
ar
X

iv
:1

50
3.

05
86

8v
1 

 [
co

nd
-m

at
.m

es
-h

al
l]

  1
9 

M
ar

 2
01

5

A new type of Weyl semimetal with quadratic double Weyl

fermions in SrSi2

Shin-Ming Huang∗,1 Su-Yang Xu∗,2 Ilya Belopolski,2 Chi-Cheng Lee,1 Guoqing

Chang,1 BaoKai Wang,1, 3 Nasser Alidoust,2 Madhab Neupane,2 Hao Zheng,2 Daniel

Sanchez,2 Arun Bansil,3 Guang Bian,2 Hsin Lin,1, † and M. Zahid Hasan ‡2, §

1Centre for Advanced 2D Materials and Graphene

Research Centre National University of Singapore,

6 Science Drive 2, Singapore 117546 and Department of Physics,

National University of Singapore, 2 Science Drive 3, Singapore 117542

2Joseph Henry Laboratory, Department of Physics,

Princeton University, Princeton, New Jersey 08544, USA

3Department of Physics, Northeastern University,

Boston, Massachusetts 02115, USA

(Dated: March 20, 2015)

∗ These authors contributed equally to this work.
‡ Corresponding authors (emails): mzhasan@princeton.edu and nilnish@gmail.com

1

http://arxiv.org/abs/1503.05868v1


2

Abstract

Relativistic fermions can be of three important varieties: Dirac, Majorana and Weyl. Recently,

the Weyl semimetals, whose low-lying excitations are Weyl Fermions, have attracted worldwide

attention due to their wide range of exotic electro-magnetic properties expected in theory. The ex-

perimental realization had remained elusive for a long time despite much efforts. Very recently, pho-

toemission experiments (ARPES) have shown strong evidence identifying the first Weyl semimetal

state in stoichiometric solid TaAs which marks the beginning of experimental research activity on

this fascinating topic. In order to facilitate the transition of Weyl semimetals from a purely theo-

retical concept to the realm of experimental activities, it is of crucial importance to identify other

material candidates. In this paper, we propose such a Weyl semimetal state in an inversion break-

ing, stoichiometric compound strontium silicide, SrSi2, with many new and novel properties that

are distinct from the TaAs family even in theoretical concepts. We theoretically show that SrSi2

is a Weyl semimetal even without spin-orbit coupling and that, after the inclusion of spin-orbit

coupling, two Weyl fermions stick together forming an exotic double Weyl fermion with quadratic

dispersions and a higher chiral topological charge of 2. Moreover, we find that the Weyl nodes

with opposite charges are located at different energies due to the absence of mirror symmetry in

SrSi2, leading to a unique topological quantum response that an external magnetic field can induce

a dissipationless current. Our systematic results not only identify a much-needed robust Weyl

semimetal candidate but also open the door to new topological Weyl physics that is not possible

in the TaAs family of materials.
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Analogous to graphene and the three-dimensional topological insulator, Weyl semimetals

are widely believed to open the next wave of experimental activities in topological condensed

matter physics.[1–11] A Weyl semimetal represents an elegant example of the correspondence

between condensed matter and high energy physics, because its low energy excitations,

the Weyl fermions, are massless particles that have played an important role in quantum

field theory and the standard model but have not been observed as a fundamental particle

in nature. A Weyl semimetal is also a topologically non-trivial metallic phase of matter

extending the classification of topological phases beyond Kane-Mele topological insulators

[4–6, 11]. The nontrivial topological nature guarantees the existence of exotic Fermi arc

electron states on the surface of a Weyl semimetal. In contrast to a topological insulator

where the bulk is gapped and only the Dirac cones on its surfaces are of interest, in a

Weyl semimetal, both the Weyl fermions in the bulk and the Fermi arcs on the surface are

fundamentally new and are expected to give rise to a wide range of exotic phenomena in

bulk materials [2, 12–18].

