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NEW UNIQUENESS CONDITIONS FOR THE CANONICAL
POLYADIC DECOMPOSITION OF THIRD-ORDER TENSORS∗

MIKAEL SØRENSEN† AND LIEVEN DE LATHAUWER†

Abstract. The uniqueness properties of the canonical polyadic decomposition (CPD) of higher-
order tensors make it an attractive tool for signal separation. However, CPD uniqueness is not
yet fully understood. In this paper, we first present a new uniqueness condition for a polyadic
decomposition (PD) where one of the factor matrices is assumed to be known. We also show that
this result can be used to obtain a new overall uniqueness condition for the CPD. In signal processing
the CPD factor matrices are often constrained. Building on the preceding results, we provide a
new uniqueness condition for a CPD with a columnwise orthonormal factor matrix, representing
uncorrelated signals. We also obtain a new uniqueness condition for a CPD with a partial Hermitian
symmetry, useful for tensors in which covariance matrices are stacked, which are common in statistical
signal processing. We explain that such constraints can lead to more relaxed uniqueness conditions.
Finally, we provide an inexpensive algorithm for computing a PD with a known factor matrix that
is also useful for the computation of the full CPD.

Key words. tensor, polyadic decomposition, parallel factor, canonical decomposition, canonical
polyadic decomposition
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1. Introduction. Tensor decompositions are finding more and more applica-
tions in signal processing, data analysis, and machine learning. For instance, canon-
ical polyadic decomposition (CPD) is becoming a basic tool for signal separation.
Essentially, this is due to the fact that CPD is unique under mild conditions, com-
pared to decomposition of a matrix in rank-1 terms. Thanks to their uniqueness, the
rank-1 terms are easily associated with interpretable data components. Numerous
applications have been reported in independent component analysis, exploratory data
analysis, wireless communication, radar, chemometrics, psychometrics, sensor array
processing, and so on [1, 2, 7, 20, 21, 17, 19, 14, 15]. However, the understanding of
uniqueness is lagging behind the use of CPD in practice.

Many uniqueness conditions for the CPD such as those developed in [16, 12, 27,
8, 9] are based on Kruskal’s permutation lemma [16]. To prove uniqueness of a CPD,
one may first prove the uniqueness of one factor matrix. In the next step, overall
CPD uniqueness is obtained from the uniqueness of a polyadic decomposition (PD)
with a known factor matrix. The former problem has been thoroughly studied in [8].
In this paper we focus on the latter problem.
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1382 MIKAEL SØRENSEN AND LIEVEN DE LATHAUWER

Besides uniqueness, the problem of studying PD with a known factor matrix
has direct relevance in applications. As an example, we mention that several wireless
communication systems based on tensor-coding have been proposed (e.g., [3, 18, 4, 5])
since their conception in [22]. It suffices to say that many tensor-based wireless com-
munication systems essentially rely on computing a PD with a known factor. However,
mainly optimization-based methods such as alternating least squares (ALS) have been
considered. Such iterative methods are not guaranteed to find the decomposition, even
in the exact case. Thus, an optimization-based method can suffer from slow conver-
gence (many iterations may be needed) and local minima (many initializations may
be needed). On the other hand, an algebraic method is guaranteed to find the decom-
position in the exact case. For sufficiently high signal-to-noise ratio (SNR), algebraic
methods can provide an inexpensive but accurate estimate of the solution that can
be used to initialize an optimization-based algorithm. Hence, the development of an
algebraic method for computing the PD with a known factor matrix is another rele-
vant problem that will be addressed in this paper. For this reason we will develop a
constructive uniqueness proof for the PD with a known factor matrix.

The contributions of this paper are the following. We first present a new con-
structive uniqueness condition for a PD with a known factor matrix that leads to
more relaxed conditions than those obtained in [9] and is eligible in cases where none
of the involved factors have full column rank. Based on this result we propose a
new, relatively easy-to-check deterministic overall uniqueness condition for the CPD
that is comparable with recent relaxed deterministic overall CPD uniqueness condi-
tions [9]. In the supplementary material we present a partial uniqueness variant. In
tensor-based signal processing CPD is often constrained. Uncorrelated signals may
translate into a columnwise orthonormal factor matrix [24], while stacking covariance
matrices may lead to a CPD with a partial Hermitian symmetry (e.g., [2, 7]). We
provide a new uniqueness condition for a CPD with a columnwise orthonormal factor
matrix. We also provide a new uniqueness condition for a CPD with a partial Hermi-
tian symmetry. We explain that such constrained CPDs can be unique under milder
conditions than their unconstrained counterparts. Finally, we present an algorithm
for computing a PD with a known factor matrix that does not cost much more than a
single ALS iteration. Numerical experiments demonstrate that this inexpensive algo-
rithm provides a good initialization for a subsequent optimization-based method such
as ALS in difficult cases with modest to high SNR.

This paper is organized as follows. The rest of the introduction presents our
notation. Sections 2 and 3 briefly review the CPD and the PD with a known factor
matrix, respectively. Section 4 presents a new uniqueness condition and an algorithm
for a CPD with a known factor matrix. Next, in section 5 we present new uniqueness
conditions for the overall CPD and for some variants. Numerical experiments are
reported in section 6. Section 7 concludes the paper. We also mention that in the
supplementary material a new partial uniqueness condition for CPD and an efficient
implementation of the ALS method for CPD with a known factor matrix are reported.

1.1. Notation. Vectors, matrices, and tensors are denoted by lower case bold-
face, upper case boldface, and upper case calligraphic letters, respectively. The rth
column vector of A is denoted by ar. The symbols ⊗ and ⊙ denote the Kronecker
and Khatri–Rao products, defined as

A⊗B :=

⎡
⎢⎣

a11B a12B . . .
a21B a22B . . .
...

...
. . .

⎤
⎥⎦ , A⊙B :=

[
a1 ⊗ b1 a2 ⊗ b2 . . .

]
,
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CPD OF THIRD-ORDER TENSORS 1383

in which (A)mn = amn. The Hadamard product is denoted by ∗ and satisfies
(A ∗B)mn = amnbmn. The outer product of N vectors a(n) ∈ CIn is denoted by
a(1) ◦ a(2) ◦ · · · ◦ a(N) ∈ CI1×I2×···×IN such that

(
a(1) ◦ a(2) ◦ · · · ◦ a(N)

)
i1,i2,...,iN

= a
(1)
i1

a
(2)
i2

· · · a
(N)
iN

.

The identity matrix, all-zero matrix, and all-zero vector are denoted by IM ∈
CM×M , 0M,N ∈ CM×N , and 0M ∈ CM , respectively. The symbol δij denotes the
Kronecker delta function, equal to 1 if i = j and 0 if i �= j.

The real part, imaginary part, transpose, conjugate, conjugate-transpose, inverse,
Moore–Penrose pseudoinverse, Frobenius norm, determinant, range, and kernel of a
matrix are denoted by Re {·}, Im{·}, (·)T , (·)∗, (·)H , (·)−1

, (·)†, ‖ · ‖F , |·|, range (·),
and ker (·), respectively.

The rank of a matrix A is denoted by r (A) or rA. The k-rank of a matrix A is
denoted by k (A) or kA. It is equal to the largest integer kA such that every subset
of kA columns of A is linearly independent. Since the rank and k-rank quantities
of matrices will play an important role in this paper, it is important to notice the
differences between the two. In particular, we have that kA ≤ rA.

The cardinality of a set S is denoted by card (S).
Given A ∈ CI×J , then Vec (A) ∈ CIJ will denote the column vector defined by

(Vec (A))i+(j−1)I = (A)ij . Given a ∈ CIJ , then the reverse operation is Unvec (a) =

A ∈ CI×J such that (a)i+(j−1)I = (A)ij . Dk (A) ∈ CJ×J denotes the diagonal matrix

holding row k of A ∈ CI×J on its diagonal.
MATLAB index notation will be used for submatrices of a given matrix. For

example, A(1 : k, :) represents the submatrix of A consisting of the rows from 1 to k
of A. Likewise, A([1, 2], [1, 3]) denotes the 2×2 submatrix A([1, 2], [1, 3]) =

[
a11 a13
a21 a23

]
.

Let T ∈ CI×R; then T = T (1 : I − 1, :) ∈ C(I−1)×R, i.e., T is obtained by
deleting the bottom row of T.

