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Abstract: In terms of isotopic technologies, it is essential to be able to produce materials with an
enriched isotopic abundance (i.e., a compound isotopic labelled with 2H, 13C, 6Li, 18O or 37Cl), which
is one that differs from natural abundance. The isotopic-labelled compounds can be used to study
different natural processes (like compounds labelled with 2H, 13C, or 18O), or they can be used to
produce other isotopes as in the case of 6Li, which can be used to produce 3H, or to produce LiH
that acts like a protection shield against fast neutrons. At the same time, 7Li isotope can be used
as a pH controller in nuclear reactors. The COLEX process, which is currently the only technology
available to produce 6Li at industrial scale, has environmental drawbacks due to generation of Hg
waste and vapours. Therefore, there is a need for new eco-friendly technologies for separation of
6Li. The separation factor of 6Li/7Li with chemical extraction methods in two liquid phases using
crown ethers is comparable to that of COLEX method, but has the disadvantages of low distribution
coefficient of Li and the loss of crown ethers during the extraction. Electrochemical separation of
lithium isotopes through the difference in migration rates between 6Li and 7Li is one of the green
and promising alternatives for the separation of lithium isotopes, but this methodology requires
complicated experimental setup and optimisation. Displacement chromatography methods like
ion exchange in different experimental configurations have been also applied to enrich 6Li with
promising results. Besides separation methods, there is also a need for development of new analysis
methods (ICP-MS, MC-ICP-MS, TIMS) for reliable determination of Li isotope ratios upon enrichment.
Considering all the above-mentioned facts, this paper will try to emphasize the current trends in
separation techniques of lithium isotopes by exposing all the chemical separation and spectrometric
analysis methods, and highlighting their advantages and disadvantages.

Keywords: lithium isotopes; crown ethers; electromigration; ion exchange; MC-ICP-MS

1. Introduction

Lithium-6 (6Li) and lithium-7 (7Li), with the latter being far more abundant (95.15%),
are the two stable isotopes of lithium occurring in Earth’s lithosphere. A fractionation of
lithium isotopes appears during a variety of geological processes [1,2]. Such processes
include mineral formation (by chemical processes like precipitation and ion exchange).
Lithium 6 isotope (6Li) is sometimes preferred over 7Li, as the Li+ ions exchange magnesium
or iron in octahedral locations of the clays, which leads to an enrichment of 6Li in geological
processes [3,4].

In laboratory and technological processes, 6Li is an important isotope for tritium
production via bombardment with neutrons, therefore several techniques for its separation
have been developed in the past. Historically, COLEX processes have been used in the past
(in the 1950s and 1960s) for lithium isotope separations based on greater affinity of 6Li over
7Li for the element mercury. The working principle of the COLEX technology is based on
the fractionation of 6Li between a lithium amalgam and a lithium hydroxide solution, as
the amalgam and lithium hydroxide solution come into contact. At industrial scale, the
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COLEX technology uses this principle in sequential stages, by passing an aqueous lithium
hydroxide flowing up and a counter-flow of lithium-mercury amalgam flowing down. At
the top of the column, the lithium hydroxide solution is electrolyzed to liberate the depleted
7Li fraction, while at bottom of the column, the 6Li-enriched fraction is separated from the
amalgam, and the metallic Hg is recovered and reused in the process. The main advantage
of COLEX technology is its minimal production costs, which favours the industrial scale
production of enriched lithium. Nevertheless, nowadays its technical (decomposition of the
amalgam, high energy consumption) and environmental (generation of toxic Hg vapours,
large quantities of Hg-containing waste) drawbacks make this technology obsolete [5].
Additionally, other methods like vacuum distillation were tested in the 1950s [6], but this
technology was not applied extensively, possibly due to high energy consumption. More
recently, a variety of methods have been developed for lithium isotope separations [7–10].
Based on their working principles, these methods can be classified into three main groups:
(1) chemical exchange methods in two liquid phases, (2) electrochemical exchange methods,
and (3) displacement chromatography methods (see Table 1). Chemical exchange methods
in two liquid phases employ crown ethers as extractants that can be also used in combina-
tion with ion liquids as extraction solvents [11,12]. The crown ethers have the capacity to
separate lithium from other alkaline ions [13] as well to differentiate between 6Li and 7Li
isotopes. The ion liquids can separate lithium from other alkaline ions and complex metal
matrices like lithium battery waste [14], but they cannot solely differentiate between 6Li
and 7Li, and they must be used in combination with crown ethers [11]. The main advantage
of chemical exchange methods in two liquid phases is the separation factor of lithium
isotopes (comparable with COLEX technology), but this comes with the drawbacks of very
high costs for these reagents, as well their relative toxicity. Electrochemical exchange meth-
ods like electromigration and electrodialysis are more eco-friendly [15], but they result in
relatively low separation factors of lithium isotope and they require complex experimental
methodologies. Displacement chromatography methods have the advantages of involving
reusable ion exchange columns (and thus are eco-friendly), but the obtained separation
factors are relatively low.

