Article

New Type of Degenerate Changhee-Genocchi Polynomials

Maryam Salem Alatawi ${ }^{1}$ (D) and Waseem Ahmad Khan ${ }^{2, *(\mathbb{D})}$
1 Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; msoalatawi@ut.edu.sa
2 Department of Mathematics and Natural Sciences, Prince Mohammad Bin Fahd University, P.O. Box 1664, Al Khobar 31952, Saudi Arabia
* Correspondence: wkhan1@pmu.edu.sa

Citation: Alatawi, M.S.; Khan, W.A. New Type of Degenerate Changhee-Genocchi Polynomials. Axioms 2022, 11, 355. https://
doi.org/10.3390/axioms11080355
Academic Editor: Clemente Cesarano

Received: 28 June 2022
Accepted: 21 July 2022
Published: 23 July 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

A remarkably large number of polynomials and their extensions have been presented and studied. In this paper, we consider a new type of degenerate Changhee-Genocchi numbers and polynomials which are different from those previously introduced by Kim. We investigate some properties of these numbers and polynomials. We also introduce a higher-order new type of degenerate Changhee-Genocchi numbers and polynomials which can be represented in terms of the degenerate logarithm function. Finally, we derive their summation formulae.

Keywords: degenerate Genocchi polynomials and numbers; degenerate Changhee-Genocchi polynomials; higher-order degenerate Changhee-Genocchi polynomials and numbers; Stirling numbers

MSC: 11B83; 11B73; 05A19

1. Introduction

Carlitz first proposed the idea of degenerate numbers and polynomials which are associated with Bernoulli and Euler numbers and polynomials (see [1,2]). After Carlitz introduced the degenerate polynomials, many researchers studied the degenerate polynomials related to unique polynomials in diverse regions (see [3]). Recently, Kim et al. [4-6], Sharma et al. [7,8], Muhiuddin et al. [9,10] gave same new and thrilling identities of degenerate special numbers and polynomials which are derived from the non-differential equation. These identities and technical approach are very useful for reading some issues which can be associated with mathematical physics. This paper aims to introduce a new type of degenerate version of the Changhee-Genocchi polynomials and numbers, the so-called new type of degenerate Changhee-Genocchi polynomials and numbers, constructed from the degenerate logarithm function. We derive some explicit expressions and identities for those numbers and polynomials. Additionally, we introduce a new type of higher-order degenerate Changhee-Genocchi polynomials and establish some properties of these polynomials.

The ordinary Euler and Genocchi polynomials are defined by (see [3,11-15])

$$
\begin{equation*}
\frac{2}{e^{\tau}+1} e^{\xi \tau}=\sum_{\omega=0}^{\infty} \mathbb{E}_{\omega}(\xi) \frac{\tau^{\omega}}{\omega!}|\tau|<\pi \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{2 \tau}{e^{\tau}+1} e^{\xi \tau}=\sum_{\omega=0}^{\infty} \mathbb{G}_{\omega}(\xi) \frac{\tau^{\omega}}{\omega!}|\tau|<\pi \tag{2}
\end{equation*}
$$

respectively.
In the case when $\xi=0, \mathbb{E}_{\omega}=\mathbb{E}_{\omega}(0)$ and $\mathbb{G}_{\omega}=\mathbb{G}_{\omega}(0)$ are called the Euler and Genocchi numbers, respectively.

We note that

$$
\mathbb{G}_{0}(\xi)=0, \quad \mathbb{E}_{\omega}(\xi)=\frac{\mathbb{G}_{\omega+1}(\xi)}{\omega+1} \quad(\omega \geq 0)
$$

For any non-zero $\lambda \in \mathbb{R}$ (or \mathbb{C}), the degenerate exponential function is defined by (see [14,15])

$$
\begin{equation*}
e_{\lambda}^{\xi}(\tau)=(1+\lambda \tau)^{\frac{\tilde{\delta}}{\lambda}}, e_{\lambda}^{1}(\tau)=(1+\lambda \tau)^{\frac{1}{\lambda}} \tag{3}
\end{equation*}
$$

By binomial expansion, we obtain

$$
\begin{equation*}
e_{\lambda}^{\xi}(\tau)=\sum_{\omega=0}^{\infty}(\xi)_{\omega, \lambda} \frac{\tau^{\omega}}{\omega!}, \tag{4}
\end{equation*}
$$

where $(\xi)_{0, \lambda}=1,(\xi)_{\omega, \lambda}=(\xi-\lambda)(\xi-2 \lambda) \cdots(\xi-(\omega-1) \lambda)(\omega \geq 1)$.
Note that

$$
\lim _{\lambda \rightarrow 0} e_{\lambda}^{\xi}(\tau)=\sum_{\omega=0}^{\infty} \xi^{\omega} \frac{\tau^{\omega}}{\omega!}=e^{\xi \tau} .
$$

In [1], Carlitz considered the degenerate Euler polynomials given by

$$
\begin{equation*}
\frac{2}{(1+\lambda \tau)^{\frac{1}{\lambda}}+1}(1+\lambda \tau)^{\frac{\xi}{\lambda}}=\sum_{\omega=0}^{\infty} \mathbb{E}_{\omega, \lambda}(\xi) \frac{\tau^{\omega}}{\omega!}(\lambda \in \mathbb{R}) \tag{5}
\end{equation*}
$$

When $\xi=0, \mathbb{E}_{\omega, \lambda}=\mathbb{E}_{\omega, \lambda}(0)$ are called degenerate Euler numbers. The falling factorial sequence is given by

$$
\begin{equation*}
(\xi)_{0}=1,(\xi)_{\omega}=\xi(\xi-1) \ldots(\xi-\omega+1) \quad(\omega \geq 1) \tag{6}
\end{equation*}
$$

