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Abstract. In this paper, uniqueness results for boundary value problem of fractional differential
equation are obtained. Both the Banach’s contraction mapping principle and the theory of linear
operator are used, and a comparison between the obtained results is provided.
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1 Introduction

In this paper, we consider the uniqueness of solutions of the following boundary value
problems for nonlinear fractional differential equation:

Dα
0+u(t) + f

(
t, u(t)

)
= 0, t ∈ (0, 1), 1 < α 6 2,

u(0) = u(1) = 0.
(1)

Boundary value problems for nonlinear fractional differential equation have been investi-
gated extensively. The motivation for those works arises from both the development of the
theory of fractional calculus itself and the study of models of viscoelasticity, electrochem-
istry, control, porous media, electromagnetic, etc. (see [5, 7, 8, 16]). In applications, one
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is interested in showing the existence and multiplicity of solution (or positive solution).
Consequently, there has been a significant development in the study of boundary value
problems of fractional differential equation, see [1,3,6,7,9,11,12,15]. In [3], the authors
considered the existence and multiplicity of positive solutions of BVP (1) by means of
the Krasnosel’skii fixed-point theorem and the Leggett–Williams fixed-point theorem.
However, there are few works on the uniqueness for boundary value problems of fractional
differential equations [2, 4, 10, 13, 14]. In [13], the authors studied the following multi-
point boundary value problems of fractional order:

Dα
t y(t) = f

(
t, y(t), Dβ

t y(t)
)
, t ∈ (0, 1),

y(0) = 0, Dβ
t y(1)−

m−2∑
i=1

ςiD
β
t y(ξi) = y0,

(2)

where 1 < α 6 2, 0 < β < 1, 0 < ξi < 1 (i = 1, 2, . . . ,m − 2), ςi > 0
with

∑m−2
i=1 ςiξ

α−β−1
i < 1, and Dα

t denotes the standard Riemann–Liouville fractional
derivative. They proved the uniqueness of solutions to BVP (2) by means of the Banach’s
contraction mapping principle. Recently, the following nonlinear fractional differential
equations with two point boundary conditions was also studied by Cui [4]:

Dpx(t) + p(t)f
(
t, x(t)

)
+ q(t) = 0, t ∈ (0, 1),

x(0) = x′(0) = 0, x(1) = 0,

where 2 < p 6 3 is a real number. By use of u0-positive operator, a uniqueness result is
proved, provided that f is a Lipschitz continuous function. The novelty of [4] is that the
Lipschitz constant is related to the first eigenvalue corresponding to the relevant operator.

Motivated by the results mentioned above, in this paper, we study the uniqueness of
solutions for BVP (1) based on the Banach’s contraction mapping principle and the theory
of linear operator. It should be remarked that the method used in [4] is not suitable for
BVP (1).

2 Preliminaries and lemmas

For convenience, we present here the necessary definitions from fractional calculus the-
ory. These definitions can be found in the literature.

Definition 1. (See [12].) The Riemann–Liouville fractional integral of order α > 0 of
a function f : (0,∞)→ R is given by

Iα0+f(t) =
1

Γ(α)

t∫
0

(t− s)α−1f(s) ds,

provided that the right-hand side is pointwise defined on (0,∞).
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Definition 2. (See [12]) The Riemann–Liouville fractional derivative of order α > 0 of
a continuous function f : (0,∞)→ R is given by

Dα
0+f(t) =

1

Γ(n− α)

(
d

dt

)n t∫
0

f(s)

(t− s)α−n+1
ds,

where n− 1 6 α < n, provided that the right-hand side is pointwise defined on (0,∞).

Let C[0, 1] denote the Banach space of real-valued continuous function with norm
‖u‖ = maxt∈[0,1] |u(t)|.

Lemma 1. (See [3].) Given h ∈ C[0, 1] and 1 < α 6 2, the unique solution of

Dα
0+u(t) + h(t) = 0, t ∈ (0, 1),

u(0) = u(1) = 0

is

u(t) =

1∫
0

G(t, s)h(s) ds,

where

G(t, s) =
1

Γ(α)

{
(t(1− s))α−1 − (t− s)α−1, 0 6 s 6 t 6 1,

(t(1− s))α−1, 0 6 t 6 s 6 1.

By Lemma 1, BVP (1) can be converted into a fixed-point problem x = Ax, where
A : C[0, 1]→ C[0, 1] is presented by

(Au)(t) =

1∫
0

G(t, s)f
(
s, u(s)

)
ds.

Clearly, BVP (1) has a solution if and only if the associated fixed-point problem x = Ax
has a fixed point.

Lemma 2. Let E = {a ∈ R: a(1− t) > 1 + tα+1 − 2tα, t ∈ [0, 1]}. Then E 6= ∅ and
M = inf E ∈ [1, α].

Proof. By the Lagrange mean value theorem, we have

1 + tα+1 − 2tα = 1− tα − tα(1− t) 6 1− tα = αξα−1(1− t)
6 α(1− t), ξ ∈ (t, 1).

