matrices (M, N, and K), which, when not in the cleanup section
of the algorithm, are all known to be NB .

In a multiply designed for L1 cache reuse, one of the input matrices is brought completely
into the L1 cache, and is then reused in looping over the rows or columns of the other input
matrix. The present code brings in the matrix A, and loops over the columns of B; this
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was an arbitrary choice, and there is no theoretical reason it would be superior to bringing
in B and looping over the rows of A.

There is a common misconception that cache reuse is optimized when both input matri-
ces, or all three matrices, �t into L1 cache. In fact, the only win in �tting all three matrices
into L1 cache is that it is possible, assuming the cache is not write-through, to save the cost
of pushing previously used sections of C back to higher levels of memory. Often, however,
the L1 cache is write-through, while higher levels are not. If this is the case, there is no way
to minimize the write cost, so keeping all three matrices in L1 does not result in greater
cache reuse.

Therefore, ignoring the write cost, maximal cache reuse for our case is achieved when
all of A �ts into cache, with room for at least two columns of B and 1 cache line of C.
Only one column of B is actually accessed at a time in this scenario; having enough storage
for two columns assures that the old column will be the least recently used data when the
cache over
ows, thus making certain that all of A is kept in place (this obviously assumes
the cache replacement policy is least recently used).

While cache reuse can account for a great amount of the overall performance win, it is
obviously not the only factor. The following sections outline some of these non-data cache
related optimizations.

6.2.1 Instruction Cache Reuse

Instructions are cached, and it is therefore important to �t the L1 matmul's instructions
into the L1 instruction cache. This means optimizations that generate massive amount of
instruction bloat (completely unrolling all three loops, for instance) cannot be employed.

6.2.2 Floating Point Instruction Ordering

When this paper discusses 
oating point instruction ordering, it will usually be in reference
to latency hiding, and its associated loop skewing.

Most modern architectures possess pipelined 
oating point units. This means that the
results of an operation will not be available for use until X cycles later, where X is the
number of stages in the 
oating point pipe (typically somewhere around 3-8). Remember
that our L1 matmul is of the form C  ATB + C; individual statements would then
naturally be some variant of C[X] += A[Y] * B[Z]. If the architecture does not possess
a fused multiply/add unit, this can cause an unnecessary execution stall. The operation
register = A[Y] * B[Z] is issued to the 
oating point unit, and the add cannot be started
until the result of this computation is available, X cycles later. Since the add operation is
not started until the multiply �nishes, the 
oating point pipe is not utilized.

The solution is to remove this dependence by separating the multiply and add, and
issuing unrelated instructions between them (requiring the loop to be skewed, since the
multiply must now be issued X cycles before the add, which comes X cycles before the
store). This reordering of operations can be done in hardware (out-of-order execution) or
by the compiler, but this will oftentimes generate code that is not as e�cient as doing it
explicitly. More importantly, not all platforms have this capability (for example, gcc on a
Pentium), and in this case the performance win can be large.
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6.2.3 Reducing Loop Overhead

The primary method of reducing loop overhead is through loop unrolling. If it is desirable
to reduce loop overhead without changing the order of instructions, one must unroll the
loop over the dimension common to A and B (i.e., unroll the K loop). Unrolling along
the other dimensions (the M and N loops) changes the order of instructions, and thus the
resulting memory access patterns.

6.2.4 Exposing Parallelism

Many modern architectures have multiple 
oating point units. There are two barriers to
achieving perfect parallel speedup with 
oating point computations in such a case. The
�rst is a hardware limitation, and therefore out of our hands: All of the 
oating point units
will need to access memory, and thus, for perfect parallel speedup, the memory fetch will
usually also need to operate in parallel.

The second prerequisite is that the compiler recognize opportunities for parallelization,
and this is amenable to software control. The �x for this is the classical one employed
in such cases, namely unrolling the M and/or N loops, and choosing the correct register
allocation so that parallel operations are not constrained by false dependencies.

