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Abstract

If F is a family of graphs then the Turán density of F is determined by the
minimum chromatic number of the members of F .

The situation for Turán densities of 3-graphs is far more complex and still very
unclear. Our aim in this paper is to present new exact Turán densities for individual
and finite families of 3-graphs, in many cases we are also able to give corresponding
stability results. As well as providing new examples of individual 3-graphs with
Turán densities equal to 2/9, 4/9, 5/9 and 3/4 we also give examples of irrational
Turán densities for finite families of 3-graphs, disproving a conjecture of Chung and
Graham. (Pikhurko has independently disproved this conjecture by a very different
method.)

A central question in this area, known as Turán’s problem, is to determine the

Turán density of K
(3)
4 = {123, 124, 134, 234}. Turán conjectured that this should be

5/9. Razborov [On 3-hypergraphs with forbidden 4-vertex configurations in SIAM
J. Disc. Math. 24 (2010), 946–963] showed that if we consider the induced Turán

problem forbidding K
(3)
4 and E1, the 3-graph with 4 vertices and a single edge, then

the Turán density is indeed 5/9. We give some new non-induced results of a similar

nature, in particular we show that π(K
(3)
4 , H) = 5/9 for a 3-graph H satisfying

π(H) = 3/4.
We end with a number of open questions focusing mainly on the topic of which

values can occur as Turán densities.
Our work is mainly computational, making use of Razborov’s flag algebra frame-

work. However all proofs are exact in the sense that they can be verified without
the use of any floating point operations. Indeed all verifying computations use only
integer operations, working either over Q or in the case of irrational Turán densities
over an appropriate quadratic extension of Q.

∗This author is a Royal Society University Research Fellow
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1 Introduction

An r-graph is a pair F = (V (F ), E(F )) where V (F ) is a set of vertices and E(F ) is a
family of r-subsets of V (F ) called edges. So a 2-graph is a simple graph. For ease of
notation we usually identify an r-graph with its edge set. The number of edges in F is
denoted by e(F ).

Given a family of r-graphs F we say that an r-graph H is F-free if H does not contain
a subgraph isomorphic to any member of F . For any integer n > 1 we define the Turán
number of F to be

ex(n,F) = max{e(H) : H is F -free, |V (H)| = n}.

Even in the simplest case of 2-graphs this parameter can be very difficult to determine
exactly thus we will consider the related asymptotic density.

The Turán density of F is defined to be the following limit (a simple averaging argument
due to Katona, Nemetz and Simonovits [19] shows that it always exists)

π(F) = lim
n→∞

ex(n,F)
(

n

r

) .

There are two general questions that are of interest to us.

Question 1. Given a family of r-graphs F , what is π(F)?

Question 2. Which values in [0, 1) are Turán densities of families of r-graphs?

For r = 2 the Erdős–Stone–Simonovits theorem answers both questions completely.

Theorem 3 (Erdős and Stone [13], Erdős and Simonovits [12]). Let F be a family of
2-graphs. If t = min{χ(F ) : F ∈ F} > 2 then

π(F) = 1− 1

t− 1
.

In particular the set of Turán densities of 2-graphs is {0, 1/2, 2/3, 3/4, . . .}.

For r > 3 remarkably little is known. One general result for r-graphs is the following
theorem of Erdős. An r-graph is r-partite if its vertices can be partitioned into r classes
so that each edge meets each class exactly once.

Theorem 4 (Erdős [11]). If K(r)(t) is the complete r-partite r-graph with t vertices in
each class then π(K(r)(t)) = 0.
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Since limt→∞ e(K(r)(t))/
(

tr

r

)

= r!/rr and all subgraphs of K(r)(t) are r-partite we have
the following simple corollary.

Corollary 5. If F is a family of r-graphs then either at least one member of F is r-partite
and so π(F) = 0, or none are r-partite and π(F) > r!/rr.

Essentially the only other general result is the following.

Theorem 6 (Mubayi [21] and Pikhurko [23]). For 3 6 r 6 t let Hr
t be the r-graph with

vertices xi for 1 6 i 6 t and ykij for 1 6 i < j 6 t, 1 6 k 6 r − 2 together with edges

xixjy
1
ij · · · yr−2

ij , for 1 6 i < j 6 t.

π(Hr
t+1) =

r!

tr

(

t

r

)

.

Attention has focused mainly on Question 1, in particular a lot of work has gone into
determining or giving bounds for the Turán density of particularly simple 3-graphs such
as K−

4 = {123, 124, 134}, K(3)
4 = {123, 124, 134, 234} and F3,2 = {123, 145, 245, 345}.

In Section 2 we give some new Turán results for individual 3-graphs. In particular we give
the first examples of single 3-graphs with Turán density 5/9 for which Turán’s construction
Tn is asymptotically extremal (see Section 2.3 for definitions).

In Section 3 we focus on Question 2, in particular giving the first examples of irrational
Turán densities of finite families of 3-graphs.

We then return to the classical “Turán Problem” of determining π(K
(3)
4 ).

Given an exact Turán density result for a family of r-graphs F there are two very natural
questions one can ask. Firstly, what is the exact Turán number ex(n,F)? Secondly, is
there a “stability” result saying that all almost extremal F -free r-graphs have essentially
the same structure? Pikhurkho [25] answered both of these questions in the case of

F = {K(3)
4 , E1}, where E1 is the 3-graph with 4 vertices and a single edge. We are able

to give stability versions of all of our results from Sections 2 and 4. Luckily once we have
a “flag algebra proof” of the Turán density of each family we can prove stability without
having to consider each family in turn. Essentially we prove one stability result for each
construction, the details are given in Section 5.

Stability probably also holds for the results in Section 3 but we have not proved this.
The question of determining the exact Turán number for each of the families we consider
seems much more difficult although it is plausible that for all of our results ex(n,F) is
given by the corresponding construction for all sufficiently large n.

All discussion of the computational proofs is deferred to the final section, with transcripts
of the actual proofs forming a separate appendix. However we emphasise that all of our
proofs can be verified using only integer operations and hence are genuine proofs rather
than numerical results with the potential for rounding errors. These proofs are set in
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Razborov’s flag algebra framework [26] and make heavy use of semi-definite programming
(see [5] and [27]).

