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New universal ITS2 primers for 
high-resolution herbivory analyses 
using DNA metabarcoding in both 
tropical and temperate zones
Rosemary J. Moorhouse-Gann1, Jenny C. Dunn  1,2,3, Natasha de Vere4,5, Martine Goder6,  

Nik Cole6,7, Helen Hipperson8 & William O. C. Symondson1

DNA metabarcoding is a rapidly growing technique for obtaining detailed dietary information. Current 
metabarcoding methods for herbivory, using a single locus, can lack taxonomic resolution for some 
applications. We present novel primers for the second internal transcribed spacer of nuclear ribosomal 
DNA (ITS2) designed for dietary studies in Mauritius and the UK, which have the potential to give 
unrivalled taxonomic coverage and resolution from a short-amplicon barcode. In silico testing used 
three databases of plant ITS2 sequences from UK and Mauritian floras (native and introduced) totalling 
6561 sequences from 1790 species across 174 families. Our primers were well-matched in silico to 88% 
of species, providing taxonomic resolution of 86.1%, 99.4% and 99.9% at the species, genus and family 
levels, respectively. In vitro, the primers amplified 99% of Mauritian (n = 169) and 100% of UK (n = 33) 
species, and co-amplified multiple plant species from degraded faecal DNA from reptiles and birds in 
two case studies. For the ITS2 region, we advocate taxonomic assignment based on best sequence 
match instead of a clustering approach. With short amplicons of 187–387 bp, these primers are suitable 
for metabarcoding plant DNA from faecal samples, across a broad geographic range, whilst delivering 
unparalleled taxonomic resolution.

Analysis of trophic interactions facilitates our understanding of community ecology and ecosystem functioning. 
Analysing such complex and dynamic processes can bene�t conservation by informing management strategies. 
For example, monitoring dietary composition allows for human-wildlife con�ict to be detected and monitored1, 
for the costs2 and potential bene�ts3 of alien species to be assessed, for understanding how habitat management 
in�uences food webs4, and for understanding seed dispersal and pollination networks to inform ecosystem res-
toration5–8. An understanding of trophic links also allows species at risk due to in�exible niches to be identi�ed, 
isolates particularly vulnerable interaction networks, and allows for suitable (re)introduction sites to be iden-
ti�ed9–11. Large herbivores in particular are recognised as keystone consumers1,12 and determining their diets 
can be critical to understanding their impact on plant communities and the wider food web. �is is particularly 
relevant in the light of recent rewilding e�orts, including the introduction of non-native species as ecological 
replacements (analogues) for extinct taxa to restore ecosystem function, or the conservation or reintroduction of 
native species1,12.
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Traditional methods of dietary analysis, such as the morphological examination of faecal samples and gut 
contents, or feeding observations, are fraught with methodological problems. Molecular methods provide an 
alternative suite of approaches that can generate greater volumes of data more rapidly and with greater preci-
sion13, and comparisons between morphological and molecular methods show that molecular analysis generally 
provide greater sensitivity3,14. Species-speci�c primers can be used to detect the DNA of particular focal dietary 
items in gut contents or faecal samples15–17. However, this approach is only appropriate if a priori dietary informa-
tion is available and if the dietary range is small. It cannot unravel the e�ects that non-focal species may be having 
on dietary selection by a highly polyphagous predator or herbivore. In order to overcome such problems, and to 
determine whole dietary ranges, DNA barcodes coupled with next generation sequencing (NGS), o�en referred 
to as DNA metabarcoding, have been widely adopted.

A key target for designing metabarcoding primers is to maximise the taxonomic coverage of a primer set to 
ensure all potential target species are ampli�ed. However, this o�en leads to reduced taxonomic resolution, as the 
highly conserved primer sites required for maximising coverage o�en favour less variable DNA regions, resulting 
in reduced ability to distinguish between taxa18. �us, the panacea for metabarcoding is primers with high taxo-
nomic coverage that amplify a gene region with high taxonomic resolution. An additional challenge for dietary 
analyses is for this gene region to be short enough to be reliably ampli�ed from degraded samples.

Identification of animal dietary components primarily uses the mitochondrial cytochrome c oxidase 
gene, which has been shown to e�ectively resolve species identity19–21. However, in plants the mitochondrial 
genome evolves too slowly for these genes to provide su�cient variation to be useful barcodes22. In 2009, the 
Consortium for the Barcode of Life approved plastid matK and rbcL as the barcode regions for use in land 
plants23. Unfortunately, the large fragment size (rbcL = 654 bp; matK = 889 bp)24 of these barcodes makes them 
impractical for dietary metabarcoding studies. Minibarcodes have been designed within rbcL, but those suitable 
for application in dietary studies have low discriminatory power at the species level25. �e most commonly used 
DNA barcode in herbivory studies is the P6 loop of the plastid trnL (UAA) gene1,3,14,22,26–31, but in silico analysis of 
this barcoding region using the EMBL database32 estimated taxonomic resolution to be around 18% at the species 
level18. Whilst in vitro studies using this region report species level taxonomic assignment of 29.8%33 to 77%34, 
there remains room for improvement. �e second internal transcribed spacer (ITS2) of nuclear ribosomal DNA 
has been suggested as a ‘gold standard’ barcode for identifying plants35 and there is growing evidence to support 
this36,37. In a study examining 4800 species of medicinal plants, testing the most variable region of a larger ITS2 
amplicon as a barcoding region, correct taxonomic identi�cation at the species and genus levels was approxi-
mately 91.5% and 99.8%35. Such high taxonomic resolution mostly con�ned to a 160–320 bp region makes ITS2 
a promising DNA barcoding region for use in dietary studies.

General primers for ITS2 have been designed for priming sites within the more conserved �anking regions 
of 5.8S and 26S35,38. �is presents a problem for dietary studies since the resultant amplicon length (approxi-
mately 387–547 bp using S2F and S3R35) is potentially too great to be reliably detected in semi-digested samples. 
Designing shorter amplicon primers closer to ITS2 within the �anking regions, or within ITS2 itself, is a challenge 
due to the high interspeci�c variation that has the potential to provide such high taxonomic resolution35 but could 
limit taxonomic coverage. Additionally, ITS2 presents challenges in interpretation due to the presence of paralo-
gous gene copies and the potential for co-ampli�cation of non-target fungal amplicons36.