Table 1. The main advantages/disadvantages of the main groups of extraction methods.

Method Type
Main Advantages/Disadvantages

Separation Factor Eco Friendly Complexity of Methodology Costs

Chemical exchange methods in two liquid phases High Very little Low Very high
Electrochemical exchange methods Low Moderate High Moderate

Displacement chromatography methods Low Moderate Relatively low Moderate

The objective of this paper is to highlight the current trends in separation techniques
for lithium isotopes, emphasizing the chemical separation methods and spectrometric
analysis methods.

2. Challenges in Development of Separation Methods for Lithium Isotopes Using
Chemical Exchange Methods in Two Liquid Phases

The paradigm of this type of separation method is that the lithium compounds will
move between the two immiscible stages if the solvation changes slightly. Research indi-
cates that there are not many chemical exchange methods for isotope separation. Gas-liquid
systems make up most of the systems that have been reported so far. Because there are
no suitable gaseous lithium compounds for such isotope exchange [16], the liquid–liquid
partition must be used for lithium isotope separation. In the single-stage liquid–liquid
partition of Li isotopes, the separation coefficient is defined according to the Equation (1).

∝=

( 6Li
7Li

)
1(

6Li
7Li

)
2

(1)
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where (6Li/7Li) represents the isotope ratio, and the subscripts 1 and 2 denote the two
phases or two compartments used in the separation tests. An alternative form of separa-
tion coefficient was used in the Li isotope fractionation tests, which is usually called 7Li
fractionation (expressed as δ 7Li. The commonly expressed stable isotope ratio of a given
compound is the deviation δ [‰] from an international standard [17], similar to carbon
and other isotopes according to the Equation (2).

δ7Li =


( 7Li

6Li

)
sample(

7Li
6Li

)
L−SVEC

− 1

1000 (2)

where L-SVEC represents an international standard with a well-defined isotopic composi-
tion (7Li/6Li ratio = 12.33 ± 0.03).

2.1. Separation Using Crown Ethers

Several studies have confirmed the good separation effect of macrocyclic compounds
like crown ether (CE) and its derivatives on Li isotopes. The principle of this separation
is that the solvation environments of the cations are quite different when a metal salt is
distributed between an immiscible solvent containing a macrocyclic compound and an
aqueous solution.

Due to their unique cavity structures and size effect, the separation factor of 6Li/7Li
(the α value) by crown ethers is comparable to that of the Li amalgam method. However, the
relatively weak interaction of crown ethers with Li+ leads to a low distribution coefficient
of Li (DLi, 10−2–10−5), especially for crown ethers with small cavities such as 12-crown-
4 (12C4), B12C4, whereas these crown ethers generally demonstrate much higher α values.
Another challenge is the loss of CE molecules during the extraction procedure. Several
studies have reported the separation of 6Li/7Li isotopes using solvent extraction with
crown ethers [18,19]. The selection of crown ethers must consider their cavity sizes that
must closely match that Li+ ionic diameter [20,21]. Furthermore, it was shown that due
to the dipole–ion interactions between the donor O atoms and Li+, the cavity sizes of free
12C4, 15C5, and 18-Crown-6 (18C6) crown ethers decrease upon their coordination with Li+

ion [22]. Therefore, crown ethers with large cavities such 15C5, 18C6, and DC18C6 could
be chosen for their higher distribution coefficient.

For example, Nishizawa et al. investigated the Li isotopic effects of 12C4, B15C5, and
dicyclohexano-18-crown-6 (DC18C6) with solvent extraction and found that the smaller-
cavity-sized crown ethers have a greater separation factor [19]. The separation factor
for 12C4-CHCl3/LiI-H2O system was reported to be 1.057 at 0 ◦C, while DLi was only
2.0 × 10−5, lower than that of B15C5 and DC18C6 (10−2–10−3). Due to the low distribution
of Li for 12C4 crown ether, the 15C5 crown ether and its derivates have been used in recent
studies. Some studies tried the development of covalently grafted functional materials,
which can significantly reduce the loss of CE molecules. For example, Liu et al. (2016)
used grafted NH2-B15C5 on mesoporous silica SBA-15 and investigated the adsorptive
separation behaviour of 6Li/7Li [23].

A more recent strategy (called ion–pair strategy) was developed by Cui et al. to create
an efficient phase transfer of Li+ by crown ethers. In this system, FeCl3 salt, known as a
strong Lewis acid, was introduced for Cl− binding to form [FeCl4]− anion, and B12C4
or B15C5 acted as Li+ receptor [24]. The presence of tetrachloridoferrate ([FeCl4]−) as
counter anion was presented, which helps to overcome the Hofmeister bias and facilitates
the efficient transfer of Li+ from extremely hydrophilic chlorides (see Figure 1).

