
Abstract. The isolation of rare cells, such as fetal nucleated
red blood cells and trophoblasts, from maternal blood for non-
invasive prenatal diagnosis is a new field of research exhibiting
several difficulties since this strategy requires unresolved basic
technological protocols for a successful outcome. However,
several achievements in the field of Laboratory-on-a-chip (Lab-
on-a-chip) technology have provided clear advancements in
projects aimed at the isolation of rare cells from biological
fluids. Among the most interesting approaches are those
based on dielectrophoresis (DEP). DEP-based Lab-on-a-chip
platforms have been demonstrated to be suitable for several
applications in biotechnology and biomedicine. DEP-based
arrays are able to manipulate single cells, which can be
identified and moved throughout the DEP chip to recovery
places. DEP buffers are compatible with molecular inter-
actions between monoclonal antibodies and target cells,
allowing integration of these devices with magnetic cell
sorting (MACS). DEP treatment does not alter the viability
of manipulated cells. 
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1. Introduction

Current methods for the diagnosis of aneuploidy and mono-
genic disorders require invasive testing by amniocentesis,
chorion villus biopsy or fetal blood sampling (1-4). These
diagnostic techniques increase the frequency of fetal loss by
~0.5% (5). One alternative way for obtaining information on
the gestating fetus involves recovery of fetal material from
maternal blood (6). Currently, two independent approaches
have followed this direction, one aimed at the identification
and analysis of fetal DNA (7-13); the other aimed at the
identification of circulating fetal cells, including trophoblasts
(14-16), nucleated fetal red blood cells (fNRBC) (17-20), and
nucleated white blood cells (21). Among these cell types, the
most promising appears to be the identification and isolation
of fNRBC and trophoblasts. In particular, trophoblasts have
been recently described as very promising, considering the
fact that, despite being rare within the blood of pregnant
women, they can be grown in vitro. 

Until recently, no established and routine methods for
isolation of fetal cells from maternal blood have been available
(22). Therefore, the development of technological platforms
able to singularly manipulate rare cells is of great importance.

2. Intact fetal cells in maternal blood: A short history

In 1969, Walknowska et al (23) described Y chromatin in
blood cells from women carrying male fetuses. Ten years
later, recovery of fetal leukocytes from maternal blood by
fluorescence-activated cell sorting (FACS) with antibodies
against paternally derived HLA antigens was reported (24).
Schmorl (25) described the deportation of fetal trophoblasts
to the lungs of pregnant women suffering from eclampsia.
Trophoblast cells have not found widespread application in
diagnostic studies because they are rapidly cleared by the
maternal pulmonary circulation and are likely to exhibit
confined chromosomal mosaicism (26). Nucleated red blood
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cells (NRBC) are the most common cells in fetal blood
during early pregnancy. Since they have a relatively short
half-life and express hematopoietic plasma membrane
antigens, such as the transferrin receptor (CD71) and the
glycophorin A cell surface molecule and intracellular markers
(ε and γ globin chains), fetal NRBC have become the targets
of choice. In 1990, Bianchi et al (27) recovered fetal NRBC
in maternal blood by using FACS. Fetal origin of the
separated cells was confirmed by the presence of Y-
chromosome DNA, corresponding to the sex of the fetus.