Here, we describe primers initially designed for two in-depth dietary studies: a suite of Mauritian herbivores39, 
and UK doves and pigeons40. We test the scope of these primers for wider herbivory studies by running analy-
ses against three ITS2 sequence databases: (1) a comprehensive database of plants from two Mauritian islands 
(Mauritian database); (2) all species known to feature in the diet of an obligate granivore (European turtle dove 
Streptopelia turtur; UK columbid database); and (3) a database consisting of UK plant sequences downloaded 
from GenBank (UK database). �is last database consists largely of vouchered specimens and, where available, 
contains at least one representative species from each genus of plant present in the UK.

We used these databases to address three objectives:

 (1) To establish the taxonomic coverage of our new primers, against all three databases in silico and against all 
available Mauritian species and a subset of UK species in vitro.

 (2) To determine the taxonomic resolution of our primers using all three databases combined for the ITS2 
region.

 (3) For the two databases with multiple sequences per species (Mauritian and a subset of the UK database), 
identify clustering thresholds to use in the bioinformatics pipeline for analysis of NGS data, to maximise 
taxonomic resolution and minimise assignment of multiple haplotypes of the same species to di�erent 
molecular operational taxonomic units (MOTUs).

To con�rm that our primers successfully co-amplify a diverse range of plant species within the same degraded 
faecal samples, from both birds and reptiles, we also present detailed dietary data from an omnivorous reptile 
species (Mauritius: Telfair’s skink Leiolopisma telfairii) and an herbivorous bird species (UK: stock dove Columba 
oenas).

Results
In silico testing of primers. Across all three databases, amplicon lengths, minus priming sites, ranged 
from 187–387 bp (Table 1; Fig. 1). Where coverage of both forward and reverse primer binding regions was 
available, 88% of Mauritian (n = 131 species, 114 genera, 57 families; Table 2) and 89% of UK plants (n = 986 
species, 561 genera and 121 families; Table 3) ful�lled the primer �t criteria (with fewer than 3 bp mismatches 
and no mismatch within the last 2 bp at the 3′ end). Poor primer matches (where 50% or fewer of tested species 
ful�lled the primer �t criteria) were found in only 3 families within the UK (Hydrocharitaceae = 50%, n = 6; 
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Order Family No. species Mean ± SE amplicon length (bp)

Lamiales Acanthaceae 2 291 ± 7.49

Sapindales Aceraceae 1 310 ± 0

Acorales Acoraceae 1 330 ± 0

Dipsacales Adoxaceae 3 298 ± 0.88

Caryophyllales Aizoaceae 1 275 ± 0

Alismatales Alismataceae 6 365 ± 8.87

Caryophyllales Amaranthaceae 9 293 ± 4.22

Asparagales Amaryllidaceae 6 311 ± 1.83

Sapindales Anacardiaceae 2 297 ± 3.25

Apiales Apiaceae 31 300 ± 0.75

Gentianales Apocynaceae 3 312 ± 4.18

Alismatales Aponogetonaceae 1 343 ± 0

Aquifoliales Aquifoliaceae 1 307 ± 0

Alismatales Araceae 4 334 ± 17.2

Apiales Araliaceae 4 301 ± 0.86

Pinales Araucariaceae 1 319 ± 0

Asparagales Asparagaceae 5 300 ± 18.7

Asterales Asteraceae 95 295 ± 0.73

Ericales Balsaminaceae 1 268 ± 0

Ranunculales Berberidaceae 1 294 ± 0

Fagales Betulaceae 6 301 ± 0.94

Lamiales Bignoniaceae 1 310 ± 0

Boraginales Boraginaceae 17 298 ± 0.81

Brassicales Brassicaceae 53 264 ± 0.33

Alismatales Butomaceae 1 346 ± 0

Buxales Buxaceae 1 305 ± 0

Nymphaeales Cabombaceae 1 279 ± 0

Lamiales Calceolariaceae 1 300 ± 0

Asterales Campanulaceae 10 330 ± 6.52

Rosales Cannabaceae 2 298 ± 6.5

Dipsacales Caprifoliaceae 5 302 ± 2.24

Brassicales Caricaceae 1 305 ± 0

Caryophyllales Caryophyllaceae 47 294 ± 1.27

Celastrales Celastraceae 3 293 ± 3.52

Ceratophyllales Ceratophyllaceae 2 329 ± 0

Caryophyllales Chenopodiaceae 13 302 ± 0.63

Malvales Cistaceae 1 280 ± 0

Myrtales Combretaceae 1 284 ± 0

Commelinales Commelinaceae 1 301 ± 0

Solanales Convolvulaceae 8 287 ± 3.93

Saxifragales Crassulaceae 5 307 ± 6.55

Cucurbitales Cucurbitaceae 3 320 ± 3.87

Pinales Cupressaceae 3 292 ± 2.02

Ericales Diapensiaceae 1 300 ± 0

Caryophyllales Droseraceae 2 307 ± 4

Ericales Ebenaceae 1 318 ± 0

Ericales Ericaceae 15 305 ± 1.38

Malpighiales Erythroxylaceae 1 295 ± 0

Malpighiales Euphorbiaceae 15 289 ± 2.67

Fabales Fabaceae 61 292 ± 0.78

Fagales Fagaceae 2 286 ± 0

Gentianales Gentianaceae 7 306 ± 0.89

Geraniales Geraniaceae 13 310 ± 0.55

Asterales Goodeniaceae 1 310 ± 0

Apiales Griseliniaceae 1 306 ± 0

Gunnerales Gunneraceae 1 296 ± 0

Continued
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Order Family No. species Mean ± SE amplicon length (bp)