Upon the coupling effects of electrostatic and ion–dipole interactions, this new strat-
egy showed an unprecedented distribution of Li+ in the solvent extraction process. An
exceptionally high DLi of 54 was achieved by Cui et al., 2021 for benzo-15-crown-5 (B15C5),
surpassing those of solvent extraction from solely Li salt aqueous solution. In this study,



Materials 2023, 16, 3817 4 of 15

the maximum 6Li/7Li separation factors (α) of 1.038 and 1.049 were obtained for B15C5
and benzo-12-crown-4 (B12C4) in dichloroethane at 273 K [24].
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2.2. Challenges in Development of Separation Methods for Lithium Isotopes Using Electrochemical
Exchange Methods
2.2.1. Challenges in Development of Separation Methods for Lithium Isotopes with
Electromigration

Electrochemical separation of lithium isotopes through the difference in migration
rates between 6Li and 7Li is one of the green and promising alternatives for the separation
of lithium isotopes [15]. According to media of lithium transferring, it can be divided into
molten salt methods, aqueous solution methods, and organic solvent methods. However,
due to the problems of corrosion resulting from high-temperature molten salt, the last
two above-mentioned methods are preferred. Electromigration in aqueous solution system
has good reproducibility; the electrode reactions take place in aqueous solution, so it is
easy to realize multistage separation. However, due to the strong hydration of lithium
ions which affects their migration, it is difficult to achieve a high separation effect. There-
fore, the organic solvent method using ionic liquid, diethyl carbonate, and crown ethers
was employed in recent studies. Wang et al. employed electromigration from lithium-
loaded organic phase aqueous solution using ionic liquids (1-octyl-3-methylimidazolium
bis(trifluoromethanesulfonyl)imide ([C8MIm][NTf2]), crown ethers (benzo 15-crown-5) and
the organic sulfonimide lithium salt (Li[NTf2]) [25]. The maximum isotope fractionation
of 7Li upon electromigration was found to be −21.5‰ vs. L-SVEC, fractionation that is
attributable to the differences in the dissociation process of 6Li vs. 7Li ions-crown ethers
complex [25]. In their next study, by also employing a new crown ether (4-nitrobenzo-
15-crown-5) and a new ionic liquid (1-butyl-3-methylimidazolium bis[(trifluromethyl)
sulfonyl]imide ([BMIm][NTf2]), Wang et al. compared two experimental approaches: I.
system lithium ions–ionic liquid–crown ether organic solution–aqueous solution, and II.
aqueous solution–organic solution–aqueous solution system, for the separation of lithium
isotopes using electromigration [15]. It was found that there are multiple roles for crown
ether: phase transfer, selective chelation, dehydration, and retention during electromigra-
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tion. Wang et al. found a fractionation of Li isotopes, as the δ7Li values increase from 15‰
to 16.1, as the concentrations of crown ether increase from 0 to 0.2 mol/L [15].

Very recently, in their last electromigration study, Wang et al. tested different catholytes
(HCl, NH3·H2O, NH4Cl and NH4HCO3) during separation of lithium isotopes with elec-
tromigration by using a lithium salt aqueous solution–organic solution–aqueous solution
system [26]. In this study, the highest separation coefficient of 1.674 was obtained using
a solution of 0.1 mol/L NH4Cl as catholyte [26]. Overall, the above-mentioned studies
shown the potential of electromigration methodologies in eco-friendly separation of lithium
isotopes.

2.2.2. Challenges in Development of Separation Methods for Lithium Isotopes Using
Electrodialysis Methods

Lithium ions can move by electrodialysis through certain Ionic-Liquid-i-OMs between
the cathode and the anode in lithium solutions. The principle is that since the ionic mobility
of 6Li ions is greater than that of 7Li ions, 6Li can be enriched on the cathode side of a cell
(see Figure 2).
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Figure 2. Separation of lithium isotopes with electrodialysis using an impregnated organic membrane
with PP13-TFSI ionic liquid. The formula of ionic liquid was generated using InChI (Computed by
InChI 1.0.6-PubChem release 7 May 2021) within the software Freeware ACD/ChemSketch 2021
2.0 version (Advanced Chemistry Development, Inc., Toronto, ON, Canada). Adapted from [27].

Hoshino and Terai used PP13-TFSI (N-methyl-N-propylpiperidium bis(trifluorometha-
nesulfonyl)imido) ionic liquid to impregnate a highly porous Teflon film, while both
surfaces of the Ionic-Liquid-i-Organic Membrane were covered by a nafion 324 overcoat
or a cation exchange membrane [27]. Hoshino and Terai applied this membrane in an
electrodialysis experiment [27]. It was found that the 6Li isotope separation factor with
electrodialysis using highly porous Teflon film of 3 mm thickness was larger than that using
highly porous Teflon film of 1–2 mm thickness [27]. In particular, 6Li isotope separation
factor using the Teflon of 3 mm thickness was about 1.15 at 0.01% of Li movement rat; on
the other hand, using the Teflon of 1–2 mm thickness it was about 1.05 [27].

