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Antimicrobial peptides (AMPs) have a broad spectrum of activity and unspecific mechanisms of action. Therefore,
they are seen as valid alternatives to overcome clinically relevant biofilms and reduce the chance of acquired
resistance. This paper reviews AMPs and anti-biofilm AMP-based strategies and discusses ongoing and future work.
Recent studies report successful AMP-based prophylactic and therapeutic strategies, several databases catalogue
AMP information and analysis tools, and novel bioinformatics tools are supporting AMP discovery and design.
However, most AMP studies are performed with planktonic cultures, and most studies on sessile cells test AMPs on
growing rather than mature biofilms. Promising preliminary synergistic studies have to be consubstantiated and the
study of functionalized coatings with AMPs must be further explored. Standardized operating protocols, to enforce
the repeatability and reproducibility of AMP anti-biofilm tests, and automated means of screening and processing

the ever-expanding literature are still missing.

Keywords: biofilm; antimicrobial peptide; therapeutic and prophylactic strategies; bioinformatics; anti-biofilm

mechanisms of action

Introduction

Biofilms are complex, localized and fixed networks of
microbial cells enclosed in a self-produced polymeric
matrix, whose formation undergoes essentially four
typical stages, namely (1) adherence of planktonic cells
to the abiotic surface or tissue, (2) growth of the
attached cells and production of the extracellular
polymeric protective matrix (mainly proteins, poly-
saccharides and extracellular DNA resulting from
autolysis (eDNA), (3) biofilm maturation involving
the development of water channels and specialized
zones, and (4) dispersion of cells and/or parts of the
biofilm with subsequent colonization of other locations
(Costerton et al. 1999; Donlan and Costerton 2002;
Fey 2010; Hoiby et al. 2010). The architecture of a
mature biofilm is variable, ranging from flat homo-
genous layers of cells to highly organized cell clusters
with a mushroom shaped structure containing water-
filled channels (Wimpenny et al. 2000).

Even though there have been important research
advances in the biofilm area, biofilm control is still an
open and pivotal research field. Approximately 80% of
human bacterial infections are caused by biofilms
(Harro et al. 2010), mainly health care associated
infections related to the implant of medical devices, eg
urinary  catheters, intravascular catheters and

prosthetic heart valves. As such, microbial adhesion
onto surfaces and the subsequent formation of biofilms
are critical concerns for many biomedical applications
(Donlan and Costerton 2002; Fey 2010). Indeed, the
increasing resistance of biofilms to traditional anti-
microbial treatments is considered the major cause of
dissemination of antibiotic resistance in the nosoco-
mial infections (Fey 2010; Spizek et al. 2010).

Biofilm resistance has been related to several
factors (Hall-Stoodley and Stoodley 2009; Heiby
et al. 2010; Corbin et al. 2011), such as (1) the higher
frequency of mutation and horizontal gene transmis-
sion found in biofilms when compared to planktonic
bacteria, which explains the rapid development of
antibiotic resistance in biofilms; (2) the appearance of
nutrient depleted zones throughout biofilms, due to
oxygen and nutrient gradients, which cause bacteria to
enter into a stationary phase-like dormancy and not be
affected by antimicrobials; (3) the development of
oxidative stress, caused by an imbalance between the
formation of reactive oxygen species (ROS) and the
antioxidant system, that increases mutability in bio-
films; and (4) the delay of antibiotic penetration into
the matrix of the biofilm, which contains polymers that
bind to antibiotics and hinder their action, and
antibiotic-degrading enzymes that deactivate them.
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The difficulty of successfully treating biofilm-
associated infections and the increasing resistance of
microbes to traditional treatments call for the dis-
covery of compounds with novel mechanisms of
action. Most of the antimicrobial products that have
been developed are derivatives of already known
compounds and target the same resistance mechanism,
so their action can only be somewhat better. Now,
research is drifting towards the discovery of non-
traditional sources of antimicrobials, microbial gen-
ome sequencing focused on antibiotic gene expression,
metagenomics, and investigation of new targets with
respect to pathogenic bacteria. Within this scope,
natural products, namely antimicrobial peptides
(AMPs), stand out because they have a much higher
hit rate in high-throughput screens than the combina-
tional libraries of traditional antimicrobials. More-
over, natural products are usually much more complex
than synthetic products and present scaffolds with
viable and biologically validated starting points for the
design of chemical libraries (Spizek et al. 2010).

The following sections describe AMPs and their
application to biofilm prophylaxis and therapeutics.
Emphasis is given to the main sources and categories
of AMPs, their common anti-biofilm mechanisms of
action, and customized bioinformatic approaches.

Sources of antimicrobial peptides

AMPs are short-length peptide antibiotics (between 15
and 30 amino acids), the majority of which are
cationic, amphipathic, gene-encoded and directed to
the cell membrane (Rossi et al. 2008; Melo et al. 2009;
Splith and Neundorf 2011). AMPs are usually co-
expressed in groups that act together (Lai and Gallo
2009), but despite their similarities, AMP sequences
vary greatly. Usually, AMPs are classified as a-helical,
p-sheeted, extended and looped (Melo et al. 2009) or
ribosomally and non-ribosomally synthesized (Rossi
et al. 2008).

AMPs come from a variety of sources and in many
forms. Their widespread distribution throughout the
animal and plant kingdoms suggests that AMPs play a
fundamental role in the evolution of complex multi-
cellular organisms. Despite their ancient lineage,
AMPs have remained effective defensive weapons
(Zasloff 2002). Indeed, it has been proposed that
AMPs and AMP-directed resistance mechanisms have
co-evolved, leading to a host-pathogen balance that
has shaped the existing AMP portfolio (Peschel and
Sahl 20006).