Saxifragales Haloragaceae 1 292 ± 0

Boraginales Heliotropiaceae 1 292 ± 0

Asparagales Hyacinthaceae 2 292 ± 3.5

Cornales Hydrangeaceae 1 302 ± 0

Alismatales Hydrocharitaceae 3 274 ± 11.1

Boraginales Hydrophyllaceae 1 294 ± 0

Malpighiales Hypericaceae 7 310 ± 0.71

Asparagales Iridaceae 2 307 ± 2.5

Fagales Juglandaceae 1 294 ± 0

Poales Juncaceae 23 303 ± 1.31

Alismatales Juncaginaceae 1 324 ± 0

Lamiales Lamiaceae 15 300 ± 2.36

Laurales Lauraceae 2 299 ± 10.5

Lamiales Lentibulariaceae 3 320 ± 10.7

Liliales Liliaceae 4 298 ± 8.18

Malpighiales Linaceae 1 298 ± 0

Myrtales Lythraceae 2 295 ± 1

Malvales Malvaceae 16 303 ± 1.90

Liliales Melanthiaceae 1 303 ± 0

Sapindales Meliaceae 1 307 ± 0

Asterales Menyanthaceae 2 307 ± 10.5

Caryophyllales Montiaceae 2 287 ± 1.5

Rosales Moraceae 2 316 ± 9.24

Fagales Myricaceae 1 301 ± 0

Myrtales Myrtaceae 3 285 ± 2

Caryophyllales Nyctaginaceae 1 283 ± 0

Nymphaeales Nymphaeaceae 1 327 ± 0

Lamiales Oleaceae 4 293 ± 2.17

Myrtales Onagraceae 10 291 ± 1.38

Asparagales Orchidaceae 15 321 ± 2.18

Lamiales Orobanchaceae 24 303 ± 1.47

Oxalidales Oxalidaceae 2 301 ± 1.25

Ranunculales Papaveraceae 9 311 ± 5.76

Malpighiales Passi�oraceae 1 269 ± 0

Caryophyllales Petiveriaceae 1 292 ± 0

Malpighiales Phyllanthaceae 3 279 ± 3.12

Caryophyllales Phytolaccaceae 1 296 ± 0

Pinales Pinaceae 3 312 ± 4.91

Apiales Pittosporaceae 1 305 ± 0

Lamiales Plantaginaceae 24 288 ± 1.34

Proteales Platanaceae 1 311 ± 0

Caryophyllales Plumbaginaceae 2 321 ± 4.25

Poales Poaceae 96 291 ± 0.35

Fabales Polygalaceae 2 294 ± 1

Caryophyllales Polygonaceae 10 286 ± 7.09

Caryophyllales Portulacaceae 1 292 ± 0

Alismatales Potamogetonaceae 6 337 ± 6.12

Ericales Primulaceae 6 287 ± 2.84

Polypodiales Pteridaceae 1 253 ± 0

Ranunculales Ranunculaceae 18 287 ± 1.22

Brassicales Resedaceae 1 289 ± 0

Rosales Rhamnaceae 4 288 ± 3.70

Rosales Rosaceae 61 287 ± 0.54

Gentianales Rubiaceae 8 297 ± 6.53

Sapindales Rutaceae 1 307 ± 0

Malpighiales Salicaceae 16 289 ± 0.49

Continued
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Cyperaceae = 0%, n = 44, �ymelaeaceae = 50%, n = 2) where multiple species were tested (Table 3). In the 
Mauritian database, in silico primer �t was particularly poor for Cyperaceae (0%, n = 4) and Moraceae (50%, 
n = 2). Analyses of matches for forward and reverse primers independently, due to short sequence lengths, 
found particularly poor �t for Cyperaceae in both databases due to poor reverse primer �t (0%, Mauritius n = 3; 
UK n = 79), and Orchidaceae in Mauritius (0%, n = 2) but not in the UK (see Supplementary Table S1a for the 
Mauritian database, and Supplementary Tables S1b,c for the UK databases).

Once we had removed duplicate sequences from the same species within our combined database, taxonomic 
resolution of the ITS2 region was 86.1%, 99.4% and 99.9% at the species, genus and family levels, respectively 
(n = 1578 species, 821 genera, 154 families). Two species could not be di�erentiated at the family level: both were 
ferns. All Mauritian species could be di�erentiated at the genus and family levels and just two (Fimbristylis litto-
ralis and F. cymosa) could not be di�erentiated at the species level. From UK species, two (1.2%), ten (1.2%) and 
221 (14%) species could not be di�erentiated at the family, genus and species levels respectively.

In vitro testing of primers. We established that the UniPlantF (5′-TGTGAATTGCARRATYCMG-3′) and 
UniplantR (5′-CCCGHYTGAYYTGRGGTCDC-3′) primers had the greatest ampli�cation success on a subset 
of plant species (Supplementary Table S2), so only these primers were selected for further in vitro and in silico 
testing. In vitro, this primer pair successfully ampli�ed 99% of the 169 Mauritian species (Table 2), and 100% of 
33 UK species tested (Supplementary Table S3b).

Mock community testing showed that plant species with both long and short amplicon lengths were always 
coamplified in the same PCR mix, even when there was a bias towards short fragment lengths in the PCR 
(Supplementary Table S4). Generalised linear mixed e�ects models indicated that there was a signi�cant associ-
ation between PCR product concentration and the interaction between treatment (ratio of long and short ampli-
cons) and amplicon length (conditional R-squared = 0.42, f = 9.7504, P = < 0.001). Speci�cally, when there was 
a bias in the PCR mix towards long amplicons, the DNA concentration of long amplicons was higher than that 
of short. �e opposite was true when there was a bias towards short amplicons. When there were equal short 
and long amplicons, the DNA concentration of short amplicons was slightly higher, but this was not signi�cant 
(Supplementary Fig. S1).

Threshold analysis. At a 100% clustering threshold, the majority of species tested (n = 1116 in the UK and 
n = 165 in Mauritius where multiple haplotypes were present in our databases; Fig. 2) could be identi�ed to the 
species level, although multiple haplotypes were present for many species. As the threshold dropped, the number 
of species for which taxonomic resolution was possible started to decrease; however, multiple haplotypes for some 
species remained (Fig. 2). �e e�ect of reducing the clustering threshold di�ered between families, particularly 
reducing power of taxonomic resolution in Caryophyllaceae, Myrtales, Poales and Rosales, even at high clustering 
thresholds (Fig. 2, Supplementary Fig. S2).

Dietary Case Study 1: Stock Doves. We present sequence read numbers at distinct stages of the bioin-
formatics pipeline as supplementary information (Supplementary Note S2), as these data are also presented else-
where40 and only a subset is presented here. 5.4% of our sequences matched fungi and bacteria (64 of 1192 unique 

Order Family No. species Mean ± SE amplicon length (bp)