3. Isolation of intact fetal nucleated red blood cells in
maternal blood: The state of the art

Although the most represented fetal cells, fNRBC, are rare in
respect to maternal cells, they can be enriched in maternal
blood samples by using antibodies against specific fetal
antigens or by physical methods such as gradient or electro-
phoretic mobility-based separations. Antibodies have been
used with fluorescence-activated cell sorting (FACS) (28) or
magnetic-activated cell sorting (MACS) (29). These methods
exploit antigenic differences between cells. FACS is able to
enrich cells with high purity so that slides with sorted cells
can be readily scanned manually. It also allows multi-
parameter sorting and can be adapted for use with intracyto-
plasmic antigens. MACS, on the other hand, using magnetic
beads coated with specific antibodies, is a faster bench-top
technique better suited to process larger cell numbers. Both
negative and positive selections can be performed on the
same population of cells. Detection of levels of fetal cells with
these two methods is however difficult in relation to the small
numbers of circulating fetal cells and the loss of fetal cells
during the enrichment procedures. Bischoff et al (30) reported
a simple and rapid-density-based progenitor cell enrichment
approach. The samples were labeled with a RosetteSep™
progenitor antibody cocktail to remove unwanted maternal
white cells (mature T-cells, B-cells, granulocytes, natural killer,
neutrophils and myelomonocytic cells). The cellular fraction
collected was analyzed by either fluorescent in situ hybridi-
zation (FISH) or real time-PCR for the presence of intact
fetal cells and to quantify Y-chromosome-specific DYS1
sequences, respectively. The accuracy of detection rates of
the progenitor enrichment approach were 53-89%, and fetal
sequences were detected in the range 0.067-1.167 genome
equivalents per milliliter of blood. This method targets
progenitor cells that are not necessarily of the erythroid
lineage and may also allow expansion in culture and
characterization of the fetal cell types that circulate in
maternal blood. Some lymphocytes are long lived, and with
this approach there is concern that enriched progenitors may
be the vestiges of previous pregnancies and do not represent
the true fetal genetic status of the current pregnancy (30).
Charge flow separation (CFS) is an antibody-independent
selection method of fetal cells that relies on the behaviour of
cells in an electric field and a buffer counterflow gradient
(31). It is an automated rapid method that purifies NRBC from
maternal blood, and ~30% of these cells are fetal. For non-
invasive prenatal diagnosis, NRBC from the fetus must be
precisely identified. They are able to be distinguished from
maternal cells by identifying paternal DNA sequences (32).

This method can be extended using micromanipulation of
candidate fetal cells and amplification of chromosome-
specific short tandem repeats (33). It is under investigation
whether recovery of fetal cells with CFS is higher than that
obtained with other separation methods. The most important
molecular techniques that have allowed genetic analysis of
enriched fetal cells are PCR and FISH. The ability of PCR to
amplify minute quantities of DNA (even a single copy) >1
billion-fold has been exploited for the prenatal diagnosis
of monogenic disorders from maternal blood (34-36).
Chromosomal FISH allows the detection of aneuploidy and
chromosomal rearrangements in interphase nuclei. It has been
used to detect most of the major fetal aneuploidies within
fetal cells isolated from maternal blood (28,37-39). Fetal
traits which have been identified so far among the separated
fetal cells include blood group antigen, the common trisomies,

BORGATTI et al:  NEW TRENDS IN NON-INVASIVE PRENATAL DIAGNOSIS4

Table I. Antibodies used for NRBC isolation.
–––––––––––––––––––––––––––––––––––––––––––––––––
Antibody/target Reference
––––––––––––––––––––––––––––––––––––––––––––––––––––––
CD71 Winichagoon P et al, 2005 (44)

Nagy GR et al, 2005 (45)

Christensen B et al, 2005 (6)

Al-Mufti R et al, 2004 (47)

Al-Mufti R et al, 2004 (48)

Al-Mufti R et al, 2000 (59)

Furusawa T et al, 1998 (66)

Navenot JM et al, 1997 (68)

Savion S et al, 1997 (69)

2F6.3 Fernandez A et al, 2005 (46)

HbF Kazama A et al, 1996 (70)

CD45/CD14 Christensen B et al, 2005 (6)

Wang Z and Liebhaber SA, 1999 (65)

Glycophorin-A Collarini EJ et al, 2001 (52)

Choolani M et al, 2001 (43)

Sekizawa A et al, 1999 (64)

Ziegler BL et al, 1995 (71)

CD45 Martel-Petit V et al, 2001 (55)

Jakobs ME et al, 2000 (57)

Di Naro E et al, 2000 (61)

Cunningham J et al, 1999 (63)

γ, ε and ζ hemoglobin chains Jackson L et al, 1993 (5)

Christensen B et al, 2003 (49)

Christensen B et al, 2003 (50)

Collarini EJ et al, 2001 (53)

Samura O et al, 2000 (58)

Sekizawa A et al, 1999 (62)

Mavrou A et al, 2003 (17)

Xu H et al, 2001 (54)

Glycophorin-C Choi JW et al, 2002 (51)

Embryonic hemoglobin (HbE) Sekizawa A et al, 2000 (56)

ζ hemoglobin chains Al-Mufti R et al, 2000 (60)

FB3-2; H3-3; 2-6B/6 Pezzolo A et al, 1997 (67)
–––––––––––––––––––––––––––––––––––––––––––––––––
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triploidy, polymorphic DNA repeats, and some single-gene
disorders (34,39-42). All of these methods result in the
enrichment of fetal cells among larger populations of
maternal cells, but they do not enable recovery of pure
populations of fetal cells. Experimental approaches which
combine fetal cell identification with molecular genetic
diagnosis with in situ techniques circumvent these limitations
and are especially suited for automation (43). Unfortunately
prenatal diagnosis from maternal blood is not practicable for
~30% of pregnant women, because the NRBC are not
recovered. It is then important to optimize enrichment
identification end diagnostic protocols.