Besides the use of ionic liquids, the separation of Li isotopes with electrodialysis also
can be achieved using lithium solid ceramics. Shin-mura et al. developed a method for
separation of lithium isotopes using La0.57Li0.29TiO3 as a solid ceramic electrolyte in the
temperature range 298.15–323.15 K [28]. With the respect to the rate of transfer of 6Li and
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7Li into water with electrodialysis, an Arrhenius-type dependence of temperature was
concluded [28]. Overall, this study showed that the apparent activation energy of 7Li is
approximately 5% higher than that of 6Li, and this is attributable to the quantum effect [28].
Nevertheless, 6Li isotope separation factor was not calculated in the above-mentioned
paper and further studies are needed. Furthermore, the lithium solid ceramics can be
used to separate lithium ions from sodium and potassium, and Ounissi et al. used lithium
composite membrane to separate lithium from sodium ions [29] with electrodialysis, but the
selectivity coefficient of Li+ over Na+ was recorded to 112.3, a value which is higher than
the selectivity coefficients previously reported in other electrodialysis methodologies [30].
Nevertheless, cation-exchange resins methods are usually preferred as preconcentration
steps employed for the separation of lithium from other alkaline ions.

2.3. Challenges in Development of Separation Methods for Lithium Isotopes Using Displacement
Chromatography Methods
2.3.1. Inorganic Microstructure Methods

There are just a few studies involving separation of lithium isotopes using displace-
ment chromatography based on inorganic microstructures. Separation of lithium was
investigated using an ion exchange column filled with MnO2 and the exchange capacity of
MnO2 oxide was calculated to 0.5 meq/g [7]. In this study, the MnO2 phase was enriched in
6Li and the enriched fraction was eluted using CH3COONa with concentration of 2 M. The
separation factor (α) of 6Li was 1.026 [7], a value which is lower compared with the values
obtained using equilibrium phase exchange with crown ethers. More recently, Ishikawa
et al., 2017 [31] measured isotopic ratios 7Li/6Li for effluent fractions from a biphasic
zeolite column ([Li0.08(NH4)0.92]A and [Li0.33(NH4)0.67]A hydrates). The study shown the
accumulation of 6Li in the zeolite proceeded by a mechanism of differential elution of 7Li
from the biphasic zeolite.

2.3.2. Ion-Exchange Methods Using Resin

Another type of displacement chromatography method is the separation of lithium
isotopes using ion-exchange resin. Many studies on lithium isotope separation have been
conducted using different types of cation-exchange resins. Nevertheless, due to natural
abundance of sodium ions, a preconcentration step is needed to separate lithium from
others alkaline ions prior to separation of lithium isotopes [32]. For example, Karami et al.
used an AG 50W-X8 cation-exchange resin (200–400 mesh, protonated form) packed in a
20 cm × 2 cm I.D. glass column to separate lithium from sodium and potassium ions [33].
Using 0.1 M HCl solution as eluent, the separation and recovery efficiency for lithium ions
was recorded to 99.24%, which indicates a very good separation [33].

Taylor and Urey were the first to use and report on the cation-exchange method
for Li isotope separation in 1937 and since then several other studies were performed
using cation-exchange methods for lithium isotope separation [34]. For example, lithium
isotope isolation of lithium lactate in dimethyl sulfoxide (DMSO) and water–acetone mixed-
solvent media with ion-exchange displacement chromatography was also investigated
by Oi et al. [35] and a convex function of the solvent mixing ratio was observed in the
single-stage separation factor. The single-stage separation factor had its highest value
of 1.00254 at water:DMSO = 25:75 v/v and 1.00182 at water:acetone = 75:25 v/v [35]. In
order to improve the separation of lithium isotopes, a sulfonated-type cationic exchange
resin with higher cross-linkage of 50% (obtained by adding styrene and divinylbenzene
in a proportion 1:1) higher than those commercially available was synthesised by Suzuki
et al. [36]. The fractionation experiment was performed in a 1 m length and 8 mm inner
diameter and 23.8 g dry high cross-linkage resin using lithium acetate and latter potassium
acetate as eluent, while the isotope ratio of lithium in the eluted samples was analysed by
Suzuki et al. [36]. Upon the experiment, a maximum value of isotope separation factor of
1.0066 was found, while the separation coefficient (ε = α − 1) was 0.0066 [36], values which
show the potential of high cross-linkage resins in lithium isotope separation.
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In another study, Putra et al. [37] investigated the lithium isotope separation in cation
exchange resins characterized by 90% high cross-linkage degree obtained by adjusting
the ratio between divinylbenzene and styrene to 9:1 during synthesis with suspension
polymerization. The separation coefficient (ε) obtained in this study [37] was just 0.0069,
slightly higher than the separation coefficient previously reported by Suzuki et al. [36] for
a cross-linkage degree of 50%. Therefore, a correlation between the separation of lithium
isotopes and cross-linkage degree was also investigated by Putra et al. [37] and the study
concluded that saturation of the separation coefficient is attributable to the increase in
hydrophobicity of the resin with increasing cross-linkage degree which may induce the
so-called “dehydration effect”, the removal of lithium ions and hydration water molecules
from the resin structure. More recently sulfonated pyridine-styrene-divinyl-benzene resin
with a cross-linkage degree of 50% was first synthesized by Tachibana et al. by embedding
the polymer into porous silica beads (thus abbreviated as sulfonated Pyr-Styr-DVB/SiO2),
since the embedding can improve the stability (reduce the shrinking, as well the swelling,
of the resin) and mechanical properties of the resin (see Figure 3) [38].