Santalales Santalaceae 1 293 ± 0

Sapindales Sapindaceae 1 300 ± 0

Ericales Sapotaceae 1 309 ± 0

Saxifragales Saxifragaceae 13 311 ± 1.08

Lamiales Scrophulariaceae 6 299 ± 1.40

Selaginellales Selaginellaceae 1 233 ± 0

Sapindales Simaroubaceae 1 296 ± 0

Solanales Solanaceae 11 287 ± 2.78

Caryophyllales Tamaricaceae 1 319 ± 0

Pinales Taxaceae 1 303 ± 0

Santalales �esiaceae 1 289 ± 0

Malvales �ymelaeaceae 2 292 ± 0.74

Alismatales To�eldiaceae 1 307 ± 0

Poales Typhaceae 4 296 ± 8.79

Rosales Ulmaceae 2 290 ± 1

Rosales Urticaceae 3 311 ± 5.08

Lamiales Verbenaceae 2 303 ± 1.5

Malpighiales Violaceae 8 284 ± 0.61

Vitales Vitaceae 1 331 ± 0

Asparagales Xanthorrhoeaceae 1 312 ± 0

Alismatales Zosteraceae 1 310 ± 0

Table 1. Mean amplicon lengths among families from sequences in our combined database.
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sequences remaining prior to BLAST matching). We recovered 25 plant species from 13 stock dove samples, with 
an additional 11 taxa identi�ed to genus level and 4 taxa identi�ed to family level (overall from 31 genera and 18 
families; mean ± SE 7.62 ± 0.94 taxonomic units per sample; Supplementary Table S5a; Data S2)40. No vertebrate 
DNA was recovered. When examining the potential for preferential ampli�cation of shorter fragments by com-
paring amplicon lengths from our NGS run to those from our reference database, we found plant amplicons from 
the NGS run to be signi�cantly shorter than those within the UK reference database (Mann-Whitney-Wilcoxon, 
w = 352710, p < 0.001; Fig. 1a).

Dietary Case Study 2: Telfair’s Skinks. For this dataset, a comprehensive DNA barcode library was avail-
able for assigning Illumina reads to taxa39. Overall, we recovered and identi�ed 76 plant taxa from Telfair’s skink 
faecal samples (a�er removing taxa that do not grow on the study island and were present, for example, because 
they were kitchen waste composted by the �eld sta�; mean ± SE 5.77 ± 0.16 taxa per sample; Supplementary 
Table S5b; Data S3). �ese included species in families for which in silico analysis suggested poor primer match 
(full list of species ampli�ed is provided in Supplementary Table S5). No Telfair’s skink DNA was ampli�ed and 
sequenced. From the plant species consumed that were also present in the DNA barcode library, 100% could 
be identi�ed to species (Supplementary Data S3). Of those six consumed species that were absent in the library 
(Supplementary Data S3), 67% were identi�ed to genus and 33% to species. Overall, this equates to 95% and 5% 
taxonomic resolution at the species and genus levels respectively. Combining results from the two MiSeq runs 
within which Telfair’s skink samples were present, 4% of unique sequences were identi�ed as fungi. When exam-
ining the potential for preferential ampli�cation of shorter fragments by comparing amplicon lengths from our 
NGS run to those from our reference database, plant amplicons from both NGS runs were signi�cantly shorter 
than those within the Mauritius reference database (Mann-Whitney-Wilcoxon, Pool 1: w = 126390, p < 0.001, 
Pool 2: w = 99468, p < 0.001; Fig. 1b,c).

Discussion
Current approaches to molecular analysis of herbivory are generally unable to identify the majority of plants to 
the species level across a range of families, using amplicons short enough to detect degraded DNA recovered 
from faecal samples. �e most widely applied DNA barcode currently used to study herbivory, the P6 loop of the 
chloroplast trnL (UAA) gene, has nearly universal priming sites allowing extremely high taxonomic coverage22, 
and allows about 50% of taxa to be identi�ed to species27. However, taxonomic resolution can vary, depending 
on the local plant community and quality of the reference DNA barcode library: other studies using this region 
report species level taxonomic assignment of 29.8%33 to 77%34. Using trnL does have the advantage of being able 
to work with particularly degraded DNA where short amplicons might be expected to be more reliably ampli�ed 
(12–134 bp using primer pair g and h18). By contrast, our new ITS2 primers produce amplicons of 187–387 bp in 
length, with taxonomic coverage of at least 88%, and taxonomic resolution at the species level as high as 86.1% 
from in silico analyses of three databases. In practice, when used in conjunction with a comprehensive DNA 
barcode library, taxonomic resolution at the species level can be as high as 100% as shown in our Telfair’s skink 
case study. Our two case studies demonstrate that these primers successfully amplify DNA from degraded fae-
cal samples from birds and reptiles, and co-amplify multiple plant species from a range of genera and families. 
Studying trophic interactions between plants and animals at such a �ne taxonomic resolution is likely to deepen 
our knowledge of species ecology and ecosystem dynamics. For example, we have used these primers to provide 
new insights into the feeding ecology of a declining species, the European turtle dove, including dietary com-
petition with other columbids40. We have also used the primers to examine the impacts of ecological replace-
ment39. Beyond such dietary studies, the primers also have the potential to inform pollination and seed dispersal 
networks.

Such high taxonomic resolution is only possible when the sequences for the available plant species are avail-
able in a reference DNA barcode library27. Indeed, a major criticism of ITS2 has been the lack of reference 
sequences available for this region24. However, the latest update to the ITS2 database has doubled the number of 

Figure 1. Comparison of amplicon length distribution from available species and NGS datasets for (a) UK dove 
and pigeon diet, (b) Telfair’s skink diet pool 1 and (c) Telfair’s skink diet pool 2.
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Order Family Tested in silico In silico matches % matches Tested in vitro Ampli�ed in vitro % Ampli�ed