As is well known, the higher-order degenerate Euler polynomials are considered by L. Carlitz as follows (see [2]):

$$
\begin{equation*}
\left(\frac{2}{(1+\lambda \tau)^{\frac{1}{\lambda}}+1}\right)^{r}(1+\lambda \tau)^{\frac{\tilde{\tau}}{\lambda}}=\sum_{\omega=0}^{\infty} \mathbb{E}_{\omega, \lambda}^{(r)}(\xi) \frac{\tau^{\omega}}{\omega!} \tag{7}
\end{equation*}
$$

At the point $\xi=0, \mathbb{E}_{\omega, \lambda}^{(r)}=\mathbb{E}_{\omega, \lambda}^{(r)}(0)$ are called the higher-order degenerate Euler numbers. Note that $\lim _{\lambda \rightarrow 0} \mathbb{E}_{\omega, \lambda}^{(r)}(\xi)=\mathbb{E}_{\omega}^{(r)}(\xi) \quad(\omega \geq 0)$.

The degenerate Genocchi polynomials $\mathbb{G}_{\omega}(\xi ; \lambda)$ are defined by (see $[16,17]$)

$$
\begin{equation*}
\frac{2 \tau}{e_{\lambda}(\tau)+1} e_{\lambda}^{\xi}(\tau)=\sum_{\omega=0}^{\infty} \mathbb{G}_{\omega}(\xi, \lambda) \frac{\tau^{\omega}}{\omega!} \tag{8}
\end{equation*}
$$

In the case when $\xi=0, \mathbb{G}_{\omega}(\lambda)=\mathbb{G}_{\omega}(0, \lambda)$ are called degenerate Genocchi numbers.
For $\lambda \in \mathbb{R}$, the degenerate logarithm function $\log _{\lambda}(1+\tau)$, which is the inverse of the degenerate exponential function $e_{\lambda}(\tau)$, is defined by (see [6])

$$
\begin{equation*}
\log _{\lambda}(1+\tau)=\sum_{\omega=1}^{\infty} \lambda^{\omega-1}(1)_{\omega, 1 / \lambda} \frac{\tau^{\omega}}{\omega!} . \tag{9}
\end{equation*}
$$

It is easy to show that

$$
\lim _{\lambda \rightarrow 0} \log _{\lambda}(1+\tau)=\sum_{\omega=1}^{\infty}(-1)^{\omega-1} \frac{\tau^{\omega}}{\omega!}=\log (1+\tau)
$$

Note that $e_{\lambda}\left(\log _{\lambda}(1+\tau)\right)=\log _{\lambda}\left(e_{\lambda}(1+\tau)\right)=1+\tau$.
The degenerate Stirling numbers of the first kind are defined by (see $[5,6,18]$)

$$
\begin{equation*}
\frac{1}{v!}\left(\log _{\lambda}(1+\tau)\right)^{v}=\sum_{\omega=v}^{\infty} S_{1, \lambda}(\omega, v) \frac{\tau^{\omega}}{\omega!}(v \geq 0) \tag{10}
\end{equation*}
$$

Note here that $\lim _{\lambda \rightarrow 0} S_{1, \lambda}(\omega, v)=S_{1}(\omega, v)$, where $S_{1}(\omega, v)$ are called the Stirling numbers of the first kind given by

$$
\frac{1}{v!}(\log (1+\tau))^{v}=\sum_{\omega=v}^{\infty} S_{1}(\omega, v) \frac{\tau^{\omega}}{\omega!}(v \geq 0)
$$

The degenerate Stirling numbers of the second kind (see [19]) are given by

$$
\begin{equation*}
\frac{1}{v!}\left(e_{\lambda}(\tau)-1\right)^{v}=\sum_{\omega=v}^{\infty} S_{2, \lambda}(\omega, v) \frac{\tau^{\omega}}{\omega!}(v \geq 0) \tag{11}
\end{equation*}
$$

It is clear that $\lim _{\lambda \rightarrow 0} S_{2, \lambda}(\omega, v)=S_{2}(\omega, v)$, where $S_{2}(\omega, v)$ are called the Stirling numbers of the second kind given by

$$
\frac{1}{v!}\left(e^{\tau}-1\right)^{v}=\sum_{\omega=v}^{\infty} S_{2}(\omega, v) \frac{\tau^{\omega}}{\omega!}(v \geq 0)
$$

The Daehee polynomials are defined by (see [13])

$$
\begin{equation*}
\frac{\log (1+\tau)}{\tau}(1+\tau)^{\xi}=\sum_{\omega=0}^{\infty} D_{\omega}(\xi) \frac{\tau^{\omega}}{\omega!} \tag{12}
\end{equation*}
$$

When $\xi=0, D_{\omega}=D_{\omega}(0)$ are called the Daehee numbers.
Recently, Kim et al. [5] introduced the new type degenerate Daehee polynomials defined by

$$
\begin{equation*}
\frac{\log _{\lambda}(1+\tau)}{\tau}(1+\tau)^{\xi}=\sum_{\omega=0}^{\infty} D_{\omega, \lambda}(\xi) \frac{\tau^{\omega}}{\omega!} \tag{13}
\end{equation*}
$$

When $\xi=0, D_{\omega, \lambda}=D_{\omega, \lambda}(0)$ are called the degenerate Daehee numbers.
The Changhee polynomials are defined by (see [4])

$$
\begin{equation*}
\frac{2}{2+\tau}(1+\tau)^{\xi}=\sum_{\omega=0}^{\infty} C h_{\omega}(\xi) \frac{\tau^{\omega}}{\omega!} . \tag{14}
\end{equation*}
$$

When $\xi=0, C h_{\omega}=C h_{\omega}(0)$ are called the Changhee numbers.
The higher-order Changhee polynomials are defined by (see [4])

$$
\begin{equation*}
\left(\frac{2}{2+\tau}\right)^{k}(1+\tau)^{\xi}=\sum_{\omega=0}^{\infty} C h_{\omega}^{(k)}(\xi) \frac{\tau^{\omega}}{\omega!} . \tag{15}
\end{equation*}
$$