Very recently, photoemission experiments have reported strong evidence demonstrating

the first realization of a Weyl semimetal state in the inversion symmetry breaking compound,

TaAs [19–22]. Therefore, the field of Weyl semimetal is now at a stage that is similar to the

first discovery of the topological insulator surface states in the BiSb semiconductors in 2007,

meaning that it is crucially important to identify other robust Weyl semimetal candidates

that possess properties that are distinct from the TaAs family of materials. In this paper, we

propose a new type of Weyl semimetal in an inversion breaking, stoichiometric compound

strontium silicide, SrSi2. Our systematic first-principles band structure calculations show

that SrSi2 is a Weyl semimetal even in the absence of spin-orbit coupling. Upon including

spin-orbit coupling, our study shows that the Weyl semimetal state remains intact, and,

more interestingly, that two single Weyl fermions with the same chiral charge are bounded

together forming a double Weyl fermion featuring a quadratic dispersion due to an additional

C4 symmetry. We find that such a double Weyl fermion in SrSi2 exhibits a high (larger than

1) chiral topological charge of 2. Our surface state calculations further show that the chiral

charge 2 in the double Weyl fermions leads to an interesting phenomenon that two surface

Fermi arcs thread through the same Weyl node. Furthermore, due to the simultaneous

absence of mirror symmetry and inversion symmetry in SrSi2, our calculations show that

the Weyl nodes with opposite charges are located at different energies, leading to a new
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and unique topological transport phenomenon that an external magnetic field can induce an

equilibrium dissipationless current [12]. Our prediction of the Weyl semimetal state in SrSi2

serves as an important and timely contribution and pave the way for realizing many new

phenomena such as quadratic Weyl fermions, higher chiral charges, magnetic field driven

dissipationless currents, which are not possible in the known Weyl semimetal TaAs.

SrSi2 crystalizes in a simple cubic lattice system. The lattice constant is a = 6.563

Å
−1

and the space group is P4332 (#212). As seen in Fig.1a, the crystal lacks inversion

and mirror symmetries. Since SrSi2 is a nonmagnetic system that respects time-reversal

symmetry, the absence of inversion symmetry is fundamental for realizing a Weyl semimetal

phase. The lack of mirror symmetry also has important consequences to the energy positions

of the Weyl nodes, which will be discussed in the following paragraphs. The bulk and (001)

surface high symmetry points are noted in Fig.1b, where the centers of the square faces are

the X points, the centers of the edges are the M points, and the corners of the cube are the

R points.

We try to understand the electronic properties of SrSi2 at a qualitative level based on the

ionic model. The electronic configuration of Sr is 4s2 whereas the electronic configuration

of Si is 3s23p2. Each Sr atom has a strong tendency to give out two electrons to achieve a

full shell configuration in an ionic compound, leading to an ionic state of Sr+2. This means

that Si has an ionic state of Sr−1 in SrSi2, which is different from the most common ionic

state of Si, Si+4, as in SiO2. This situation resembles another well-known semimetal Na3Bi.

In both compounds, an element that usually forms a positive ionic state (such as Si+4 or

Bi+3) in an ionic compound is forced to form a negative ionic state (such as Si−1 or Bi−3).

However, we emphasize that a key difference between SrSi2 and Na3Bi is that the SrSi2

crystal breaks space inversion symmetry. Based on the above picture, we expect that the

valence electronic states mainly arise from the 3p orbitals of Si. Indeed, this is confirmed

by our first-principles calculation results. Fig.1c shows the calculated bulk band structure

along high-symmetry directions in the absence of spin-orbit coupling. We observe a clear

crossing between the bulk conduction and valence bands along the Γ −X direction, which

agrees with our expectation that SrSi2 is likely to be a semimetal based on the ionic model

picture. Interestingly, we note that the band crossing does not enclose any high symmetry

or time-reversal invariant Kramers’ points. In the vicinity of the crossings, the bands are

found to disperse linearly along the Γ−X direction as shown in Fig.1d. The two crossings
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along Γ−X without spin-orbit coupling are noted as W1 and W2. At this point, one cannot

conclude whether the conduction and valence bands between Γ −X only touch at the two

discrete points, W1 and W2 or if they dip into each other to form a 1D line node crossing.