Materials 2023, 16, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 3. Synthesis of sulfonated pyridine-styrene-divinyl-benzene resin embedded into silica (Pyr-
Styr-DVB/SiO2) for lithium isotope separation. Adapted from [38]. 

The values separation coefficient during lithium isotope fractionation of the above-
mentioned resin compared with sulfonated styrene-divinyl-benzene (sulfonated Styr-
DVB resin) had the same cross-linkage degree of 50% in batch experiments spanning a 
wide temperature range (278 to 333 K). The distribution coefficient values (Kd) of Li ion in 
an aqueous solution were assessed and it was found that the Kd values of sulfonated Pyr-
Styr-DVB/SiO2 resin were lower than those recorded for sulfonated Styr-DVB resin, and 
from this it can be concluded that pyridine moieties from the sulfonated Pyr-Styr-
DVB/SiO2 have a small adsorption capacity for Li ions [38], possibly due to the lower aro-
matic character of pyridine which may decrease the π−π interactions/stackings [39,40]. 
The isotope separation coefficients (ε) per unit mass (ε/ΔMass) value of the sulfonated 
Pyr-Styr-DVB/SiO2 resin was calculated to 8.1 × 10–4 values, which is smaller than the 
ε/ΔMass values of many Styr-DVB resins (with cross-linkage degree of 50%) reported in 
the literature for lithium isotope separation studies [41]. Tachibana et al. conclude that the 
hydrophobicity of resins can improve the ε/ΔMass values, while those values are not pro-
portional to the crosslinkage degree of the resins [38]. 

2.3.3. Methods Involving Resin-Supported Complexing Agents 
The ion-exchange chromatography can also be performed with resin-supported com-

plexing agents. In the past, [2B,1,1] cryptand resins have been packed in a column (9 mm 
ID and 220 mm long) to separate the Li isotopes. Separation factors α have been deter-
mined by Nishizawa et al. [42] for the partition of 6Li and 7Li between complexed ions 
with a cryptand [2B,2,1] resin, and lithium salts in methanol in a single-stage process. The 
study was conducted at different temperatures (0, 20 and 40 °C) and three Li halides (LiCl, 
LiBr, and LiI) were tested [42]. The separation factors α were calculated as the isotope 
ratio 6Li/7Li between the [2B,1,1] cryptand polymer and halides phase and decreased with 
temperature for all three Li halides, while the highest values were recorded at 0 °C: 1.045 
± 0.002 (LiI), 1.045 ± 0.003 (LiBr), and the highest, 1.047 ± 0.004 (LiCl) [42]. More recently, 
as an innovative method, a novel lithium isotope separation polymer polysulfone (PSF)-
graft-4′-aminobenzo-15-crown-5-ether (PSF-g-AB15C5) was synthesised through a nucle-
ophilic substitution mechanism by Yan et al. [43] from polysulfone (PSF) and 4′-amino-
benzo-15-crown-5-ether (AB15C5) as starting materials for the synthesis (see Figure 4). 

Figure 3. Synthesis of sulfonated pyridine-styrene-divinyl-benzene resin embedded into silica (Pyr-
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The values separation coefficient during lithium isotope fractionation of the above-
mentioned resin compared with sulfonated styrene-divinyl-benzene (sulfonated Styr-DVB
resin) had the same cross-linkage degree of 50% in batch experiments spanning a wide
temperature range (278 to 333 K). The distribution coefficient values (Kd) of Li ion in
an aqueous solution were assessed and it was found that the Kd values of sulfonated
Pyr-Styr-DVB/SiO2 resin were lower than those recorded for sulfonated Styr-DVB resin,
and from this it can be concluded that pyridine moieties from the sulfonated Pyr-Styr-
DVB/SiO2 have a small adsorption capacity for Li ions [38], possibly due to the lower
aromatic character of pyridine which may decrease the π−π interactions/stackings [39,40].
The isotope separation coefficients (ε) per unit mass (ε/∆Mass) value of the sulfonated
Pyr-Styr-DVB/SiO2 resin was calculated to 8.1 × 10–4 values, which is smaller than the
ε/∆Mass values of many Styr-DVB resins (with cross-linkage degree of 50%) reported in
the literature for lithium isotope separation studies [41]. Tachibana et al. conclude that
the hydrophobicity of resins can improve the ε/∆Mass values, while those values are not
proportional to the crosslinkage degree of the resins [38].
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2.3.3. Methods Involving Resin-Supported Complexing Agents