AMPs are part of the innate immune system of
animals and plants, but can also be found in bacteria
and fungi (Rossi et al. 2008; Splith and Neundorf
2011). Mammalian AMPs are generally expressed and

easily induced in epithelial surfaces to repel assault by
bacteria, viruses, fungi and parasites (Lai and Gallo
2009). AMPs have also been found in the glandular
cells of amphibian skin, fish and most classes of
invertebrates. In plants, AMPs help in the adaptation
to stressful environmental conditions. For example,
plant cells act as recognition sites against pathogen-
derived metabolites (elicitors), leading to the accumu-
lation of AMPs in the affected plant tissue (Kido et al.
2010). Additionally, bacteria and fungi produce AMPs
as a defense mechanism and as a means of gaining
competitive advantage against other microorganisms,
sometimes of the same species (Sang and Blecha 2008).

Synthetic AMPs, produced by de novo synthesis or
by modification of existing AMPs, emerged as an
alternative to reduce production costs (Wimley and
Hristova 2011). Recently, some reviews (Vooturi and
Firestine 2010; Giuliani and Rinaldi 2011) have
reported the engineering of AMP mimetics or pepti-
domimetics, ie non-peptide molecules aimed at retain-
ing and improving the basic features of AMPs.

A resume of the sources and classifications of the
various AMPs is available in Table 1.

Mechanisms of action of antimicrobial peptides

AMPs have been recognized as promising candidates
for replacing classical antibiotics (Figure 1) due to their
multiple mechanisms of action and low specificity in
terms of molecular targets, which reduces the chance of
acquired resistance (Zasloff 2002; Beckloff et al. 2007).
Moreover, compared with conventional antimicro-
bials, which are generally active only against bacteria
or fungi, AMPs exert activity against a broad spectrum
of microorganisms, such as both Gram-negative and
Gram-positive  bacteria, including drug-resistant
strains, parasites, enveloped viruses and even some
cancer cells (Sang and Blecha 2008; Splith and
Neundorf 2011; Wimley and Hristova 2011). AMPs
are also cell specific and are able to distinguish host
from non-host cells based on their charge (Beckloff
et al. 2007). Besides their antimicrobial action, AMPs
can also influence processes which support antimicro-
bial action, like cytokine release, chemotaxis, antigen
presentation, angiogenesis and wound healing (Lai and
Gallo 2009).

Conventional antibiotics usually act by inhibition
of cell wall synthesis or DNA, RNA and protein
synthesis (Sang and Blecha 2008; Chau 2010). Most
AMPs permeabilize microbial membranes, inducing
either a large-scale failure or small defects that
dissipate the transmembrane potential, which results
in cell death (Sang and Blecha 2008; Wimley and
Hristova 2011). This mechanism of action does not
depend on the recognition of chiral targets and,
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Figure 1.
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therefore, all D-enantiomers are equally active, giving
AMPs a broad action spectrum (Podda et al. 20006).
The mechanisms of action of AMPs are divided
into pore and non-pore models (Wimley and Hristova
2011). Pore models account for the formation of
membrane-spanning pores, namely the ‘barrel stave
pore model’ (Rapaport and Shai 1991), in which
AMPs interact to form a hydrophilic channel, and the
‘toroidal pore model’ (Ludtke et al. 1996), in which
AMPs affect the curvature of the membrane. In turn,
non-pore models comprise: the ‘carpet model’ (Gazit
et al. 1996), which is the most cited model and
accounts for the parallel deposition of AMPs on the
membrane, causing global bilayer destabilization due
to a detergent-like effect; the ‘detergent model’
(Ostolaza et al. 1993) that explains catastrophic
collapse of the membrane using high concentrations
of AMPs; the ‘molecular shape models’ (Bechinger
and Lohner 2006), in which AMP-lipid interactions
can be portrayed with phase diagrams; the ‘lipid

clustering model’ (Epand and Epand 2009), in which
AMPs induce lipid phase separation; the ‘sinking raft
model’ (Pokorny et al. 2002), in which AMP activity
is described in terms of binding, insertion and
perturbation; and the ‘interfacial activity model’
(Rathinakumar and Wimley 2008), which is used to
explain, predict and engineer the activity of AMPs.
All the aforementioned models imply the need to
reach a certain threshold concentration of AMPs in
the membrane prior to disruption (Melo et al. 2009).
Biomembrane interaction studies with model bacterial
and mammalian lipid membranes are very important
for determining the mechanisms of action of mem-
brane active peptides (Gao et al. 2012).

Some AMPs act by alternative means, like binding
to DNA, inhibiting cell wall, DNA, RNA and protein
synthesis, and autolysin and inhibiting enzyme activity
(Sang and Blecha 2008). The type of mechanism of
action of AMPs can dictate their application fields. For
example, it has been noticed that AMPs targeted at the
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membrane are better suited for use in surface coatings
than AMPs that act at an intracellular level (Bagheri
et al. 2012).

More details about the mechanisms of action of
AMPs are available in the reviews of Melo et al. (2009),
Nguyen et al. (2011), Park et al. (2011), Splith and
Neundorf (2011) and Wimley and Hristova (2011).

Anti-biofilm antimicrobial peptide strategies

Biofilm control can be achieved in three ways, namely
(1) reduction of the planktonic population, (2)
prevention of the initial adhesion of cells to the
surface, and (3) removal of the established biofilm.
Studies on biofilm-forming bacteria or yeasts in the
planktonic state may open routes to the first strategy.
However, in vivo application of the first strategy is
quite complicated, given that the planktonic popula-
tion in the body is widespread and identification of the
presence of the planktonic biofilm-forming bacteria is
difficult, so microbial adhesion must be prevented as
the next step.

Conceptually, the ecasiest method for preventing
microbial attachment is by pre-treating the surfaces.
This can be achieved by impregnating the surface with
an antimicrobial agent or using functionalized coatings
that allow a localized antimicrobial delivery (Zilber-
man and Elsner 2008; Shukla et al. 2010; Yala et al.
2011). As reviewed by Glinel et al. (2012), several
AMP-based coatings have been tested successfully.