A key tool we will make use of is the “blow-up” of an r-graph. Given an r-graph F and
an integer t > 1 the blow-up F (t) is the 3-graph formed by replacing each vertex of F
with a class of t vertices and inserting a complete r-partite r-graph between any vertex
classes corresponding to an edge in F . Given a family F = {F1, . . . , Fs} of r-graphs and
an integer vector t = (t1, . . . , ts) with each ti > 1, we define the t-blow-up of F to be
F(t) = {Fi(ti) : 1 6 i 6 s}.
The following result will be extremely useful.

Theorem 7 (Brown and Simonovits [8]). If F = {F1, . . . , Fs} is a family of r-graphs and
t = (t1, . . . , ts) is an integer vector with each ti > 1 then π(F(t)) = π(F).

In particular we have the following corollary that will often simplify the computations we
perform. We will write F 6 G to mean “F is contained in a blow-up of G”.

Corollary 8. If F is a family of r-graphs and G1, G2 are r-graphs with G1 6 G2 then

(i) π(F ∪G1) 6 π(F ∪G2),

(ii) π(F ∪G1) = π(F ∪G1 ∪G2).

Proof. Let t > 1 satisfy G1 ⊆ G2(t). Theorem 7 implies that π(F ∪G2(t)) = π(F ∪G2).
While G1 ⊆ G2(t) implies that π(F ∪G1) 6 π(F ∪G2(t)). Hence (i) holds.

For (ii) we note that π(F ∪G1) > π(F ∪G1 ∪G2) is trivial. While (i) implies that

π(F ∪G1) = π(F ∪G1 ∪G1) 6 π(F ∪G1 ∪G2).

For a detailed description of how we apply Corollary 8 (to prove Theorem 12) see the
discussion in Section 7. Essentially we apply part (ii) repeatedly: if F 6 G for each
G in some family G then π(F ) = π(F ∪ G). This often leads to much more tractable
computational problems.

When investigating new Turán density results of r-graphs we have to be clear about what
makes a result new. Consider the following situation: we have an r-graph G whose Turán
density is known together with a sequence of asymptotically extremal examples {Gn}∞n=1

(i.e. Gn is a G-free r-graph of order n and limn→∞ e(Gn)/
(

n

r

)

= π(G)). Given a subgraph
F of G we obviously know that π(F ) 6 π(G) and moreover if Gn is F -free for all n > 1
then π(F ) = π(G). Corollary 8 sometimes allows us to deduce new Turán densities by
checking for “containment in blow-ups”. We will not be interested in results that are
implied by known Turán density results by taking blow-ups and applying Corollary 8.
(See the remark following Theorem 11 for an example of such a result.)
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Note that checking if F 6 G can be computationally difficult. For example suppose r = 2
and G = K3. Checking if a given graph F satisfies F 6 K3 is equivalent to determining
whether F is 3-colourable: a well known NP-complete problem.

An r-graph F is said to be covering if every pair of vertices from V (F ) belongs to an edge
in F . For example, complete r-graphs are covering. Covering r-graphs are easier to deal
with when checking containment in blow-ups.

Lemma 9. If F and G are r-graphs and F is covering then F 6 G iff F ⊆ G.

Proof. If F is a subgraph of G(t) for some t > 1 then each vertex in V (F ) belongs to a
different class in G(t) (since there is an edge of F containing any pair of vertices). Thus
F is a subgraph of G.

2 Turán densities of individual 3-graphs

We require a couple of basic definitions. For an integer n > 1 let [n] = {1, 2, . . . , n}. If
[n] = A1 ∪ A2 ∪ · · · ∪ Ak is a partition then we say that it is balanced if ||Ai| − |Aj|| 6 1
for all i, j ∈ [k].

2.1 Density 2/9

�
�
�
�

�
�
�
�

�
�
�
�

Figure 1: The balanced complete tripartite 3-graph, Sn.

Given a tripartition [n] = V0 ∪ V1 ∪ V2 let S(V0, V1, V2) denote the complete tripartite
3-graph with vertex classes V0, V1, V2. Let Sn denote the complete tripartite 3-graph
with the maximum number of edges (given by a balanced tripartition of [n]). Note that
e(Sn) = ⌊n

3
⌋⌊n+1

3
⌋⌊n+2

3
⌋, and so limn→∞ e(Sn)/

(

n

3

)

= 2/9. Since all subgraphs of Sn are
tripartite this implies that any non-tripartite 3-graph F satisfies π(F ) > 2/9.

The first Turán-type result for non-tripartite 3-graphs was due to Bollobás [7]. Let K−
4 =

{123, 124, 134} and F5 = {123, 124, 345}.

Theorem 10 (Bollobás [7]). If F = {K−
4 , F5} then ex(n,F) = e(Sn). In particular

π(F) = 2/9.
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This was followed by the Turán result for the single 3-graph F5.

Theorem 11 (Frankl and Füredi [16]). If n > 3000 then ex(n, F5) = e(Sn). In particular
π(F5) = 2/9.

In fact, as a Turán density result, Theorem 11 does not meet our definition of a new result
since Corollary 8 (ii) allows us to deduce that π(F5) = 2/9 from Theorem 10: take F = ∅,
G1 = F5, G2 = K−

4 and note that F5 ⊆ K−
4 (2).

Theorem 6 tells us that we also have π(H3
4 ) = 2/9, however this is implied by π(F5) = 2/9

and Theorem 7, since H3
4 ⊆ F5(3).

The following new result implies all of the aforementioned results.

Theorem 12. If H = {123, 124, 345, 156} then π(H) = 2/9.

Note that H is not contained in a blow-up of F5 so this is a genuinely new result.

The proof of Theorem 12 uses Razborov’s flag algebras framework [26], [27] as well as
Corollary 8. It is a straightforward calculation in this setting. For a general discussion of
our methods see Section 7. A detailed computational proof can be found in the appendix
file 2-9-prf.txt.