A partial list of antibodies used for NRBC isolation is
provided in Table I.

4. Isolation of trophoblasts in maternal blood: New trends

The relevance of trophoblasts as target cells is under debate.
Among the identified drawbacks are the following: a)
trophoblasts are long-term circulating cells and, therefore,
may originate from previous fetuses; b) trophoblasts; c) a
high level of heterogeneity in the number of trophoblasts/ml
of maternal blood has been described. However, recent
advances in the isolation of trophoblasts from maternal blood
have demonstrated that the potential application of these cells
in non-invasive prenatal diagnosis is high (72). Trophoblast
cells are isolated by several methods related to surface
antigen expression (e.g. expression of HLA-G) and cell size.
The idea of trophoblasts as target cells has been rethought
from a point of view that has not yet been pursued; the
potential to grow in vitro under suitable experimental
conditions, thereby improving fetal cell detection and,
possibly, allowing diagnostic approaches based on metaphase
chromosome analysis. Accordingly, the HLA-G-positive
fraction of sorted cells can be sub-cultured, greatly
facilitating studies in molecular biology.

5. In the search of a partner for MACS and FACS: Theory
and biotechnological applications of dielectrophoresis
(DEP)

All the available information indicates that MACS technology
allows the collection of cell populations significantly enriched
in fetal erythroblasts or trophoblasts (19,30,73-75). A
combination of the MACS procedure with other strategies for
isolation of rare cells is highly needed to obtain almost a pure
cell population. Up to now, an integrated system has not been
available. 

In Fig. 1, a possible flow-chart is depicted allowing
enrichment of fetal cells from maternal blood for molecular
or cytogenetic analysis. There is general agreement that at
least 20 ml of blood must be obtained in order to ensure pure
cell populations for analysis (Fig. 1A). After density gradient
separations (Fig. 1B) and negative selection (Fig. 1C) the
cells of interest are partially purified using antibodies to
surface antigens recognizing fetal cells (Fig. 1D). This step
does not allow a purification of pure cell populations since
most of the antibodies used recognize and co-purify adult cells.
Therefore, further analyses should be proposed, based on the
labeling of fetal cells on the one hand and on the manipulation
of single cells on the other. Concerning the latter step, several
approaches have been proposed including single-cell
isolation using micromanipulators, laser microdissection and
single-cell isolation and dielectrophoresis-based Lab-on-a-
chip technology (Fig. 1E). After isolation of single cells,
several molecular biological techniques have been described for
molecular characterization of the fetal cell genome, including
PCR-based sequencing, real time-PCR, and Quantitative
Fluorescence PCR (QF-PCR) (Fig. 1F). In case the procedure
allows further cell culturing steps, chromosomal analysis is
feasible (Fig. 1F). Among the different technologies recently
proposed for isolation of rare cells from a mixed population,
this review focuses on dielectrophoresis (76).
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Figure 1. Flow chart depicting the strategy for enrichment of fetal cells from maternal blood for diagnostic purposes.
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DEP is the movement of particles in non-uniform electric
fields (77,78). Charges in the particle itself are not necessary
for the effect to occur. This is due to the fact that when an
electric field is applied to a system consisting of particles
suspended in a liquid, a dipole moment is induced, due to the
electrical polarizations at the interface between the particle
and the suspending liquid (77-83). If the field is non-uniform,
the particles experience a translation force (DEP force) of

magnitude and polarity, depending not only on the electrical
properties of the particles and the medium, but also on the
magnitude and frequency of the applied electric field. This
means that for a given particle type and suspending medium,
the particle can experience, at a certain frequency of the
electrode applied voltages, a translation force directed towards
regions of high electric field strength (this phenomenon is
called pDEP). Alternatively, by simply changing the frequency,
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Figure 2. (A) Set-up of the Lab-on-a-chip assembly, consisting of a microscope (B), a micropump for temperature stabilization (C), a mother board (D), and a
personal computer (E). Modified from Borgatti et al (97).
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the particle may experience a force that will direct it away
from high electric field strength regions (this phenomenon is
called nDEP).