The matrix that orthogonally projects onto the orthogonal complement of the
column space of A ∈ CI×J is denoted by

PA = II − FFH ∈ C
I×I ,

where the column vectors of F constitute an orthonormal basis for range (A).
Let Ck

n = n!
k!(n−k)! denote the binomial coefficient. The kth compound matrix of

A ∈ Cm×n is denoted by Ck (A) ∈ CCk

m
×Ck

n and its entries correspond to the k × k
minors of A ordered lexicographically. As an example, let A ∈ C

4×3; then

C2 (A) =

⎡
⎢⎢⎢⎢⎢⎢⎣

|A ([1, 2], [1, 2])| |A ([1, 2], [1, 3])| |A ([1, 2], [2, 3])|
|A ([1, 3], [1, 2])| |A ([1, 3], [1, 3])| |A ([1, 3], [2, 3])|
|A ([1, 4], [1, 2])| |A ([1, 4], [1, 3])| |A ([1, 4], [2, 3])|
|A ([2, 3], [1, 2])| |A ([2, 3], [1, 3])| |A ([2, 3], [2, 3])|
|A ([2, 4], [1, 2])| |A ([2, 4], [1, 3])| |A ([2, 4], [2, 3])|
|A ([3, 4], [1, 2])| |A ([3, 4], [1, 3])| |A ([3, 4], [2, 3])|

⎤
⎥⎥⎥⎥⎥⎥⎦
.

See [10, 8] for a discussion of compound matrices.

2. Canonical polyadic decomposition (CPD). Consider the third-order ten-
sor X ∈ C

I×J×K . We say that X is a rank-1 tensor if it is equal to the outer product
of some nonzero vectors a ∈ CI , b ∈ CJ , and c ∈ CK such that xijk = aibjck. A
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1384 MIKAEL SØRENSEN AND LIEVEN DE LATHAUWER

polyadic decomposition (PD) is a decomposition of X into a sum of rank-1 terms:

X =

R∑

r=1

ar ◦ br ◦ cr .(2.1)

The rank of a tensor X is equal to the minimal number of rank-1 tensors that yield
X in a linear combination. Assume that the rank of X is R; then (2.1) is called the
CPD of X , i.e., a PD of X with a minimal number of terms is a CPD. Let us stack
the vectors {ar}, {br}, and {cr} into the matrices

A = [a1, . . . , aR] ∈ C
I×R, B = [b1, . . . ,bR] ∈ C

J×R, C = [c1, . . . , cR] ∈ C
K×R.

The matrices A, B, and C are called CPD factor matrices. Let X(i··) ∈ CJ×K denote
the matrix such that

(
X(i··)

)
jk

= xijk; then X(i··) = BDi (A)CT and

C
IJ×K ∋ X(1) :=

[
X(1··)T , . . . ,X(I··)T

]T
= (A⊙B)CT .(2.2)

Similarly, let the matrices X(·j·) ∈ CK×I be constructed such that
(
X(·j·)

)
ki

= xijk ;

then X(·j·) = CDj (B)AT and

C
JK×I ∋ X(2) :=

[
X(·1·)T , . . . ,X(·J·)T

]T
= (B⊙C)AT .(2.3)

Finally, let X(··k) ∈ CI×J satisfy
(
X(··k)

)
ij
= xijk ; then X(··k) = ADk (C)BT and

C
IK×J ∋ X(3) :=

[
X(··1)T , . . . ,X(··K)T

]T
= (C⊙A)BT .(2.4)

2.1. Uniqueness conditions for one factor matrix of a CPD. A factor
matrix, say C, of the CPD of X ∈ CI×J×K is said to be unique if it can be deter-
mined up to the inherent column scaling and permutation ambiguities from X . More
formally, the factor matrix C is unique if alternative factor matrices Ĉ satisfy the
condition

Ĉ = CP∆C ,

where P is a permutation matrix and ∆C is a nonsingular diagonal matrix. Based on
Kruskal’s permutation lemma [16] and the properties of compound matrices [10, 8],
the following theorem, Theorem 2.1, guarantees the uniqueness of one factor matrix of
a CPD. Theorem 2.1 is one of the most relaxed and yet quite easy-to-check sufficient
(but not necessary) uniqueness conditions that have been reported in the literature.
Consequently, we will use Theorem 2.1 to obtain new overall uniqueness results.

Theorem 2.1 (see [8]). Consider the PD of X ∈ CI×J×K in (2.1). If
⎧
⎪⎨
⎪⎩

kC ≥ 1,

min (I, J) ≥ R− rC + 2,

CR−rC+2 (A)⊙ CR−rC+2 (B) has full column rank,

(2.5)

then the rank of X is R and the factor matrix C is unique.
Note that the first two conditions in (2.5) are trivial. More precisely, the k-rank

condition kC ≥ 1 ensures that none of the columns of C is zero while the condition
min (I, J) ≥ R − rC + 2 ensures that CR−rC+2 (A)⊙ CR−rC+2 (B) is well defined.

We refer to [8] and the references therein for other conditions that guarantee the
uniqueness of one factor matrix of a CPD.
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2.2. Uniqueness conditions for CPD. The CPD of X ∈ CI×J×K is said to
be unique if all the triplets

(
Â, B̂, Ĉ

)
satisfying (2.1) are related via

Â = AP∆A, B̂ = BP∆B, Ĉ = CP∆C,

where ∆A, ∆B, and ∆C are diagonal matrices satisfying ∆A∆B∆C = IR and P is a
permutation matrix.

Theorem 2.2 below is one of the most relaxed and yet quite easy-to-check deter-
ministic CPD uniqueness conditions that have been reported in the literature.

Theorem 2.2 (see [9]). Consider the PD of X ∈ CI×J×K in (2.1). If

⎧
⎪⎨
⎪⎩

min (kA, kB) + kC ≥ R + 1,

max (kA, kB) + kC ≥ R+ 2,

CR−rC+2 (A)⊙ CR−rC+2 (B) has full column rank,

(2.6)

then the rank of X is R and the CPD of X is unique.
See [9] and the references therein for more related deterministic overall CPD

uniqueness conditions.

3. PD with known factor matrix. Consider the PD of X ∈ CI×J×K with
matrix representationX(1) = (A⊙B)CT . Assume that the factor matrix C is known

and let the pair (Â, B̂) yield an alternative decomposition of X with the same C. The

PD of X with the known factor matrix C is said to be unique if all the pairs (Â, B̂)
satisfying (2.1) are related via

Â = A∆A , B̂ = B∆B ,

where ∆A and ∆B are diagonal matrices with property ∆A∆B = IR.
In this paper we also consider generic uniqueness conditions for PD with a known

factor matrix. Assume that the factor matrices A, B, and C are randomly drawn
from absolutely continuous probability measures. Then we say that the PD of X in
(2.1) with C known is generically unique if the set of nonunique PDs of X with C
fixed (and A, B varying) is of Lebesgue measure zero. Intuitively, a generic property
holds with high probability for sufficiently random data.

If the known factor matrix has full column rank, then the PD with a known
factor is unique in a trivial manner and can be computed via a number of rank-
1 approximations (e.g., [29, 6]). Indeed, by recognizing that the columns of Y =
X(1)(C

T )† = A ⊙ B are vector representations of the rank-1 matrices {arb
T
r }, r ∈

{1, . . . , R}, it is clear that the factor matrices A and B are unique. We state this
result here for completeness.

Proposition 3.1. Consider the PD of X ∈ CI×J×K in (2.1). If C is known
and has full column rank, then the PD of X with C known is unique.

The following proposition, Proposition 3.2, presents a uniqueness condition for
the case where the known factor matrix is not required to have full column rank.

Proposition 3.2 (see [9]). Consider the PD of X ∈ C
I×J×K in (2.1). If C is

known and

(3.1) kC +min (min (kA, kB)− 1,max (kA, kB)− 2) ≥ R,

then the PD of X with C known is unique.
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Assume thatA is randomly drawn from an absolutely continuous probability mea-
sure; then it is well known that kA = min(I, R) (similarly for kB and kC). Hence, con-
dition (3.1) is generically satisfied if min(K,R)+min (min(V,R)− 1,min(W,R)− 2) ≥
R, where V = min(I, J) and W = max(I, J).

Except for the case where C has full column rank and max (kA, kB) = 1, Propo-
sition 3.2 yields a more relaxed condition than Proposition 3.1.

4. New uniqueness result for PD with a known factor matrix. In subsec-
tion 4.1 we present a new result for the case where the known factor matrix does not
necessarily have full column rank, but one of the unknown factors does. Subsection
4.2 generalizes the result to the case where none of the involved factor matrices is
required to have full column rank.

4.1. At least one factor matrix has full column rank. The main result of
this subsection is a new uniqueness condition for PD with a known factor, stated in
Theorem 4.6. Condition (4.12) in Theorem 4.6 boils down to checking the rank of
some matrices. In order to assess whether the rank condition (4.12) in Theorem 4.6 is
expected to be satisfied, we resort to the following tool for checking generic conditions
(e.g., [13]).

Lemma 4.1. We are given an analytic function f : Cn → C. If there exists a
vector x ∈ Cn such that f (x) �= 0, then the set { x | f (x) = 0 } is of Lebesgue measure
zero.