2.2 Density 4/9
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Figure 2: A (2, 1)-colourable 3-graph.

Given a bipartition [n] = V0 ∪ V1 let J(V0, V1) denote the 3-graph with vertex set [n]
and edges consisting of all triples meeting V0 in two vertices and V1 in one vertex. We
call this the complete (2, 1)-colourable 3-graph with classes V0 and V1. We say that a
3-graph G is (2, 1)-colourable if G is isomorphic to a subgraph of J(V0, V1) for some
bipartition [n] = V0 ∪ V1. Let Jn denote the (2, 1)-colourable 3-graph of order n with
the maximum number of edges. A simple calculation shows that Jn = J(V0, V1) for
some bipartition with |V0| approximately twice as large as |V1| and so it is easy to check
that limn→∞ e(Jn)/

(

n

3

)

= 4/9. Hence any 3-graph F that is not (2, 1)-colourable satisfies
π(F ) > 4/9.

An example of a non-(2, 1)-colourable 3-graph is F3,2 = {123, 145, 245, 345}.

the electronic journal of combinatorics 19(2) (2012), #P22 6



Theorem 13 (Füredi, Pikhurko and Simonovits [18]). For all n > 3 we have ex(n, F3,2) =
e(Jn) = maxk(n− k)

(

k

2

)

. In particular π(F3,2) = 4/9.

We do not have an extension of this result, however we do have two new examples.

Theorem 14. The 3-graphs G1 and G2, given below, are non-(2, 1)-colourable and satisfy
π(G1) = π(G2) = 4/9,

G1 = {123, 124, 134, 235, 245, 156}, G2 = {123, 124, 135, 345, 146, 256}.

We note that the three examples of 3-graphs with Turán density 4/9: F3,2, G1 and G2 are
all incomparable under blow-ups. See Section 7 for discussion. Detailed computational
proofs can be found in the appendix files 4-9-01-prf.txt and 4-9-02-prf.txt.

2.3 Density 5/9
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Figure 3: Turán’s construction: Tn.

One obvious sequence of 3-graphs with asymptotic density 5/9 is given by taking the

balanced blow-ups of K
(3)
6 , the complete 3-graph of order 6. If n is a multiple of six then

K
(3)
6 (n/6) has 20(n/6)3 edges. This construction is extremal (at least asymptotically) for

the 3-graph H3
7 (see Theorem 6), and so π(H3

7 ) = 5/9.

Another sequence of 3-graphs with asymptotic density 5/9 was first introduced by Turán.
Given a tripartition [n] = V0 ∪ V1 ∪ V2 define the 3-graph T (V0, V1, V2) to have as edges
all triples meeting each Vi exactly once together with those triples containing two vertices
from Vi and one from Vi+1 (where subscripts are understood modulo 3). If the tripartition
is balanced then we denote this 3-graph by Tn (again a simple calculation shows that Tn

has the maximum number of edges of all such 3-graphs).

Turán conjectured that ex(K
(3)
4 , n) = e(Tn) and hence π(K

(3)
4 ) = 5/9. This conjecture is

still far from resolved and we will return to it in Section 4. For now it is sufficient to note
that previously there were no known examples of single 3-graphs F satisfying π(F ) = 5/9,
with the lower bound provided by Tn. (Since H3

t is (2, 1)-colourable for any t we have
H3

t ⊆ Tn for n sufficiently large. In particular H3
7 ⊆ Tn.)
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Theorem 15. Each 3-graph F in the list below satisfies π(F ) = 5/9 and Tn is F -free.
These 3-graphs are all incomparable with respect to blow-ups.

{123, 124, 134, 125, 245, 136, 346, 156},
{123, 124, 134, 125, 135, 245, 345, 236, 456},
{123, 124, 134, 125, 135, 245, 126, 236, 146},
{123, 124, 134, 125, 135, 345, 126, 236, 246},
{123, 124, 134, 125, 235, 345, 126, 246, 156},
{123, 124, 134, 125, 235, 136, 346, 156, 356},
{123, 124, 134, 125, 135, 245, 126, 136, 346, 456},
{123, 124, 134, 125, 135, 345, 126, 236, 146, 156},
{123, 124, 134, 125, 135, 245, 126, 236, 346, 356},
{123, 124, 134, 125, 135, 345, 126, 236, 346, 356},
{123, 124, 134, 125, 135, 146, 246, 156, 256, 456},
{123, 124, 134, 125, 135, 146, 246, 156, 356, 456}.

See Section 7 for discussion of our proof methods, again we made extensive use of Corollary
8 (ii). Detailed computational proofs can be found in the appendix files 5-9-01-prf.txt
to 5-9-12-prf.txt.

2.4 Density 3/4
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Figure 4: A bipartite 3-graph.

We say that a 3-graph is bipartite if there is a partition of its vertex set into two classes,
neither of which contains an edge. Given a bipartition [n] = V0 ∪ V1 let B(V0, V1) be
the complete bipartite 3-graph with vertex classes V0 and V1, i.e. its edges are all triples
meeting both V0 and V1. If the bipartition is balanced then we denote this 3-graph by Bn.
Clearly Bn is a bipartite 3-graph of order n with the maximum number of edges. Moreover
limn→∞ e(Bn)/

(

n

3

)

= 3/4 and so any non-bipartite 3-graph F satisfies π(F ) > 3/4.

The first example of a 3-graph with Turán density 3/4 was given by de Caen and
Füredi [9], proving a conjecture of Sós. The Fano plane is the 3-graph PG(2, 2) =
{123, 145, 356, 167, 257, 347, 246}.
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Theorem 16 (de Caen and Füredi [9]). The Fano Plane PG(2, 2) satisfies π(PG(2, 2)) =
3/4.

Their method was extended by Mubayi and Rödl [22] to show that a number of other
3-graphs have Turán density 3/4.

For p, q > 1 let Fp,q be the 3-graph with vertex set [p + q] and edges
(

[p]
3

)

∪ {xyz : x ∈
[p], y, z ∈ [p + q]− [p]}. Let F ′

3,3 be a copy of F3,3 with two additional vertices, 7, 8, and
four additional edges 178, 278, 478, 578. Let F ′′

3,3 be obtained from F ′
3,3 by adding two

new vertices, 9,a, and three edges, 19a, 49a, 79a. Let F−
4,3 be the 3-graph obtained from

F4,3 by deleting the edge 156. Let F ′−
4,3 be obtained from F−

4,3 by adding two vertices 8, 9,
and adding three edges 289, 389, 589.