Apiales Araliaceae 1 1 100 1 1 100

Arecales Arecaceae 3 3 100

Asparagales Amaryllidaceae 1 1 100 1 1 100

Asparagales Asparagaceae 3 3 100 3 3 100

Asparagales Orchidaceae 1 0 0 3 3 100

Asparagales Xanthorrhoeaceae 1 1 100

Asterales Asteraceae 7 7 100 8 8 100

Asterales Campanulaceae 1 1 100 1 1 100

Asterales Goodeniaceae 1 1 100 1 1 100

Boraginales Boraginaceae 1 1 100 3 3 100

Brassicales Caricaceae 1 1 100 1 1 100

Caryophyllales Aizoaceae 1 1 100

Caryophyllales Amaranthaceae 4 4 100 4 4 100

Caryophyllales Nyctaginaceae 1 1 100 1 1 100

Caryophyllales Petiveriaceae 1 1 100 1 1 100

Caryophyllales Portulacaceae 1 1 100 1 1 100

Celastrales Celastraceae 2 2 100 2 2 100

Commelinales Commelinaceae 1 1 100 1 1 100

Ericales Ebenaceae 1 1 100 3 3 100

Ericales Lecythidaceae 1 1 100

Ericales Sapotaceae 1 1 100 1 1 100

Fabales Fabaceae 13 11 85 13 13 100

Gentianales Apocynaceae 4 4 100 6 6 100

Gentianales Rubiaceae 5 5 100 5 5 100

Lamiales Acanthaceae 1 1 100 2 2 100

Lamiales Bignoniaceae 1 1 100 1 1 100

Lamiales Lamiaceae 1 1 100 1 1 100

Lamiales Oleaceae 1 1 100 2 2 100

Lamiales Scrophulariaceae 1 1 100 1 1 100

Lamiales Verbenaceae 1 1 100 2 2 100

Laurales Lauraceae 1 1 100 3 3 100

Malpighiales Erythroxylaceae 1 1 100 1 1 100

Malpighiales Euphorbiaceae 8 8 100 8 8 100

Malpighiales Passi�oraceae 2 2 100 2 2 100

Malpighiales Phyllanthaceae 4 4 100 7 7 100

Malpighiales Salicaceae 2 2 100 3 3 100

Malvales Malvaceae 7 7 100 8 8 100

Malvales �ymelaeaceae 1 1 100 1 1 100

Myrtales Combretaceae 1 1 100 1 1 100

Myrtales Lythraceae 1 1 100 1 1 100

Myrtales Myrtaceae 1 1 100 1 1 100

Oxalidales Oxalidaceae 1 1 100 1 1 100

Pandanales Pandanaceae 1 1 100 1 1 100

Poales Cyperaceae 4 0 0 4 4 100

Poales Poaceae 12 11 92 16 16 100

Polypodiales Lomariopsidaceae 1 0 0

Polypodiales Polypodiaceae 1 0 0 1 1 100

Polypodiales Pteridaceae 1 0 0 2 2 100

Polypodiales �elypteridaceae 1 0 0

Pottiales Pottiaceae 1 0 0 1 1 100

Psilotales Psilotaceae 1 0 0 1 1 100

Ranunculales Papaveraceae 1 0 0 1 1 100

Rosales Moraceae 2 1 50 3 3 100

Rosales Rhamnaceae 3 3 100 4 4 100

Santalales Santalaceae 1 1 100 1 1 100

Sapindales Anacardiaceae 2 2 100 2 2 100

Continued
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reference sequences available to 711,172, of which 208,822 belong to the Chloroplastida41. When sequences are 
not available for plant species within the study area in question, we strongly suggest that building a study-speci�c 
DNA barcode library is invaluable.

�ere are three further potential criticisms of the use of ITS2 as a DNA barcode24. Firstly, there are sometimes 
paralogous ITS copies present within an individual genome24,37,42. From examination of our databases, our thresh-
old analyses and our NGS datasets, this phenomenon appears to be widespread across multiple plant orders; 
however, this did not hinder taxonomic assignment using a closest match approach. Secondly, amplifying ITS can 
be di�cult with universal primers37; however, we found this problem to largely be overcome by amplifying ITS2 
only35,37, and our primers give good taxonomic coverage. �e �nal criticism is the risk of fungal contamination, 
given the similarity between plant and fungi universal primer sites within this region36. However, we found fungi 
and bacteria formed only 5.4% of sequences within our UK NGS run, and 4% across our two Mauritian NGS 
runs. �ese �gures are slightly higher than that of 2–3% suggested previously from in silico searches37, but a�er 
discarding fungal sequences we retained more than su�cient plant read depth for our herbivory analyses. As 
our primers produce a range of amplicon sizes that di�er between plant families, we examined the potential for 
size bias in our NGS datasets compared to our databases of available species in each region43. Overall, UK NGS 
sequences were signi�cantly shorter than those expected from the reference database, although this is likely to 
be due to 235 polymorphic sequences of below average (262 bp) length, all assigned to Brassica species, which 
are known to show high within-species diversity at the ITS regions44, and were present in all of our stock dove 
samples. Mauritian sequences from both pools were both signi�cantly shorter than from the reference database; 
however, sequences of 331 bp (the length of the longest sequence in the reference database) were recovered from 
both pools. However, these results may be due to dietary preferences of the two consumers rather than size bias. 
Our mock community testing indicated that long fragments are always ampli�ed, even when there is a bias in the 
PCR mix towards shorter fragments. Overall, the concentration of PCR products varied as would be expected: 
when there were more short fragments in the PCR, the concentration of short was higher than that of long ampli-
cons and the reverse was true when there was a bias towards long fragments in the PCR mix. �is indicates that 
size bias, at the PCR stage, may not be a signi�cant for this primer set, especially when read number is not used to 
quantify diet. Given the �ndings from our threshold analysis, that intraspeci�c variation at the ITS2 region will 
not be removed by clustering into MOTUs without losing taxonomic resolution, we recommend a closest species 
match approach to sequence identi�cation45,46, rather than a MOTU clustering approach, if the aim of the study 
is to identify speci�c dietary components. �is also removes any issues caused by potential multiple ITS poly-
morphisms within an individual47 but does emphasise the need for comprehensive reference barcode libraries 
for the study system. If such a reference barcode library is not available then a clustering approach to examine, 
for example, dietary niche partitioning, may be more appropriate. Sanger sequencing of multiple samples from 
individual plant species may not adequately represent total ITS diversity due to low-frequency polymorphisms47 
(in, for example, Brassicaceae44), as this may only result in the most frequent polymorphism being detected. In 
such cases it may be useful to include some single species plant samples in an NGS run alongside faecal DNA for 
analysis, to assist reliable species assignment of multiple polymorphisms.

Our in vitro and in silico testing of the UniPlant primers proved that they can amplify a diverse assemblage 
of plants. �e in silico PCR results were more conservative than the in vitro testing. For example, in silico test-
ing revealed that the primers were a poor �t for species within the Orchidaceae and Cyperaceae families, but 
these were shown to amplify successfully in vitro. Indeed, our detailed Telfair’s skink data show Cyperus dubius 
(Cyperaceae) to be co-ampli�ed in 16% of faecal samples, alongside a range of other plant species with better 
primer �t. �us, in practice, the primers are clearly better than suggested by the in silico results. However, such 
species with potentially poor primer �t should be tested in vitro to con�rm successful ampli�cation before use for 
the examination of herbivory. Future studies using our primers may also bene�t from including known mixtures 
of DNA samples to ensure co-ampli�cation of likely plant DNA combinations from the relevant study system. 
In practice di�erent plant species eaten by a generalist herbivore will inevitably be ampli�ed to di�erent degrees, 
regardless of the primers selected, which is why we base our analyses on frequency of occurrence within faecal 

Order Family Tested in silico In silico matches % matches Tested in vitro Ampli�ed in vitro % Ampli�ed