6.2.5 Finding the Correct Number of Cache Misses

Any operand that is not already in a register must be fetched from memory. If that operand
is not in the L1 cache, it must be fetched from further up in the memory hierarchy, possi-
bly resulting in large delays in execution. The number of cache misses which can be issued
simultaneously without blocking execution varies between architectures. To minimize mem-
ory costs, the maximal number of cache misses should be issued each cycle, until all memory
is in cache or used. In theory, one can permute the matrix multiply to ensure that this is
true. In practice, this �ne a level of control would be di�cult to ensure (there would be
problems with over
owing the instruction cache, and the generation of such a precise in-
struction sequence, for instance). So the method ATLAS uses to control the cache-hit ratio
is the more classical one of M and N loop unrolling.

6.2.6 Code Generator Parameters

The code generator is heavily parameterized in order to allow for 
exibility in all of the
areas. In particular, the options are:

� Support for A and/or B being either standard form, or stored in transposed form

� Register blocking of \outer product" form (the most optimal form of matmul register
blocking). Varying the register blocking parameters provides many di�erent imple-
mentations of matmul. The register blocking parameters are:

{ ar : registers used for elements of A,

{ br : registers used for elements of B

Outer product register blocking then implies that ar � br registers are then used to
block the elements of C. Thus, if Nr is the maximal number of registers discovered
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during the 
oating point unit probe, the search needs to try all ar and br that satisfy
arbr + ar + br � Nr.

� Loop unrollings: Their are three loops involved in matmul, one over each of the
provided dimensions (M, N and K), each of which can have its associated unrolling
factor (mu; nu; ku). The M and N unrolling factors are restricted to varying with the
associated register blocking (ar and br, respectively), but the K-loop may be unrolled
to any depth (i.e., once ar is selected, mu is set as well, but ku is an independent
variable).

� Choice of 
oating point instruction:

{ Combined multiply/add with required pipelining

{ Separate multiply and add instructions, with associated pipelining and loop skew-
ing

� User choice of utilizing generation-time constant or run-time variables for all loop
dimensions (M, N, and K; for non-cleanup copy L1 matmul, M = N = K = NB). For
each dimension that is known at generation, the following optimizations are made:

{ If unrolling meets or exceeds the dimension, no actual loop is generated (no need
for loop if fully unrolled)

{ If unrolling is non-one, correct cleanup can be generated without using an if (thus
avoiding branching within the loop)

Even if a given dimension is a run-time variable, the generator can be told to assume
particular, no, or general-case cleanup for arbitrary unrolling.

� For each operand array, the leading dimension can be either a generation time constant
(for example, it is known to be NB for copied L1 matmul), with associated savings in
indexing computations, or it may be a run-time variable.

� For each operand array, the leading dimension can have a stride (stride of 1 is most
common, but stride of 2 can be used to support complex arithmetic).

� The generator can eliminate unnecessary arithmetic by generating code with special
alpha (1, -1, and variable) and beta (0, 1, -1, and variable) cases. In addition, there
is a special case for when alpha and beta are both variables, but it is safe to divide
beta by alpha (this can save multiple applications of alpha).

� Various fetch patterns for loading A and B registers

6.2.7 Putting It All Together { Outline of the Search Heuristic

It is obvious that with this many interacting e�ects, it would be di�cult, if not impossible
to predict a priori the best blocking factor, loop unrolling etc. Our approach is to provide
a code generator coupled with a timer routine which takes in some initial information, and
then tries di�erent strategies for loop unrolling and latency hiding and chooses the case
which demonstrated the best performance.
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The timers are structured so that operations have a large granularity, leading to fairly
repeatable results even on non-dedicated machines, and all intermediate results are written
to output �les so that interrupted installs may be restarted from the point of interruption.

The �rst step of the timing �gures the size of the L1 cache. This is done by performing
a �xed number of memory references, while successively reducing the amount memory
addressed. The most signi�cant gap between timings for successive memory sizes is declared
to mark the L1 cache boundary. For speed, only powers of 2 are examined. This means
that a 48K cache would probably be detected as a 32K cache, for instance. We have not
found this problem severe enough to justify the additional installation time it would take
to remedy it.