Theorem 17 (Mubayi and Rödl [22]). Let S = {F3,3, F
′
3,3, F

′′
3,3, F

−
4,3, F

′−
4,3}. If A,B ∈ S

and A ⊆ F ⊆ B then π(F ) = 3/4.

We have the following new results.

Theorem 18. Each 3-graph F in the list below satisfies π(F ) = 3/4 and Bn is F -free.
All of these 3-graphs are incomparable with respect to blow-ups.

{123, 124, 134, 234, 125, 135, 235, 145, 126, 136, 236, 146, 256, 356},
{123, 124, 134, 234, 125, 135, 235, 145, 245, 126, 136, 236, 146, 356, 456},
{123, 124, 134, 234, 125, 135, 235, 145, 245, 126, 136, 146, 346, 256, 356, 456}.

We remark that these are genuinely new results: the three 3-graphs in Theorem 18 are
all covering and are not contained in any of the 3-graphs listed in Theorems 16 and 17
(thus by Lemma 9 we cannot deduce their Turán densities via blow-ups from the earlier
results).

See Section 7 for discussion of our proof methods. Detailed computational proofs can be
found in the appendix files 3-4-01-prf.txt to 3-4-03-prf.txt.

We note that for all of our new results (Theorems 12, 14, 15, 18) we have corresponding
stability theorems (we defer a discussion of stability and exact Turán numbers to Section
5).

3 New Turán densities for finite families

In the previous section we focused almost exclusively on Turán densities of individual
3-graphs. We now turn to the question of which values from [0, 1) can occur as Turán
densities of families of r-graphs (Question 2). We will be interested in the size of the
families in question and so require the following definitions.
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For r > 3 and t > 1 integers, define

Π
(r)
t = {π(F) : F is a family of r-graphs and |F| 6 t},

Π(r)
∞ = {π(F) : F is a family F of r-graphs}

and
Π

(r)
fin = {π(F) : F is a finite family of r-graphs}.

Obviously the following containments hold:

Π
(r)
1 ⊆ Π

(r)
2 ⊆ · · · ⊆ Π

(r)
fin ⊆ Π(r)

∞ .

To the best of our knowledge it is not known whether any of these containments are strict.

The two general results we have regarding these sets of densities are Erdős’s result for
r-partite r-graphs (Theorem 4) and Mubayi and Pikhurko’s result for Hr

t (Theorem 6).
Putting these together yields.

Corollary 19. For all t > r > 2

[0,
r!

rr
) ∩ Π

(r)
1 = [0,

r!

rr
) ∩ Π(r)

∞ = {0}

and
r!

tr

(

t

r

)

∈ Π
(r)
1 .

A useful tool, when searching for new Turán densities, is the Lagrangian of an r-graph.
Let F be an r-graph with vertex set [n] = {1, 2, . . . , n}. Define

∆n = {(x1, . . . , xn) ∈ Rn :
n

∑

i=1

xi = 1, xi > 0}.

For x ∈ ∆n let

λ(F, x) = r!
∑

{i1,i2,...,ir}∈F

r
∏

j=1

xij .

The Lagrangian of F is λ(F ) = maxx∈∆n
λ(F, x).

The Lagrangian of an r-graph is closely related to certain blow-ups of F : it tells us how
dense the densest blow-up of a subgraph of F can be. We introduce a new set of densities:

Λ(r) = {λ(F ) : F is an r-graph}.

Brown and Simonovits showed that the following containments hold. (Note that for A ⊆ R

we denote the closure of A by A.)
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Theorem 20 (Brown and Simonovits [8]). If r > 2 then

Λ(r) ⊆ Π(r)
∞ = Π

(r)

fin = Λ
(r)
.

Thus in particular every Lagrangian of an r-graph is the Turán density of a corresponding
infinite family of r-graphs. (In fact it is easy to see that for any r-graph F , the family
FF = {G : G is an r-graph with λ(G) > λ(F )} satisfies π(FF ) = λ(F ).)

For small 3-graphs it is straightforward to calculate the Lagrangian directly. We will
use this to give some new examples of Turán densities of finite families of 3-graphs.
In particular we give the first examples of irrational Turán densities for finite families,
disproving the following conjecture of Chung and Graham [10].

Conjecture 21 (Chung and Graham [10] pg 95). If F is a finite family of r-graphs then
π(F) is rational.

Pikhurko [24] has also disproved this conjecture (for all r > 3). His proof is very different
and the finite families he obtains are rather large.

We introduce the following notation: given an r-graph G with vertex set [k], a vector
x = (x1, . . . , xk) ∈ ∆k and a large integer n; we define G(x, n), the n vertex blow-up of
G by x to be the blow-up of G in which vertex i is replaced by a class of ⌊xin⌋ vertices
for 1 6 i 6 k − 1 and vertex k is replaced by a class of size n − ∑k−1

i=1 ⌊xin⌋. (Thus if
λ(G) = λ(G, x) then limn→∞ e(G(x, n))/

(

n

r

)

= λ(G).)

Theorem 22. In each case below the finite family of 3-graphs Fi together with the 3-graph
Gi and weighting x satisfy: Gi(x, n) is Fi-free for all n > 1 and π(Fi) = λ(Gi).

G1 = {123, 124, 125, 345} = F3,2

λ(G1) =
189 + 15

√
5

961
, x1 = x2 =

13 + 3
√
5

62
, x3 = x4 = x5 =

6−
√
5

31
.

F1 = {{123, 124, 135, 146, 156}, {123, 124, 156, 346, 257}, {123, 124, 156, 347, 567}}.

G2 = {123, 234, 345, 145, 125} = C5,

λ(G2) =
6

25
, x1 = x2 = x3 = x4 = x5 =

1

5
.