When surface pre-treatments are not effective,
biofilms may form. Strategies based on the adminis-
tration of antimicrobials to the infected live tissue
(antibiotic treatments) or the non-living surface (dis-
infectant treatments) must then be applied to kill the
biofilm-growing microorganisms. A summary of the
latest biofilm control studies using AMPs is depicted in
Table 2.

Analysis of Table 2 shows that the AMPs tested on
biofilms come from various natural sources, such as
humans (AMP-IBP5; HBD3; LL-37; «-MSH), other
mammals (BMAP-28; cathelicidin WAM1), amphi-
bians (aurein 2.5; magainin I; phylloseptin-1), fish
(chrysophsin-1; pleurocidin), arthropods (tachyplesin
I11), bacteria (gramicidin A; lacticin 3147; nisin) and
plants (7n-AFP1). Non-natural AMPs are classified
into mimetics (peptoid 1; peptoid 1-Cl34mer;
(RW)4D) and synthetic (F2,5,12W; KSL; PTP-7;
Tet213; SAMPs Ltx5, Ltx9 and Ltx10; omiganan
pentahydrochloride; STAMPs C16G2, M8G2, C16-33,
M38-33 and G10KHc). A substantial part of the AMPs
tested is synthetic, which means that improving the
optimal performance of AMPs is nowadays becoming
an important issue. Most of the microorganisms tested
are bacteria, probably due to their ubiquity in Nature

and their frequent association with infectious diseases
and biofilms.

It is also noteworthy that a substantial number of
biofilm-related studies, as seen in Table 2, cover mainly
biofilm growth in the presence of AMPs, ie prophy-
lactic strategies meant to prevent biofilm formation,
rather than testing AMPs against pre-established
biofilms, ie therapeutic strategies meant to treat
existing biofilms. This suggests that prevention of
biofilm formation is possibly the current favorite
research strategy in the combat of nosocomial infec-
tions. However, more work must be done in order to
evaluate the anti-biofilm efficacy of AMPs on mature
biofilms. Some recent, successful studies on the
development of AMP-mediated anti-biofilm prophy-
lactic and therapeutic strategies can be found in
Table 2.

One of the characteristics that appears to be linked
to the anti-biofilm efficacy of some AMPs is their dual
capacity to act both on the cytoplasmic membrane and
on intracellular targets, once they have entered the cell.
For example, it is thought that the synthetic AMP
meta-phenylene ethynylene (mPE), based on magainin
and active at nanomolar concentrations against
biofilms of Streptococcus mutans, acts both as a
membrane-active molecule, inhibiting lipopolysacchar-
ides (LPSs), similar to magainin, and as an intracel-
lular antibiotic by binding to DNA at equimolar ratios
(Beckloff et al. 2007). Another example is pleurocidin,
which is thought to inhibit nucleic acid and protein
synthesis without damaging the cytoplasmic mem-
brane of Escherichia coli at low concentrations
(Patrzykat et al. 2002), but it is able to cause
membrane leakage and pore-like channels at higher
concentrations (Mason et al. 20006).

Some studies have also reported AMP activity
against biofilms at lower concentrations than those
required for killing planktonic cells. This is the case for
the synthetic AMP NA-CATH:ATRA1-ATRAI1 and
the natural AMP LL-37, both from the cathelicidin
family, that are effective against Staphylococcus aureus
and Pseudomonas aeruginosa biofilms, respectively.
These AMPs are thought to act internally on the
bacterial cells, affecting gene expression essential for
the development of biofilms (Overhage et al. 2008;
Dean et al. 2011). In P. aeruginosa, the AMP LL-37
also alters the expression of biofilm related genes, such
as Type 1V pili, rhamnolipid and Las quorum sensing
systems at sub-antimicrobial levels, and genes asso-
ciated with the assembly of flagella, involved in initial
adherence during biofilm formation, were found to be
down regulated (Overhage et al. 2008). LL-37 is also
capable of inhibiting initial biofilm attachment (by 58—
62%), suggesting that peptides of this kind may be
interacting with bacterial adhesins as part of their
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anti-biofilm mechanism (Dean et al. 2011). Another
study (de la Fuente-Nufez et al. 2012) also showed
that the AMP 1037 directly inhibits biofilms by
reducing swimming and swarming motilities, stimulat-
ing twitching motility, and suppressing the expression
of a variety of genes involved in biofilm formation in
P. aeruginosa (eg PA2204).

Anti-adhesion may be one of the major anti-biofilm
properties of AMPs, which allows them to be used as
an effective pre-treatment strategy. The AMP nisin,
which is known to interfere with cell wall synthesis and
to form membrane pores (Peschel and Sahl 20006),
retards biofilm formation without inhibiting the
growth of S. aureus when immobilized in multi-walled
carbon nanotubes (Qi et al. 2011). Another example is
the cathelicidin-2 derived peptide, F2,5,12W, which
suppresses Staphylococcus epidermidis biofilm forma-
tion at a concentration four times below the minimal
inhibitory concentration (MIC), and this is reflected in
decreased initial adhesion of the bacterial cells
(Molhoek et al. 2011).

Anti-attachment capabilities may be related to
binding of DNA also. DNA binding may facilitate
the detachment or disruption of biofilm structures,
since it has been reported that eDNA is involved in
cell—cell attachment, having an important role in cell
adhesion to surfaces and cell aggregation (Allesen-
Holm et al. 2006; Das et al. 2010). This is the case
for cationic AMPs and peptoids (Lobo et al. 2003;
Otvos 2005; Hale and Hancock 2007). For example,
the development of P. aeruginosa biofilms is dis-
rupted by the enzyme DNase I (Whitchurch et al.
2002).