Since SrSi2 lacks inversion symmetry, the spin degeneracy of the bulk bands is lifted except

at the Kramers’ points when spin-orbit coupling is turned on. However, remarkably, we find

that the touchings at W1 and W2 remain intact (Fig.1e,f), where the band with one type

of spin is gapped but the other spin remains gapless.

We systematically study the nature of the band crossings in Fig.2. Let us first consider

the band structure in the vicinity of the crossings W1 and W2 without spin-orbit coupling.

Interestingly, we find that the bands disperse linearly along all three directions in vicinity

of W1 (Fig.2d). This fact suggests that SrSi2 is either a Dirac or a Weyl semimetal without

spin-orbit coupling. We note that a Dirac semimetal is only possible in the presence of

spin-orbit coupling [26], and therefore the band crossings W1 and W2 are likely to be Weyl

nodes. In order to rigorously show that this is indeed the case, we have checked the chiral

charges of W1 and W2 by calculating the Berry flux through a closed surface that encloses

W1 and W2. Our calculation shows that W1 and W2 carry nonzero a chiral charge, which

proves that they are Weyl nodes. Therefore, SrSi2 is already a Weyl semimetal even without

spin-orbit coupling.

Now we study the band structure with spin-orbit coupling. This means that each Weyl

node without spin-orbit coupling should be considered as two degenerate Weyl cones with

the same chiral charge but the opposite physical spins. In general, spin-orbit coupling is

expected to lift the spin degeneracy due to the lack of inversion symmetry in SrSi2. For W3

and W4, as shown in Fig.2c the degeneracy of the physical spin of each W3 or W4 Weyl node

is broken, and each W3 (W4) split into two Weyl nodes, W3’ and W3” (W4’ and W4”) that

are separated in momentum space. However, for W1 and W2, we observe a very interesting

phenomenon: For example, if we consider a W1 that is located along the kx axis, then W1

does not split into two separated Weyl nodes as spin-orbit coupling is included. Instead,

the dispersions of the Weyl bands along ky and kz directions become quadratic whereas the

dispersion along kx remains linear, realizing a novel quadratic Weyl cone, which we note

as W1’ in Fig.2c. We have calculated the chiral charge associated with the quadratic Weyl

node and our results reveal a chiral charge of 2. Usually, the Weyl cones in a Weyl semimetal

disperse linearly and have chiral charges of ±1. Therefore, a quadratic Weyl cone with a



6

higher (larger than 1) chiral charge is already interesting and novel by itself. Furthermore,

recent theories have suggested that a quadratic band touching in 3D may exhibit interesting

non-Fermi liquid interaction effects because the long-range tail of the Coulomb repulsion

is not screened [27, 28]. This may potentially lead to new correlated topological states.

Another interesting property of SrSi2 is that the Weyl nodes with opposite charges are

located at different energies. This is due to the lack of mirror symmetry in the crystal,

because a mirror symmetry operation would reflect a Weyl node on one side of the mirror

plane to a Weyl node with the opposite chiral charge at the same energy. Such a property is

interesting because It has been proposed that having Weyl nodes with the opposite chiralities

at different energies can lead to a new and unique topological transport phenomenon that

an external magnetic field can induce an equilibrium dissipationless current [12].

A key signature of a Weyl semimetal is the presence of Fermi arc surface states, which

connect the Weyl points in a surface BZ. We present calculations of the (001) surface states

in Fig. 3. The projected Weyl nodes are noted as black and white circles in Fig. 3a. The

bigger circles correspond to the quadratic Weyl nodes with chiral charges of ±2 whereas the

smaller ones correspond to the linear Weyl nodes with chiral charges of ±1. At first glance,

it can be seen that the distribution of the bulk Weyl nodes is C4 symmetric. By contrast, the

Fermi surface of the surface states clearly violate the C4 symmetry. This is consistent with

the fact that the bulk crystal has C4 symmetry but the (001) surface in fact violates such a

symmetry. More importantly, Fig. 3a shows that the surface states are Fermi arcs because

they connect the bulk Weyl nodes, as seen in the area that is highlighted by the blue dotted

box. If one looks closely at the highlighted area, there are in fact two Fermi arcs that are

very close to each other in momentum space. This is consistent with the chiral charge of

2 of the quadratic Weyl node that the Fermi arcs are terminated into. On the other hand,

we note that because the quadratic Weyl nodes W1’ and W2’ are not located at the same

energy, it is not possible to find an energy where only the Weyl nodes cross the Fermi level.