Lemma 4.1 tells us that in order to obtain a generic rank property for matrices
it suffices to numerically check the rank condition for just one example. The link
between matrix rank properties and Lemma 4.1 is that an I × R matrix has full
column rank R if it has a nonvanishing R × R minor, where a minor is an analytic
function (namely, it is a polynomial in several variables). Thus, in order to check if an
I ×R matrix generically has full column rank, we just need to find one I ×R matrix
with a nonvanishing R×R minor.

A matrix A ∈ CI×R is said to be Vandermonde if it takes the form

A = [a1, . . . , aR] , ar =
[
1, zr, z

2
r , . . . , z

I−1
r

]T
,(4.1)

where {zr} are called the generators of A. Because of their simplicity, we use Van-
dermonde matrices in the development of the following auxiliary results, which will
lead to the example for assessing whether the rank condition (4.12) in Theorem 4.6
is generically satisfied.

Lemma 4.2. Let A ∈ CI×R be a Vandermonde matrix and let B ∈ CJ×R; then
the matrix A⊙B generically has rank min (IJ,R).

Proof. The result follows from a combination of Theorem 3 and Corollary 1 in
[11].

Lemma 4.3. Let A = [a1, . . . ,aR] ∈ CI×R be a Vandermonde matrix with distinct
generators. Let the column vectors of U ∈ CIJ×R constitute a basis for range (A⊙B),
where B ∈ CJ×R. If the matrix A⊙B has full column rank, then the matrix

(4.2) G
(r) = [U,ar ⊗ IJ ] ∈ C

IJ×(R+J)

has rank R+J−1 ∀r ∈ {1, . . . , R}. Generically, G(r) has rank R+J−1 if (I−1)J+1 ≥
R.

Proof. Consider a Vandermonde matrix A ∈ CI×R of the form (4.1). Let us

first prove that if A ⊙ B has full column rank, then G(r) has a one-dimensional
kernel. Note that all bases for range (A⊙B) are related via a right multiplication by
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a nonsingular matrix which does not affect the rank of G(r). Thus, without loss of
generality (w.l.o.g.) we set U = A⊙B such that G(r) ∈ CIJ×(R+J) becomes

G(r) = [A⊙B, ar ⊗ IJ ] =

⎡
⎢⎢⎢⎣

B IJ
BZ zrIJ
...

...

BZI−1 zI−1
r IJ

⎤
⎥⎥⎥⎦ ,

where Z = D1 ([z1, z2, . . . , zR]). Consider the following nonsingular block-bidiagonal
matrix:

F(r) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IJ 0J,J · · · · · · 0J,J 0J,J

−zrIJ IJ
. . .

...
...

0J,J −zrIJ
. . .

. . .
...

...
...

. . .
. . .

. . . 0J,J 0J,J

0J,J

. . .
. . . IJ 0J,J

0J,J · · · · · · 0J,J −zrIJ IJ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ C
IJ×IJ ;

then

F(r)G(r) =

⎡
⎢⎢⎢⎣

B IJ
B (Z− zrIR) 0J,J

...
...

B
(
ZI−1 − zrZ

I−2
)

0J,J

⎤
⎥⎥⎥⎦ .(4.3)

Hence, the problem of determining the rank of G(r) reduces to finding the rank of

H(r) =

⎡
⎢⎣

B (Z− zrIR)
...

B
(
ZI−1 − zrZ

I−2
)

⎤
⎥⎦ =

⎡
⎢⎣

BIR (Z− zrIR)
...

BZI−2 (Z− zrIR)

⎤
⎥⎦

= (A⊙B) (Z− zrIR) .(4.4)

The rth column vector h(r)
r of H(r) is an all-zero vector. Thus the problem of deter-

mining the rank of G(r) further reduces to finding the rank of

H̃
(r)

=
(
Ã

(r)
⊙ B̃

(r))
Z̃
(r)

,(4.5)

where

Ã
(r)

= [a1, . . . , ar−1, ar+1, . . . , aR] ∈ C
I×(R−1),

B̃
(r)

= [b1, . . . ,br−1,br+1, . . . ,bR] ∈ C
J×(R−1),

Z̃
(r)

= D1 ([z1 − zr, . . . , zr−1 − zr, zr+1 − zr, . . . , zR − zr]) ∈ C
(R−1)×(R−1).

The deterministic part of Lemma 4.3 follows from (4.5). Indeed, the full column

rank assumption on A ⊙ B implies that Ã
(r)

⊙ B̃
(r)

has full column rank for every
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r ∈ {1, . . . , R}. This in turn implies that the matrix in (4.4) has rank R − 1 and,

consequently, G(r) in (4.2) has rank R+J − 1 ∀r ∈ {1, . . . , R}. We can now conclude

that any U of which the columns form a basis for range (A⊙B) yields a matrix G(r)

of rank R+ J − 1 ∀r ∈ {1, . . . , R}.

Let us now prove that if (I − 1)J + 1 ≥ R, then generically G(r) has a one-
dimensional kernel. Due to Lemma 4.1 we just need to find one example where
the statement made in this lemma holds. Note that any minor of G(r) is an analytic
function of the elements G(r). Due to Lemma 4.1 we know that when (I−1)J+1 ≥ R,

the matrix H(r) given by (4.4) generically has rank R− 1. This allows us to conclude

that when (I − 1)J + 1 ≥ R, the matrix G(r) in (4.2) generically has rank R+ J − 1
∀r ∈ {1, . . . , R}.

A consequence of Lemma 4.3 is the following result, which generalizes the generic
rank condition to the case where A is not Vandermonde.

Proposition 4.4. Given A = [a1, . . . ,aR] ∈ CI×R, let the column vectors of
U ∈ CIJ×R constitute a basis for range (A⊙B) in which B ∈ CJ×R. If (I−1)J+1 ≥
R, then the matrix

(4.6) G
(r) = [U,ar ⊗ IJ ] ∈ C

IJ×(R+J)

generically has rank R+ J − 1 ∀r ∈ {1, . . . , R}.
Proof. Due to Lemma 4.1 we just need to find one example where the statement

made in this proposition holds. By way of example, let A and B be Vandermonde
matrices and set U = A ⊙ B. Since (I − 1)J + 1 ≥ R, the matrix A ⊙ B ∈ CIJ×R

generically has full column rank. Due to Lemma 4.3 we know that G(r) in (4.6)
generically has rank R + J − 1 ∀r ∈ {1, . . . , R}. More generally, any U of which the

columns form a basis for range (A⊙B) yields a matrix G(r) of rank R + J − 1 ∀r ∈
{1, . . . , R}. By invoking Lemma 4.1 we can now conclude that when (I−1)J+1 ≥ R,

the matrix G(r) in (4.6) generically has rank R+ J − 1 ∀r ∈ {1, . . . , R}.
In the proof of Theorem 4.6 we also make use of the following result.
Lemma 4.5. Consider the PD of X ∈ CI×J×K in (2.1). Assume that the rth

column vector cr of the factor matrix C is known. If
{
B has full column rank,

r ([C⊙A, cr ⊗ II ]) = I +R− 1 ,
(4.7)

then the rth column vector ar of is A unique.1 Generically, condition (4.7) is satisfied
if

(4.8) min ((K − 1) I + 1, J) ≥ R .

Proof. Let us first prove that the deterministic condition (4.7) guarantees the
uniqueness of ar. Note that, trivially, cr ⊗ ar ∈ range (cr ⊗ II). Condition (4.7) im-
plies that this is the only dependency between the column vectors of [C⊙A, cr ⊗ II ].
Hence, we know that r (C⊙A) = R. Given are X(3) = (C⊙A)BT and cr. We
know that, under condition (4.7), both the matrices C ⊙A and B have full column
rank. Let X(3) = UΣVH denote the compact SVD of X(3), where U ∈ CKI×R; then
there exists a nonsingular matrix M ∈ CR×R such that

(4.9) UM = C⊙A ⇔ Umr = cr ⊗ ar, r ∈ {1, . . . , R} .

1The last condition states that Mr = [C⊙A, cr ⊗ II ] has the maximal rank possible. Note that
Mr has at least a one-dimensional kernel, since [nT

r ,aT
r ]T ∈ ker (Mr) for some nr ∈ CR.
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Relation (4.9) can also be written as

(4.10) G(r)

[
mr

ar

]
= 0KI , r ∈ {1, . . . , R} ,

where

(4.11) G(r) = [U,−cr ⊗ II ] ∈ C
KI×(I+R).

Since we assume that G(r) has a one-dimensional kernel, the rth column vector of A
follows from (4.10). Indeed, let yr ∈ CI+R denote the right singular vector associated
with the zero singular value of the matrix in (4.11); then ar = yr (R+ 1 : R+ I).