When $\xi=0, C h_{\omega}^{(k)}=C h_{\omega}^{(k)}(0)$ are called the higher-order Changhee numbers.
The Changhee-Genocchi polynomials are defined by the generating function (see [20])

$$
\begin{equation*}
\frac{2 \log (1+\tau)}{2+\tau}(1+\tau)^{\xi}=\sum_{\omega=0}^{\infty} C G_{\omega}(\xi) \frac{\tau^{\omega}}{\omega!} \tag{16}
\end{equation*}
$$

When $\xi=0, C G_{\omega}=C G_{\omega}(0)$ are called Changhee-Genocchi numbers.
Recently, Kim et al. [20] introduced the modified Changhee-Genocchi polynomials defined by

$$
\begin{equation*}
\frac{2 \tau}{2+\tau}(1+\tau)^{\xi}=\sum_{\omega=0}^{\infty} C G_{\omega}^{*}(\xi) \frac{\tau^{\omega}}{\omega!} \tag{17}
\end{equation*}
$$

When $\xi=0, C G_{\omega}^{*}=C G_{\omega}^{*}(0)$ are called the modified Changhee-Genocchi numbers. From (1) and (17), we see that

$$
\frac{2 \tau}{2+\tau}(1+\tau)^{\xi}=\frac{2 \tau}{e^{\log (1+\tau)}+1} e^{\xi \log (1+\tau)}
$$

$$
\begin{align*}
& =\tau \sum_{v=0}^{\infty} \mathbb{E}_{v}(\xi) \frac{1}{v!}(\log (1+\tau))^{v} \\
= & \tau \sum_{\omega=0}^{\infty}\left(\sum_{v=0}^{\omega} \mathbb{E}_{v}(\xi) S_{1}(\omega, v)\right) \frac{\tau^{\omega}}{\omega!} . \tag{18}
\end{align*}
$$

Thus, from (17) and (18), we obtain

$$
\frac{C G_{\omega+1}^{*}(\xi)}{\omega+1}=\sum_{v=0}^{\omega} \mathbb{E}_{v}(\xi) S_{1}(\omega, v) \quad(\omega \geq 0)
$$

The λ-Changhee-Genocchi polynomials are defined by (see [21])

$$
\begin{equation*}
\frac{2 \log (1+\tau)}{(1+\tau)^{\lambda}+1}(1+\tau)^{\lambda \xi}=\sum_{\omega=0}^{\infty} C G_{\omega, \lambda}(\xi) \frac{\tau^{\omega}}{\omega!} \tag{19}
\end{equation*}
$$

In the case $\xi=0, C G_{\omega, \lambda}=C G_{\omega, \lambda}(0)$ are called the λ-Changhee-Genocchi numbers.
Motivated by the works of Kim et al. [6,20], we first define a new type of degenerate Changhee-Genocchi numbers and polynomials. We investigate some new properties of these numbers and polynomials and derive some new identities and relations between the new type of degenerate Changhee-Genocchi numbers and polynomials and Stirling numbers of the first and second kind. We also define a new type of higher-order ChangheeGenocchi polynomials and investigate some properties of these polynomials.

2. New Type of Degenerate Changhee-Genocchi Polynomials

In this section, we introduce a new type of degenerate Changhee-Genocchi polynomials and investigate some explicit expressions for degenerate Changhee-Genocchi polynomials and numbers. We begin with the following definition as.

For $\lambda \in \mathbb{R}$, we consider the new type of degenerate Changhee-Genocchi polynomials as defined by means of the following generating function

$$
\begin{equation*}
\frac{2 \log _{\lambda}(1+\tau)}{2+\tau}(1+\tau)^{\xi}=\sum_{\omega=0}^{\infty} C G_{\omega, \lambda}(\xi) \frac{\tau^{\omega}}{\omega!} \tag{20}
\end{equation*}
$$

At the point $\xi=0, C G_{\omega, \lambda}=C G_{\omega, \lambda}(0)$ are called the new type of degenerate ChangheeGenocchi numbers.

It is clear that

$$
\begin{gather*}
\sum_{\omega=0}^{\infty} \lim _{\lambda \rightarrow 0} C G_{\omega, \lambda}(\xi) \frac{\tau^{\omega}}{\omega!}=\lim _{\lambda \rightarrow 0} \frac{2 \log _{\lambda}(1+\tau)}{2+\tau}(1+\tau)^{\xi} \\
\quad=\frac{2 \log (1+\tau)}{2+\tau}(1+\tau)^{\xi}=\sum_{\omega=0}^{\infty} C G_{\omega}(\xi) \frac{\tau^{\omega}}{\omega!} \tag{21}
\end{gather*}
$$

where $C G_{\omega}(\xi)$ are called the Changhee-Genocchi polynomials (see Equation (1)).
Theorem 1. For $\omega \geq 0$, we have

$$
C G_{\omega, \lambda}(\xi)=\sum_{v=0}^{\omega} \mathbb{G}_{v}(\xi, \lambda) S_{1, \lambda}(\omega, v)
$$

Proof. Using (8), (10) and (20), we note that

$$
\sum_{\omega=0}^{\infty} C G_{\omega, \lambda}(\xi) \frac{\tau^{\omega}}{\omega!}=\frac{2 \log _{\lambda}(1+\tau)}{e_{\lambda}\left(\log _{\lambda}(1+\tau)\right)+1} e_{\lambda}^{\xi \log _{\lambda}(1+\tau)}
$$

$$
\begin{align*}
& =\sum_{v=0}^{\infty} \mathbb{G}_{v}(\xi, \lambda) \frac{1}{v!}\left(\log _{\lambda}(1+\tau)\right)^{v} \\
& =\sum_{v=0}^{\infty} \mathbb{G}_{v}(\xi, \lambda) \sum_{\omega=v}^{\infty} S_{1, \lambda}(\omega, v) \frac{\tau^{\omega}}{\omega!} \\
& =\sum_{\omega=0}^{\infty}\left(\sum_{v=0}^{\omega} \mathbb{G}_{v}(\xi, \lambda) S_{1, \lambda}(\omega, v)\right) \frac{\tau^{\omega}}{\omega!} . \tag{22}
\end{align*}
$$