The shaded areas in Fig. 3a represent the projections of the bulk bands that cross the Fermi

level. Due to the existence of bulk Fermi surfaces, we find that the Fermi arcs may connect

a Weyl node at one end but merge into the bulk continuum. We now study the energy

dispersion of the surface states and the bulk band continuum. The calculated dispersion

along Cut 1 (the black dotted line) is shown in Fig. 3b. The bulk band has a full gap along

Cut 1. On the other hand, we find surface states that connect acres the bulk band gap. The
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red and blue lines show the surface states from the top and the bottom surface states. If

one only counts the surface states from the top surface, then it can be seen that there are

four right-going surface states and only two left-going ones. Therefore, the Chern number

of this 2D k-slice, Cut 1, is 2. The nonzero Chern number is another key feature of a Weyl

semimetal because in a topological insulator the Chern number of any 2D k-slice of the bulk

BZ has to remain zero. We note that the Chern number of 2 is obtained from the electronic

structure of the surface states (Fig. 3b) through the surface-bulk correspondence principle.

On the other hand, we can also reach the same conclusion consistently by studying the bulk.

If one studies the 2D k-slice Cut 2 (the green dotted line) that goes across the Ȳ (0, π) point

(Fig. 3a), the Chern number of Cut 2 must be 0 because it goes through the Kramers points

Ȳ (0, π) and M̄ (π, π). Then one can scan the 2D k-slice continuously from Cut 2 to Cut 1

along the direction indicated by the blue arrow in Fig. 3a, count the number of Weyl nodes

and their chiral charges that have been crossed (Figs. 2a-c), and one will find that there

are eight single Weyl nodes with the chiral charge of +1, eight single Weyl nodes with the

chiral charge of -1 and one quadratic Weyl node with chiral charge of +2 that are scanned

through during this process, which is entirely consistent with the Chern number of 2 of Cut

1.

Finally, we test the symmetry origin of the quadratic Weyl fermions in SrSi2. We note that

all the quadric Weyl nodes are located on the kx, ky and kz axes which are the C4 rotational

axes of the crystal. This suggests that the quadratic Weyl fermions are likely protected by

the C4 symmetry. In order to test this speculation, we apply a uniaxial pressure along the ẑ

direction that compresses the lattice as shown in Fig. 4a. The consequence is that it breaks

the C4 symmetries along the kx and the ky directions but preserves the C4 symmetry along

the kz direction. We calculate the band structure under such a pressure. Our result in Fig. 4b

shows that each quadratic Weyl node located on the kx or the ky axis is deformed into two

single (linear) Weyl nodes, whereas all quadratic Weyl nodes onkz remain intact. Therefore,

the quadratic Weyl node is protected by the C4 rotational symmetry of the axis where the

node is located. We note that previously quadratic Weyl fermions were only predicted in

the Weyl semimetal candidate HgCr2Se4 [29, 30]. However, the experimental realization

of the Weyl semimetal state in HgCr2Se4 has been proven to be difficult, because there is

no preferred magnetization axis in its cubic structure, which likely leads to the formation

of many small ferromagnetic domains. Here, our propose provides the first opportunity to
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realize the exotic quadric Weyl fermions in an inversion symmetry breaking single crystalline

compound that does not rely on magnetic ordering.