Next, ATLAS probes to determine information regarding the 
oating point units of the
platform. First ATLAS needs to understand whether the architecture possesses a combined
muladd unit, or if independent multiply and add pipes are required. To do this, ATLAS
generates simple register-to-register code which performs the required multiply-add using a
combined muladd and separate multiply and add pipes. Both variants are tried using code
which implies various pipeline lengths. ATLAS then replicates the best of these codes in
such a way that increasing numbers of independent registers are required, until performance
drops o� su�ciently to demonstrate that the available 
oating point registers have been
exceeded. With this data in hand, ATLAS is ready to begin actual L1 matmul timings.

These general timings give ATLAS the L1 cache size, the kind of 
oating point instruc-
tions to issue (muladd or separate multiply and add), the pipeline depth, and a rough idea
of the number of 
oating point registers. Given the size of the L1 cache, ATLAS is able
choose the relevant range of blocking factors to examine. Knowing the type of 
oating point
instruction the underlying hardware needs cuts the cases to be searched in half, while the
maximum number of registers implies what register blockings are feasible, which in turn
dictates the M and/or N loop unrollings to perform. Thus, the matmul search (and indeed
many other searches) is shortened considerably by doing these general architecture probes.

In practice, K loop unrollings of 1 or K have tended to produce the best results. Thus
ATLAS times only these two K loop unrolling during our initial search. This is done to
reduce the length of install time. At the end of the install process, ATLAS attempts to
ensure optimalK unrollings have not been missed by trying a wide range ofK loop unrolling
factors with the best case code generated for the unrollings factors of 1 or K.

The theoretically optimal register blocking in terms of maximizing 
ops/load are the
near-square cases that satisfy the aforementioned equation arbr + ar + br � Nr (see sec-
tion 6.2.6 for details). Since the ATLAS generator requires that ar = mu and br = nu,
these M and N loop unrollings are then used to �nd an initial blocking factor. The initial
blocking factor is found by simply using the above discussed loop unrollings, and seeing
which of the blocking factors appropriate to the detected L1 cache size produce the best
result.

With this initial blocking factor, which instructions set to use (muladd or separate
multiply and add), and a guess as to pipeline length, the search routine loops over all M
and N loop unrollings possible with the given number of registers.

Once an optimal unrolling has been found, ATLAS again tries all blocking factors, and
various latency and K-loop unrolling factors, and chooses the best.

All results are stored in �les, so that subsequent searches will not repeat the same
experiments, allowing searches to build on previously obtained data. This also means that
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if a search is interrupted (for instance due to a machine failure), previously run cases will
not need to be re-timed. A typical install takes from 1 to 2 hours for each precision.

6.2.8 Timing Results

Figure 4 shows the performance of double precision matmul across multiple architectures for
a problem of size 500. This graph compares performance obtained by ATLAS, the Fortran77
reference BLAS, and on those platforms where they exist, the vendor-supplied BLAS. The
problem size 500 is chosen as an intermediate problem size (i.e., it is not the problem size
which ATLAS performs best on, for instance). These timings utilize ATLAS's cache-
ushing
mechanism, and so may be lower than those reported elsewhere. More complete timings
can be found in [21, 22].
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6.3 GEMM-based Level 3 BLAS

The Level 3 BLAS specify six (respectively nine) routines for the real (respectively complex)
data types. In addition to the general matrix-matrix multiplication (GEMM) described
above, the Level 3 BLAS API [5] speci�es routines performing triangular matrix-matrix
multiply (TRMM), triangular system solve (TRSM), symmetric or Hermitian matrix-matrix
multiply (SYMM, HEMM), and symmetric or Hermitian rank-k and rank-2k updates (SYRK,
SYR2K, HERK and HER2K).