The general set-up of a DEP-based system is shown in
Fig. 2A, and is generally constituted by a microscope
(Fig. 2A), connected with CDD-camera and computer (Fig. 2A
and E), and platforms suitable for inclusion of the Lab-on-a-
chip devices (Fig. 2C). Several DEP-based Lab-on-a-chip
devices were recently described and found to be suitable for

biotechnological applications in the field of isolation of single-
cell population as well as manipulation of single biological
objects, including cells and microspheres.

6. DEP-based Lab-on-a-chip devices with high-density
arrayed electrodes

Fig. 3A and B shows the DEP-array, which is constituted by
a microchamber defined by the chip surface and a conductive-
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Figure 4. Identification of γ-globin-containing (A,B) and MEM-G9-positive (C-F) cells. Staining with fluorescent anti-γ-globin antibodies is a strategy to
identify fNRBC (18); binding of MEM-G9-loaded fluorescent microspheres are currently employed to detect HLA-G-positive trophoblasts. A and C,
microscopic analysis; B and D, fluorescence analysis. E and F are enlargements of panels C and D (the enlarged region is identified by a box).

Figure 3. (A,B) Detail of structures of the DEP-array. The location of the device under the microscope is indicated with an arrow in panel A, while the
structure is shown in panel B. In the insert of panel B, single cells are entrapped within DEP-cages and separated. (C) Simulation of the movement of a single
spherical DEP-cage along the DEP-array. (D,E) Programmed routing of an identified single cell (yellow) to a recovery field (green). Panels A-C are modified
from Borgatti et al (91).
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glass lid. The chip surface implements a two-dimensional
array of 320x320 microsites, each consisting of a superficial
electrode, embedded sensors and logic. The electrode array is
implemented with CMOS (complementary metal oxyde semi-
conductor) top-metal and protected from the liquid by the
standard CMOS passivation. The design, technical parameters,
building approach and manufacture of this DEP-based arrayed
device have been described by Medoro et al (84-86) and
Manaresi et al (87). In this system, a closed DEP-cage in the
spatial region above a microsite can be created by connecting
the associated electrode and the microchamber lid to a counter-
phase sinusoidal voltage, while the electrode of the neighboring
microsites is connected to an in-phase sinusoidal voltage. A
minimum field is thus created in the liquid, corresponding to
a DEP-cage in which, depending on its size, one or more
particles can be trapped and levitated. This system allows the
creation of 4,000-10,000 DEP-cages, able to entrap single
cells or cell-microsphere complexes (85,86). By changing,
under software control, the pattern of voltages applied to the
electrodes, these spherical DEP-cages can be independently
moved around the device plane (Fig. 3C), thus grabbing and
dragging cells and/or microbeads across the chip. Particles in
the sample can be detected by the changes in optical
radiation impinging on the photodiode associated with each
microsite. Thanks to the small pitch of the electrodes, single
cells can be individually trapped in separate cages (insert,
Fig. 3B) and independently moved on the device (Fig. 3C
and in the representative experiments depicted in Fig. 3D and
E). Particle position is digitally controlled step-by-step in a
deterministic way, by applying a corresponding pattern of
voltages to the array which set the position of the DEP-cages. 

The most important features of the Lab-on-a-chip device
are: a) it carries out functions of both actuating and sensing
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Figure 6. Scheme outlining the Leica PALM MicroBean system; (A) the instrument and (B) the concept of laser pressure catapulting. After catapulting, the
isolated cells can be recovered for molecular diagnosis (C).

Figure 5. Routing of a single cell (A-F) or a cell-microsphere complex (G-L).
Photographs were taken at the beginning (A,G) or after 30 sec (B,H), 1 min
(C and I), 90 sec (D and L), 2 min (E) and 2.5 min (F). These data are taken
from Borgatti et al (91). 
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type, b) the DEP-chip is optimal for the separation of large
numbers of eukaryotic cells; c) the DEP-array can be
programmed for moving single cells; and d) single cells can
be forced to contact antibody-exposing microspheres.