This implies that E 6= ∅ and M 6 α.
On the other hand, substituting the value t = 0 to the inequality a(1−t) > 1+tα+1−

2tα, we get a > 1 and M > 1. This completes the proof.

Nonlinear Anal. Model. Control, 23(1):31–39



34 Y. Cui et al.

3 Main results

We first prove a uniqueness result based on the Banach’s contraction mapping principle.

Theorem 1. Suppose that f : [0, 1] × R → R is a continuous function and there exists
a constant L > 0 such that∣∣f(t, x)− f(t, y)

∣∣ 6 L|x− y|, t ∈ [0, 1], x, y ∈ R.

If L < α2Γ(α)((α− 1)/α)1−α, then BVP (1) has a unique solution in C[0, 1].

Proof. We now show that A is a contraction on C[0, 1]. To see this, let u, v ∈ C[0, 1] and
notice

Γ(α)

1∫
0

G(t, s) ds =

1∫
0

(
t(1− s)

)α−1
ds−

t∫
0

(t− s)α−1 ds

= tα−1B(α, 1)− tα
1∫

0

(1− s)α−1 ds

= tα−1B(α, 1)− tαB(α, 1) =
1

α

(
tα−1 − tα

)
6

1

α

(
tα−1 − tα

)∣∣∣
t=(α−1)/α

=
1

α2

(
α− 1

α

)α−1
. (3)

Thus, for t ∈ [0, 1],

∣∣(Au)(t)− (Av)(t)
∣∣ =

∣∣∣∣∣
1∫

0

G(t, s)
(
f
(
s, u(s)

)
− f

(
s, v(s)

))
ds

∣∣∣∣∣
6

1∫
0

G(t, s)
∣∣f(s, u(s)

)
− f

(
s, v(s)

)∣∣ds
6 L

1∫
0

G(t, s)
∣∣u(s)− v(s)

∣∣ds 6 L

1∫
0

G(t, s) ds‖u− v‖

6
L

Γ(α)α2

(
α− 1

α

)α−1
‖u− v‖

and therefore

‖Au−Av‖ 6 L

Γ(α)α2

(
α− 1

α

)α−1
‖u− v‖.

Since L < Γ(α)α2((α − 1)/α)1−α, the Banach’s contraction mapping principle implies
that there is a unique u with u = Au, equivalently, BVP (1) has a unique solution u ∈
C[0, 1]. The proof is completed.
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Next, we prove a uniqueness result by means of the theory of linear operator.

Theorem 2. Suppose that f : [0, 1] × R → R is a continuous function and there exists
a constant L > 0 such that∣∣f(t, x)− f(t, y)

∣∣ 6 L|x− y|, t ∈ [0, 1], x, y ∈ R.

If L < 2Γ(2α)/(MΓ(α)), then BVP (1) has a unique solution in C[0, 1].

Proof. We define an operator T on C[0, 1] by

(Tu)(t) =

1∫
0

G(t, s)u(s) ds, u ∈ C[0, 1].

In the following, we separate the proof into the following four steps.
Step 1. For any given u ∈ C[0, 1] with u(t) > 0 (t ∈ [0, 1]), there is a constant

N = N(u) such that
(Tu)(t) 6 Nu0(t), t ∈ [0, 1],

where u0(t) = tα−1(1− t). In fact, it follows from (3) that

Γ(α)

1∫
0

G(t, s)u(s) ds 6

( 1∫
0

(
t(1− s)

)α−1
ds−

t∫
0

(t− s)α−1 ds

)
‖u‖

6
‖u‖
α

(
tα−1 − tα

)
=
‖u‖
α
u0(t), t ∈ [0, 1].

Step 2. (Tu0)(t) 6 βu0(t), where β = MΓ(α)/(2Γ(2α)). This can be obtained by
the following inequality:

Γ(α)(Tu0)(t)

= Γ(α)

1∫
0

G(t, s)sα−1(1− s) ds

=

1∫
0

(
t(1− s)

)α−1
sα−1(1− s) ds−

t∫
0

(t− s)α−1sα−1(1− s) ds

= tα−1B(α+ 1, α)−
t∫

0

(t− s)α−1sα−1 ds+

t∫
0

(t− s)α−1sα ds

= tα−1B(α+ 1, α)− t2α−1
1∫

0

(1− s)α−1sα−1 ds+ t2α
1∫

0

(1− s)α−1sα ds
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= tα−1B(α+ 1, α)− t2α−1B(α, α) + t2αB(α, α+ 1)

= tα−1
Γ(α+ 1)Γ(α)

Γ(2α+ 1)
− t2α−1 Γ(α)Γ(α)

Γ(2α)
+ t2α

Γ(α)Γ(α+ 1)

Γ(2α+ 1)

= tα−1
αΓ(α)Γ(α)

2αΓ(2α)
− t2α−1 Γ(α)Γ(α)

Γ(2α)
+ t2α

αΓ(α)Γ(α)

2αΓ(2α)

= tα−1
B(α, α)

2

(
1 + tα+1 − 2tα

)
6
MB(α, α)

2
(1− t)tα−1 =

MΓ(α)Γ(α)

2Γ(2α)
u0(t), t ∈ [0, 1].