Sapindales Burseraceae 1 1 100

Sapindales Meliaceae 1 1 100 1 1 100

Sapindales Rutaceae 1 1 100 2 2 100

Sapindales Sapindaceae 2 2 100 3 3 100

Saxifragales Crassulaceae 1 1 100 1 1 100

Selaginellales Selaginellaceae 1 1 100

Solanales Convolvulaceae 3 3 100 4 4 100

Solanales Solanaceae 5 3 60 4 4 100

Vitales Vitaceae 1 1 100 1 1 100

Total 131 115 88 169 167 99

Table 2. Results of in silico and in vitro analysis of primer �t for UniPlantF and UniPlantR for Mauritian plants 
at the species level, summarised by family. For in silico results, matches are where primers �t with a maximum 
of 3 bp mismatches and no mismatches in the last two bp at the 3 prime end. Data presented here are from 
sequences where both primer binding sites were available for analysis; details of species tested for either forward 
or reverse primer matches are given in Supplementary Table S1a.
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Order Family

UK database Turtle Dove database Overall

No. tested No. matches No. tested No. matches No. tested No. matches % match

Acorales Acoraceae 1 1 1 1 100

Alismatales Alismataceae 6 6 6 6 100

Alismatales Aponogetonaceae 1 1 1 1 100

Alismatales Araceae 4 4 4 4 100

Alismatales Butomaceae 1 1 1 1 100

Alismatales Cymodoceaceae 1 0 1 0 0

Alismatales Hydrocharitaceae 6 3 6 3 50

Alismatales Juncaginaceae 1 1 1 1 100

Alismatales Potamogetonaceae 6 6 6 6 100

Alismatales To�eldiaceae 1 1 1 1 100

Alismatales Zosteraceae 1 1 1 1 100

Apiales Apiaceae 34 31 1 1 34 31 91

Apiales Araliaceae 3 3 3 3 100

Apiales Griseliniaceae 1 1 1 1 100

Apiales Pittosporaceae 1 1 1 1 100

Aquifoliales Aquifoliaceae 1 1 1 1 100

Asparagales Amaryllidaceae 6 5 6 5 83

Asparagales Asparagaceae 3 2 3 2 67

Asparagales Hyacinthaceae 2 2 2 2 100

Asparagales Iridaceae 2 2 2 2 100

Asparagales Orchidaceae 19 15 19 15 79

Asparagales Xanthorrhoeaceae 1 1 1 1 100

Asterales Asteraceae 92 90 6 6 92 90 98

Asterales Campanulaceae 9 9 9 9 100

Asterales Menyanthaceae 2 2 2 2 100

Boraginales Boraginaceae 17 17 17 17 100

Boraginales Hydrophyllaceae 1 1 1 1 100

Brassicales Brassicaceae 59 52 3 3 60 52 87

Brassicales Resedaceae 1 1 1 1 100

Buxales Buxaceae 1 1 1 1 100

Caryophyllales Aizoaceae 1 1 1 1 100

Caryophyllales Amaranthaceae 5 5 5 5 100

Caryophyllales Caryophyllaceae 49 46 6 6 50 47 94

Caryophyllales Chenopodiaceae 12 12 1 1 13 13 100

Caryophyllales Droseraceae 2 2 2 2 100

Caryophyllales Montiaceae 2 2 2 2 100

Caryophyllales Phytolaccaceae 1 1 1 1 100

Caryophyllales Plumbaginaceae 2 2 2 2 100

Caryophyllales Polygonaceae 11 10 2 2 11 10 91

Caryophyllales Portulacaceae 1 1 1 1 100

Caryophyllales Tamaricaceae 1 1 1 1 100

Celastrales Celastraceae 1 1 1 1 100

Ceratophyllales Ceratophyllaceae 2 2 2 2 100

Cornales Hydrangeaceae 1 1 1 1 100

Cucurbitales Cucurbitaceae 3 3 3 3 100

Dipsacales Adoxaceae 3 3 3 3 100

Dipsacales Caprifoliaceae 5 5 5 5 100

Ericales Balsaminaceae 1 1 1 1 100

Ericales Diapensiaceae 1 1 1 1 100

Ericales Ericaceae 16 15 17 15 88

Ericales Primulaceae 6 6 1 1 6 6 100

Fabales Fabaceae 52 49 5 5 55 52 95

Fabales Polygalaceae 2 2 2 2 100

Fagales Betulaceae 6 6 6 6 100

Fagales Fagaceae 2 2 2 2 100

Continued
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Order Family

UK database Turtle Dove database Overall

No. tested No. matches No. tested No. matches No. tested No. matches % match

Fagales Juglandaceae 1 1 1 1 100

Fagales Myricaceae 1 1 1 1 100

Gentianales Gentianaceae 7 7 7 7 100

Gentianales Rubiaceae 4 4 1 1 4 4 100

Geraniales Geraniaceae 13 13 1 1 13 13 100

Gunnerales Gunneraceae 1 1 1 1 100

Lamiales Acanthaceae 1 1 1 1 100

Lamiales Calceolariaceae 1 1 1 1 100

Lamiales Gesneriaceae 1 0 1 0 0

Lamiales Lamiaceae 15 14 15 14 93

Lamiales Lentibulariaceae 4 3 4 3 75

Lamiales Oleaceae 3 3 3 3 100

Lamiales Orobanchaceae 24 24 24 24 100

Lamiales Plantaginaceae 23 22 2 2 25 24 96

Lamiales Scrophulariaceae 5 5 5 5 100

Lamiales Verbenaceae 1 1 1 1 100

Liliales Liliaceae 5 4 5 4 80

Liliales Melanthiaceae 1 1 1 1 100

Malpighiales Euphorbiaceae 6 6 1 1 7 7 100

Malpighiales Hypericaceae 7 7 7 7 100

Malpighiales Linaceae 1 1 1 1 100

Malpighiales Salicaceae 14 14 14 14 100

Malpighiales Violaceae 6 6 2 2 8 8 100

Malvales Cistaceae 1 1 1 1 100

Malvales Malvaceae 13 11 13 11 85

Malvales �ymelaeaceae 2 1 2 1 50

Myrtales Lythraceae 1 1 1 1 100

Myrtales Myrtaceae 3 2 3 2 67

Myrtales Onagraceae 11 10 11 10 91

Nymphaeales Cabombaceae 1 1 1 1 100

Nymphaeales Nymphaeaceae 1 1 1 1 100

Oxalidales Oxalidaceae 2 2 2 2 100

Pinales Araucariaceae 1 1 1 1 100

Pinales Cupressaceae 3 3 3 3 100

Pinales Pinaceae 3 3 3 3 100

Pinales Taxaceae 1 1 1 1 100

Piperales Aristolochiaceae 1 0 1 0 0

Poales Cyperaceae 44 0 44 0 0

Poales Juncaceae 23 23 23 23 100

Poales Poaceae 96 88 7 7 96 88 92

Poales Typhaceae 4 4 4 4 100

Polypodiales Aspleniaceae 1 0 1 0 0

Polypodiales Pteridaceae 1 1 1 1 100

Proteales Platanaceae 1 1 1 1 100

Ranunculales Berberidaceae 1 1 1 1 100

Ranunculales Papaveraceae 6 6 2 2 8 8 100

Ranunculales Ranunculaceae 19 18 19 18 95

Rosales Cannabaceae 2 2 2 2 100

Rosales Moraceae 1 1 1 1 100

Rosales Rhamnaceae 1 1 1 1 100

Rosales Rosaceae 65 61 65 61 94

Rosales Ulmaceae 2 2 2 2 100

Rosales Urticaceae 3 3 1 1 3 3 100

Salviniales Azollaceae 1 0 1 0 0

