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Species distribution modelling has its origin in the late
1970s when computing capacity was limited. Early work
in the field concentrated mostly on the development of
methods to model effectively the shape of a species’ response
to environmental gradients (Austin 1987, Austin et al
1990). The methodology and its framework were summar-
ized in reviews 10-15 yr ago (Franklin 1995, Guisan and
Zimmermann 2000), and these syntheses are still widely
used as reference landmarks in the current distribution
modelling literature. However, enormous advancements
have occurred over the last decade, with hundreds — if not
thousands — of publications on species distribution model
(SDM) methodologies and their application to a broad set of
conservation, ecological and evolutionary questions. With
this special issue, originating from the third of a set
of specialized SDM workshops (2008 Riederalp) entitled
‘The Utility of Species Distribution Models as Tools for
Conservation Ecology’, we reflect on current trends and the
progress achieved over the last decade.

SDMs represent an empirical method to draw statistical
inferences about the drivers of species’ ranges under
different conservation, ecological and evolutionary pro-
cesses. Many efforts have been made to improve the
statistical bases of SDMs, including: 1) the implementation
of new statistical methods (Yee and Mitchell 1991, Phillips
et al. 2006, Prasad et al. 2006, Elith et al. 2008); 2) the
evaluation of sampling design on model performance
(Edwards et al. 2006, Guisan et al. 2006); 3) the exploration
of sample size and prevalence on the accuracy of SDMs
(Stockwell and Peterson 2002, Zimmermann et al. 2007,
Wisz et al. 2008); 4) the removal of spatial autocorrelation
from model fitting (Dormann et al. 2007); 5) the
comparison of a range statistical methods for SDMs (Elith
et al. 20006), or 6) the evaluation of models (Allouche et al.
2006, Smulders et al. 2010), to list but a few. In summary, a
large number of published papers have contributed to this
methodological advancement.

Over the last decade, many publications have additionally
highlighted unresolved issues in SDM (Austin 2002, 2007,
Pearson and Dawson 2003, Guisan and Thuiller 2005,
Aratjo and Guisan 2000, Elith and Graham 2009, Elith and
Leathwick 2009). Many of these issues, such as the
clarification of the niche concept, model parameterization
schemes, model selection, model evaluation and variable
selection methods have since been explored, albeit with
mixed success, or are under active research today. These
constitute the current trends in SDMs, and represent, to
some degree, a movement away from methodological studies
towards the incorporation and use of SDMs in addressing
conservation, ecological, and evolutionary questions.

A more limited number of studies have employed SDMs
for resolving crucial conservation issues, or exploring
macroecological and evolutionary concepts and theory.
Examples of the latter are the analysis of limited range
filling by Svenning and Skov (2004), of niche properties
and range size on sensitivity to climate change (Thuiller
et al. 2005a), of the effect of climatic vs biotic factors on
species ranges (Aratjo and Luoto 2007), or of the effect of
climatic extremes on species ranges (Zimmermann et al.
2009). In addition, several important contributions have
been made towards clarifying theoretical aspects around the
relationship of SDMs and the niche concept (Austin 2002,
2007, Guisan and Thuiller 2005, Soberon 2007).

Here, we provide an overview of nine papers originating
from the 2008 Riederalp workshop that contribute sig-
nificantly to these developing trends in use and application
of SDMs. The papers focus on five active areas of research
involving SDMs, including: 1) historical legacies; 2) niche
stability and evolution; 3) biotic interactions; 4) the
importance of sample designs; and 5) species invasions.
We believe these papers set the stage for future SDM
research questions, and represent several next logical steps in

SDM research and application.
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SDM SPECIAL ISSUE:

Current trends — the workshop papers
The legacy of history

One of the fundamental assumptions in SDM is that the
current range of species is in equilibrium with the
explanatory variables that drive their ranges. As a result,
the effect of history on range size and distribution patterns
is generally not considered. This assumption of equilibrium
has been criticized repeatedly in the past, and several
authors have demonstrated that conclusions made under
this assumption can be wrong (Pearson and Dawson 2003).
In this issue, two papers explore how historical factors
influence current species richness patterns (Svenning et al.
2010), and how historical climate variability and associated
hypothesized range dynamics influence observed patterns
(Graham et al. 2010). Both papers evaluate current patterns
in the light of the legacy of history. Svenning and co-
workers use SDM and species richness modeling to
estimate realized (R, actual) to potential (P, according to
site conditions) richness ratios in tree assemblages across
Europe, and to assess the potential drivers of these ratios.
They find support for a negative effect of geographic
fragmentation, a positive effect of accessibility to postglacial
recolonization, and a positive effect of topographic hetero-
geneity on R/P ratios. The fragmentation and accessibility
effects suggest that dispersal constitutes a strong influence
on R/P ratios. Graham and co-workers explore how
historical ranges, considered as shifting refugia through
time, serve to explain the current patterns of species
richness in the Australian Wet Tropics. While others have
considered how past climate influences current patterns
of diversity, Graham and co-workers developed a new
approach that quantifies how connected a given range has
been. Essentially, the approach resembles a least-cost
analysis to quantify connectivity through time. Analyses
that combine static and dynamic elements likely will see
increased use in the future of SDM analyses and applica-
tions. The increasing availability of historical climate
information should lead to increased understanding about
the effect of history on current ranges and on species,
phylogenetic and functional diversity.

Niche stability and evolution

The analysis of niche evolution is an active area of ecological
and evolutionary research (Wake et al. 2009). One way to
evaluate niche stability is to analyze environmental con-
straints over a phylogenetic tree and to explore to what
degree specified environmental associations can be inter-
preted as local adaptation. This idea may be evaluated by
applying SDM to ecologically defined populations rather
than to species, i.e. by examining the niche response to
environmental drivers at a sub-species level. Using this
approach, Pearman and co-workers (2010) find that sub-
species ranges collectively do not coincide with the species
range, indicating that niches fitted with data from the full
taxon can over- or underpredict distributions under certain
conditions. More importantly, they find that the shapes of
environmental response curves generated in sub-species
models differ from those that emerge at the species level.

986

This paper is an important step towards a better under-
standing of niche shape and the effects of niche evolution
and adaptation to environmental constraints.

Biotic interactions

Most SDMs are calibrated under the assumption that
biotic interactions do not influence species range patterns
(Huntley et al. 1995, Bakkenes et al. 2002), or only
affect patterns at small spatial scales (Pearson and Dawson
2003, Dormann et al. 2007, Heikkinen et al. 2007). As a
consequence, models are often built using abiotic pre-
dictors alone. However, examples exist to demonstrate how
the incorporation of biotic interactions into SDMs better
models species distributions and responses to environmen-
tal change, such as disturbance or climate (AratGjo and
Luoto 2007, Meier et al. 2010a). Biotic interactions have
been included in SDMs as occurrence (Heikkinen et al.
2007), counts or frequencies (Leathwick and Austin 2001,
Leathwick 2002, Heikkinen et al. 2007), proportional data
(Meier et al. 2010a), basal area (Rouget et al. 2001), or as
a competition coefficient (Strubbe et al. 2010). From a
theoretical viewpoint, the response of species along macro-
climatic gradients generally represents the realized ecologi-
cal niche sensu Hutchinson (Austin et al. 1990, Aradjo and
Guisan, 2006). As a consequence, large-scale species
patterns are clearly influenced by both abiotic predictors
and biotic interaction variables. The importance of biotic
interactions may vary according to scale and position along
environmental gradients (Meier et al. 2010a). Here, Meier
and co-workers (2010b) evaluate the degree to which
adding biotic predictors helps to explain tree species
distributions, and whether biotic and abiotic predictors
explain similar or dissimilar proportions of the variability
in species patterns. Interestingly, they find surprisingly
little overlap in the proportion of explained model variance
between the two predictor sets, and they found a linkage
between the importance of biotic predictors and functional
traits. In a similar study, Pellissier and co-workers (2010)
explore the effect of one dominant dwarf shrub species as
predictor of the distribution of other arctic-alpine species.
Again, surprising lictle overlap exists in the predictive
power of the abiotic and biotic predictor sets. Further,
plant functional traits of modeled species partially explain
the degree to which addition of biotic predictors enhances
SDM predictive power.