From a mathematical point of view, it is clear that all of these operations can be ex-
pressed in terms of general matrix-matrix multiplies (GEMM) and 
oating-point division.
Such a design is highly attractive due to the obvious potential for code reuse. It turns out
that such formulations of these remaining Level 3 BLAS operations can be made highly ef-
�cient, assuming the implementation of the GEMM routine is. Such Level 3 BLAS designs
are traditionally referred to as GEMM-based.

The basic idea is to partition the computations across submatrices so that the calcu-
lations can be expressed in terms of explicit calls to GEMM and the appropriate Level 3
BLAS primitives. This idea can be illustrated using the triangular matrix-matrix multiply
operation B  A�B, where A is an M -by-M upper triangular matrix, and B is a general
M -by-N matrix.

 
B1

B2

!
=

 
A11 A12
0 A22

! 
B1

B2

!
(1)

Equation 1 illustrates a simple partitioning scheme, where the triangular matrix A has
been partitioned once in both dimensions, and the right-hand side matrix B has been
accordingly decomposed in the row dimension only. The overall computation can then be
expressed as follows:

1. B1  A11B1 (TRMM)
2. B1  B1 +A12B2 (GEMM)
3. B2  A22B2 (TRMM)

This example shows two main features of GEMM-based Level 3 BLAS: �rst, explicit
calls to the Level 3 BLAS GEMM routine are made, and second, such a design is naturally
recursive. GEMM-based Level 3 BLAS are further classi�ed according to their partitioning
policy. There are many possible partitioning algorithms, and a great deal of past and
continuing research has been done on this problem. For instance, partitioning schemes
may utilize �xed and machine-speci�c blocking as in [15, 4], or more generalized recursive
schemes such as presented in [12, 13].

ATLAS implements a relative simple recursive GEMM-based BLAS design. The row
and column dimensions of the triangular, symmetric or Hermitian matrix and only the
appropriate dimension of the general matrix operands are halved at each step. Recursion
stops when the order of the square block diagonal is less than or equal to GEMM's Level 1
cache blocking factor, NB . The NB or less sized Level 3 BLAS primitives (TRMM in the
above example) used at the leaves of the tree are implemented both as simple loops, and in
terms of GEMM, and which one is used depends on the problem sizes and relative e�ciency
between GEMM and the simple loop implementation.

This design can be implemented both simply and elegantly in a very small amount of
code in any language natively supporting recursion. The design's most important feature

23



is that all performance optimizations, both memory and computational, are isolated in
GEMM. Most other GEMM-based designs instead perform the memory optimizations to at
least some degree in the GEMM-based routines, and rely on GEMM mainly for computa-
tional optimizations.

To understand this, recall that optimizing memory access involves blocking the matrices
in order to encourage cache reuse. However, the partitioning scheme used by the Level 3
BLAS is itself a blocking, and if chosen unwisely, can prevent GEMM from doing cache
blocking.

The drawbacks of this approach are obvious. As we have seen in previous sections,
partitioning schemes can become quite complex; this complexity is naturally re
ected in the
implementation. Reproducing both this code complexity and the architectural-dependent
caching information throughout the Level 3 BLAS robs the GEMM-based design of its
greatest strength: its reliance on a centralized kernel for performance wins.

In ATLAS's GEMM-based approach, the only parameter that changes with the archi-
tecture is NB, which is supplied automatically by GEMM. Further, the submatrices implied
by the recursion are square, which tends to allow greater cache blocking opportunities to
GEMM than non-square shapes.

It is clear that the most optimal implementation would not be GEMM-based, but would
instead have specialized cache and compute parameters just as in our previously described
GEMM implementation. However, we believe that the performance loss inherent in using
ATLAS's GEMM-based approach is in practice negligible, and thus the simplicity and
platform-independence of the GEMM-based approach used by ATLAS constitutes a clear
win. The timings presented in the following section appear to substantiate this idea.