In respect to isolation of a pure cell population, additional
published results (reviewed in ref. 84) have firmly demon-
strated that human cell populations of different histotype and
differentiation stage are able to be isolated using DEP-based
devices. These features propose Lab-on-a-chip platforms for
diagnostic applications, cell separation and characterization
in the field of non-invasive prenatal diagnosis (88-98).

First, in order to follow the step indicated in Fig. 1C and
D, it is crucial to demonstrate that interaction between
antibodies and surface antigens is stable in buffers employed
for DEP. This is shown in Fig. 4A and B, showing staining of
γ-globin-expressing cells (expressed by fNRBC) in 280 mM
mannitol and 6.25 mM KCl, a buffer commonly used in DEP
experiments. In addition, cells can be labeled with
fluorescence beads carrying specific antibodies. In Fig. 4C-F
a single HLA-G-expressing cell is identified in 280 mM
mannitol/6.25 mM KCl from the other negative cells by
using the MoAb MEM-G9, specific for trophoblasts.

Secondly, after identification of single cells or cell-
microsphere complexes, these can be forced to move to pre-
identified areas of the Lab-on-a-chip device. This is demon-
strated in the representative experiment shown in Fig. 5, in
which a single cell (A-F) or a single-cell microsphere
complex (G-L) are moved along the chip, allowing the
concentration of the identified cells to recovery places of the
device, as indicated by panels D and E of Fig. 3.

The data presented here and those available in the literature
indicate that the dielectrophoresis (DEP)-based Lab-on-a-
chip approach meets the required criteria for the optimization
of enrichment of fetal cells in the blood of pregnant women
for non-invasive prenatal diagnosis. 

7. Competing technologies: Noncontact laser micro-
dissection and pressure catapulting (LMPC) for 
isolation of single cells

In recent years, laser microdissection and pressure
catapulting (LMPC) has been described as an emerging
technology for the isolation of identified cells for genomic
analysis (99-101). This approach enables pure and homo-
geneous sample preparation (102,103). For microdissection,
the force of focused laser light is used to excise selected cells
or large tissue areas from object slides or from living cell
cultures down to a resolution of individual single cells and
subcellular components like organelles or chromosomes,
respectively (Fig. 6A and B). After microdissection this
sample is directly catapulted into an appropriate collection
device (Fig. 6B). As the entire process is conducted without
any mechanical contact, it enables pure sample retrieval from
a morphologically defined origin without cross-contamination.
Wherever homogenous samples are required for subsequent
analysis of, e.g. cell areas, single cells, or chromosomes, the
PALM MicroBeam system is an indispensable tool. The
integration of image analysis platforms fully automates
screening, identification, and finally subsequent high-
throughput sample handling. These samples can be directly

linked into versatile downstream applications, such as single-
cell mRNA extraction, different PCR methods, microarray
techniques, and various others (Fig. 6C). 

8. Conclusions

The optimization of prenatal diagnosis for chromosomal and
monogenic disorders can be greatly facilitated if obtaining
fetal material from maternal blood is efficiently and
reproducibly obtained, avoiding the risks associated with
amniocentesis, chorionic villus sampling and fetal blood
sampling.

The isolation of rare cells from maternal blood for non-
invasive prenatal diagnosis is a new field of research exhibiting
several difficulties since this strategy requires several basic
technological protocols for a successful outcome (19,45,46,48,
50,52,62,68,104-112).

Risk factors for DEP-based Lab-on-a-chip development
are as follows. i) Antigen-antibody interactions in the DEP
buffers. The binding between monoclonal antibodies and target
cells occurs in mannitol-based buffers. However, the present
published data do not support the hypothesis that for all the
monoclonal antibodies necessary for fetal cell identification
in non-invasive prenatal diagnosis, the efficiency in DEP
buffer is the same of binding reactions performed in RPMI. ii)
Isolation of cells after DEP-based Lab-on-a-chip separation.
The isolation of cells from the DEP-array, despite not being
optimized and published so far, is expected to be developed
for FACS/MACS and Lab-on-a-chip enrichment of fetal cells
from maternal blood. iii) Vitality of the cells after DEP-
manipulation and Lab-on-a-chip separation. This point is not
crucial for DNA-based diagnosis (performance of PCR,
microsequencing, allele discrimination); however, it might be
of great interest for chromosomal analysis. The collective data
suggest that no mutations are introduced by DEP treatment,
and cells can be viable after DEP separation. 
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