The importance of design for sampling

Design and analysis are tightly linked elements of the
statistical models used in SDMs. Yet, SDMs are often built
from museum records or from large and inconsistently
sampled databases having, at best, limited underlying
designs. Differences in design quality can strongly influence
the reliability of SDMs (Edwards et al. 2006). However,
the high complexity of large study areas renders many
conceptually derived designs unsolvable, or at least very
costly to achieve. As a result, many data sets used in SDMs
contain biases ranging from incomplete sampling of
environmental and geographic space to targeted rather
than random selection of sampling units. It is therefore



important to explore different approaches to design and to
study their effect on model performance and bias. Such
knowledge allows us to avoid pitfalls in modeling and in
using models to inform the questions under study. Albert
and co-workers (2010) implemented a set of sampling
strategies in a semi-virtual experiment with known reality
(designed response) to demonstrate how designs of different
complexity yield models of varying performance and bias.
Notably, a distinction is made between different sampling
spaces, a concept that is important when optimizing a
sampling in complex landscapes. Le Lay and co-workers
(2010) demonstrate the capacity of model-based sampling
to detect populations and to develop SDMs of rare species
in Switzerland. In addition to using two different statistical
methods, the models are developed at two different spatial
grain sizes (50 m and 1 km). Combined models using both
grain size and methods yield greater species detectability
and model performance. The latter indicates that drivers
and response often operate at more than one scale.

Species invasion

SDMs have often been used to assess the invasion
potential of species into new habitats (Beerling et al.
1995, Peterson 2003, Thuiller et al. 2005b) or to explore
niche stability and niche modeling issues during invasion
(Broennimann et al. 2007, Fiwzpatrick et al. 2007,
Beaumont et al. 2009). Several key problems arise from
the analysis of the invasive potential of species to new
continents. On one hand, sampling the currently invaded
range may underestimate the niche response, because
the species may not yet realize its full niche potential.
On the other hand, fitting a species from data of the
original range may not yield the full niche either, as the
original range may not exhibit all possible climate and site
combinations that could possibly be inhabited by a species.
In addition, invaded ranges usually go along with changes
in biotic interactions, and therefore we expect changes in
the realized niche during invasions. Comparing original
and invaded ranges therefore represents an interesting
challenge, although it is prone to misunderstandings unless
studied in a careful, systematic fashion. Despite these
challenges, study of invasive species is an important aspect
of model-based management, as potential damages from
invasives are high and very costly. Richardson and co-
workers (2010) provide a study that optimizes the
management of an invasive species in South Africa by
combining SDM with a dynamic cellular automata model
under projected future climates. Using this approach, the
authors are able to prioritize areas of major concern for
potential future spread of the invasive species. Vicente and
co-workers (2010) explore a range of different drivers of
invasion by analyzing a large set of invasive plants in
Portugal. Instead of simply analyzing many potential
predictors, they apply a nested model approach, starting
with a climate model and then nesting models with
additional landscape, land use (incl. intensity) and struc-
tural predictors. By this, they are able to demonstrate that
climate exerts a primary role, while other landscape
variables are additionally important where climate is
favorable for predicting invasive plant species patterns

and resulting alien biodiversity. They find, however,
differences among CSR strategy types in their response
to the nested drivers.

Conclusions

The five themes identified in this special issue will likely
remain important elements of SDM research over the
coming years. We specifically expect novel solutions from
combining SDM with other, more dynamic or more
physiological approaches, such as that presented by
Richardson et al. (2010). Such approaches have the
potential to provide workable solutions to important
conservation, ecological and evolutionary questions. With-
out being exhaustive, we believe a) that aspects of niche
evolution will become a central focus as SDMs and
phylogenetic research mutually benefit from each other;
and b) that advances in dynamic modeling linked with
SDMs and conceptual or theoretical advances related to
community assembly rules will likely exert a strong
influence on SDMs and species modeling.

Niche evolution, phylogeographic and phylogenetic
research together with increased availability of historical
climate maps and the building of large databases of species
distributions will allow novel analysis of both historical and
contemporary drivers of species ranges, and will likely
provide us with novel capacities to improve our projections
of species ranges into the future. We therefore expect
significant advances from these fields for our understanding
of the general drivers of species ranges. On the other hand,
SDMs still performs rather weakly at small spatial scales.
Improvements in this domain require the development of
applicable community assembly and species filtering rules
and approaches. Such rules likely build on both phyloge-
netic and functional elements, and new approaches can be
expected to further our understanding how functional traits
affect community structures and biotic interactions.
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