The ion-exchange chromatography can also be performed with resin-supported com-
plexing agents. In the past, [2B,1,1] cryptand resins have been packed in a column (9 mm
ID and 220 mm long) to separate the Li isotopes. Separation factors α have been de-
termined by Nishizawa et al. [42] for the partition of 6Li and 7Li between complexed
ions with a cryptand [2B,2,1] resin, and lithium salts in methanol in a single-stage pro-
cess. The study was conducted at different temperatures (0, 20 and 40 ◦C) and three Li
halides (LiCl, LiBr, and LiI) were tested [42]. The separation factors α were calculated
as the isotope ratio 6Li/7Li between the [2B,1,1] cryptand polymer and halides phase
and decreased with temperature for all three Li halides, while the highest values were
recorded at 0 ◦C: 1.045 ± 0.002 (LiI), 1.045 ± 0.003 (LiBr), and the highest, 1.047 ± 0.004
(LiCl) [42]. More recently, as an innovative method, a novel lithium isotope separation
polymer polysulfone (PSF)-graft-4′-aminobenzo-15-crown-5-ether (PSF-g-AB15C5) was
synthesised through a nucleophilic substitution mechanism by Yan et al. [43] from poly-
sulfone (PSF) and 4′-aminobenzo-15-crown-5-ether (AB15C5) as starting materials for the
synthesis (see Figure 4).
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Then the partition of lithium isotope was investigated during batch experiments of
solid–liquid extraction using the above-mentioned polymer [43] and it was found that 6Li,
was enriched in the PSF-g-AB15C5 polymer. The effect of halide salts was also investigated,
and in contrast with the findings of Nishizawa et al. [42], the order of the single stage
separation factor obtained using different lithium salts in methanol decreased in the order
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LiCl < LiClO4 < LiBr < LiCI. Additionally, different solvents were tested and at the same
concentration of crown ether AB15C5 of 0.51 mmol/g PSF-g-AB15C5 immobilized on poly-
mers, the separation factors increased as 1.010 ± 0.002 (methanol) < 1.019 ± 0.002 (ethanol)
< 1.021 ± 0.002 (propylene carbonate) < 1.027 ± 0.003 (acetonitrile), <1.031 ± 0.002 (ni-
tromethane), according to the donicity of the solvents which represents a quantitative
measure for the tendency of a solvent to donate electron pairs to acceptors [43]. With
respect to crown ether concentration, the separation factor decreased from 1.015 ± 0.002 to
1.003 ± 0.001 with the decrease in AB15C5 concentration immobilized on polymer from
0.79 to 0.23 mmol/g in the CH3OH–LiCl/PSF-g-AB15C5 system [43].

2.3.4. Methods Involving Ion-Exchange Membranes

Employing a lower working pressure, the membrane chromatography can provide
a similar lithium isotope separation efficiency as column chromatography, but avoiding
the intra-particle diffusions as a mass transfer-determining step. It is believed that the
separation of lithium isotopes with membrane chromatography takes place by multilayer
adsorption, surface diffusion, as well by ion–pore electrostatic interaction between Li ions,
and the crown ether moieties on the membranes. In the case of membrane chromatogra-
phy, the convective transport through membrane pores is the transfer-determining step.
A PSF-g-AB15C5-type polymer porous membrane with porosity of 80.4% and average
pore size of 62.7 nm was prepared by Pei et al. [44], while a concentration of 0.52 mmol
immobilized AB15C5/g polymer was used. Discs with 24 mm-diameter were produced
by cutting the PSF-g-AB15C5 membranes with an average thickness of 100 µm, while
three layers of porous polyester (PET) filter were used as support between every two
membranes (pore size of 300 µm and thickness of 200 µm), so a stationary phase packed in
a chromatography column (Ø 25 × 100 mm) was built, resulting in a four-stage tandem
membrane chromatography system [44]. In such a chromatographic system, the eluate
depleted in 6Li obtained from the previous stage is used as the feed solution for the next
stage [44]. The separation factor obtained from the single-stage membrane chromatography
was up to 1.0232, while the relative abundances of 6Li in the four-stage tandem membrane
chromatography increased by 0.2% (from 7.60 to 7.80%) [44].