F2 = {{123, 124, 134}, {123, 124, 125, 345}, {123, 124, 135, 256, 167, 467}}.

G3 = {123, 124, 134} = K−
4

λ(G3) = 8/27, x1 =
1

3
, x2 = x3 = x4 =

2

9
.

F3 = {{123, 124, 134, 234}, {123, 124, 125, 345, 346}, {123, 124, 345, 156, 256},
{123, 124, 125, 346, 356, 456}}.
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G4 = {123, 124, 125, 134, 135, 145} = F1,4

λ(G3) =
1

3
, x1 =

1

3
, x2 = x3 = x4 = x5 =

1

6
.

F4 = {{123, 124, 134, 156, 256}, {123, 124, 134, 125, 126, 357, 367, 457, 467, 567},
{123, 124, 345, 156, 257}}

G5 = {123, 124, 125, 126, 134, 135, 146, 235, 246, 256, 345, 346, 356, 456} = K
(3)
6 \ C6,

λ(G5) =
7

18
, x1 = x2 = x3 = x4 = x5 = x6 =

1

6
.

F5 = {{123, 124, 135, 145, 346, 256}, {123, 124, 134, 125, 345, 136, 246},
{123, 124, 134, 125, 135, 126, 136, 456}}.

G6 = {123, 124, 134, 234, 135, 235, 145, 245} = K
(3)
5 \ {125, 345}

λ(G6) =
32

81
, x1 = x2 = x3 = x4 =

2

9
, x5 =

1

9
.

F6 = {{123, 124, 125, 346, 356, 456}, {123, 124, 135, 256, 346, 456}, {123, 124, 135, 145,
256, 346}, {123, 124, 134, 125, 126, 356, 456}, {123, 124, 134, 125, 135, 126, 136, 456},
{123, 124, 134, 125, 135, 245, 146, 246, 256}, {123, 124, 134, 125, 135, 345, 126, 146, 346},
{123, 124, 134, 125, 135, 235, 245, 146, 246}}.

G7 = {123, 124, 134, 234, 125, 135, 235, 145, 245} = K
(3)
5 \ {345},

λ(G7) =
−35 + 13

√
13

27
, x1 = x2 =

5−
√
13

6
, x3 = x4 = x5 =

−2 +
√
13

9
.

F7 = {{123, 124, 135, 345, 146, 256, 346}, {123, 124, 134, 125, 135, 126, 136, 456},
{123, 124, 134, 125, 136, 256, 356, 456}, {123, 124, 134, 125, 135, 145, 126, 136, 146, 156},
{123, 124, 134, 234, 125, 135, 245, 236, 146, 346}}.

In particular we have the following corollary.

Corollary 23. We have the following new Turán densities for finite families of 3-graphs

{

189 + 15
√
5

961
,
6

25
,
8

27
,
1

3
,
7

18
,
32

81
,
13
√
13− 35

27

}

⊆ Π
(3)
fin .

See Section 7 for discussion of our proof methods. Detailed computational proofs
can be found in the appendix files Root5-prf.txt, 6-25-prf.txt, 8-27-prf.txt,

1-3-prf.txt, 7-18-prf.txt, 32-81-prf.txt and Root13-prf.txt.
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4 Turán’s problem

Turán famously conjectured that ex(n,K
(3)
4 ) = e(Tn), thus in particular π(K

(3)
4 ) = 5/9.

If Turán’s conjecture is true then there are in fact exponentially many non-isomorphic
extremal examples of K

(3)
4 3-graphs with ex(n,K

(3)
4 ) edges (as described by Kostochka

[20] and Fon-der-Flass [15]).

Much work has been done on Turán’s conjecture and recently Razborov gave the upper
bound of π(K

(3)
4 ) 6 0.561666. Moreover, he noted that since Turán’s construction Tn

contains no set of four vertices inducing a single edge it is natural to consider a related
“induced Turán” problem.

Given a family of r-graphs F we say that an r-graph G is induced F-free if G has no
induced subgraph isomorphic to a member of F . We then define the induced Turán
number of a family of r-graphs F to be

exind(n,F) = max{e(G) : G is an induced F -free r-graph of order n}.

The induced Turán density of F is then

πind(F) = lim
n→∞

exind(n,F)
(

n

r

) .

Theorem 24 (Razborov [27]). If E1 is the 3-graph with 4 vertices and 1 edge then

πind(K
(3)
4 , E1) = 5/9.

Our aim in this section is to give some non-induced results of a similar nature. In particular
we have an example of a 3-graph H satisfying π(H) = 3/4 and π(K

(3)
4 , H) = 5/9.

Theorem 25. Each of the 3-graphs Hi listed below satisfies π(K
(3)
4 , Hi) = 5/9. They are

all incomparable with respect to blow-ups. (For reference we also note the numerical upper
bounds we found for π(Hi) in each case).

H1 = {123, 124, 134, 125, 135, 245, 345, 126, 236, 146, 156, 456} π(H1) = 3/4,

H2 = {123, 124, 134, 125, 135, 126, 236, 146, 346, 356, 456} π(H2) 6 0.613,

H3 = {123, 124, 134, 125, 135, 245, 345, 126, 236, 346, 356} π(H3) 6 0.613,

H4 = {123, 124, 134, 125, 135, 245, 236, 146, 346, 156, 456} π(H4) 6 0.608,

H5 = {123, 124, 134, 125, 135, 245, 345, 236, 146, 256, 456} π(H5) 6 0.608,

H6 = {123, 124, 134, 125, 135, 245, 345, 126, 136, 246, 346, 456} π(H6) 6 0.597,

H7 = {123, 124, 134, 125, 345, 136, 246, 256, 356, 456} π(H7) 6 0.595,

H8 = {123, 124, 134, 125, 135, 236, 146, 246, 156, 256, 456} π(H8) 6 0.594,

H9 = {123, 124, 134, 125, 135, 245, 236, 346, 356, 456} π(H9) 6 0.555566,

H10 = {123, 124, 134, 125, 135, 245, 236, 246, 346, 456} π(H10) 6 0.55555557.
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The most interesting case of this result is H1 so we focus on that now. It is straightforward
to check that H1 has a subgraph isomorphic to F3,3 and hence is not bipartite. Moreover
H1 is a subgraph of the second example from Theorem 18, hence π(H1) = 3/4. The
proof of the second part of this theorem is again computational and can be found in the
appendix, although a few remarks are in place.