AMPs may also cause matrix disruption in biofilms.
It is thought that the peptoid 1-C134mer, which has an
hydrophobic tail and is active against P. aeruginosa
biofilms, interacts strongly with and disrupt the
hydrophobic matrix due to its surfactant like nature,
facilitating deeper penetration (Kapoor et al. 2011).

Additionally, AMPs have some organism-specific
features. For example, lactoferrin inhibits biofilm
formation in P. aeruginosa due to its iron-chelating
properties, increasing surface motility and causing the
bacterial cells to wander around the surface, forming
thin, flat biofilms (Singh et al. 2002). In turn, the
inhibition of Porphyromonas gingivalis and Prevotella
intermedia biofilms by lactoferrin is independent of
the iron status of the protein. Lactoferrin may
interact with the cell surface of these bacteria and
interfere with their adherence (Wakabayashi et al.
2009), since this peptide is reported to interfere with
the binding of P. intermedia to subepithelial matrix
proteins, as well as fibroblasts and epithelial
cells (Alugupalli et al. 1994; Alugupalli and Kalfas
1995).

Biofouling 1043

Biofilm resistance to antimicrobial peptides

Although the development of resistance to AMPs is
rare, some studies have reported this phenomenon.
The general mechanisms of microbial resistance to
AMPs, which are valid both for the planktonic and
sessile states, include mutations that affect the struc-
ture and charge distribution of the cytoplasmatic
membrane, modifications to the lipopolysaccharide
structure of Gram-negative bacteria, and active pump-
ing of the AMPs out of the cell (Altman et al. 2000).
Specifically, it has been reported that Gram-negative
bacteria have evolved mechanisms to remodel the
composition of the outer membrane through modifica-
tion of the LPS molecules (Miller et al. 2005), which
impairs LPS-binding AMPs.

Biofilm structure is another factor correlated with
biofilm resistance to AMPs. For instance, the increased
survival of E. coli biofilms when treated with colistin is
not related directly with biofilm forming ability, but
rather to the organization of the biofilm (Folkesson
et al. 2008). Also, there is some evidence that biofilm
formation in E. coli induces tolerance to AMPs due to
changes in intra-biofilm physiochemical gradients
(Folkesson et al. 2008).

AMP activity over intracellular targets is countered
by genetic mutations. Interestingly, in S. aureus, the
regulatory system GraRS, which is involved in up-
regulation of biofilm production, has been reported to
mediate the resistance of the planktonic cells to AMPs
(Herbert et al. 2007). In cystic fibrosis, where P.
aeruginosa biofilms cause pneumonia, results show that
colistin kills the stalk subpopulation (a deeper layer
with low metabolic activity) preferentially, whereas the
metabolically active cap-forming subpopulation in
the upper layer becomes colistin resistant due to the
up-regulation of the pmr and mexAB-oprM genes
(Haagensen et al. 2007; Pamp et al. 2008).

Bioinformatic resources

Bioinformatic approaches are an invaluable asset to
attain a thorough understanding of the activity of
AMPs and thus exploit their potential as antimicrobial
drugs. Current approaches address the screening and
in silico modelling of novel AMPs as a means of
accelerating the process of antimicrobial drug discov-
ery and design, and the construction of information
systems in support of the deposition, curation and
comparison of AMP related data, as means of keeping
track of the continuous discovery of new AMPs with
diverse antimicrobial potential.

A schematic overview of existing tools and resour-
ces in support of AMP studies is presented in Figure 2,
and details of the different areas of development and
application are provided in the next subsections.
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Figure 2. Bioinformatics resources for AMP studies.
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MS = mass spectrometry; LC = liquid chromatography;

ANNSs = artificial neural networks; HMMs = hidden Markov models; QMs = quantitative matrices; SVMs = support vector
machines; RFs = random forests; DA = discriminant analysis; QSAR = quantitative structure—activity relationship.

Discovery and classification of AMPs

Several ‘omics’ platforms are addressing the develop-
ment of computational strategies to identify distinct
classes of AMPs (Hammami and Fliss 2010; Pestana-
Calsa et al. 2010). Among them, there are consolidated
tools for local and global alignments of DNA and
protein sequences such as FASTA (Lipman and
Pearson 1985), BLAST (Altschul et al. 1990),
HMMER (Finn et al. 2011) and the Smith-Waterman
algorithm (Smith and Waterman 1981), and data
mining tools that apply large-scale computational
analysis algorithms to the information saved in
genomic and proteomic databases, as well as in
published structure—activity data. Indeed, advanced
algorithms based in Hidden Markov Models (HMMs)
(Eddy 1998), Artificial Neural Networks (ANNs)
(Hopfield 1988), Quantitative Matrices (QMs) (Brusic
et al. 1998), Support Vector Machines (SVMs) (Zhang
2001), Random Forests (RFs) (Breiman 2001), Dis-
criminant Analysis (DA) (Lachenbruch and Goldstein

1979), Minimum Redundancy Maximum Relevance
(mRMR) (Peng et al. 2003) and Incremental Feature
Selection (IFS) (Liu and Setiono 1998) have been
successfully applied to AMP data mining.