2.4. Challenges in Development of Analysis Methods for Lithium Isotopes Using Spectrometric and
Spectroscopic Methods
2.4.1. Analysis Methods for Lithium Isotopes Using ICP-MS Methods

ICP-MS methods have been applied in various studies for Li isotope determina-
tion [45,46]. Many of these methods are using inductively coupled plasma-quadrupole
mass spectrometry methods (ICP-Q-MS) [45].

The main challenges of the lithium isotope measurements with ICP-MS are changes of
ionization equilibria in the plasma due to ionization of matrix interferences (like Na, Ca, and
K). Thus, to reduce the matrix bias effects it is necessary to achieve quantitative separation
of lithium from other interfering elements [32,47]. Nevertheless, because of the small
separation factor of the Li+ and Na+ ions, the separation of lithium from sodium is difficult
to achieve. As many clean-up methods are based on the ion exchange chromatography,
small columns are the option of choice, due to the fraction of lithium isotopes on large
columns [17]. Grégoire et al. used ICP-Q-MS to determine the lithium isotope ratios from
minerals with a precision of ±0.8‰ (relative to reference material IRM-016 Li2CO3) [45].
Misra et al. determined lithium isotope ratios from seawater and naturally occurring
carbonates, using chromatographic separation of lithium isotopes using a low volume-
column filed with cation exchange resin (with 100–200 mesh size and total capacity of
3.4 meq) followed by ICP-Q-MS analysis [17]. The average lithium isotope composition of
seawater was 30.75 ± 0.41‰ vs. L-SVEC (n = 10), while for the foraminifera carbonates the
recorded isotope compositions were 30.72 ± 1.43 ‰ (n = 5) for coretop foraminifera from
Caribbean Sea and 30.16 ± 1.37‰ (n = 4) for Gulf of Mexico foraminifera, respectively [17].
Therefore, it was concluded that a precision higher than ±1.5‰ vs. L-SVEC could be
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achieved for real samples [17]. Liu and Li optimized the determination of lithium isotope
ratios from geological materials with ICP-Q-MS [48]. In this study, a higher precision of
±1.5‰ vs. L-SVEC was achieved in conditions of low whole-procedure blank (<0.004 ng)
and high matrix tolerance (Na/Li ratio of 100), which allows for low mass consumption
(2.5 ng of Li) [48].

Very recently, Juzer et al. developed an inductively coupled plasma-triple quadrupole
mass method QQQ-ICP-MS [49]. Using a low volume column filed with cation exchange
resin for chromatographic separation, Juzer et al. determined the lithium ratio of the seawa-
ter to 31.34 ± 0.56‰ (n = 49), which falls within the values determined previously by Misra
et al. [17]. Comparing with ICP-Q-MS methods, this studied achieved a higher precision
of ≤0.6‰ (2σ) at sub-ng levels of Li per sample [17]. Regarding the separation studies
of lithium isotopes, ICP-Q-MS analysis has been used in few studies [36,38], although
MC-ICP-MS methods were preferred.

2.4.2. Analysis Methods for Lithium Isotopes Using MC-ICP-MS Methods

Many studies are using inductively coupled plasma multicollector mass spectrometry
(MC-ICP-MS) [50–53] to determine lithium isotope ratios from artificial and environmental
samples (see Figure 5).
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Comparing with ICP-Q-MS, the MC-ICP-MS methods appear to be more appropri-
ate for low quantities of environmental samples. Nevertheless, historically, MC-ICP-MS
methods had some drawbacks: a relatively high sensitivity to matrix interferences, mass
bias due to matrix, the occurrence of lithium fractionation inside the instrument, and the
requirement of a relatively high level of lithium into the sample (2 to 40 ng) [17,47].

Tomascak et al. were first to report reliable and precise measurements of Li isotopes
with MC-ICP-MS [47]. This study determined the lithium isotope ratios from seawater and
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a basalt standard (JB-2) [47]. Upon digestion, as in the case of ICP-Q-MS, this study used
cation exchange resin (AG50W-x8 type) to separate the lithium followed by MC-ICP-MS
analysis, while the precision of the measurements was calculated to±1.1‰ vs. L-SVEC [47].
Huang et al. performed an accurate determination in environmental materials with MC-
ICP-MS but with a much higher precision of ±0.12‰ vs. L-SVEC (n = 46), while requiring
just about 1.2 ng Li per sample [55]. Huang et al. used an optimised procedure with
high chemical yields due to one-step column chromatographic separation involving lower
procedure blanks (<5 pg) to record the lithium isotope ratios of two seawater references as
ranged 30.88 ± 0.12‰ to 30.73 ± 0.15 vs. L-SVEC at a low mass resolution of 500 (valley
definition of 5% peak height) [55]. Tian et al. [56] determined the isotope ratio of lithium in
reference materials (andesite (AGV-2), basalt (BHVO-2) and IRMM-016 reference standard)
using MC-ICP-MS. Prior to the MC-ICP-MS analysis, lithium was enriched in stages on
three different columns (the first two eluted with HCl of different concentration and the
3rd with 30% ethanol) using synthetic cation-exchange resin [56]. The first stage removed
the major cations from the matrix, the second stage removed the major elements except
sodium, and the third stage removed the sodium ions from the matrices [56]. The precision
of lithium isotope ratio determination with MC-ICP-MS was calculated ±0.72–1.04‰ (2σ),
but overall, this study showed the complexity of sample preparation required for lithium
isotope measurements in some materials [56]. In the last years, MC-ICP-MS, in combination
with laser ablation (LA) (thus LA-MC-ICP-MS) became a popular technique for lithium
isotope determination directly from solid phases, thus preserving spatial resolution, as
this technique is capable of sampling a volume of >1 µm in depth and approximately
10–100 µm in diameter [57].