6.3.1 Timing Results

Again, space considerations rule out presenting extensive timing results. We have chosen
to show results for all double precision BLAS operations on two architectures, again with
problems of size 500, and comparing results for vendor, ATLAS, and Fortran77 reference
implementations.

Figure 5 shows the performance results for the Sun UltraSparc (200Mhz). This archi-
tecture is interesting because it is the one on which ATLAS's GEMM (the compute kernel
for all of ATLAS's Level 3 BLAS) performs worst in regards to the vendor-supplied version.
This graph shows that, even when ATLAS's GEMM is not as good as the vendor version,
the rest of the Level 3 BLAS, which are built in terms of it, may nonetheless still compare
favorably with the vendor BLAS. This highlights one of the disadvantages of codes that do
not use the kernel approach to library building: uneven optimization, based on the priorities
of the library producer (which may well not match the needs of the end user).

Figure 6 shows the same data for a 533Mhz DEC ev56. This second architecture is
more typical in that ATLAS and vendor GEMM are much closer to parity. Here we see that
when ATLAS's GEMM compares favorably with the vendor implementation, this advantage
carries over for the entire BLAS. As with the UltraSparc results, we again see that the vendor
optimization e�ort has varied widely between routines, while ATLAS maintains a more even
level of optimality.
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7 Optimizing the Level 2 BLAS

The Level 2 BLAS perform matrix-vector operations of various sorts. All routines have at
most one matrix operand, and one or two vector operands. Unfortunately, space considera-
tions rule out covering ATLAS's Level 2 BLAS implementation in any real detail. Therefore,
this section will explain the theoretical underpinnings of all Level 2 optimizations: the basic
memory optimization techniques that allow the vector operand(s) main memory access to
be reduced from O(N2) to O(N). We then describe, in the broadest possible strokes, how
these and other optimizations are used by ATLAS.

7.1 Register and Cache Blocking for the Level 2 BLAS

If no register or cache blocking were done, the Level 2 operations would require O(N2)
data access on each operand. With the appropriate register and cache blocking, the vector
operands' access can be reduced to O(N). Obviously enough, the O(N2) matrix access
cannot be reduced, since the matrix is actually of size O(N2).

To understand this in detail, we look at the matrix vector multiply operation. In the
BLAS, the matrix-vector multiply routine performs y  �op(A)x + �y, where op(A) = A,
AH or AT and A has M rows and N columns. For our discussion, it is enough to examine
the case y  Ax+ y, where A is a square matrix of size N .

This operation may be summarized as
PN
i=1(yi =

PN
j=1Aijxj + yi); From this equation

it is clear that calculating an element of y requires reading the entire N length vector x,
reading and writing the ith element of y N times, and reading the entire N length row i
of the matrix A. Since there are N elements of y, it follows that this algorithm requires
N2 reads of A, N2 reads of x, N2 reads and N2 writes of y. Just as with the Level 3
operations, the number of references cannot be changed without changing the de�nition
of the operation, but by using appropriate cache and register blockings, the number of
the references that must be satis�ed out of main memory or higher levels of cache can be
drastically reduced.

The minimum number of main memory references required to do this operation results
in accessing each element from main memory only once, which reduces the accesses from
(3N2 reads + N2 writes) to (N2 +N reads + N writes).

As an interesting aside, even this trivial analysis is su�cient to understand the large
performance advantage enjoyed by the Level 3 over the Level 2 BLAS routines. All Level 2
BLAS require O(N2) FLOPs (Floating Point Operations); a completely optimal implemen-
tation can at best reduce the number of main memory accesses to the same order, O(N2).
The Level 3 BLAS, in contrast, require O(N3) FLOPs, but the number of main memory
accesses can be reduced to a lower order term, O(N2). Since most modern machines have
relatively slow memory when compared to their peak FLOP rate, this analysis dictates that
Level 3 BLAS will achieve a much higher percentage of the peak FLOP rate than the Level
2 BLAS.