Therefore, by (20) and (22), we obtain the result.
Theorem 2. For $\omega \geq 0$, we have

$$
C G_{\omega, \lambda}(\xi)=\sum_{\sigma=0}^{\omega} \sum_{v=0}^{\sigma}\binom{\omega}{\sigma} C G_{\omega-\sigma, \lambda}(\xi)_{v, \lambda} S_{1, \lambda}(\sigma, v) .
$$

Proof. By using (4), (10) and (20), we see that

$$
\begin{gather*}
\sum_{\omega=0}^{\infty} C G_{\omega, \lambda}(\xi) \frac{\tau^{\omega}}{\omega!}=\frac{2 \log _{\lambda}(1+\tau)}{2+t} e_{\lambda}^{\xi \log _{\lambda}(1+\tau)} \tag{23}\\
=\sum_{\omega=0}^{\infty} C G_{\omega, \lambda} \frac{\tau^{\omega}}{\omega!} \sum_{v=0}^{\infty}(\xi)_{v, \lambda} \frac{\left(\log _{\lambda}(1+\tau)\right)^{v}}{v!} \\
=\sum_{\omega=0}^{\infty} G G_{\omega, \lambda} \frac{\tau^{\omega}}{\omega!} \sum_{\sigma=0}^{\infty} \sum_{\omega=0}^{\sigma}(\xi)_{\sigma, \lambda} S_{1, \lambda}(\sigma, v) \frac{\tau^{\sigma}}{\sigma!} \\
=\sum_{\omega=0}^{\infty}\left(\sum_{\sigma=0}^{\omega} \sum_{v=0}^{\sigma}\binom{\omega}{\sigma} C G_{\omega-\sigma, \lambda}(\xi)_{v, \lambda} S_{1, \lambda}(\sigma, v)\right) \frac{\tau^{\omega}}{\omega!} . \tag{24}
\end{gather*}
$$

Therefore, by (20) and (24), we obtain the result.
Theorem 3. For $\omega \geq 0$, we have

$$
\mathbb{G}_{\omega}(\xi, \lambda)=\sum_{v=0}^{\omega} C G_{v, \lambda}(\xi) S_{2, \lambda}(\omega, v) .
$$

Proof. By replacing τ by $e_{\lambda}(\tau)-1$ in (20) and using (8) and (11), we obtain

$$
\begin{gather*}
\sum_{v=0}^{\infty} C G_{v, \lambda}(\xi) \frac{1}{v!}\left(e_{\lambda}(\tau)-1\right)^{v}=\frac{2 \tau}{e_{\lambda}(\tau)+1} e_{\lambda}^{\xi}(\tau) \\
=\sum_{\omega=0}^{\infty} \mathbb{G}_{\omega}(\xi, \lambda) \frac{\tau^{\omega}}{\omega!} . \tag{25}
\end{gather*}
$$

On the other hand,

$$
\begin{gather*}
\sum_{v=0}^{\infty} C G_{v, \lambda}(\xi) \frac{1}{v!}\left(e_{\lambda}(\tau)-1\right)^{\tau}=\sum_{v=0}^{\infty} C G_{v, \lambda}(\xi) \sum_{v=\omega}^{\infty} S_{2, \lambda}(\omega, v) \frac{\tau^{\omega}}{\omega!} \\
=\sum_{\omega=0}^{\infty}\left(\sum_{v=0}^{\omega} C G_{v, \lambda}(\xi) S_{2, \lambda}(\omega, v)\right) \frac{\tau^{\omega}}{\omega!} \tag{26}
\end{gather*}
$$

Therefore, by (25) and (26), we obtain the required result.

Theorem 4. For $\omega \geq 0$, we have

$$
C G_{\omega, \lambda}(\xi)=\sum_{v=0}^{\omega} \mathbb{G}_{v}(\xi, \lambda) S_{1, \lambda}(\omega, v)
$$

Proof. Replacing τ by $\log _{\lambda}(1+\tau)$ in (8) and applying (10), we obtain

$$
\begin{gather*}
\frac{2 \log _{\lambda}(1+\tau)}{2+\tau}(1+\tau)^{\xi}=\sum_{v=0}^{\infty} \mathbb{G}_{v}(\xi, \lambda) \frac{1}{v!}\left(\log _{\lambda}(1+\tau)\right)^{v} \\
=\sum_{v=0}^{\infty} \mathbb{G}_{v}(\xi, \lambda) \sum_{\omega=v}^{\infty} S_{1, \lambda}(\omega, v) \frac{\tau^{\omega}}{\omega!} \\
=\sum_{\omega=0}^{\infty}\left(\sum_{v=0}^{\omega} \mathbb{G}_{v}(\xi, \lambda) S_{1, \lambda}(\omega, v)\right) \frac{\tau^{\omega}}{\omega!} \tag{27}
\end{gather*}
$$

By using (20) and (27), we acquire the desired result.