Finally, we highlight the experimental feasibility of SrSi2. We note that, prior to our

prediction of the Weyl semimetal state in TaAs [19], there have been a number of candidates

for a Weyl semimetal. However, those proposals have proven difficult to carry out because

they rely on magnetic ordering to break time-reversal symmetry or fine-tuning the chemical

composition of an alloy [4, 10, 30–33]. Our proposal of TaAs was the first Weyl semimetal

candidate in a stoichiometric, inversion symmetry breaking crystal, which does not rely on

magnetic ordering over sufficiently large domains or fine-tuning the chemical composition

[19]. The fact that the Weyl semimetal state has been observed in TaAs [21, 22] demonstrates

that such conditions are essential for the experimental realization. We emphasize that SrSi2

is also a stoichiometric, inversion symmetry breaking single crystalline compound. This fact

highlights the experimental feasibility for realizing the predicted Weyl semimetal state in

SrSi2.

In summary, we have proposed a new type of Weyl semimetal in SrSi2. We have shown

that SrSi2 features many unusual properties not present in the TaAs family. SrSi2 is a Weyl

semimetal even in the absence of spin-orbit coupling. After including spin-orbit coupling,

two single Weyl fermions with the same chiral charge are bounded together forming a double

Weyl fermion featuring a quadratic dispersion due to an additional C4 symmetry. We have

found that such a double Weyl fermion in SrSi2 exhibits a high (larger than 1) chiral charge

of 2. Furthermore, the Weyl nodes with opposite charges are located at different energies,

leading to a unique topological transport phenomenon that an external magnetic field can

induce an equilibrium dissipationless current [12]. The fact that our proposal does not rely

on magnetic ordering over sufficiently large domains or fine-tuning the chemical composition

demonstrates its feasibility in experiments.
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FIG. 1: Crystal and electronic structure of SrSi2. a, Unit cell cubes from different views.

A unit cell contains four Sr and eight Si atoms. b,c, Band structures along high-symmetry lines

without and with SOC. In (b), the ∆2 and ∆4 bands will cross at W1 and W2 along ΓX, which

are highlighted by gray bricks and brought into closeup in the right. The monopole charges at W1

and W2 are CW = +1 and −1, respectively. In (c), SOC splits two bands: ∆2 → ∆7 + ∆8 and

∆4 → ∆6 +∆7. Two ∆7 bands will repel by a gap, while ∆6 and ∆8 cross and create CW = ±2

WPs, W1’ and W2’ respectively. There are other crossings between ∆7 and ∆8 and between ∆6

and ∆7, which are also WPs but will not be discussed here.
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FIG. 2: Distribution of Weyl points and their dispersions. Without SOC 60 WPs in total,

while with SOC 108 in total. a, Positions of WPs without SOC. Colors of circles stand for the signs

of the monopole charge, black for positive and white for negative. b,c, Positions of WPs without

(b) and with (c) SOC, respectively. Upper panels: the first quadrant of the kz = 0 plane; lower

panels: the first quadrant of the kx − ky = 0 plane. Distinct WPs not related by symmetry are

labelled (W1∼W4). When SOC is on, WPs will be tagged with prime or double prime superscripts.

d,e, Energy dispersions of WPs with and without SOC. f, The schematic of effects of SOC on the

WPs. After hybridization of two degenerate single-WPs, those on the axes will double their charge,

while those not on the axes, instead, will split into two from each point.
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FIG. 3: (001)-projected surface states on SrSi2. a, Fermi arcs for top surface states at energy

of W1’ (double-WP). If zoom in, there are two lines with little separation owing to weak SOC. The

Fermi arcs from the projection of a WP will merge into the bulk bands when the opposite charged

WP is at different energy. b, E-k dispersion at ky = π/2 (the horizontal dashed line in (a)). Red

lines for top surface states and blue ones for bottom surface states. For this ky = π/2 plane, it is a

two-dimensional quantum Hall system with Chern number −2, such that there are two chiral edge

states (for every surface) connecting the conduction and valence bands.
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FIG. 4: Quadratic Weyl points. Under uniaxial pressure along the z direction, C4 rotation

axes, kx and ky, are lost, making double-WPs on these two axes split into two single-WPs away

from the axes. The transformation of the energy dispersion is illustrated by cartoon on the most

right.
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