Getting back to Level 2 BLAS, we now examine the register and cache blocking, which
are used in order to reduce the vector accesses.
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7.1.1 Register Blocking

Registers are scalars which are directly accessed by the 
oating point unit. In a way,
registers thus correspond to a \Level 0" cache, which operates at in�nite speed. Given an
in�nite number of registers, only one main memory access per element would be required
for all operations. Unfortunately, the number of user-addressable 
oating point registers
available on modern architectures typically varies between 8 and 32, and thus all but the
most trivial operations will over
ow the registers.

For this reason, register blocking alone can reduce either the y or x access term from
O(N2), to O(N), but not both. This is easily seen using the simpli�ed GEMV operation
introduced in the previous section. The basic algorithm required to reduce the accesses of
y to O(N) is most easily shown in the following pseudo-code:

do I = 1, N

r = y(I)

do J = 1, N

r += A(I,J) * x(J)

end do

end do

This is an \inner product" or dot product-based matrix vector multiply. If we unroll
the I loop and use Ry registers to hold the elements of y, we can reduce the N2 accesses of

x to N2

Ry
, by using a register to reuse the element x(J) Ry times for each load.

Unrolling the loop like this essentially creates a hybrid algorithm, in the sense that the
Ry y access constitute a small outer product. However, since registers cannot hold both y
and x throughout the algorithm, one or the other must be 
ushed as the loop progresses
(thus necessitating multiple loads to registers), and since we drop the value of x and maintain
y in the registers, this \hybrid" algorithm is still essentially inner product.

Reducing the x component to O(N) accesses requires the \outer product" or AXPY-
based (AXPY being a Level 1 BLAS routine performing the operation y  �x+ y) version
of GEMV:

do J = 1, N

r = x(J)

do I = 1, N

y(I) += A(I,J) * r

end do

end do

This gives us N read accesses on x, and, just as with the inner product, unrolling the
J loop and using Rx registers to hold the elements of x, we can reduce the accesses of y to
N2

Rx
reads and writes, by using an additional register to reuse y(I) Rx times.
Therefore, strictly for register blocking purposes, the inner product formulation is supe-

rior to the outer product: the total number of reads of both formulations is O(N2)+O(N),
but the number of writes is O(N) for inner product, but O(N2) for outer product. In prac-
tice, when array columns are stored contiguously, a heavily unrolled AXPY-based algorithm
may in fact be used, since it better utilizes hardware prefetch, cache line fetch, TLB access,
etc. As mentioned before, however, such details are beyond the scope of this paper, so we
will assume the register blocking used will be the inner product formulation.
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As another practical note, the number of registers available for doing multiple AXPYs
or dot products is severely limited, even beyond the 8 or 32 ISA (instruction set architec-
ture) limit. In the inner product formulation, where Ry registers are used to form the Ry
simultaneous dot products, at least two registers must be available for loading elements
of x and A. Further registers will be used in order to support pipelining and prefetch.
Large unrollings also mean accessing many more memory locations simultaneously, which
can swamp the memory fetch capabilities of the architecture. This means that Ry is usually
kept to a relatively small number (typically in the range of 2� 8).

In summation, register blocking reduces one vector access to O(N) cost; the vector
usually chosen for this reduction is the output vector (i.e., an inner product type register
block), due to its higher cost. In order to reduce the remaining vector to O(N), we must
apply cache blocking.

While it is tempting to regard register blocking as a special case of cache blocking, their
implementations are fundamentally di�erent. As we will see, cache blocking can be easily
done by simply parameterizing the relevant code, so that properly blocked sections of the
operands are accessed. Register blocking, as this section has demonstrated, relies on source
adaptation, since varying it requires changing the loop order, number of registers, loop
unrollings, etc., all of which change the code in ways that cannot be supported via simple
parameterization.

7.1.2 Cache Blocking

As previously discussed, register blocking has reduced the access of y to O(N), leaving
the x access at O(N2). Therefore, loading x to registers O(N2) times cannot be avoided;
However, the optimal algorithm will guarantee that main memory satis�es only O(N) of
these requests, leaving lower levels of cache to satisfy the rest.