Let us now prove that condition (4.8) generically guarantees the uniqueness of
the column vector ar. Given are X(3) = (C⊙A)BT and cr. If J ≥ R, then B
generically has full column rank. Due to Lemma 4.2 we also know that since KI ≥ R,
C ⊙ A generically has full column rank. Finally, Proposition 4.4 tells us that if
(K − 1)J + 1 ≥ R, then the rank of G(r) in (4.11) is generically equal to I + R − 1.
Hence, generically we can work as in the proof of the deterministic case.

Theorem 4.6. Consider the PD of X ∈ CI×J×K in (2.1). Assume that the
factor matrix C is known. If

{
B has full column rank,

r ([C⊙A, cr ⊗ II ]) = I +R− 1 ∀r ∈ {1, . . . , R} ,
(4.12)

then the PD of X with C known is unique. Generically, condition (4.12) is satisfied
if

(4.13) min ((K − 1) I + 1, J) ≥ R .

Proof. Let us first prove that condition (4.12) guarantees the uniqueness of the
CPD of X with C known. Lemma 4.5, together with the condition (4.12), guarantees
the uniqueness of the factor matrix A. Recall also from the proof of Lemma 4.5 that
the matrix C⊙A has full column rank when condition (4.12) holds. Hence, B follows
from

BT = (C⊙A)
†
X(3) =

((
CHC

)
∗
(
AHA

))−1
(C⊙A)

H
X(3) .

The proof that condition (4.13) generically guarantees the uniqueness of the CPD
of X with C is analogous to the proof of the generic part of Lemma 4.5.

An important remark concerning the proof of Theorem 4.6 is that it is construc-
tive, i.e., it provides us with an algorithm to compute a PD with a known factor. In
other words, if one of the factor matrices of the PD is known, say C, and the condi-
tions stated in Theorem 4.6 are satisfied, then even if the known factor matrix does
not have full column rank (as opposed to Proposition 3.1), we can find the remaining
factor matrices from X(3). An outline of the proposed method for computing a PD
with a known factor matrix is given in Algorithm 1.

Note that Theorem 4.6 does not prevent kA = 1. This is a remarkable difference
compared to unconstrained CPD, where kA ≥ 2 is necessary for uniqueness (e.g., [27]).
Note also that cases where C does not have full column rank and kA = 1 are not
covered by Propositions 3.1 and 3.2. More precisely, if rC < R, Proposition 3.1 does
not apply. Likewise, if kC < R and kA = 1, Proposition 3.1 does not apply either.
Theorem 4.6 also leads to improved generic bounds. As an example, let I = 4, J = R,
K = 3. Proposition 3.1 generically requires that R ≤ K = 3, while Proposition 3.1
generically requires that R ≤ 6. Theorem 4.6 relaxes the generic bound to R ≤ 9.
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Algorithm 1. Computation of PD with known factor matrix based on Theorem 4.6.

Input: X(3) = (C⊙A)BT and C.
Find U whose column vectors constitute an orthonormal basis for range (C⊙A).

Solve set of linear equations [U,−cr ⊗ II ]yr = 0KI , r ∈ {1, . . . , R}.
Set ar = yr (R+ 1 : R+ I) , r ∈ {1, . . . , R}.

Compute BT =
((
CHC

)
∗
(
AHA

))−1
(C⊙A)

H
X(3).

Output: A and B.

4.2. None of the factor matrices is required to have full column rank.
Consider the PD of X ∈ CI×J×K with matrix representation

(4.14) X(1) = (A⊙B)CT

in which C is known. In this section we extend Theorem 4.6 and the associated
Algorithm 1 to cases where none of the involved factor matrices in (4.14) has full
column rank. In order to make the extension clear we outline the idea before going
through the technical steps. The main idea is to reduce the PD problem in (4.14) into
a PD problem with a known factor matrix and a factor matrix that has full column
rank, as in Theorem 4.6. This will be accomplished by partitioning the PD in (4.14)
into two parts as follows:

(4.15) X(1) = (A(S) ⊙B(S))C(S)T + (A(Sc) ⊙B(Sc))C(Sc)T ,

where [A(S),A(Sc)] is a column permuted version of A (similarly for B and C). If

the partitioning can be chosen such that C(S) and B(Sc) have full column rank, then
by first projecting the rows of X(1) onto the orthogonal complement of the row space

of C(S) we cancel the first term (A(S) ⊙ B(S))C(S)T in (4.15). The uniqueness of

the second term (A(Sc) ⊙B(Sc))C(Sc)T in (4.15) can subsequently be established via
Theorem 4.6 and computed via Algorithm 1. Finally, by subtracting the latter term
from (4.15) we can establish uniqueness of the former term via Proposition 3.1, while
the computation can be carried out via rank-1 approximations.

The technical derivation is organized as follows. In Theorem 4.8 we explain that
by an appropriate preprocessing step it is possible to derive a relaxed version of
Theorem 4.6 in which neither A nor B is required to have full column rank. Lemma
4.7 below generalizes Lemma 4.5 to the case where none of the factor matrices is
required to have full column rank. Lemma 4.7 makes use of the subsets S, Sc, T , and
U of {1, . . . , R}. They satisfy the relations S ⊆ T ⊆ {1, . . . , R}, Sc = {1, . . . , R} \ S,
and U = T \ S ⊆ Sc. The relations among the sets are visualized in Figure 1.

Lemma 4.7. Consider the PD of X ∈ CI×J×K in (2.1). Assume that the columns
of C indexed by the elements of the set T with card (T ) = Q are known. Stack the
columns of C with index in T in C

(T ) ∈ C
K×card(T ). Let S denote a subset of T and

let Sc = {1, . . . , R}\S. Stack the columns of C with index in S in C (S) ∈ CK×card(S)

and stack the columns of C with index in Sc in C
(Sc) ∈ CK×(R−card(S)). Stack

the columns of A (resp., B) in the same order such that A
(S) ∈ CI×card(S) (resp.,

B
(S) ∈ CJ×card(S)) and A

(Sc) ∈ CI×(R−card(S)) (resp., B(Sc) ∈ CJ×(R−card(S))) are
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A

C

1 R

S Sc

T

U

Fig. 1. The upper line depicts the disjoint partitioning of the set {1, . . . , R} into S and Sc.
The middle line depicts the known columns of C indexed by the elements in the set T . The bottom
line depicts the columns of A indexed by the elements in the set U = T \ S for which uniqueness
will be established in Proposition 4.7.

obtained. If there exists a subset S ⊆ T with 0 ≤ card (S) ≤ r
C(T ) such that2

⎧
⎪⎪⎨
⎪⎪⎩

C
(S) has full column rank,

B
(Sc) has full column rank,

r
([(

P
C(S)C

(Sc)
)
⊙A

(Sc), (P
C(S)cr)⊗ II

])
= I +R− card (S)− 1 ∀r ∈ U,

(4.16)

where U = T \S ⊆ Sc, then the column vectors {ar}r∈U of A are unique. Generically,
condition (4.16) is satisfied if

(4.17)

{
R ≤ min

(
J +min (K,Q) , J(I−1)+I(K−1)+1

I

)
when J < R ,

R ≤ (K − 1)I + 1 when J ≥ R .

Proof. Let us first prove the deterministic part of the proposition. Without loss
of generality, we assume that C(1 : card (S) , 1 : card (S)) is nonsingular, i.e., we

set C(S) = C(:, 1 : card (S)). We first project on the orthogonal complement of

range(C(S)) to cancel card (S) rank-1 terms in the PD of X . That is, we compute

Y(1) = X(1)P
T
C(S) =

(
A(Sc) ⊙B(Sc)

)
C(Sc)TPT

C(S) ,

where the relation P
C(S)C = P

C(S) [C(S),C(Sc)] = [0K,card(S),PC(S)C(Sc)] was used.
The tensor Y represented by Y(1) also has matrix representation

Y(3) =
(
P

C(S)C(Sc) ⊙A(Sc)
)
B(Sc)T .

We have assumed that r([(P
C(S)C(Sc))⊙A(Sc), (P

C(S)cr)⊗II ]) = I+R−card (S)−1.

This implies that r((P
C(S)C(Sc))⊙A(Sc)) = R− card (S), i.e., (P

C(S)C(Sc))⊙A(Sc)

has full column rank. We have also assumed that B(Sc) has full column rank. Let
Y(3) = UΣVH denote the compact SVD of Y(3) in which U ∈ CKI×(R−card(S)); then

there exists a nonsingular matrix M ∈ C(R−card(S))×(R−card(S)) such that

UM =
(
P

C(S)C(Sc)
)
⊙A(Sc)

2The last condition states that Mr = [(P
C(S)C

(Sc))⊙ A(Sc), (P
C(S)c

(Sc)
r ) ⊗ II ] has the max-

imal rank possible. Note that Mr has at least a one-dimensional kernel for every r ∈ U , since

[nT
r , a

(Sc)T
r ]T ∈ ker (Mr) for some nr ∈ Ccard(Sc).
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and

(4.18) G(r,Sc)

[
mµ(r)

ar

]
= 0KI , r ∈ Sc,

in which M =
[
mµ(1), . . . ,mµ(card(Sc))

]
, and G(r,Sc) ∈ CKI×(I+R−card(S)) is given by

(4.19) G(r,Sc) = [U,− (P
C(S)cr)⊗ II ] , r ∈ Sc.