Santalales �esiaceae 1 1 1 1 100

Continued
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extracts, rather than numbers of sequences generated by NGS. Di�erent plant species will also be digested to 
di�erent degrees, and the number of copies of the target gene per cell will vary with species, making frequency of 
occurrence the most reliable quantitative measure.

Our novel primers amplify a fragment of 187–387 bp, which is suitable for use with NGS platforms, and here 
we show that they are general enough to amplify the vast majority of the phylogenetically diverse array of plant 
species found in the UK and Mauritius, and therefore highly likely to be equally useful in other parts of the globe. 
We recommend in silico followed by in vitro testing of likely dietary items, particularly if they are ferns or within 
the Cyperaceae, Orchidaceae, Hydrocharitaceae or �ymelaeaceae families. A comprehensive DNA barcode 

Order Family

UK database Turtle Dove database Overall

No. tested No. matches No. tested No. matches No. tested No. matches % match

Santalales Viscaceae 1 0 1 0 0

Sapindales Aceraceae 1 1 1 1 100

Sapindales Anacardiaceae 1 1 1 1 100

Sapindales Simaroubaceae 1 1 1 1 100

Saxifragales Crassulaceae 6 4 6 4 67

Saxifragales Haloragaceae 1 1 1 1 100

Saxifragales Saxifragaceae 13 13 13 13 100

Selaginellales Selaginellaceae 1 1 1 1 100

Solanales Convolvulaceae 5 5 1 1 5 5 100

Solanales Solanaceae 8 8 8 8 100

Vitales Vitaceae 1 0 1 0 0

Total species 972 868 43 43 986 880 89

Genera 560 520 38 38 561 523 93

Families 121 113 17 17 121 113 93

Table 3. Results of in silico analysis of primer matching for UniPlantF and UniPlantR for plant families within 
the two UK databases, at the species level. Primer matches are where primers �t with a maximum of 3 bp 
mismatches and no mismatches in the last two bp at the 3 prime end. Data presented here are from sequences 
where both primer binding sites were available for analysis; details of species tested for forward and reverse 
primer matches separately are given in Supplementary Table S1b,c.

Figure 2. Order-level summary of clustering thresholds for the ITS2 region only between 95 and 100% for (a) 
Mauritius, n = 165 species and (b) UK databases, n = 1116 species. Order names are listed on the y-axis and 
clustering threshold forms the x-axis. �e colour of the cells represents the percentage of species within an order 
that can be identi�ed to species level at a given clustering threshold; numbers within cells show the number of 
species that can be resolved at each threshold. Colour gradient from green through to red signi�es high species-
level resolution moving towards poor species-level resolution.
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reference library is invaluable to obtain high taxonomic resolution, and to avoid the potential pitfall of setting a 
clustering threshold, permitting accurate assignment of taxa based on a closest match approach.

Methods
Barcode databases. Mauritian database. Plant tissue samples were collected from two Mauritian islands 
(Ile aux Aigrettes and Round Island) as part of a larger study in which we DNA barcoded the plant communities 
in order to examine herbivory by introduced and native reptiles and birds39. Plant identity was veri�ed prior to 
DNA barcoding to ensure taxonomic accuracy. Eighty-four sequences available at an early stage of the work were 
used for primer design (Supplementary Table S3a). In vitro primer testing was carried out on DNA samples from 
169 species from 65 families. In silico analyses were carried out on a dataset of 464 sequences, 167 species and 
63 families (of which eight were downloaded from GenBank to supplement �eld collected samples and form a 
complete barcode library).

UK database. 6054 ITS2 sequences from 1651 UK plant species from 151 families were downloaded from 
GenBank. �ese largely, but not entirely, consisted of vouchered sequences from a comprehensive analysis of the 
ITS2 region of UK plants (de Vere et al., unpubl. data). Where possible, if sequences did not span both priming 
sites we obtained untrimmed sequences. Where available from GenBank, this included at least one representative 
from each genus of plants listed on the Ecological Database of the British Isles48 (a comprehensive list of both 
native and introduced plant species found in the UK). We downloaded a maximum of one sequence per species 
from GenBank, so where multiple haplotypes of a species are present within the database the majority of these are 
from vouchered specimens. Synonyms were checked with �e Plant List49.

UK columbid database. �irty six UK plant species were collected and barcoded as part of a separate study 
examining the diet of UK columbids, with a focus on European turtle doves40, with an additional 14 species rep-
resented in the database by sequences downloaded from GenBank. �is included 31 species previously identi�ed 
in the diet of turtle doves using microscopy, seven species known to be present within commercial seed mixes 
and 12 additional species commonly found on arable farmland (Supplementary Table S3b). �irty three of these 
sequences (those available at an early stage of this work) were used for primer design and in vitro testing.