Again, GEMV can be used to better understand this idea. The register block is doing
Ry simultaneous dot products, so that the y access is N reads and N writes, while the

x fetch to registers is N2

Ry
. Since x is reused in forming each successive dot product, x is

a candidate for cache reuse. It is easily seen that forming Ry dot products accesses Ry
elements of y, all N elements of x, and Ry �N elements of A. Thus the footprint in cache
of one step of this algorithm is roughly Ry +N +RyN .

Therefore, we can e�ectively guarantee L1 cache reuse by partitioning the original
problem so that the footprint in cache is small enough that the relevant portion of x
is not 
ushed between successive sets of dot products. Therefore, the correct blocking
for x may be determined by solving an equation, whose simpli�ed expression would be:
Ry + Np + RyNp = S1 ) Np =

S1�Ry
Ry+1

, where S1 is the size, in elements, of the Level 1
cache, and Np is the partitioning of x that we are solving for.

In practice, this equation is more complicated: some memory unrelated to the algorithm
will always be in cache, there will be problems associated with cache line con
icts, etc. In
addition, the equation needs to be adapted to the underlying register blocking so that
the initial load of the next step does not unnecessarily 
ush x. However, these details,
while important in extracting the maximal performance, are not required for conceptual
understanding, and so are omitted here.

With the correct partitioning (Np) known, the originalN�N GEMV is then blocked into
dN=Npe separate problems of size N �Np (the last such problem will obviously be smaller
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if Np does not divide N evenly). The data access to main memory is then dN=NpeN reads
and writes of y, N reads of X, and N2 reads of A.

Np is typically very close to N in size, and so this algorithm is very near optimal in its
memory access. Np will typically be in the range 350 - 1500, so even very large problems
still have extremely small coe�cients on the y access term. Note that any problem with
N � Np will achieve the optimal result (N

2 access of A, N access of x and y) without any
need for any cache blocking (register blocking is still required).

There is little point in explicitly blocking for higher levels of cache in the Level 2 BLAS.
However, if the machine possesses a level of cache large enough to hold the footprint of
the entire L1-blocked algorithm (with the previously stated simpli�cations, this is roughly
NpN +Np+Ry), y will be reused without need for explicit blocking, and the main memory
access will be reduced to its theoretical minimum.

7.2 ATLAS's Level 2 Compute Kernels

As we have seen, ATLAS employs one low-level compute kernel (the L1 matmul), from
which the BLAS's more general GEMM routine is built. The L1 matmul and GEMM are
then used in turn to generate the rest of the Level 3 BLAS. With this method, only this one
relatively simple kernel needs to be supported using code adaptation, and its performance
dictates that of the entire Level 3 BLAS.

The same strategy is employed for the Level 2 BLAS, but two types of compute kernels
are needed rather than one. Just as with the L1 matmul, these kernels perform register
blocking and various 
oating point optimizations, but do no cache blocking, as it is assumed
that the dimensions of the arguments have been blocked by higher level codes in order to
ensure L1 cache reuse. The compute kernels for the Level 2 BLAS are:

� L1 matvec: An L1-contained matrix vector multiply, with four variants:

1. No Transpose { matrix A's rows are stored in rows of input array

2. Conjugate (complex only) { matrix A's rows are stored in conjugated form in
rows of input array

3. Transpose { matrix A's rows are stored in columns of input array

4. Conjugate Transpose (complex only) { matrix A's rows are stored in conjugated
form in columns of input array

� L1 update1: An L1-contained rank-1 update

Both of these kernels further supply three specialized � cases (0, 1, and variable).