Step 3. To show the existence of the solution, select v1 ∈ C[0, 1]. Let

vn+1 = Avn, wn(t) =
∣∣vn+1(t)− vn(t)

∣∣, n = 1, 2, . . . .

Notice for n ∈ {1, 2, . . .} that

wn(t) =
∣∣vn+1(t)− vn(t)

∣∣ =
∣∣(Avn)(t)− (Avn−1)(t)

∣∣
6

1∫
0

G(t, s)
∣∣f(s, vn(s)

)
− f

(
s, vn−1(s)

)∣∣ds
6 L

1∫
0

G(t, s)
∣∣vn(s)− vn−1(s)

∣∣ds
= L(Twn−1)(t), t ∈ [0, 1].

Then by Steps 1 and 2, we have

wn(t) 6 L(Twn−1)(t) 6 · · · 6 Ln−1
(
Tn−1w1

)
(t) 6 N(w1)Ln−1

(
Tn−2u0

)
(t)

6 N(w1)Ln−1βn−2u0(t), t ∈ [0, 1].

Thus, for m > n where n ∈ {1, 2, . . .},∣∣vm(t)− vn(t)
∣∣ 6 ∣∣vm(t)− vm−1(t)

∣∣+ · · ·+
∣∣vn+1(t)− vn(t)

∣∣
= wm−1(t) + · · ·+ wn(t)

6 N(w1)Lm−2βm−3u0(t) + · · ·+N(w1)Ln−1βn−2u0(t)

6 N(w1)Ln−1βn−2u0(t)
(
1 + Lβ + (Lβ)2 + · · ·

)
= N(w1)Ln−1βn−2u0(t)

1

1− Lβ
, t ∈ [0, 1].

That is, for m > n where n ∈ {1, 2, . . .},∣∣vm(t)− vn(t)
∣∣ 6 N(w1)Ln−1βn−2

1

1− Lβ
. (4)
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This shows that {vn} is a Cauchy sequence, and since C[0, 1] is complete, there exists
v∗ ∈ C[0, 1] with limn→∞ vn = v∗. Moreover, the continuity of A yields

v∗ = lim
n→∞

vn = lim
n→∞

A(vn−1) = Av∗,

therefore, v∗ is a fixed point of A. Finally, letting m→∞ in (4) implies

‖v∗ − vn‖ 6 N(w1)Ln−1βn−2
1

1− Lβ
.

Step 4. We show the uniqueness of the solution. Suppose that there exist u, v ∈ C[0, 1]
with u = Au and v = Av. Similarly to the proof of Step 3, we obtain∣∣u(t)− v(t)

∣∣ 6 ∣∣(Anu)(t)− (Anv)(t)∣∣
6

1∫
0

G(t, s)
∣∣f(s,

(
An−1u

)
(s)
)
− f

(
s,
(
An−1v

)
(s)
)∣∣ds

6 L

1∫
0

G(t, s)
∣∣(An−1u)(s)− (An−1v)(s)∣∣ds

= LT
(∣∣An−1u−An−1v∣∣)(t)

6 · · · 6 LnTn
(
|u− v|

)
(t) 6 N

(
|u− v|

)
Ln
(
Tn−1u0

)
(t)

6 N
(
|u− v|

)
Lnβn−1u0(t) ∀n ∈ N.

Therefore, u = v. This completes the proof.

From the proof of Theorems 1 and 2 we have

tα−1
B(α, α)

2

(
1 + tα+1 − 2tα

)
= Γ(α)(Tu0)(t) 6 Γ(α)

1∫
0

G(t, s) ds‖u0‖ =
1

α

(
tα−1 − tα

)
‖u0‖

=
1

α

(
tα−1 − tα

) 1

α

(
α− 1

α

)α−1
=

1

α2

(
α− 1

α

)α−1(
tα−1 − tα

)
.

Using this and Lemma 2, we get

Γ(α)M

2Γ(2α)
6

1

α2Γ(α)

(
α− 1

α

)α−1
,

that is,

α2Γ(α)

(
α− 1

α

)1−α

6
2Γ(2α)

Γ(α)M
.
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This implies that Theorem 2 provides the same results with weaker conditions. In order
to apply the above results, one needs to compute some of the following three values:

M, α2Γ(α)

(
α− 1

α

)1−α

,
2Γ(2α)

Γ(α)M
.

When α = 2, three values are 5/4, 8 and 48/5, respectively; if α = 3/2, three values are
M ≈ 1.0507, 3.454 and 4.296, respectively.

Similarly to the proof of Theorem 2, we can obtain the uniqueness result of nonnega-
tive solution for BVP (1).

Theorem 3. Suppose that f : [0, 1] × R → [0,+∞) is a continuous function and there
exists a constant L > 0 such that∣∣f(t, x)− f(t, y)

∣∣ 6 L|x− y|, t ∈ [0, 1], x, y ∈ [0,+∞).

If L < 2Γ(2α)/(MΓ(α)), then BVP (1) has a unique nonnegative solution in C[0, 1].
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