Theorem 5. For $\omega \geq 0$, we have

$$
C G_{\omega, \lambda}(\xi)=\sum_{v=0}^{\omega}\binom{\omega}{v} C G_{\omega-v}^{*}(\xi) D_{v, \lambda}
$$

Proof. From (13), (17) and (20), we note that

$$
\begin{gather*}
\sum_{\omega=0}^{\infty} C G_{\omega, \lambda}(\xi) \frac{\tau^{\omega}}{\omega!}=\frac{2 \log _{\lambda}(1+\tau)}{2+\tau}(1+\tau)^{\xi} \\
=\frac{2 \tau}{2+\tau}(1+\tau)^{\xi} \frac{\log _{\lambda}(1+\tau)}{\tau} \\
=\sum_{\omega=0}^{\infty} C G_{\omega}^{*}(\xi) \frac{\tau^{\omega}}{\omega!} \sum_{v=0}^{\infty} D_{v, \lambda} \frac{\tau^{v}}{v!} \\
=\sum_{\omega=0}^{\infty}\left(\sum_{v=0}^{\omega}\binom{\omega}{v} C G_{\omega-v}^{*}(\xi) D_{v, \lambda}\right) \frac{\tau^{\omega}}{\omega!} \tag{28}
\end{gather*}
$$

Therefore, by (20) and (28), we obtain the result.
Theorem 6. For $\omega \geq 0$, we have

$$
\frac{C G_{\omega+1, \lambda}(\xi)}{\omega+1}=\sum_{\sigma=0}^{\omega} \sum_{v=0}^{\sigma}\binom{\omega}{\sigma} \mathbb{E}_{v}(\xi) S_{1}(\sigma, v) D_{\omega-\sigma, \lambda}
$$

Proof. From (1), (13) and (20), we note that

$$
\begin{aligned}
& \sum_{\omega=1}^{\infty} C G_{\omega, \lambda}(\xi) \frac{\tau^{\omega}}{\omega!}=\frac{2 \log _{\lambda}(1+\tau)}{2+\tau}(1+\tau)^{\xi} \\
& \quad=\frac{2 \tau}{e^{\log (1+\tau)}+1} e^{\xi \log (1+\tau)} \frac{\log _{\lambda}(1+\tau)}{\tau} \\
& =\tau \sum_{v=0}^{\infty} \mathbb{E}_{v}(\xi) \frac{(\log (1+\tau))^{v}}{v!} \sum_{\omega=0}^{\infty} D_{\omega, \lambda} \frac{\tau^{\omega}}{\omega!} \\
& =\tau \sum_{\sigma=0}^{\infty} \sum_{v=0}^{\sigma} \mathbb{E}_{v}(\xi) S_{1}(\sigma, v) \frac{\tau^{\sigma}}{\sigma!} \sum_{\omega=0}^{\infty} D_{\omega, \lambda} \frac{\tau^{\omega}}{\omega!}
\end{aligned}
$$

$$
\begin{equation*}
=\sum_{\omega=1}^{\infty}\left(\sum_{\sigma=0}^{\omega} \sum_{v=0}^{\sigma}\binom{\omega}{\sigma} \mathbb{E}_{v}(\xi) S_{1}(\sigma, v) D_{\omega-\sigma, \lambda}\right) \frac{\tau^{\omega}}{\omega!} . \tag{29}
\end{equation*}
$$

By (20) and (29), we obtain the result.
Theorem 7. For $\omega \geq 0$, we have

$$
C G_{\omega, \lambda}(\xi)=\sum_{\sigma=0}^{\omega} \sum_{v=0}^{\sigma}\binom{\omega}{\sigma}(v+1)(\xi)_{v, \lambda} \frac{S_{1, \lambda}(\sigma+1, v+1)}{\sigma+1} C G_{\omega-\sigma}^{*} .
$$

Proof. By using (10), (17) and (20), we see that

$$
\begin{gather*}
\frac{2 \log _{\lambda}(1+\tau)}{2+\tau} e_{\lambda}^{\xi \log _{\lambda}(1+\tau)} \\
=\frac{2 \log _{\lambda}(1+\tau)}{2+\tau} \sum_{v=0}^{\infty}(\xi)_{v, \lambda} \frac{\left(\log _{\lambda}(1+\tau)\right)^{v}}{v!} \\
=\frac{2 \tau}{2+\tau} \frac{1}{\tau} \sum_{v=0}^{\infty}(v+1)(\xi)_{v, \lambda} \frac{\left(\log _{\lambda}(1+\tau)\right)^{v+1}}{(v+1)!} \\
=\sum_{\omega=0}^{\infty} C G_{\omega}^{*} \frac{\tau^{\omega}}{\omega!} \frac{1}{\tau} \sum_{v=0}^{\infty}(v+1)(\xi)_{v, \lambda} \sum_{\sigma=v+1}^{\infty} S_{1, \lambda}(\sigma, v+1) \frac{\tau^{\sigma}}{\sigma!} \\
=\sum_{\omega=0}^{\infty} C G_{\omega}^{*} \frac{\tau^{\omega}}{\omega!} \sum_{\sigma=0}^{\infty} \sum_{v=0}^{\sigma}(v+1)(\xi)_{v, \lambda} \frac{S_{1, \lambda}(\sigma+1, v+1)}{\sigma+1} \frac{\tau^{\sigma}}{\sigma!} \\
=\sum_{\omega=0}^{\infty}\left(\sum_{\sigma=0}^{\omega} \sum_{v=0}^{\sigma}\binom{\omega}{\sigma}(v+1)(\xi)_{v, \lambda} \frac{S_{1, \lambda}(\sigma+1, v+1)}{\sigma+1} C G_{\omega-v}^{*}\right) \frac{\tau^{\omega}}{\omega!} . \tag{30}
\end{gather*}
$$

Therefore, by (20) and (30), we obtain the result.
For $d \in \mathbb{N}$ with $d \equiv 1(\bmod 2)$, the following identity is (see [21])

$$
\begin{equation*}
\sum_{a=0}^{d-1}(-1)^{a}(1+\tau)^{a}=\frac{1+(1+\tau)^{d}}{2+\tau} \tag{31}
\end{equation*}
$$