Our proof of Theorem 25 mimics that of Razborov’s proof of Theorem 24. In particular
the flag algebra computation we perform makes use only of information contained in the
{K(3)

4 , H1}-free 3-graphs of order 6. (In Razborov’s case these are replaced by the K
(3)
4 -

free 3-graphs of order 6 with no induced E1.) There are precisely 964 non-isomorphic

K
(3)
4 -free 3-graphs of order 6. Of these exactly 34 do not contain an induced E1 and thus

play a role in Razborov’s proof of Theorem 24. However it turns out that 962 of the
K

(3)
4 -free 3-graphs are H1-free and are thus considered in the proof of Theorem 25.

See the final section for discussion of our proof methods. Detailed computational proofs
of the results in this section can be found in the appendix files K4+H-01-prf.txt to
K4+H-10-prf.txt.

A natural question to ask is whether any of the other K
(3)
4 -free 3-graphs with e(Tn) edges

(described by Kostochka [20]) are also Hi-free for each i. Although some of the other
constructions are Hi-free for some i we have a stability result saying that all almost ex-
tremal examples of {K(3)

4 , Hi}-free 3-graphs have essentially the same structure as Turán’s
construction Tn. See the next section for details.

5 Stability and exactness

Given a family of r-graphs F , we call a sequence of r-graphs {Gn}∞n=1 almost extremal for
F if each Gn is F -free of order n with d(Gn) = π(F) + o(1).

Theorem 26 (Stability). Let F be one of the families of 3-graphs whose Turán density
is determined in Theorem 12, 14, 15, 18 or 25 and let Cn ∈ {Sn, Jn, Tn, Bn} be the
corresponding F-free 3-graph with density d(Cn) = π(F) + o(1). If {Gn}∞n=1 is almost
extremal for F then we can make Gn isomorphic to Cn by changing at most o(n3) edges.

It turns out that some cases of Theorem 26 require a little more work to prove than others.
We give the proof in the “easy” case and then indicate how the other cases can be proved.

Our proof follows a similar argument to that given for the family F = {K(3)
4 , E1} by

Pikhurko (Theorem 2 [25]), although fortunately we can use the fact that each of the
constructions we consider is characterised by its small induced subgraphs to avoid proving
a separate result for each family (see Lemma 27).

If G is an r-graph let Ik(G) = {G[A] : A ⊆ V (G), |A| = k} be the set of all k-vertex
induced subgraphs of G. Given another r-graph H we define p(H;G) to be the induced
density of H in G: this is the probability that if A ⊆ V (G) is a set of |V (H)| vertices
chosen uniformly at random then the subgraph induced by A is isomorphic to H.
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Let Hk(F) be the family of all F -free 3-graphs of order k up to isomorphism. We say
that H ∈ Hk(F) is F-sharp if there exists an almost extremal sequence {Gn}∞n=1 for F
such that p(H;Gn) 6= o(1). If H ∈ Hk(F) is not F -sharp we say it is F-negligible. We
denote the family of F -sharp 3-graphs of order k by H#

k (F).

To motivate our next result consider the following trivial fact. If G is a 2-graph of order
at least 3, with the property that all induced subgraphs of G of order 3 are complete
bipartite graphs then G itself is a complete bipartite graph. In fact analogous results hold
for the 3-graph properties we are interested in.

We say that an r-graph property P is k-induced if for any r-graph G of order at least k,
Ik(G) ⊆ P =⇒ G ∈ P .

Lemma 27. The following 3-graph properties are all 6-induced

PS = {G : G is a complete tripartite 3-graph},
PJ = {G : G is a complete (2, 1)-colourable 3-graph},
PB = {G : G is a complete bipartite 3-graph}.

Proof of Theorem 26: Let F be one of the families given in the statement of Theorem 26
with corresponding extremal construction Cn ∈ {Sn, Jn, Tn, Bn}. Suppose that {Gn}∞n=1

is almost extremal for F .

Our flag algebra proof of the Turán density of F using 6-vertex 3-graphs also provides us
with information about H#

6 (F). The associated proof file, e.g. 5-9-05-prf.txt, contains
a list of all 6-vertex 3-graphs that potentially belong to H#

6 (F). In the easy case (which
we now assume we are in) this tells us that H#

6 (F) ⊆ I6(Cn), i.e. the only induced 6-
vertex subgraphs that can occur with positive induced density in Gn are those that are
found in the corresponding construction Cn.

If F is a family whose Turán density is 5/9 then Pikhurko’s stability theorem (Theorem 2

[23]) for {K(3)
4 , E1} in fact also applies to F , so let us suppose we have a family F whose

Turán density is 2/9, 4/9 or 3/4, determined in Theorem 12, 14, or 18.

We can now apply the hypergraph removal lemma of Rödl and Schacht [28] and obtain a
new sequence of 3-graphs {G′

n}∞n=1 satisfying I6(G
′
n) ⊆ I6(Cn) by changing o(n3) edges.

Thus, by Lemma 27, we know that G′
n is isomorphic to C(V0, V1, V2) for some partition

[n] = V0∪V1∪V2. The result then follows by elementary calculus since e(C(V0, V1, V2)) =
e(G′

n) = e(Cn) + o(n3) implies that the partition V0, V1, V2 must be approximately that
giving Cn and hence by changing at most o(n3) edges in G′

n we can obtain Cn.

This completes the proof in the easy case when our flag algebra proof tells us that
H#

6 (F) ⊆ I6(Cn). (This applies to the families 3-4-02, 5-9-05, 5-9-07, 5-9-08,

5-9-09, 5-9-10, 5-9-12, K4+H-01, K4+H+06.)

There are two slightly more complicated cases:

(1) Rather than determining π(F) directly we made use of blow-ups and Corollary 8.
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(This applies to the families 2-9, 4-9-01, 4-9-02, 5-9-01, 5-9-02, 5-9-03,

5-9-04, 5-9-06, 5-9-11.)