Some authors have used predictive data mining to
assess the antimicrobial potential of new peptides. For
example the AMPer method (Fjell et al. 2007)
recognizes individual classes of AMPs (such as
defensins, cathelicidins and cecropins) and discovers
novel AMP candidates based on HMMs fed on
publicly available data; the BACTIBASE method
(Hammami et al. 2007, 2010) uses HMMs to produce
bacteriocin profiles for each known family and the
sequence analysis tool HMMER to provide statistical
descriptions of family consensus sequences in order
to support sequence-based searches on the bacterial
families producing bacteriocins; the AntiBP and
AntiBP2 methods (Lata et al. 2007, 2010) predict
antibacterial peptides applying ANN, QM and SVM
models to the analysis of the N and C terminal residues
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of proteins; the CAMP method (Thomas et al. 2010)
uses RF, DA and SVM models to predict the
antimicrobial activity of peptide sequences; the BA-
GEL2 method (de Jong et al. 2010) combines HMMs
and simple decision rules in the prediction of
bacteriocin sub-classes; the DAMPD method (Sundar-
arajan et al. 2011) predicts AMPs based on SVMs that
can classify peptides into one of 27 AMP families in
catalogue; and the tool of Wang et al. (2011b)
integrates protein BLAST (BLASTP) and a feature
selection method based on mRMR and IFS models to
select the optimal features for the prediction of AMPs
vs non-AMPs. In addition, Jureti¢ et al. (2009, 2011)
have been addressing the correlation between the
physical characteristics of natural AMPs and high
selectivity to generate potential peptide antibiotics not
homologous to any existing natural or synthetic
AMPs. This has resulted in the creation of a
structure-selectivity database (AMPad) of frog-de-
rived, helical AMPs. The AMPA web application
(http://tcoffee.crg.cat/apps/ampa) (Torrent et al. 2011)
was constructed for assessing the antimicrobial do-
mains of proteins, based on an antimicrobial propen-
sity scale for each amino acid (related to the ICs
values for all amino acid replacements in the AMP
bactenecin 2A) and identifying the regions (>12
amino acids in length) located below the threshold,
which are considered putative antimicrobial domains.
There is also a search method (Fernandes et al. 2009)
for sequence similarity and physico-chemical proper-
ties followed by a fuzzy inference system in order to
find AMPs that are more appropriate for certain target
domains. Finally, the Antibp server (http://www.
imtech.res.in/raghava/antibp/index.html) (Lata et al.
2007) predicts antibacterial peptides in protein se-
quences, with QM, ANN and SVM based methods
using the binary patterns of peptide sequences.

A detailed review on designing AMPs is available
(Fjell et al. 2012).

Genomics

In genomics, DNA sequencing and mapping constitute
a high yield and an useful step for seeking AMP-
coding genes (Pestana-Calsa et al. 2010; Pestana-Calsa
and Calsa Jr. 2011). One of the most used methods for
AMP discovery is the analysis of homologs of known
genes by comparing new sequences with sequences of
biochemically characterized AMPs (Hammami and
Fliss 2010; Pestana-Calsa and Calsa Jr. 2011), since the
sequence segments with high identity tend to share
structure and function. For example: an in silico search
based on HMMs (Silverstein et al. 2005) supported
genome assignment of 317 defensin-like sequences in
Arabidopsis thaliana; a novel cathelicidin-like AMP,
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designated cathelicidin-AM, was identified (Yan et al.
2011) by mining the genome of panda using BLAST
and the sequence of a dog cathelicidin; and the
systematic mining of the Nasonia vitripennis genome
(Tian et al. 2010), using the tools BLASTP, translated
BLAST nucleotide (TBLASTN) and ScanProsite
(http://prosite.expasy.org/scanprosite/scanprosite-doc.
html), has delivered a large and diverse peptidome
AMP repertoire of defensins, abaecins, hymenoptae-
cins and tachystatins.

Transcriptomics and proteomics

Transcriptome and proteome profiling offer powerful
approaches for studying antimicrobial inhibitory
action (Hutter et al. 2004; Freiberg et al. 2005; Overton
et al. 2011). It is possible to screen a large number of
compounds for antimicrobials, and also to predict
their mechanism of action by gene expression profiling
(Hammami and Fliss 2010). In principle, the mRNA
and protein profiles generated in response to the
imposition of antimicrobial stress reflect modulation
of particular cellular functions, and provide a signature
of the type of stress imposed (Overton et al. 2011). For
example: an integrated transcriptome and proteome
profiling of drug exposed bacteria (Overton et al. 2011)
revealed 22 novel virulence factors from methicillin-
resistant S. aureus (MRSA) and novel information on
killing mechanisms of the AMP ranalexin; a Super
SAGE transcriptional analysis (Kido et al. 2010)
investigated AMP candidates in Brazilian plants; and
a comparative proteomics study (Kim et al. 2011)
evaluated milk proteome profiles during acute and
chronic phases of S. aureus intramammary infection,
revealing unique host protein expression profiles
depending on the infecting strain and the phase of
infection, and implicating the protein CPP3 as a
potential AMP.

Peptidomics

Peptidomics addresses the study of small polypeptides,
eg by coupling bi- or multidimensional liquid chroma-
tography to mass spectrometry (Pestana-Calsa et al.
2010). Thirty-four novel AMPs from skin secretions of
Rana nigrovittata were identified by integrating geno-
mics and peptidomics analysis (Ma et al. 2010). Also, a
functional peptidomics approach (Wang et al. 2008),
integrating peptidome and transcriptome studies of the
defensive skin secretion of the frog Agalychnis calli-
dryas has led to the identification of three new AMPs:
DRP-AC4 (dermaseptin), ARP-AC1 (adenoregulin)
and CRP-ACI (caerin). More recently, a peptidomics-
based approach (Osaki et al. 2011) allowed the
identification of the AMP-IBP5, which exhibits


http://tcoffee.crg.cat/apps/ampa
http://www.imtech.res.in/raghava/antibp/index.html
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Downloaded by [217.145.38.226] at 00:39 10 October 2012

1048 P. Jorge et al.

antimicrobial activity against Gram-negative and
Gram-positive bacteria and fungi at concentrations
similar or lower than those of cathelicidin and f-
defensin-2. This was accomplished by applying tandem
mass spectrometry (MS/MS) techniques to the char-
acterization of a pool of naturally occurring peptides
released by exocytosis from cells in culture.