We have assumed that G(r,Sc) has rank I + R − card (S) − 1 ∀r ∈ U ⊆ Sc, which

implies that G(r,Sc) has a one-dimensional kernel for every r ∈ U . This in turn
means that we can obtain the column vectors {ar}r∈U from (4.18) as follows. Let
zr ∈ C(I+R−card(S)) denote the right singular vector associated with the zero singular
value of the matrix given by (4.19); then

ar = zr (R− card (S) + 1 : R− card (S) + I) , r ∈ U.

Let us now prove that condition (4.17) generically guarantees the uniqueness of
the column vectors {ar}r∈U .

Consider first the case where J ≥ R. In that case we choose S = ∅ and conse-
quently also P

C(S) = IK . We know that B generically has full column rank when
J ≥ R. Due to Proposition 4.4 we also know that [C⊙A, cr ⊗ II ] generically has
rank R+ I − 1 when (K − 1)I + 1 ≥ R. This proves the second leg of (4.17).

Consider now the case where J < R. Due to Lemma 4.1 we need only find one
example for which the first leg of (4.17) generically guarantees the uniqueness of the
column vectors {ar}r∈U . By way of example, we let

(4.20) C =
[
C(S) C(Sc)

]
=

[
Icard(S) C(Sc)

0K−card(S),card(S)

]
.

Then

P
C(S) = IK −

[
Icard(S) 0card(S),K−card(S)

0K−card(S),card(S) 0K−card(S),K−card(S)

]

and

P
C(S)C(Sc) =

[
0card(S),R−card(S)

D

]
, D ∈ C

(K−card(S))×(R−card(S)).

Note that card (S) = r
C(T ) −m for some integer m with property 0 ≤ m ≤ r

C(T ) . We

know that B(Sc) ∈ CJ×(R−card(S)) generically has full column rank if

(4.21) J ≥ R− card (S) = R− r
C(T ) +m ⇔ J −R+ r

C(T ) ≥ m.

Note that, since J < R, the condition m ≤ r
C(T ) is automatically satisfied when (4.21)

holds. In order to ensure that m ≥ 0, the following inequality must be satisfied:

(4.22) J + r
C(T ) ≥ R ,

where r
C(T ) = min (K,Q). Due to the structure of C in (4.20), the problem of

determining the generic rank of
[(

P
C(S)C(Sc)

)
⊙A(Sc), (P

C(S)cr)⊗ II

]
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reduces to finding the generic rank of

(4.23)
[
D⊙A(Sc),dr ⊗ II

]
∈ C

(K−card(S))I×(R−card(S)+I).

Proposition 4.4 tells us that the matrix given by (4.23) generically has rank R −
card (S) + I − 1 if

(K − card (S)− 1)I + 1 ≥ R− card (S) .(4.24)

By inserting card (S) = r
C(T ) −m into (4.24) we obtain

(K − r
C(T ) +m− 1)I + 1 ≥ R − r

C(T ) +m.(4.25)

Relation (4.25) can also be expressed as

m ≥
R+ r

C(T )(I − 1)− I(K − 1)− 1

I − 1
.(4.26)

Combining conditions (4.21) and (4.26) we conclude that if inequalities (4.22) and

R+ r
C(T )(I − 1)− I(K − 1)− 1

I − 1
≤ J −R+ r

C(T ) ⇔ R ≤
J(I − 1) + I(K − 1) + 1

I

are satisfied, then generically the column vectors {ar}r∈U are unique. This proves
the first leg of (4.17).

Note that there is some flexibility in the choice of card (S) in (4.16). By choosing

a large card (S) we relax the constraint on B(Sc) but also impose a stronger constraint
on C. The larger the card (S), the smaller the number of columns of A for which
uniqueness is demonstrated.

Theorem 4.8. Consider the PD of X ∈ C
I×J×K in (2.1). Assume that C is

known. Let S denote a subset of {1, . . . , R} and let Sc = {1, . . . , R} \ S denote the
complementary set. Stack the columns of C with index in S in C (S) ∈ CK×card(S)

and stack the columns of C with index in Sc in C (Sc) ∈ CK×(R−card(S)). Stack
the columns of A (resp., B) in the same order such that A

(S) ∈ CI×card(S) (resp.,

B
(S) ∈ CJ×card(S)) and A

(Sc) ∈ CI×(R−card(S)) (resp., B(Sc) ∈ CJ×(R−card(S))) are
obtained. If there exists a subset S of {1, . . . , R} with 0 ≤ card (S) ≤ rC such that
C (S) has full column rank and

{
B (Sc) has full column rank,

r
([(

PC (S)C
(Sc)

)
⊙A

(Sc), (PC (S)cr)⊗ II

])
= α ∀r ∈ Sc,

(4.27a)

where α = I +R− card (S)− 1, or

{
A

(Sc) has full column rank,

r
([(

PC (S)C
(Sc)

)
⊙B (Sc), (PC (S)cr)⊗ IJ

])
= β ∀r ∈ Sc,

(4.27b)

where β = J+R−card (S)−1, then the PD of X with C known is unique. Generically,
condition (4.27a) or (4.27b) is satisfied if

(4.28)

{
R ≤ min

(
W +min (K,R) , W (V −1)+V (K−1)+1

V

)
when W < R ,

R ≤ (K − 1)V + 1 when W ≥ R ,
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where V = min (I, J) and W = max (I, J).
Proof. Let us first prove that condition (4.27a) guarantees the uniqueness of the

CPD of X with C known. We work as follows. The fact that C is known allows us
to project away the part of the CPD of X that corresponds to S. After finding A(Sc)

and B(Sc), we subtract the part of the CPD of X that corresponds to Sc, which leads
to the remaining A(S) and B(S).

In more detail, we first determine the matrix A(Sc) in a way similar to the vectors
{a}r∈U in Lemma 4.7. More precisely, we set Q = R and consequently T = {1, . . . , R},
U = {1, . . . , R} \ S = Sc.

The next step is to find B(Sc). Recall that we assumed that

r
([(

P
C(S)C(Sc)

)
⊙A(Sc), (P

C(S)cr)⊗ II

])
= I +R− card (S)− 1.

This implies that r((PC(Sc))⊙A(Sc)) = R− card (S), i.e., (P
C(S)C(Sc))⊙A(Sc) has

full column rank. Hence, B(Sc) follows from the relation

B(Sc)T =
((
P

C(S)C(Sc)
)
⊙A(Sc)

)†
Y(3)

=
((
C(Sc)HP

C(S)C(Sc)
)
∗
(
A(Sc)HA(Sc)

))−1(
PC(Sc) ⊙A(Sc)

)H
Y(3) .

Now that {A(Sc),B(Sc),C(Sc)} are known, we can compute

Q(1) = X(1) −
(
A(Sc) ⊙B(Sc)

)
C(Sc)T =

(
A(S) ⊙B(S)

)
C(S)T .

Recall also that the matrix C(S) is assumed to have full column rank. Compute

H = Q(1)

(
C(S)T

)†
.

The remaining columns of unknowns A(S) and B(S) are obtained by recognizing that
the columns of H are vectorized rank-1 matrices, i.e., hσ(r) = ar ⊗ br, r ∈ S, where

H =
[
hσ(1), . . . ,hσ(S)

]
. The proof for (4.27b) is analogous to the above proof for

condition (4.27a).
The proof that condition (4.28) generically guarantees the uniqueness of the CPD

of X with C known is analogous to the generic part of the proof of Lemma 4.7.
Essentially, by replacing Q with R in the proof of the generic condition (4.17) in
Lemma 4.7, the result follows.

Note that Theorem 4.8 only requires the existence of one partitioning of A, de-
noted by [A(S),A(Sc)] (similarly for B and C), for which the rank conditions (4.27a)
or (4.27b) are satisfied. This is different from Kruskal-type conditions (e.g., Proposi-
tion 3.2), in which the k-rank depends on all possible submatrices of a certain size.