(2) Our flag algebra proof does not immediately give H#
6 (F) ⊆ I6(Cn). (This applies to

the families 3-4-01, 3-4-03, 5-9-01, 5-9-06, K4+H-02, K4+H+03, K4+H-04,

K4+H+05, K4+H-07, K4+H+08, K4+H-09, K4+H+10.)

We can deal with (1) as follows. If we used Corollary 8 to determine π(F) then we have
an auxillary family F ′ and a flag algebra proof determining π(F ′). Moreover for each
F ′ ∈ F ′ there exists F ∈ F such that F 6 F ′. Now suppose that {Gn}∞n=1 is an almost
extremal sequence for F . We need to show that by changing at most o(n3) edges in Gn we
can obtain a sequence of 3-graphs {G′

n}∞n=1 that is almost extremal for F ′ (this will return
us to the easy case of the proof). We can do this using the hypergraph removal lemma as
long as we know that all 6 vertex 3-graphs H that are not F ′-free satisfy p(H;Gn) = o(1).
This is straightforward to prove. Suppose there exists a 6 vertex 3-graph H such that
p(H;Gn) 6= o(1) and H is not F ′-free. Then there exist F ∈ F , F ′ ∈ F ′, t > 1 such that
F ′ is a subgraph of H and F is a subgraph of F ′(t). Moreover there exists ǫ > 0 and a
subsequence {Gnk

}∞k=1 such that p(H;Gnk
) > ǫ for all k. Since H contains F ′, a standard

“supersaturation” argument implies that Gnk
contains arbitrarily large blow-ups of F ′.

Hence for k large, Gnk
contains F ′(t) and so is not F -free, a contradiction.

To deal with complication (2) we have to show that the extra potentially F -sharp 3-graphs
given by our flag algebra proof are in fact F -negligible. We omit the the details of this
argument since it is tedious but not difficult. (In fact there are only two subcases to deal
with: the spurious F -sharp graphs are identical in the cases of 3-4-01 and 3-4-03 and
are also identical for the remaining families.)

If G is a 3-graph we say that a, b ∈ V (G) are twins if for all x, y ∈ V \ {a, b} we have
axy ∈ G iff bxy ∈ G.

Proof of Lemma 27. In our arguments below we will be repeatedly examining small in-
duced subgraphs of a given 3-graph G. If a1, . . . , ak ∈ V (G) then G[a1a2 · · · ak] is the
subgraph induced by {a1, . . . , ak}. Note that the vertices need not be distinct and so the
induced subgraph may have less than k vertices.

We first sketch the proof for PS. Let G be a 3-graph of order n > 6 satisfying I6(G) ⊆ PS.
Define a relation ∼S on V = V (G) by a ∼S b iff a = b or there exist distinct c, d ∈ V \{a, b}
such that G[abcd] = S(ab, c, d) = {acd, bcd}, in which case we say a ∼S b via cd. We claim
that this defines an equivalence relation on V . We need to check transitivity. Suppose
a ∼S b via uv and b ∼S c via xy, then without loss of generality G[abuvxy] = S(ab, ux, vy)
so G[acxy] = S(ac, x, y) and a ∼S c as required.

Next we claim that if a ∼S b then a and b are twins. Let x, y ∈ V \ {a, b} and suppose
axy ∈ G. If a ∼S b via cd, then wlog G[abcdxy] = S(ab, cx, dy) so bxy ∈ G. Similarly if
bxy ∈ G then axy ∈ G, so a and b are twins.
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If G has no edges then G = S([n], ∅, ∅) so suppose xyz ∈ G. It is easy to check that
x, y, z are all in different equivalence classes, say Vx, Vy, Vz. Moreover if v ∈ V \ {x, y, z}
then examining G[vxyz] we see that v ∈ Vx ∪ Vy ∪ Vz. Finally, using the fact that related
vertices are twins, we obtain G = S(Vx, Vy, Vz).

For PJ the proof is very similar, the main difference being that we define a ∼J b iff a = b
or there exist distinct c, d ∈ V \ {a, b} such that G[abcd] = J(ab, cd) = {abc, abd}. Again
∼J is an equivalence relation: if a ∼J b via uv and b ∼J c via xy but a 6∼J c then wlog
c 6= u so G[abcuvx] = J(abx, uvc) and G[abcuxy] = J(bcu, axy), but acu is a non-edge
in the former and an edge in the latter, a contradiction. We claim that if a ∼J b then a
and b are twins. Let x, y ∈ V \ {a, b} and suppose axy ∈ G. If a ∼J b via cd then by
examining G[abcdxy] we see that bxy ∈ G. Similarly if bxy ∈ G then axy ∈ G, so a and
b are twins.

Now either G is empty, so G = J(∅, V ), or G contains an edge. Let xyz ∈ G and suppose
that no two distinct vertices are related. Let v ∈ V \ {x, y, z}, then wlog G[xyzv] =
J(yzv, x). Now if a, b ∈ V \ {x} are distinct then G[xyzvab] = J(yzvab, x) so abx ∈ G
and hence G = J(V \ {x}, x).
Finally let Vx be a largest equivalence class with x, y ∈ Vx, x 6= y. If Γxy = {z : xyz ∈ G}
then it is straightforward to check that V (G) = Vx ∪ Γxy is a partition of V (G) into
independent sets. Thus, since all vertices in Vx are twins, we have G = J(Vx,Γxy).

For PB we define a ∼B b iff a = b or there exist distinct c, d, e ∈ V \ {a, b} such that
G[abcde] = B(ab, cde) (so the only non-edge in G[abcde] is cde), in which case we say
a ∼B b via cde. Again we claim ∼B is an equivalence relation. Suppose a ∼B b via
uvw and b ∼B c via xyz, but a 6∼B c. Without loss of generality we may suppose that
a 6∈ {x, y}, c 6∈ {u, v} and {x, y} 6= {u, v}. So G[abcuvw] = B(ab, cuvw) and G[abcxyz] =
B(bc, xyza). This implies that G[abuvwx] = B(ab, uvwx) and G[abuvwy] = B(ab, uvwy).
But then we have G[acuvxy] = B(ac, uvxy) so a ∼B c. As before related vertices are
twins: suppose a ∼B b via cde. If x, y ∈ V \ {a, b} and axy ∈ G but bxy 6∈ G then
G[abcde] = B(ab, cde) and G[abxy] = B(a, bxy). Now wlog G[abcdxy] = B(ac, bdxy), so
G[bcdexy] = B(∅, bcdexy) is empty, a contradiction, since bcd ∈ G. Hence a and b are
twins.