Additionally, peptidomic approaches tackle the
study of resistance mechanisms, in support of the
development of more sustainable antimicrobial agents
(Shen et al. 2010). For example, proteins regulating
AMP resistance in Vibrio parahaemolyticus have been
discovered using membrane subproteome analysis
(Shen et al. 2010).

Design of antimicrobial peptides

Simulations and structural bioinformatic approaches
can help to focus experimental work that, in turn, will
eventually guide and verify simulations (Matyus et al.
2007). Classical molecular dynamics simulations have
been proven useful in describing elements of the
mechanism of action of AMPs, including the binding
of peptides to the bilayer surface, the properties of
surface-bound complexes, peptide insertion, structural
modifications of lipid bilayers, and the structure of
model pores constructed from AMPs and lipids
(Matyus et al. 2007). For example, new synthetic
cationic peptides with two LPS- and lipid A (LA)-
binding sites, similar to AMPs such as protegrin 1,
thanatin, and androctonin, were synthesized de novo
based on molecular modeling simulation and quanti-
tative structure-activity relationship (QSAR) analysis
(Frecer et al. 2004).

QSAR analyses, which are used broadly in
chemoinformatics to correlate the variation in mea-
sured biological activity with the variation in mole-
cular structure, are now being used as a tool for
antimicrobial drug discovery (Hammami and Fliss
2010). QSAR analyses have been applied successfully
to the analysis of AMP data, resulting in a model that
quantifies linear sequence patterns (Hilpert et al. 2006),
contact energy between neighboring amino acids
(Jenssen et al. 2008) and amphipathicity (Frecer et al.
2004). Also, QSAR analyses have been used in the
production of lactoferricin, bactenecin, and protegrin
derivatives (Hilpert et al. 2008), and the optimization
of the activity of novispirin G10 (Taboureau et al.
2006; Blondelle and Lohner 2010). Moreover, a 3D-
QSAR analysis of a series of AMPs (Bhonsle et al.
2007; Blondelle and Lohner 2010) revealed that for any
particular AMP, cell selectivity and potency are
controlled by the chemical composition of the target
cell membrane, and a combined approach of atomic-
resolution QSARs with ANNs (Cherkasov et al. 2008;

Fjell et al. 2009; Blondelle and Lohner 2010), applied
to a large data set of peptides containing high sequence
diversity, has shown that the most potent peptides
exhibit a high frequency of the amino acids trypto-
phan, arginine, lysine, isoleucine and leucine.

Information storage and search

A comprehensive database on AMPs with information
on their activity would facilitate the study of peptide
potential, enabling and promoting sequence-specificity
and sequence-activity studies (Hammami et al. 2009;
Thomas et al. 2010). Although many AMPs are now
well characterized, much information is still missing or
scattered over scientific literature, ie its collection and
analysis is troublesome and implies time consuming
manual curation.

Available and fully operational databases on
AMPs are presented in Table 3. Most AMP databases
specialize in one type of AMP family, like BAGEL2
(bacteriocins), PhytAMP (plant AMPs), Defensins
Knowledgebase (defensins), BACTIBASE (bacterio-
cins), Peptaibol Database (peptaibols) and PenBase
(penaidins). This is due to the diversity of AMPs that
are being described and the need to accommodate the
most extensive (or application-specific) subclasses into
specialized databases. Bioinformatic tools accounting
for similarity search (FASTA, BLAST, Smith-Water-
man), sequence alignment (ClustalW, T-Coffee and
MUSCLE), AMP prediction and physico-chemical
profile analysis are present in the majority of the
databases described, allowing users easy access to
peptide/DNA sequence analysis.

Databases covering proteins and antimicrobials are
also considered useful resources for AMP related
studies. For example: UniProt (http://www.uniprot.
org/), which is a central repository of protein sequence
and function data; Protein Data Bank (http://
www.pdb.org/), which covers the processing and
distribution of 3D biological macromolecular structure
data; CyBase (http://www.cybase.org.au/), which
keeps cyclic protein sequences and structures; AMIC-
BASE (http://www.reviewscience.com/), which docu-
ments the antimicrobial properties of natural
compounds; EROP (Endogenous Regulatory Oligo-
Peptide knowledgebase)-Moscow  (http://erop.inbi.
ras.ru/index.html) (Zamyatnin 1991; Zamyatnin et al.
2006), which is a curated oligopeptide (2-50 amino acid
residues) sequence database; Norine (http://bioinfo.
lifl.fr/norine/), which is a database for nonribosomal
peptides with tools for their analysis; PepBank (http://
pepbank.mgh.harvard.edu/), which is a database on
biologically active peptides; PeptideDB database (http://
www.peptides.be/), which assembles all naturally occur-
ring signalling peptides from animal source, which are
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derived by cleavage from prepropeptide precursor
proteins; the Novel Antibiotics DataBase (http://www.
nih.go.jp/ ~jun/NADB/search.html), which contains
substances reported first in the Journal of Antibiotics;
and the Amicbase Drugs-Online 2011 report (http://
www.manetec-52.de/apps/amicbase_drugs-online/base.
nsf), which provides antibiotic inhibitory data on
licensed drugs in Europe, Japan and the USA.

Current challenges to AMP application

Despite all the aforementioned advantages, most
AMP-based strategies present some limitations that
must be overcome to achieve widespread implementa-
tion of such strategies in biotechnological and clinical
settings.