Since Theorem 4.8 requires that C(S) and B(Sc) or A(Sc) have full column rank, an
educated guess of what S should be can often be deduced from these dimensionality
constraints, i.e., the choice of S should take into account the dimensionality constraints
card (S) ≤ K and card (Sc) ≤ J or card (Sc) ≤ I. In the generic case, Theorem 4.8
provides us with a very simple way of assessing if a PD with a known factor matrix
is expected to be unique. It suffices to check if the dimensionality condition (4.28) is
satisfied.

Theorem 4.8 does not prevent that kA = 1 and/or kB = 1 and/or rA⊙B < R.
This is in contrast to unconstrained CPD where kA ≥ 2, kB ≥ 2, and rA⊙B = R are
all necessary uniqueness conditions (e.g., [27]). As an example, consider the PD of
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X ∈ CI×J×K in (2.1) in which C is known, a2 = a1, b2 = b1, R = 7, I = 4, J = 4,
and K = 5. If apart from these constraints the parameters are randomly drawn,
Theorem 4.8 with S = {1, 2} and card (S) = 2 guarantees the generic uniqueness of
A and B.

Theorem 4.8 also leads to improved bounds onR in generic cases without collinear-
ities. As an example, we consider the situation where V = min(I, J) = 3, W =
max(I, J) = 7, K = 4, and C is known. Proposition 3.1 requires that R ≤ K = 4,
while Proposition 3.2 relaxes the bound to R ≤ 6. On the other hand, Theorem 4.8
only requires that R ≤ 8.

We observe that the proof of Theorem 4.8 is constructive. We present the con-
struction as Algorithm 2.

The cardinality of set S in Algorithm 2 must be chosen such that the conditions in
Theorem 4.8 are satisfied. As explained in the proof, the choice of card (S) affects the
computation in the sense that we first compute the rank-card (Sc) PD Y =

∑
r∈Sc ar◦

br ◦cr, and thereafter the rank-card(S) PD Q =
∑

r∈S ar ◦br ◦cr. S must be chosen

such that C(S) has full column rank, which is easy to check. S must also be chosen
such that B(Sc) has full column rank, implying that card (S) ≥ R−J must be satisfied.
This condition can numerically be verified by checking if the effective rank of Y(3) is
equal to card (Sc). S must also be chosen such that

[(
P

C(S)C(Sc)
)
⊙A(Sc), (P

C(S)cr)⊗ II

]

has a one-dimensional kernel for every r ∈ Sc. This condition can numerically be
verified by checking if the effective dimension of the kernel of [U,−(P

C(S)cr)⊗ II ] is
one for every r ∈ Sc.

In the supplementary material we briefly explain how to extend Theorem 4.8 and
Algorithm 2 to tensors of arbitrary order.

Algorithm 2. Computation of PD with known factor matrix based on Theorem 4.8.

Input: X(1) = (A⊙B)CT and C
1. Determine rC.
2. Choose sets S ⊆ {1, . . . , R} and Sc = {1, . . . , R}\S subject to 0 ≤ card (S) ≤ rC.

3. Build C(S) and C(Sc).
4. Find F whose column vectors constitute an orthonormal basis for

(
C(S)

)
.

5. Compute P
C(S) = IK − FFH , D(Sc) = P

C(S)C(Sc), and E(Sc) = C(Sc)HD(Sc).
6. Compute Y(1) = X(1)P

T
C(S) .

7. Build Y(3).

8. Find U whose column vectors constitute an orthonormal basis for range
(
Y(3)

)
.

9. Solve set of linear equations [U,−(P
C(S)cr)⊗ II ] zr = 0KI , r ∈ Sc.

10. Set ar = zr (R− card (S) + 1 : R− card (S) + I) , r ∈ Sc .

11. Compute B(Sc)T =
(
E(Sc) ∗

(
A(Sc)HA(Sc)

))−1(
D(Sc) ⊙A(Sc)

)H
Y(3).

12. Compute Q(1) = X(1) −
(
A(Sc) ⊙B(Sc)

)
C(Sc)T .

13. Compute H =
[
hσ(1), . . . ,hσ(S)

]
= Q(1)

(
C(S)T

)†
.

14. Compute best rank-1 approximations minar ,br

∥∥hσ(r) − ar ⊗ br

∥∥2
F
, r ∈ S .

Output: A and B.

5. New uniqueness results for overall CPD. By combining the existing
result presented in subsection 2.1 with the new results presented in section 4, we will
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in this section derive new uniqueness conditions for the overall CPD and also some
variants that are important in signal processing.

5.1. New uniqueness condition for CPD. We first present a deterministic
uniqueness condition for CPD based on Theorem 4.8.

Theorem 5.1. Consider the PD of X ∈ CI×J×K in (2.1). Let S denote a
subset of {1, . . . , R} and let Sc = {1, . . . , R} \ S denote the complementary set. Stack
the columns of C with index in S in C (S) ∈ CK×card(S) and stack the columns of
C with index in Sc in C (Sc) ∈ CK×(R−card(S)). Stack the columns of A (resp.,

B) in the same order such that A
(S) ∈ CI×card(S) (resp., B

(S) ∈ CJ×card(S)) and

A
(Sc) ∈ CI×(R−card(S)) (resp., B(Sc) ∈ CJ×(R−card(S))) are obtained. If

CR−rC+2 (A)⊙ CR−rC+2 (B) has full column rank,(5.1a)

and if there exists a subset S ⊆ {1, . . . , R} with 0 ≤ card (S) ≤ rC such that C(S) has
full column rank and

{
B

(Sc) has full column rank,

r
([(

PC (S)C
(Sc)

)
⊙A

(Sc), (PC(S)c
(Sc)
r )⊗ II

])
= α ∀r ∈ Sc,

(5.1b)

where α = I +R− card (S)− 1, or

{
A

(Sc) has full column rank,

r
([(

PC (S)C
(Sc)

)
⊙B (Sc), (P

C(S)c
(Sc)
r )⊗ IJ

])
= β ∀r ∈ Sc,

(5.1c)

where β = J+R−card (S)−1, then the rank of X is R, and the CPD of X is unique.
Proof. Note that both conditions (5.1b) and (5.1c) imply that kC ≥ 2. Indeed, if

kC = 1, then (i) k
C(S) = 1, (ii) k

C(Sc) = 1, or (iii) k[cm,cn] = 1 for some m ∈ S and

n ∈ Sc. Since it is assumed that C(S) has full column rank (i.e., k
C(S) = card (S)),

we can rule out the first case (i). The second and third cases imply that the kernel of

[(P
C(S)C(Sc))⊙A(Sc), (P

C(S)c
(Sc)
r )⊗ II ] or [(PC(S)C(Sc))⊙B(Sc), (P

C(S)c
(Sc)
r )⊗ IJ ]

has dimension greater than one for some r ∈ Sc. Hence, cases (ii) and (iii) can also
be ruled out. Theorem 2.1, together with the inequality kC ≥ 2 > 1, now tells us
that the rank of X is R and that the factor C is unique. Let us now consider X as
a third-order tensor with known C. Due to Theorem 4.8, the conditions (5.1b) or
(5.1c) now guarantee the overall uniqueness of the CPD.

For a discussion of Theorem 5.1, let us first consider the generic case, where factor
matrices have maximal rank and k-rank. We notice that, generically, if the one factor
matrix uniqueness condition in Theorem 2.1 is satisfied, then the overall uniqueness
condition in Theorem 2.2 is automatically satisfied. This means that in the generic
case, the one factor matrix uniqueness condition in Theorem 2.1, which corresponds
to condition (5.1a), makes that Theorem 5.1 is not more relaxed than Theorem 2.2.

In order to demonstrate that Theorem 5.1 can nevertheless improve Theorem
2.2 in nongeneric cases, we consider the following example taken from [9]. Consider
the third-order tensor X ∈ C

4×4×4 with matrix representation X(1) = (A⊙B)CT

in which A ∈ C4×5, B ∈ C4×5, and C ∈ C4×5, where [a1, a2, a3, a4] = I4 and
a25 = 0, [b1,b2,b3,b4] = I4 and b15 = 0, and [c1, c2, c3, c4] = I4 and c25 = 0. For
a random choice of parameter entries we have kA = 3, kB = 3, and kC = 3. On
the other hand, we also have rA = 4, rB = 4, and rC = 4. For this problem the
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conditions in Theorem 2.2 are not satisfied. However, the conditions (5.1a)–(5.1b) in
Theorem 5.1 are generically satisfied if card (S) = 2 and S = {1, 2}. Thus, overall
uniqueness of the CPD of X can be established by Theorem 5.1 but not by the related
Theorem 2.2. We mention that CPD uniqueness of X has already been established
in [9] by other means. A nice property of Theorem 5.1 is that it can be extended to
tensor decompositions other than the third-order CPD. For instance, in [25, 26] we
demonstrate how Theorem 5.1 can be adapted to coupled CPD and CPD of tensors of
arbitrary order. As a final remark, we recall that Theorem 2.1 is not necessary for one
factor uniqueness. For this reason, it may be possible to further generalize Theorem
5.1 by combining Theorem 4.8 with a more relaxed single factor matrix uniqueness
condition.