Let Vx be a largest equivalence class. If |Vx| > 2 then suppose x, y ∈ Vx are distinct. It is
easy to check that G = B(Vx,Γxy). If no equivalence class contains more than one vertex
then either G = B(∅, V ) is empty or one can check that there is a vertex x such that
G = B({x}, V \ {x}).

We note that with a little extra work one can prove that all the 3-graph properties listed
in Lemma 27 are in fact 5-induced.
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5.1 Exactness

Although we have stability for most of our results we have not proved any exact Turán
numbers for the families we consider. In some, if not all cases, it may be possible to
deduce an exact Turán number result from the stability theorem (along the same lines as
Theorem 1 [25]) however the obvious approach to this would require a separate argument
for each F .

6 Questions

There are a number of obvious questions that arise from our work.

We were able to show a number of exact results for single 3-graphs with Turán density
2/9, 4/9, 5/9 and 3/4. Is there a systematic way to find or predict such results?

Question 28. Apart from blow-ups, are there any other operations under which Turán
densities are invariant?

We were able to find a number of new Turán densities of finite families of 3-graphs by
taking a small 3-graph G and then investigating the Turán problem given by forbidding a
family FG of “small” 3-graphs not contained in any blow-up of G. In most cases we were
able to show that π(FG) = λ(G). Does this hold more generally?

Question 29. Is Λ(r) ⊆ Π
(r)
fin ?

Having given the first examples of finite families with irrational Turán densities we suspect
there exist single r-graphs with irrational Turán densities (indeed the pentagon C5 is quite
possibly an example see [22], [27]).

Question 30. Do there exist single r-graphs with irrational Turán densities?

Another natural question is the following:

Question 31. For r > 3, which (if any) of the following containments between sets of
densities are strict?

Π
(r)
1 ⊆ Π

(r)
2 ⊆ · · · ⊆ Π

(r)
fin ⊆ Π(r)

∞ .

Although we did not really consider “induced Turán problems” here, we could certainly
ask analogous questions about the associated sets of densities for induced Turán problems.

7 Computational proofs with flag algebras

Our proofs make use of Razborov’s flag algebra framework introduced in [26]. In particular
we follow the method outlined by Razborov in [27]. For a precise description we refer back
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to Section 2 of our previous paper [5] where we provided a self-contained and detailed
explanation of the method.

There are, however, two important ways in which the computations used to prove the
results in this paper differ from our earlier work. Firstly we make extensive use of
supersaturation, via Corollary 8. For example when computing the Turán density of
H = {123, 124, 345, 156} (in Theorem 12) we use the fact that if

H1 = {123, 124, 134}, H2 = {123, 124, 125, 345}, H3 = {123, 124, 135, 245}

then H 6 Hi for i = 1, 2, 3.

Thus applying Corollary 8 (ii) we have π(H) = π({H,H1, H2, H3}). This makes our
computation significantly easier: there are 192 non-isomorphic 6 vertex 3-graphs that
are H-free but only 38 of these are also {H1, H2, H3}-free. (A very rough proxy for the
difficulty of the computation is the final size of the proof file. In this case the use of
Corollary 8 (ii) reduces our proof to less than 15% of the size of the smallest proof we
could otherwise find. Moreover the computation completes in less than 10% of the time
it would otherwise take.)

The second difference between the computations used to prove the results in this paper
and those in [5] is that in this case we are proving exact sharp Turán density results.

Razborov already achieved this for the induced {K(3)
4 , E1} problem (see Theorem 24)

however in that case good use was made of the extremal construction to guide the con-
version from numerical to exact result. We have found that even without using any
information about the extremal construction we can often identify the sharp inequalities
and zero eigenvalues, and hence make numerical results exact. In fact we have found that
even for problems with many non-isomorphic extremal constructions we can sometimes
prove exact Turán density results (see Baber [1] for an example of this in the hypercube).

This is of particular interest since Turán’s K
(3)
4 problem is a famous example where it is

conjectured that there are many distinct extremal constructions [20], [15]. However we
note that when proving the irrational Turán densities in Theorem 22 we made extensive
use of the extremal constructions. For more discussion of the process used to produce our
proofs from numerical results see Section 2.4 in [2]. Details of how to check and reprove
our results are in the next subsection.

Note, that in order to achieve the required accuracy when converting floating point nu-
merical results into exact proofs in Q (or indeed Q[

√
5], Q[

√
13] for the irrational Turán

densities) we make use of arbitrarily large integers. Indeed a glance at the proof file
Root5-prf.txt reveals integers with over 150 digits.

7.1 Source code

Although all of our proof files are “human readable” their size precludes verification by
hand. However (with the exception of the irrational results) they can all be verified
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using the program DensityChecker.cpp [3]. We also attach the source code used to
generate the majority of our proofs: ExactDensityBounder.cpp [4]. This provides a
simple command line program to give upper bounds for Turán densities of 3-graphs. It
requires a semi-definite program solver: either csdp [6] or sdpa [17], both of which are
freely available.

Detailed installation and usage instructions can be found in the source code files. We
emphasise that these programs are both very easy to install and use.
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[13] P. Erdős and A.H. Stone, On the structure of linear graphs, Bull. Am. Math. Soc. 52
1087–1091, (1946).

[14] V. Falgas-Ravry and E. R. Vaughan, On applications of Razborov’s flag algebra cal-
culus to extremal 3-graph theory arXiv:1110.1623v1

[15] D. G. Fon-Der-Flass, A method for constructing (3, 4)-graphs, Math. Zeitschrift 44
546–550, (1988).
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