AMP production and application

AMPs are difficult and expensive to obtain in large
quantities (Beckloff et al. 2007), mainly due to the
complex processes needed for their extraction, isola-
tion and purification. While large amounts of AMPs
may be applied to a localized external site (as topical
agents), the use of AMPs for internal infections raises
some problems: (1) their antimicrobial power is
reduced in the presence of biological fluids, (2)
inadequate safety margins and rapid renal clearance,
(3) the non-specific effect of AMPs may compromise
the eradication of a specific infectious agent, and (4)
some AMPs display toxicity to the host cells and may
induce unwanted pro-inflammatory responses (Baltzer
and Brown 2011; Batoni et al. 2011). Thus, efforts are
being focused on modifying or synthesizing de novo
AMPs that are easier to produce and may overcome
some of the limitations referred to above.

Prophylactic strategies

Although most anti-biofilm AMP studies have focused
on the prevention of biofilm formation, little is known
about some prophylaxis-oriented evaluations. For
example, the immobilization or ‘grafting’ of AMPs
into surfaces. This immobilization of AMPs, alone or
combined, onto a biomaterial surface may circumvent
some of the limitations of the peptides, such as a short
half-life and cytotoxicity associated with higher con-
centrations of soluble peptides (Costa et al. 2011). The
rationale, at this point, is to obtain functionalized
surfaces with proven anti-adhesive and anti-biofilm
traits to later be tested as potential harmless biomater-
ials. Several promising studies have already been made,
namely with polymer brushes, which have the advan-
tage of being robust and can be generated in most
biomedical materials (Gao et al. 2011a, 2011b). Glinel

et al. (2012) report on the existing findings in this field,
but further studies are required in order to escalate
findings onto a broader range of biomedical surfaces
and devices.

Therapeutic strategies

Therapeutic studies are a pressing need as means of
assessing the ability of AMPs to kill already existing
biofilms. Indeed, it is common knowledge that mature
biofilms are more difficult to eradicate, mainly due to
the exopolymeric matrix surrounding the cells. More-
over, that mature biofilms are resistant to treatment
may be due to their slow growth rate and low
metabolic activity and thus, most antibiotics will not
be useful because their primary target is metabolically
active cells (Lewis 2001; Walters et al. 2003). AMPs
have the ability to act on slow-growing or even
non-growing bacteria because they act mainly by
permeabilizing and/or forming pores within the cyto-
plasmic membrane. However, there is still little
understanding about mechanisms of action of anti-
biofilm AMPs.

Naturally, studies on the toxicity and the post-
AMP effect (PAE) are the next steps. Toxicity studies
on animal cell lines are fundamental for evaluating
AMPs as possible therapeutic drugs to be administered
to human patients. Likewise, the analysis of biofilm
behavior in response to AMP administration cycles
and the post-treatment existence of persister cells are
very important to ensure the effectiveness and im-
provement of AMP strategies.

Synergism studies

Synergistic compounds are a relatively unexplored
source of new pharmaceutical products. The combina-
tion of innovative and conventional antimicrobial
compounds is being put into practice to improve
both the prophylactic and therapeutic efficacy of some
drugs and lower drug dosage, thus reducing toxic side
effects (Ncube et al. 2008; Wei et al. 2011).

Natural synergic mechanisms are known in Nature,
namely those involved in AMP action. This explains
why AMPs require much lower physiological concen-
trations than those in vitro to be effective (Lai and
Gallo 2009). There are already some examples of the
positive outcomes of this type of approach in biofilms,
although the number of studies is still far from what
would be expected given the prospects of this line of
research (Table 4).

Most synergism studies involving AMPs are
centered on the planktonic state. Also, AMPs are
tested in combination with other chemicals but rarely
with other AMPs. Studies focus either on Gram-
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positive and Gram-negative bacteria, more precisely
into the biofilm-forming strains of P. aeruginosa, S.
aureus and S. mutans. Due to their clinical profile,
these strains are of obvious interest but studies should
be extended to other biofilm-forming species to
evaluate and take full advantage of the potential of
AMPs.

Standardization of laboratory procedures

Current protocols for laboratory research lack stan-
dardization, and therefore validity, in some ways.
Specifically, the lack of standard protocols hampers
the quality of the information generated by researchers
and makes the reproduction of results in different
laboratories difficult. Studies often target the same
scenario but the results are not comparable because
they are performed using different methods of analysis,
which result in diverse biological data and lead to
varying conclusions (Jackson et al. 2001).

There are three basic statistical requirements which
should be attained in order to establish a standard
operating procedure (SOP): ruggedness, repeatability
and reproducibility. Ruggedness is the resistance to
change in the results produced by an analytical
method when minor deviations are made from the
experimental conditions described in the procedure.
Repeatability accounts for random errors in the mea-
surements and includes the contributions from any
part of the procedure that varies within a run,
including gravimetric and volumetric errors, hetero-
geneity of the materials being tested, and variation in
the chemical treatment stages. Reproducibility relates
to the ability of the procedure to be reproduced by
others, namely in different laboratories. Between-
laboratory variation arises from factors such as
variations in calibration standards, differences between
local interpretations of the protocol, changes in
equipment or reagent source, and environmental
factors, such as differences in the average climatic
conditions (Thompson et al. 2002).

Currently, no SOP is available for AMP studies,
but there are some biofilm and antibiotic SOPs. The
SOPs proposed for biofilm studies are specific for: the
growth of reproducible mixed biofilms of P. aeruginosa
(ATCC#700829), Pseudomonas fluorescens (ATCC#
700830) and Klebsiella pneumoniae (ATCC#700831),
analyzed in terms of structure and viable cell counts
using a flat-plate, open channel reactor (Jackson et al.
2001); the growth of P. aeruginosa biofilm using the
CDC biofilm reactor (CBR) system (Goeres et al.
2005); the assessment of resistance of Staphylococcus
aureus biofilm cells to disinfectants (Luppens et al.
2002); and the optimized quantification of enterococci
biofilms using microtitre-plates (Extremina et al. 2011).
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Also, as a first step towards the establishment of a SOP
for methods of analysis, several authors have studied
and compared methods in use on biofilm related
research for evaluating biofilm disinfectant efficacy
with different fluid dynamics (CDC, drip flow and
static biofilm reactor systems) (Buckingham-Meyer
et al. 2007), comparing methods for quantification of
microbial biofilms grown in microtiter plates (crystal
violet (CV), Syto9, fluorescein diacetate (FDA),
resazurin, XTT and dimethyl methylene blue
(DMMB) assays) (Peeters et al. 2008), and checking
the validity of the harvesting and disaggregating steps
(Hamilton et al. 2009).