The main advantage of LA-MC-ICP-MS for lithium isotopes over classical MC-ICP-MS
appears to be minimal sample preparation, but there are also other advantages such as
good spatial resolution, low sample size, high sample throughput, and a low likelihood of
contamination [57]. The main disadvantage of LA-MC-ICP-MS is the occurring isotopic
fractionation during laser ablation [58–60], an effect that can be limited in the case of using
femtosecond (fs) laser ablation (in contrast with nanosecond LA) by reducing the ablation
crater in the sample to nm-sized diameter [61]. Some studies used fs-LA-MC-ICP-MS for
in situ measurements of lithium isotope ratios. Steinmann et al. used a UV-femtosecond
laser ablation coupled with MC-ICP-MS for in situ measurements of lithium isotope ratios
from silicate reference glasses and olivines containing low levels of lithium (in µg/g range),
and the precision has been calculated to about 2‰ (2σ) vs. L-SVEC [61]. In this study the
isotope ratio values obtained with in situ measurements were also compared with those
obtained with MC-ICP-MS performed in solutions (upon sample preparation) and they
were in good agreement [61].

2.4.3. Analysis Methods for Lithium Isotopes Using Thermal Ionisation Mass Spectrometry

Historically, the thermal ionisation mass spectrometry has been the most-used method
for determination of lithium isotope ratios using various ionization methodologies [62–66].

Arienzo et al. [67] employed ion exchange chromatography based on cation exchange
resin followed by thermal Ionization Mass Spectrometry (TIMS) to determine the ra-
tio of Li isotopes for both natural and reference samples (the solid NIST L-SVEC and
BHVO-2 standards and seawater) by using two different types of thermal ionization mass
spectrometers configured in static (the magnetic field remains static) and dynamic (the
magnetic field varies) modes. The determined isotope composition of BHVO-2 was 3.43‰
vs. L-SVEC, while for the seawater it ranged from 30.6 to 33.7‰ vs. L-SVEC [67], values
which correspond to the reported literature values. More recently, Bhushan et al. [68] used
a TIMS methodology called total evaporation and ion integration technique (TE and II).
This technique involves complete evaporation of the lithium isotopes from the filament in
the thermal ionisation source, and measuring of the ion beams of lithium isotopes until
complete exhaustion of the sample [69]. Using this technique, the lithium isotope ratios
were determined using the molecular ions m/z 71–73 (NaLiBO2

+) and m/z 88–89 (Na2BO2
+)
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emitted from the sodium lithium borate and a good precision of 0.05% was obtained [68].
Nevertheless, further studies are needed to elucidate the potential of total evaporation and
ion integration techniques as alternative methodologies in lithium isotope determinations.

3. Conclusions

The most technically viable techniques presented in this review were two phase equi-
librium system (using crown ethers), ion-exchange chromatography, and electromigration,
with the latter being more technically challenging. Nevertheless, only the chemical equi-
librium separation using crown ethers has given separation factors comparable to that
of Li amalgam method. Electromigration and electrodialysis methodologies appear to be
the most eco-friendly and promising alternatives for the separation of lithium isotopes,
but the different experimental approaches must be optimised. Further experimental ap-
proaches using the electrochemical isotope effect are expected to appear in the next years.
Displacement chromatography methods are some of the old, yet still used, methods for
separation of lithium isotopes. Among them, the ion exchange method using the crown
ethers grafted on polymers is one of the most innovative and studied methods. With respect
to the lithium isotope analysis methods, the development of new ICP-Q-MS, MC-ICP-MS
and TIMS methods first requires quantitative separation of lithium from other interfering
elements. In this case, the ion exchange based on small columns is the main option, due to
the fraction of lithium isotopes on large columns. The MC-ICP-MS methods gave a better
precision in lithium isotope analysis than those of ICP-Q-MS. With respect to analyses of
Li isotopes, further strategies based on inductively coupled plasma-high resolution mass
spectrometry (ICP-HRMS) are expected to be developed.
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