7.3 Building ATLAS's Level 2 BLAS

This section presents a very rough outline of how ATLAS supports the Level 2 BLAS. The
install of the Level 3 BLAS precedes that of the Level 2, and from this process ATLAS knows
the size of the L1 cache. Thus, using a slightly more complicated version of the equations
given in Section 7.1.2, ATLAS has a good idea of the correct Level 1 cache partitioning to
use. With this in hand, ATLAS is ready to �nd the best compute kernels for the Level 2
BLAS.
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Presently, ATLAS relies solely on multiple implementation to support these kernels (e.g.
code generation is not employed). Therefore, the search simply tries each implementation
in turn, and chooses the best. The conjugate forms of the L1 matvec have the same
performance characteristics as their nonconjugate equivalents, so ATLAS need search only
3 di�ering kernels: notranspose matvec, transpose matvec, and L1 update1.

Using these best algorithms, ATLAS empirically discovers the optimum percentage of
the L1 cache to use. These empirically-discovered blockings and kernel implementations are
then used to build the Level 2 BLAS routines GEMV and GER (much as GEMM was built
using the L1 matmul), and all of this information and these building blocks are then used
to produce the rest of the Level 2 BLAS.

Part IV

Conclusion and future work

Results presented and referenced here demonstrate unambiguously that AEOS techniques
can be utilized to build portable performance-critical libraries, which compete favorably
with machine-speci�c, hand-tuned codes. We believe that the AEOS paradigm will ulti-
mately have a major impact on high performance library development and maintenance.

ATLAS has produced a complete BLAS, and the ATLAS BLAS are already widely
used in the linear algebra community. Further information, including the software and
documentation, is available at the ATLAS homepage, www.netlib.org/atlas.

This paper has given a very high level overview of the methods used in the ATLAS
project to support the BLAS, and the ATLAS project is continuing to improve and extend on
this work. There are many more areas of ATLAS/AEOS research than can be investigated
by any one group. Some of the areas we are currently considering are:

� Generalizations of architecture information. We are examining to what degree the
information ATLAS discovers during the install process can be generalized and made
available to other packages.

� Code Generation for GEMV and GER kernels. The present dense Level 2 BLAS may
not be optimal for all platforms because their compute engine (L1 matmul and L1
update1) are supported solely by multiple implementation. For maximal performance,
it will be necessary to supplement this with code generation, as we have done in the
Level 3 BLAS.

� Code generation for some Level 1 BLAS routines. Many Level 1 BLAS routines
cannot be optimized much more than a standard compiler will do, and so do not
need special attention via ATLAS's empirical techniques. However, operations such
as AXPY (y  y + �x) are complex enough that the potential performance bene�t
makes it worth investigating the optimizations provided by code generation. Also,
this investigation is necessary in order to support sparse operations, which use Level
1, or near-Level 1, operations relatively often.

� SMP support via pthreads. Providing shared memory processing support for the BLAS
via pthreads is not di�cult. However, making such support portable across di�ering
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pthreads implementations is more challenging, and �nding reliable timing methods for
threaded codes so that they may be adapted via AEOS techniques has proven quite
di�cult indeed. We are investigating these areas now.

� Packed storage optimizations. One important area that has been traditionally mishan-
dled is packed storage, where only the relevant portion of a triangular or symmetric
matrix is stored, allowing for larger problems to be solved in the same memory space.
Present implementations are orders of magnitude slower than they need to be due to
BLAS interface issues, and vector-based algorithms. This work may require extending
the present generators, or development of specialized routines.

� Sparse optimizations. This is an open-ended research area that encompasses many dif-
ferent areas of optimization. We hope to use our experience with dense optimizations
in order to gain insight into the more tractable storage schemes. This will later pave
the way for more advanced work, such as structure analysis and dynamic libraries, as
well as providing a springboard to handling the less dense-like structures.

� Algorithmic research and higher level routines. We have already extended ATLAS
beyond the BLAS and into higher level kernels such as LAPACK's LU and Cholesky.
This trend should continue, with perhaps some interesting algorithmic research. For
instance, with the known performance provided by ATLAS, alternative algorithms
may become attractive in the search for the best performance (an example might be
use of the sign function for eigenvalues, due to the relative performance advantage
its Level 3 BLAS operations enjoy over the Level 2 operations used by traditional
methods) [2].
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