The SOPs proposed for antibiotic studies address,
among other things: the assessment of antibiotic
resistance using a disc susceptibility test for various
genera of microorganisms (Andrews 2001; Kronvall
et al. 2003; Wikler et al. 2009a) and specifically, for
aquaculture-organisms at international level (Huys
et al. 2005) and infrequently isolated or fastidious
bacteria (Jorgensen et al. 2005); broth dilution and disk
diffusion antifungal susceptibility testing of yeasts
(Rex et al. 2008, 2009); and dilution antimicrobial
susceptibility tests for aerobic bacteria (Wikler et al.
2009b).

Data standardization and interchange

Understanding AMP related phenomena requires the
integration of heterogeneous data sources. This implies
the development and use of annotation standards such
as controlled vocabularies and ontologies, ie a formal
description of the concepts and relationships involved
in AMP studies that facilitate both communication
between researchers and the computational use of
domain knowledge for multiple purposes (Consortium
2004).

These integration efforts have already succeeded in
some research areas and various ontologies are being
developed and available for use. One major example is
the Gene Ontology (GO) project, which provides
consistent descriptors for gene products, in different
databases, and standardizes classifications for se-
quences and sequence features (Consortium 2004).
Other examples follow, such as the Chemical Entities
of Biological Interest (ChEBI), which is a freely
available dictionary of molecular entities focused on
‘small’ chemical compounds (Degtyarenko et al. 2008),
or the Plant Ontology Database, which aims to create,
maintain and facilitate the use of a controlled
vocabulary for plants, providing a semantic framework
to make meaningful cross-species and database com-
parisons (Avraham et al. 2008). Some work has also
been focused on antibiotics, namely the DebugIT Core
Ontology, which focuses on patients, diseases,
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pathogens, their analyses and medications, allowing a
semantic integration of antibiotics resistance patterns
(Schober et al. 2010). As for AMPs, no nomenclature
is yet available, apart from generic protein ontology,
such as the Protein Ontology (PRO) that provides a
formal, logically-based classification of specific protein
classes (Natale et al. 2011).

On a need basis, the curation teams of AMP
databases are taking the lead in this subject: PenBase
suggests a nomenclature for penaeidins, based on the
genus and species of the source, its subgroup and an
identification number (http://www.penbase.immun
aqua.com/); APD2 proposes a nomenclature for
AMPs based on properties, source and a combination
of property and source data, and provides a glossary
for terms and abbreviations for the entire database
(http://aps.unmc.edu/AP/main.php).

Data screening and processing

As the volume of related literature increases, it
becomes urgent to help researchers and database
curators to keep up with new literature, especially to
provide the means for the systematic screening and
prioritization of literature of interest. Bioinformati-
cians/chemoinformaticians can benefit from this sup-
port as well, in particular to delineate new hypotheses
to be modeled and mined.

Given the success reported in other biomedical
domains, the integration of semi-automated mechan-
isms into AMP curation workflows would seem to be
an ideal application for text mining. State-of-the-art
recognizers can be used to tag organisms (Gerner et al.
2010), chemical entities (Jessop et al. 2011) and genes,
proteins and other biological entities (Settles 2005). The
vocabulary on AMPs, eg derived from the UniProt
knowledge base (Magrane and Consortium 2011) and
antibiotics lexicon derived from the ARDB database
(Liu and Pop 2009) and the antibiotics list in Wikipedia
(Wikipedia 2012), can support the pattern matching of
AMP mentions and further development of suitable
recognizers. Also, to start with, article screening and
ranking could be based on statistical considerations,
such as the number and diversity of unique concepts
detected in the texts, weighted by the relevance
associated with the different biological categories, and
the degree of certainty associated with detection.

To date, the curation of AMP databases is
exclusively manual and little has been reported on
text mining developments (Jorge et al. 2012).

Conclusions

In the nosocomial scenario, infections are often caused
by or associated with microbial adhesion and biofilm

development. Compared to planktonic (non-attached)
cells, bacteria growing in biofilms have a specific
phenotype and demonstrate higher resistance to
antimicrobial agents. Therefore, biofilms are difficult
to kill and eradicate, contributing to surface persistent
contamination and the prevelance of nosocomial
pathogens.

The challenges posed to conventional strategies
have led to the investigation of alternative prophylaxis
and therapeutics, namely AMP-based strategies. These
strategies take advantage of the non-specific mechan-
isms of action of AMPs and the wide availability of
AMP-deriving sources. AMPs act mainly by destabi-
lizing cellular membranes, which is a mechanism low in
specificity and therefore impairs the development of
resistance. Also, AMPs are spread throughout Nature,
and can be synthesized or modified to improve their
action and reduce production costs.

To date, most AMP studies have focused on
planktonic cells. Nevertheless, since biofilms are
involved in 80% of human bacterial infections (Harro
et al. 2010), it is crucial to extend the studies on biofilm
inhibition and AMP dispersion effects to already pre-
formed biofilms and to developing biofilms. Also,
synergism studies involving AMPs are needed to
discover successful AMP-AMP or AMP-drug combi-
nations for lowering the dosage and minimizing the
side effects of antimicrobials.

Finally, it is noteworthy that the discovery and
design of AMPs is being revolutionized by the
emergence of novel bioinformatic tools and resources,
mainly ‘omics’ experiments and predictive applications.
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