Theorem 8. For $d \in \mathbb{N}$ with $d \equiv 1(\bmod 2)$, we have the following identity

$$
C G_{\omega, \lambda}(\xi)=\sum_{a=0}^{d-1}(-1)^{a} C G_{\omega, \lambda}\left(\frac{a+\xi}{d}\right)
$$

Proof. Thus, for such $d \equiv 1(\bmod 2)$, from (19), (20) and (31), we see that

$$
\begin{gather*}
\sum_{\omega=0}^{\infty} C G_{\omega, \lambda}(\xi) \frac{\tau^{\omega}}{\omega!}=\frac{2 \log _{\lambda}(1+\tau)}{2+\tau}(1+\tau)^{\xi} \\
\quad=\sum_{a=0}^{d-1}(-1)^{a} \frac{2 \log _{\lambda}(1+\tau)}{(1+\tau)^{d}+1}(1+\tau)^{d\left(\frac{a+\xi}{d}\right)} \\
\quad=\sum_{a=0}^{d-1}(-1)^{a} \sum_{\omega=0}^{\infty} C G_{\omega, \lambda}\left(\frac{a+\xi}{d}\right) \frac{\tau^{\omega}}{\omega!} \\
=\sum_{\omega=0}^{\infty}\left(\sum_{a=0}^{d-1}(-1)^{a} C G_{\omega, \lambda}\left(\frac{a+\xi}{d}\right)\right) \frac{\tau^{\omega}}{\omega!} \tag{32}
\end{gather*}
$$

By (20) and (32), we obtain the result.

Theorem 9. For $d \in \mathbb{N}$ with $d \equiv 1(\bmod 2)$, we have the following identity

$$
2 \sum_{a=0}^{d-1}(-1)^{a} D_{\omega, \lambda}(a)=\frac{C G_{\omega+1, \lambda}}{\omega+1}+\frac{C G_{\omega+1, \lambda}(d)}{\omega+1}
$$

Proof. By using (13), (20) and (31), we see that

$$
\begin{gather*}
2 \log _{\lambda}(1+\tau) \sum_{a=0}^{d-1}(-1)^{a}(1+\tau)^{a}=\frac{2 \log _{\lambda}(1+\tau)}{2+\tau}+\frac{2 \log _{\lambda}(1+\tau)}{2+\tau}(1+\tau)^{d} \\
=\frac{2 \log _{\lambda}(1+\tau)}{\tau}\left(\sum_{a=0}^{d-1}(-1)^{a}(1+\tau)^{a}\right) \\
=\sum_{\omega=0}^{\infty} C G_{\omega, \lambda} \frac{\tau^{\omega-1}}{\omega!}+\sum_{\omega=0}^{\infty} C G_{\omega, \lambda}(d) \frac{\tau^{\omega-1}}{\omega!} \\
=\left(2 \sum_{a=0}^{d-1}(-1)^{a} D_{\omega, \lambda}(a)\right) \frac{\tau^{\omega}}{\omega!} \\
=\sum_{\omega=0}^{\infty}\left(\frac{C G_{\omega+1, \lambda}}{\omega+1}+\frac{C G_{\omega+1, \lambda}(d)}{\omega+1}\right) \frac{\tau^{\omega}}{\omega!} . \tag{33}
\end{gather*}
$$

By comparing the coefficients of τ^{ω} on both sides, we obtain the result.
Theorem 10. For $\omega \geq 1$, we have

$$
\omega C G_{\omega-1, \lambda}+2 C G_{\omega, \lambda}=2(\lambda)^{\omega-1}(1)_{\omega, 1 / \lambda}
$$

with $C G_{0, \lambda}=0$.
Proof. From (20), we note that

$$
\begin{gather*}
2 \log _{\lambda}(1+\tau)=\sum_{\omega=0}^{\infty} C G_{\omega, \lambda} \frac{\tau^{\omega}}{\omega!}(\tau+2) \\
=\sum_{\omega=1}^{\infty} C G_{\omega, \lambda} \frac{\tau^{\omega+1}}{\omega!}+2 \sum_{\omega=0}^{\infty} C G_{\omega, \lambda} \frac{\tau^{\omega}}{\omega!} \\
=\sum_{\omega=2}^{\infty} \omega C G_{\omega-1, \lambda} \frac{\tau^{\omega}}{\omega!}+2 \sum_{\omega=0}^{\infty} C G_{\omega, \lambda} \frac{\tau^{\omega}}{\omega!} \\
=2 C G_{1, \lambda}(\tau)+\sum_{\omega=2}^{\infty}\left(\omega C G_{\omega-1, \lambda}+2 C G_{\omega, \lambda}\right) \frac{\tau^{\omega}}{\omega!} . \tag{34}
\end{gather*}
$$

On the other hand,

$$
\begin{equation*}
2 \log _{\lambda}(1+\tau)=2 \sum_{\omega=1}^{\infty}(\lambda)^{\omega-1}(1)_{\omega, 1 / \lambda} \frac{\tau^{\omega}}{\omega!} \tag{35}
\end{equation*}
$$

Therefore, by (34) and (35), we obtain the result.
We now consider a new type of higher-order degenerate Changhee-Genocchi polynomials by the following definition.

Let $r \in \mathbb{N}$, and we consider that a new type of higher-order degenerate ChangheeGenocchi polynomials is given by the following generating function

$$
\begin{equation*}
\left(\frac{2 \log _{\lambda}(1+\tau)}{2+\tau}\right)^{r}(1+\tau)^{\xi}=\sum_{\omega=0}^{\infty} C G_{\omega, \lambda}^{(r)}(\xi) \frac{\tau^{\omega}}{\omega!} \tag{36}
\end{equation*}
$$

When $\xi=0, C G_{\omega, \lambda}^{(r)}=C G_{\omega, \lambda}^{(r)}(0)$ are called the new type of higher-order degenerate Changhee-Genocchi numbers.