5.2. New uniqueness condition for CPD with partial Hermitian sym-
metry. We say that the CPD of a tensor X ∈ CI×I×K has partial Hermitian sym-
metry if X(1) = (A⊙A∗)CT . The Hermitian symmetry-constrained rank of X is
equal to the minimal number of rank-1 terms ar ◦ a∗r ◦ cr that yield X in a linear
combination. This structure is very common in signal separation applications. For
instance, tensors with partial Hermitian symmetry are obtained by stacking sets of
covariance matrices of complex data; see [2, 7] for references to concrete applications.
A uniqueness condition for the Hermitian symmetry-constrained CPD of a tensor was
provided in [28] for the special case where C has full column rank. We will now
provide a new uniqueness condition. In contrast to [28] we do not require that C has
full column rank. In fact, by better exploiting the Hermitian symmetry, C may even
contain collinear columns, and even K = 1 can be admitted in some cases. Let us
define the tensor Y ∈ CI×I×K by yijk = x∗

jik for all indices. We have Z ∈ CI×I×2K

with matrix representation

Z(1) =
[
X(1),Y(1)

]
= (A⊙A∗)DT ∈ C

I2×2K ,(5.2)

where

D =

[
C
C∗

]
∈ C

2K×R.(5.3)

We may now study the uniqueness of the CPD of Z in order to obtain uniqueness
results for X . From relation (5.2) it is clear that if A has full column rank, then the
Hermitian symmetry-constrained CPD of X is unique if kD ≥ 2. Note that the latter
condition does not prevent kC = 1 or even K = 1. Theorem 5.2 is an adaption of
Theorem 5.1 to the Hermitian symmetry-constrained CPD case.

Theorem 5.2. Consider the PD of X ∈ CI×I×K with matrix representation
X(1) = (A⊙A

∗)C T . Consider also D in (5.3). Let S denote a subset of {1, . . . , R}
and let Sc = {1, . . . , R} \ S denote the complementary set. Stack the columns of D

with index in S in D
(S) ∈ C2K×card(S), and stack the columns of D with index in

Sc in D
(Sc) ∈ C2K×(R−card(S)). Stack the columns of A in the same order such that

A
(S) ∈ CI×card(S) and A

(Sc) ∈ CI×(R−card(S)) are obtained. If

CR−rD+2 (A
∗)⊙ CR−rD+2 (A) has full column rank,(5.4a)
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and if there exists a subset S ⊆ {1, . . . , R} with 0 ≤ card (S) ≤ rD such that

⎧
⎪⎪⎨
⎪⎪⎩

D
(S) has full column rank,

A
(Sc) has full column rank,

r
([(

P
D(S)D

(Sc)
)
⊙A

(Sc),
(
P

D(S)d
(Sc)
r

)
⊗ II

])
= α ∀r ∈ Sc,

(5.4b)

where α = I +R− card (S)− 1, then the Hermitian symmetry-constrained rank of X
is R and the Hermitian symmetry-constrained CPD of X is unique.

Proof. Analogous to the proof of Theorem 5.1, condition (5.4b) implies that
kD ≥ 2. Consequently, conditions (5.4a) and (5.4b) together with Theorem 2.1 imply
that the rank of Z with matrix representation (5.2) is R and that the factor D is
unique. Since D is unique, C is unique. Due to Theorem 4.8, we know that if
condition (5.4b) is satisfied, A is also unique. Overall, we obtain that the Hermitian
symmetry-constrained CPD of X is unique and the Hermitian symmetry-constrained
rank of X is R.

Equations (5.2)–(5.3) are the key to understanding why partial Hermitian sym-
metry allows us to relax uniqueness conditions. Indeed, a condition on D is typically
less restrictive than a condition on C. (Note that generically rC = min(K,R), while,
on the other hand, generically rD = min(2K,R); see the supplementary material.)
For that reason the conditions in Theorem 5.2 are more relaxed than the conditions
for unconstrained CPD in Theorems 2.2 and 5.1. For instance, Theorem 5.2 does
not prevent kC = 1, i.e., it only requires that kD ≥ 2. This is in contrast to the
unconstrained CPD for which kC ≥ 2 is a necessary uniqueness condition (e.g., [27]).
Theorem 5.2 is also more relaxed than the existing result presented in [28]. In contrast
to [28], Theorem 5.2 allows us to establish uniqueness in cases where rC < R, kC = 1,
and even K = 1. Again, since Theorem 2.1 is not necessary for one factor uniqueness
it may be possible to further generalize Theorem 5.2 by combining Theorem 4.8 with
a more relaxed single factor matrix uniqueness condition.

A necessary condition for Hermitian symmetry-constrained CPD uniqueness is
that the matrix A⊙A∗ must have full column rank. Indeed, if A⊙A∗ does not have
full column rank, then for any x ∈ ker (A⊙A∗) we obtain from relation (5.2) that
Z(1) = (A⊙A∗)DT = (A⊙A∗) (DT + x[yT ,yT ]), where y ∈ RK . Since A ⊙ A∗

generically has rank min(I2, R) [24], this requirement is not very restrictive.

5.3. New uniqueness condition for CPD with columnwise orthonor-
mal factor matrix. In this section we consider the PD of X ∈ CI1×I2×K with
matrix representation X(1) = (A(1) ⊙ A(2))CT , in which CHC = IR. The orthog-
onality constrained rank of a tensor X is equal to the minimal number of orthogo-
nality constrained (cHi cj = δij) rank-1 terms that yield X in a linear combination.
In [24] uniqueness of CPD with a columnwise orthonormal factor matrix has been
demonstrated under conditions milder than an unconstrained CPD. Orthogonality-
constrained CPD is very common in statistical signal processing. Typically, the or-
thonormal columns of C model signals are uncorrelated. See [24] for an overview,
applications, and references. We will now provide a new uniqueness condition for a
CPD with a columnwise orthonormal factor matrix.

Theorem 5.3. Consider the PD of X ∈ CI1×I2×K with matrix representation
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X(1) = (A(1) ⊙A
(2))CT , in which C is columnwise orthonormal. Let

Nmax =

{
2 if I2 ≥ I1,

1 if I1 > I2,
Nmin =

{
2 if I2 < I1,

1 if I1 ≤ I2,
(5.5)

Imax = max (I1, I2) , Imin = min (I1, I2) .(5.6)

Construct D = A
(Nmin)∗ ⊙ A

(Nmin) ∈ CI2
min×R. Let S denote a subset of {1, . . . , R}

and let Sc = {1, . . . , R} \ S denote the complementary set. Stack the columns of D

with index in S in D
(S) ∈ CI2

min×card(S) and stack the columns of D with index in Sc

in D
(Sc) ∈ CI2

min×(R−card(S)). Stack the columns of A(Nmax) in the same order such
that A(Nmax,S) ∈ CImax×card(S) and A

(Nmax,S
c) ∈ CImax×(R−card(S)) are obtained. If

CR−rD+2

(
A

(Nmax)∗
)
⊙ CR−rD+2

(
A

(Nmax)
)
has full column rank,(5.7a)

and if there exists a subset S ⊆ {1, . . . , R} with 0 ≤ card (S) ≤ rD such that

⎧
⎪⎪⎨
⎪⎪⎩

D
(S) has full column rank,

A
(Nmax,S

c) has full column rank,

r
([(

PD (S)D
(Sc)

)
⊙A

(Nmax,S
c),

(
P

D(S)dr
(Sc)

)
⊗ IImax

])
= α ∀r ∈ Sc,

(5.7b)

where α = Imax +R− card (S)− 1, or

r
([

A
(Nmin) ⊙A

(Nmax),a(Nmin)
r ⊗ IImax

])
= Imax +R− 1 ∀r ∈ {1, . . . , R},

(5.7c)

then the orthogonality constrained rank of X is R and the orthogonality constrained
CPD of X is unique.

Proof. Denote X(i1··) = X (i1, :, :) and construct the fourth-order tensor Y ∈

CI2×I2×I1×I1 with matrix slices CI2×I2 ∋ Y(··i3,i4) � Y (:, :, i3, i4) = X(i3··)X(i4··)H .

Since X(i1··) = A(2)Di1(A
(1))CT and since C is columnwise orthonormal, the matrix

slice Y(··i3,i4) admits the factorization

Y(··i3,i4) = A(2)Di3

(
A(1)

)
Di4

(
A(1)∗

)
A(2)H , i3, i4 ∈ {1, . . . , I1} .