It is worth noting that

$$
\lim _{\lambda \rightarrow 0} C G_{\omega, \lambda}^{(r)}(\xi)=C G_{\omega}^{(r)}(\xi)
$$

are called higher-order Changhee-Genocchi polynomials.
Theorem 11. For $\omega \geq 0$, we have

$$
C G_{\omega, \lambda}^{(r+1)}(\xi)=\sum_{v=0}^{\omega}\binom{\omega}{v} C G_{v, \lambda} C G_{\omega-v, \lambda}^{(r)}(\xi) .
$$

Proof. From (20) and (36), we note that

$$
\begin{align*}
& \frac{2 \log _{\lambda}(1+\tau)}{2+\tau} \sum_{\omega=0}^{\infty} C G_{\omega, \lambda}^{(r)}(\xi) \frac{\tau^{\omega}}{\omega!}=\frac{2 \log _{\lambda}(1+\tau)}{2+\tau}\left(\frac{2 \log _{\lambda}(1+\tau)}{2+\tau}\right)^{r}(1+\tau)^{\xi} \\
& \quad\left(\sum_{v=0}^{\infty} C G_{v, \lambda} \frac{\tau^{\omega}}{\omega!}\right)\left(\sum_{\omega=0}^{\infty} C G_{\omega, \lambda}^{(r)}(\xi) \frac{\tau^{\omega}}{\omega!}\right)=\sum_{\omega=0}^{\infty} C G_{\omega, \lambda}^{(r+1)}(\xi) \frac{\tau^{\omega}}{\omega!} \\
& \sum_{\omega=0}^{\infty}\left(\sum_{v=0}^{\omega}\binom{\omega}{v} C G_{v, \lambda} C G_{\omega-v, \lambda}^{(r)}(\xi)\right) \frac{\tau^{\omega}}{\omega!}=\sum_{\omega=0}^{\infty} C G_{\omega, \lambda}^{(r+1)}(\xi) \frac{\tau^{\omega}}{\omega!} \tag{37}
\end{align*}
$$

Comparing the coefficients of τ in above equation, we obtain the result.
Theorem 12. For $r, k \in \mathbb{N}$, with $r>k$, we have

$$
C G_{\omega, \lambda}^{(r)}(\xi)=\sum_{\sigma=0}^{\omega}\binom{\omega}{\sigma} C G_{\sigma, \lambda}^{(r-k)} C G_{\omega-\sigma, \lambda}^{(k)}(\xi) \quad(\omega \geq 0) .
$$

Proof. By (36), we see that

$$
\begin{gather*}
\left(\frac{2 \log _{\lambda}(1+\tau)}{2+\tau}\right)^{r}(1+\tau)^{\xi} \\
=\left(\frac{2 \log _{\lambda}(1+\tau)}{2+\tau}\right)^{r-k}\left(\frac{2 \log _{\lambda}(1+\tau)}{2+\tau}\right)^{k}(1+\tau)^{\xi} \\
=\left(\sum_{\sigma=0}^{\infty} C G_{\sigma, \lambda}^{(r-k)} \frac{\tau^{\sigma}}{\sigma!}\right)\left(\sum_{\omega=0}^{\infty} C G_{\omega, \lambda}^{(k)}(\xi) \frac{\tau^{\omega}}{\omega!}\right) \\
=\sum_{\omega=0}^{\infty}\left(\sum_{\sigma=0}^{\omega}\binom{\omega}{\sigma} C G_{\sigma, \lambda}^{(r-k)} C G_{\omega-\sigma, \lambda}^{(k)}(\xi)\right) \frac{\tau^{\omega}}{\omega!} \tag{38}
\end{gather*}
$$

Therefore, by (36) and (38), we obtain the result.
Theorem 13. For $\omega \geq 0$, we have

$$
C G_{\omega, \lambda}^{(r)}(\xi+\eta)=\sum_{v=0}^{\omega}\binom{\omega}{v} C G_{\omega-v, \lambda}^{(r)}(\xi)(\eta)_{v} .
$$

Proof. Now, we observe that

$$
\sum_{\omega=0}^{\infty} C G_{\omega, \lambda}^{(r)}(\xi+\eta) \frac{\tau^{\omega}}{\omega!}=\left(\frac{2 \log _{\lambda}(1+\tau)}{2+\tau}\right)^{r}(1+\tau)^{\xi+\eta}
$$

$$
\begin{align*}
& =\left(\sum_{\sigma=0}^{\infty} C G_{\sigma, \lambda}^{(r)}(\xi) \frac{\tau^{\sigma}}{\sigma!}\right)\left(\sum_{v=0}^{\infty}(\eta)_{v} \frac{\tau^{v}}{v!}\right) \\
= & \sum_{\omega=0}^{\infty}\left(\sum_{v=0}^{\omega}\binom{\omega}{v} C G_{\omega-v, \lambda}^{(r)}(\xi)(\eta)_{v}\right) \frac{\tau^{\omega}}{\omega!} . \tag{39}
\end{align*}
$$

Equating the coefficients of τ^{ω} on both sides, we obtain the result.
Theorem 14. For $\omega \geq 0$, we have

$$
C G_{\omega, \lambda}^{(r)}=\sum_{v=0}^{\omega}\binom{\omega}{v} C G_{v}^{(*, r)} D_{\omega-v, \lambda}^{(r)} .
$$

Proof. By making use of (36), we have

$$
\begin{gather*}
\left(\frac{2 \log _{\lambda}(1+\tau)}{2+\tau}\right)^{r}=\left(\frac{2 t}{2+\tau}\right)^{r}\left(\frac{\log _{\lambda}(1+\tau)}{\tau}\right)^{r} \\
=\left(\sum_{v=0}^{\infty} C G_{v}^{(*, r)} \frac{\tau^{v}}{v!}\right)\left(\sum_{\omega=0}^{\infty} D_{\omega, \lambda}^{(r)} \frac{\tau^{\omega}}{\omega!}\right) \\
=\sum_{\omega=0}^{\infty}\left(\sum_{v=0}^{\omega}\binom{\omega}{v} C G_{v}^{(*, r)} D_{\omega-v, \lambda}^{(r)}\right) \frac{\tau^{\omega}}{\omega!} \tag{40}
\end{gather*}
$$

Therefore, by (36) and (40), we obtain the result.

3. Conclusions

Motivated by the research work of [6,20,21], we defined a new type of degenerating Changhee-Genocchi polynomials which turned out to be classical ones in the special cases. We also derived their explicit expressions and some identities involving them. Later, we introduced the higher-order degenerate Changhee-Genocchi polynomials and deduced their explicit expressions and some identities by making use of the generating functions method, analytical means and power series expansion.

Author Contributions: Conceptualization, M.S.A. and W.A.K.; methodology, W.A.K.; software, M.S.A.; validation, M.S.A.; formal analysis, W.A.K.; investigation, M.S.A.; resources, W.A.K.; data curation, M.S.A.; writing-original draft preparation, W.A.K; writing-review and editing, W.A.K.; visualization, M.S.A.; supervision, W.A.K. All authors have read and agreed to the published version of the manuscript.
Funding: There is no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Acknowledgments: The authors wish to express their appreciation to the reviewers for their helpful suggestions which greatly improved the presentation of this paper.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Carlitz, L. Degenerate Stirling Bernoulli and Eulerian numbers. Util.Math. 1979, 15, 51-88.
2. Carlitz, L. A degenerate Staud-Clausen theorem. Arch. Math. 1956, 7, 28-33. [CrossRef]
3. Khan, W.A.; Muhiuddin, G.; Muhyi, A.; Al-Kadi, D. Analytical properties of type 2 degenerate poly-Bernoulli polynomials associated with their applications. Adv. Diff. Equ. 2021, 2021, 420. [CrossRef]
4. Kim, D.S.; Kim, T. Higher-order Changhee numbers and polynomials. Adv. Studies Theor. Phys. 2014, 8, 365-373. [CrossRef]
5. Kim, T.; Kim, D.S.; Kim, H.-Y.; Kwon, J. Some results on degenerate Daehee and Bernoulli numbers and polynomials. Adv. Diff. Eq. 2020, 2020, 311. [CrossRef]
6. Kim, D.S.; Kim, T. A note on a new type of degenerate Bernoulli numbers. Russ. J. Math. Phys. 2020, 27, 227-235. [CrossRef]
7. Sharma, S.K.; Khan, W.A.; Araci, S.; Ahmed, S.S. New type of degenerate Daehee polynomials of the second kind. Adv. Differ. Equ. 2020, 2020, 428. [CrossRef]
8. Sharma, S.K.; Khan, W.A.; Araci, S.; Ahmed, S.S. New construction of type 2 of degenerate central Fubini polynomials with their certain properties. Adv. Differ. Equ. 2020, 2020, 587. [CrossRef]
9. Muhiuddin, G.; Khan, W.A.; Muhyi, A.; Al-Kadi, D. Some results on type 2 degenerate poly-Fubini polynomials and numbers. Comput. Model. Eng. Sci. 2021, 29, 1051-1073. [CrossRef]
10. Muhiuddin, G.; Khan, W.A.; Al-Kadi, D. Construction on the degenerate poly-Frobenius-Euler polynomials of complex variable. J. Function Spaces 2021, 2021, 3115424. [CrossRef]
11. Khan, W.A.; Acikgoz, M.; Duran, U. Note on the type 2 degenerate multi-poly-Euler polynomials. Symmetry 2020, 12, 1691. [CrossRef]
12. Khan, W.A.; Haroon, H. Some symmetric identities for the generalized Bernoulli, Euler and Genocchi polynomials associated with Hermite polynomials. Springer Plus 2016, 5, 1920. [CrossRef] [PubMed]
13. Khan, W.A.; Nisar, K.S.; Duran, U.; Acikgoz, M.; Araci, S. Multifarious implicit summation formulae of Hermite-based polyDaehee polynomials. Appl. Math. Inf. Sci. 2018, 12, 305-310. [CrossRef]
14. Khan, W.A.; Muhyi, A.; Ali, R.; Alzobydi, K.A.H.; Singh, M.; Agarwal, P. A new family of degenerate poly-Bernoulli polynomials of the second kind with its certain related properties. AIMS Math. 2021, 6, 12680-12697. [CrossRef]
15. Khan, W.A.; Ali, R.; Alzobydi, K.A.H.; Ahmed, N. A new family of degenerate poly-Genocchi polynomials with its certain properties. J. Funct. Spaces 2021, 2021, 6660517. [CrossRef]
16. Lim, D. Some identities of degenerate Genocchi polynomials. Bull. Korean Math. Soc. 2016, 53, 569-579. [CrossRef]
17. Sharma, S.K. A note on degenerate poly-Genocchi polynomials. Int. J. Adv. Appl. Sci. 2020, 7, 1-5. [CrossRef]
18. Kwon, H.-I.; Kim, T.; Park, J.W. A note on degenerate Changhee-Genocchi polynomials and numbers. Glob. J. Pure Appl. Math. 2016, 12, 4057-4064.
19. Kim, T. A note on degenerate Stirling numbers of the second kind. Proc. Jangjeon Math. Soc. 2018, 21, 589-598.
20. Kim, B.M.; Jang, L-.C.; Kim, W.; Kwon, H.I. Degenerate Changhee-Genocchi numbers and polynomials. J. Ineq. Appl. 2017, 2017, 294. [CrossRef]
21. Kim, B.M.; Jeong, J.; Rim, S.H. Some explicit identities on Changhee-Genocchi polynomials and numbers. Adv. Diff. Equ. 2016, 2016, 202. [CrossRef]