Thus, the fourth-order tensor Y has the following matrix decomposition:

Y =
[
Vec

(
Y(··1,1)

)
,Vec

(
Y(··1,2)

)
, . . . ,Vec

(
Y(··I1,I1)

)]

=
(
A(2)∗ ⊙A(2)

)(
A(1)∗ ⊙A(1)

)T
.(5.8)

If the fourth-order CPD with matrix representationY in (5.8) is unique, then the CPD
of X with columnwise orthonormal factor matrix is also unique. Let us interpret (5.8)

as a matrix representation of a CPD with factor matrices A(Nmax)∗, A(Nmax), and
A(Nmin)∗ ⊙ A(Nmin), in which the Khatri–Rao structure of the latter is in the first
instance ignored.

We first explain that conditions (5.7a) and (5.7b) imply orthogonality constrained
CPD uniqueness. Analogous to the proof of Theorem 5.1, condition (5.7b) implies
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that kD ≥ 2. Condition (5.7a) together with Theorem 2.1 now tells us that the rank of

Y is R and the factor matrix A(Nmin)∗ ⊙A(Nmin) is unique. Since A(Nmin)∗ ⊙A(Nmin)

is unique, A(Nmin) is unique. Since A(Nmin) is unique and conditions (5.7b) hold,

Theorem 4.8 guarantees the uniqueness of the factor matrixA(Nmax). The columnwise
orthonormal matrixC follows fromX(1) = (A(1)⊙A(2))CT , withX(1), A

(1), andA(2)

known, via an orthogonal Procrustes problem (e.g., [10]). We can now conclude that
the orthogonality constrained CPD of X is unique and the orthogonality constrained
rank of X is R.

We now explain that conditions (5.7a) and (5.7c) imply orthogonality constrained
CPD uniqueness. Analogous to the proof of Theorem 5.1, condition (5.7c) implies that
kD ≥ 2. Condition (5.7a) together with Theorem 2.1 now tells us that the rank of Y

is R and the factor matrix A(Nmin)∗ ⊙ A(Nmin) is unique. This in turn implies that
A(Nmin) is unique. Since A(Nmin) is unique and conditions (5.7c) hold, Theorem 4.6

guarantees the uniqueness of A(Nmax) and C. Thus, the orthogonality constrained
CPD of X is unique, and the orthogonality constrained rank of X is R.

Theorem 5.3 leads to more relaxed uniqueness conditions than those presented
in [24]. For instance, consider the PD of X ∈ C7×4×17 with matrix representation
X(1) = (A⊙B)CT , in which A ∈ C

7×17, B ∈ C
4×17, and columnwise orthonormal

C ∈ C17×17. We randomly generate A, B, and C. For this setting the uniqueness
results presented in [24] do not apply. On the other hand, using Lemma 4.1, it can
be verified that conditions (5.7a) and (5.7c) in Theorem 5.3 with card (S) = 9 are
generically satisfied. Once again, since Theorem 2.1 is not necessary for one factor
uniqueness it may be possible to generalize Theorem 5.3 by combining Theorem 4.8
with a more relaxed single factor matrix uniqueness condition.

6. Numerical experiments. Let X ∈ C
I×J×K denote the rank-R tensor for

which the CPD is given by (2.1) with C known. The goal is to estimate A and B from
the observed tensor T = X + βN , where N is an unstructured perturbation tensor
and β ∈ R controls the noise level. The entries of all the involved factor matrices
and perturbation tensors are randomly drawn from a Gaussian distribution with zero
mean and unit variance.

The following SNRmeasure will be used: SNR [dB] = 10 log
(
‖X(1)‖

2
F /‖βN(1)‖

2
F

)
.

The distance between a factor matrix, say A, and its estimate Â, is measured accord-
ing to the following criterion: P (A) = minΛ ‖A−ÂΛ‖F/‖A‖F ,Λ is a diagonal matrix.

We compare Algorithms 1 and 2 with the ALS method, which alternates between
the update of the two unknown factor matrices A and B. See the supplementary
material for an efficient implementation of ALS. We use ALS as a representative of the
class of optimization algorithms; see [23] and references therein for other optimization-

based algorithms. Let fk = ‖T(1) − T̂
(k)

(1)‖F , where T̂
(k)

(1) denotes the estimated tensor
at iteration k; then we decide that the ALS method has converged when fk − fk+1 <
ǫALS = 1e − 8 or when the number of iterations exceeds 5000. The ALS method
is randomly initialized. Since the best out of ten random initializations is used, the
ALS method will be referred to as ALS-10. Algorithms 1 and 2 will be referred to as
Alg1 and Alg2, respectively. When Alg1 and Alg2 are followed by at most 500 ALS
refinement iterations they will be referred to as Alg1-ALS and Alg2-ALS, respectively.
Note that the computational cost of the Alg1 and Alg2 methods is very low, not much
more than one ALS iteration.

For the choice of the integer card (S) in Algorithm 2, the value that yields
the best fit of T is retained. More precisely, the integer card (S) which minimizes
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gcard(S) = ‖T(1)− (Âcard(S)⊙ B̂card(S))C
T ‖F is retained, where Âcard(S) and B̂card(S)

denote the estimates of the factor matrices A and B obtained by Algorithm 2 with
the given card (S). Since the data are uniformly distributed, we just choose S =
{1, 2, . . . , card (S)} if card (S) ≥ 1 (i.e., we pick the first card (S) columns without
trying other combinations) and S = ∅ if card (S) = 0.

Case 1: I,K < R and J > R. The model parameters are I = 3, J = 10, K = 4,
and R = 9. The existing uniqueness conditions stated in Propositions 3.1 and 3.2 do
not apply, indicating a difficult problem. On the other hand, Theorem 4.6 generically
guarantees the uniqueness of the decomposition. The mean and standard deviation
P (A) and P (B) values over 100 trials as a function of SNR can be seen in Figure
2. We notice that the Alg1 and Alg1-ALS methods perform better than the ALS-10
method. Hence, the proposed Alg1 method, possibly followed by few ALS refinement
steps, seems to be a good method for computing a CPD with a known factor matrix
in cases where only one unknown factor matrix has full column rank.

Case 2: I, J,K < R. The model parameters are I = 4, J = 6, K = 5, and R = 8.
Despite the fact that both Proposition 3.2 and Theorem 4.8 generically guarantee the
uniqueness of the decomposition, the problem is difficult since none of the involved
factors have full column rank. The mean and standard deviation P (A) and P (B)
values over 100 trials as a function of SNR can be seen in Figure 3. On average,
card (S) = 2, which is the smallest value for which the conditions in Theorem 4.8 are
satisfied, yielded the best fit. We notice that in the presence of noise Alg2 performs
worse than ALS-10. However, we also observe that Alg2-ALS and ALS-10 perform
about the same. Since the Alg2-ALS method is computationally cheaper than the
ALS-10 method, Alg2 is an attractive procedure for the initialization of the iterative
ALS method. Overall, the Alg2-ALS method seems to be the method of choice for
the case where none of the unknown factor matrices have full column rank.

10 20 30 40
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0.8

SNR
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Alg1−ALS

ALS−10
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Fig. 2. Mean and standard deviation P (A) and P (B) for varying SNR, case 1.

7. Conclusion. Many problems in signal processing can be formulated as tensor
decomposition problems with a known factor matrix. We mentioned applications in
wireless communication. In the first part of this paper we provided a new uniqueness
condition for CPD with a known factor matrix. We showed that by taking the known
factor into account more relaxed uniqueness conditions can be obtained compared to
unconstrained CPD. We also proposed an inexpensive algebraic method for comput-
ing a CPD with a known factor matrix. In the supplementary material an efficient
implementation of the ALS method for CPD with a known factor matrix was also
reported.
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Fig. 3. Mean and standard deviation P (A) and P (B) for varying SNR, case 2.

Based on the results obtained in the first part of this paper, we provided in
the second part a new versatile deterministic overall uniqueness condition for the
CPD. Since the condition is flexible it can be adapted to other tensor decompositions,
as demonstrated in [25, 26]. The supplementary material also contains a partial
uniqueness variant of the overall uniqueness result presented in this paper. In tensor-
based statistical signal processing CPDs are typically constrained, e.g., orthogonality
or Hermitian-symmetry constrained. For that reason we presented new uniqueness
conditions for CPD with a partial Hermitian symmetry or columnwise orthonormal
factor matrix. Again, such constraints lead in some cases to more relaxed uniqueness
conditions than their unconstrained CPD counterparts.

Finally, numerical experiments confirmed the practical use of the proposed Algo-
rithms 1 and 2 for computing a CPD with a known factor matrix. More precisely,
in the case where one of the unknown factor matrices had full column rank, Algo-
rithm 1 performed better than the popular ALS method. In the case where none of
the unknown factor matrices had full column rank, Algorithm 2 provided at a low
computational cost a good initial value for an optimization-based algorithm.
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