Generation of Reference Databases. DNA extractions were carried out either following Randall et al.50 
a�er samples were ground under liquid nitrogen, or using the Qiagen DNeasy plant kit (Qiagen, Manchester, 
UK). �e complete second internal transcribed spacer of nuclear ribosomal DNA (ITS2) and partial 5.8S and 
26S sequences were ampli�ed using primer pair S2F and S3R35. Where ampli�cation with this primer pair failed, 
a second ITS2 primer pair were tried, ITS-p3 and ITS-p438. PCRs were carried out in 10 µL reaction volumes 
containing 2 µL DNA template, 1x PCR bu�er, 2.0 mM MgCl2, 0.2 µM of each primer (at 10 mM), 0.2 mM of 
each dNTP and 1 U Go Taq Flexi (Promega, Southampton, UK). For problematic samples, a multiplex PCR mix 
(Qiagen, Manchester, UK) was used, with primers and DNA at the same concentration and volume described 
above. Reaction conditions were an initial denaturation step at 95 °C for 10 min, followed by 40 cycles of 95 °C for 
30 s, 56 °C for 30 s and 72 °C for 1 min, and a �nal extension of 72 °C for 10 min. PCR products were sequenced in 
both directions by Euro�ns Genomics (Wolverhampton, UK). Contigs were constructed and consensus sequences 
created in Sequencher version 5.4.651 or MEGA652 a�er manually editing sequences. Consensus sequences were 
aligned using automated ClustalW alignment in BioEdit53 or ClustalX54, for in silico analysis (see below).

Short amplicon primer design for diet analysis and in vitro testing. A subset of aligned ITS2 and 
partial 26S and 5.8S sequences (Supplementary Table S3a,b; UK columbid database n = 33, Mauritius database 
n = 84) were used to design primers for a short ITS2 amplicon to maximise ampli�cation from the degraded 
DNA found in faecal samples (Fig. 3). Aligned sequences were examined by eye in MEGA652 in order to detect 
suitably conserved sites. Five forward and seven reverse primers were designed and tested in vitro on a subset of 
plant DNA from key dietary items (mean ± SE: 14.8 ± 10.2 plant DNA samples per primer pair; Supplementary 
Table S2). All in vitro testing involved ampli�cation in 10 µL PCR reaction volumes with reagents and template 
DNA in the same concentrations as described above. Reaction conditions were also the same as above, a�er ini-
tially testing annealing temperatures from 46 °C–56 °C by gradient PCR. Successful ampli�cation was determined 
by visualisation on a 2% agarose gel stained with SYBR®Safe (�ermoFisher Scienti�c, Paisley, UK). Primers that 
failed initial tests (ampli�cation failure, faint bands, multiple banding) on a small number of plant DNA sam-
ples were rejected with no further testing (Supplementary Table S2). �ese initial in vitro tests revealed that one 
primer pair, UniPlantF and UniPlantR, had the highest ampli�cation success so these were subjected to further  
in vitro testing against all available Mauritian plant species and the �eld-collected UK species.

Figure 3. Schematic diagram of priming sites within the second internal transcribed spacer (ITS2) and 
�anking regions (5.8S and 26S). �e location of S2F and S3R priming sites35 are shown alongside UniPlantF and 
UniplantR from this study. �e distances of the priming sites from the ITS2 region are shown (bp). Distances 
are based on a representative Asparagus setaceus sequence (NCBI Accession number KY700230). S2F and 
UniPlantF overlap by 7 bp. UniPlantR begins on the last 1 bp of ITS2 and continues into 26S. �e amplicon size 
range, across all sequences assessed in this study, of the UniPlant primers is shown. Schematic not to scale.
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To determine whether the primers preferentially ampli�ed those plant species with shorter ITS2 fragments 
over those with longer fragments, we assembled 15 mock communities from plant tissue DNA extracts. Each 
mock community contained six plant species each at an initial concentration of 0.3 ng/µL before adding to the 
PCR mix but the ratio of those plant species with long or short amplicons varied across three treatments: an equal 
treatment of 3 long and 3 short plant species, a bias towards short fragments containing 2 long and 4 short species, 
a bias towards long fragments containing 4 long and 2 short species. Plant species with ITS2 amplicon lengths 
using the UniPlant primers of between 267 and 280 bp were classi�ed as short, and between 310 and 336 were 
classi�ed as long. PCRs were carried out in 10 µL reaction volumes with a total DNA concentration of 0.3 ng/µL  
with reagent concentrations and PCR reaction conditions identical to those used in Case Study 2 (see below). 
PCR products were analysed by high-resolution capillary electrophoresis using a QIAxcel (Qiagen, Manchester, 
UK) to determine the DNA concentration of the long and short amplicons. Whether DNA concentration was 
signi�cantly associated with amplicon length, treatment or their interaction was analysed using generalised linear 
mixed e�ects models in the lme455 package in R56. Amplicon length and treatment were modelled as �xed e�ects 
and PCR reaction was included as a random e�ect with DNA concentration as the dependent variable. �e model 
was run using the Gaussian error structure and the identity link function on normal data. Model assumptions 
were checked by examining the standardised residuals.

In silico testing. To further test the suitability of this primer pair, in silico PCR was carried out on a larger 
number of species from all three databases using ecoPCR within OBITools57. We allowed for a maximum of 
three base mismatches per primer ensuring the last two bases at the 3′ end were an exact match58, specifying a 
minimum amplicon length of 100 bp and a maximum of 500 bp. Where DNA sequences did not encompass both 
forward and reverse priming sites, primers were tested independently and reported in the supplementary infor-
mation (Supplementary Table S1a,b,c). To examine the potential for preferential ampli�cation of short-length 
amplicons43, we calculated mean amplicon length per family from the ecoPCR output and compared the ampli-
con distribution of each of the UK and Mauritius databases to the NGS data from our UK and Mauritian studies 
(see below). We used Mann-Whitney-Wilcoxon tests to allow for non-normal distribution of amplicon lengths.

We de�ne taxonomic resolution as per Pompanon et al.18, as the percentage of taxa unambiguously identi�ed 
for a given taxonomic level. To test the taxonomic resolution of the ITS2 region within the UniPlant amplicon 
(Fig. 1), we combined all three databases and removed identical sequences derived from the same species and 
those sequences of poor quality (resulting in 3550 total sequences, representing 1659 species, 828 genera and 155 
families). We used the ITSx so�ware59 to extract the ITS2 region from our amplicons to form our ITS2 database 
(ITS2 successfully extracted from 2216 sequences, representing 1577 species, 821 genera and 143 families). We 
used the “derep_pre�x” command in USEARCH60 to identify identical sequences within each database; we then 
calculated the number of taxa within which multiple species had identical ITS2 sequences.

Testing clustering thresholds. To test whether sequences resulting from NGS analysis of faecal samples 
using our primers should be clustered into MOTUs within the bioinformatics pipeline, and if so at what thresh-
old, we used reference sequences from both the Mauritian (n = 167 species and 464 sequences) and UK databases 
(n = 1116 species and 2619 sequences) from species where multiple vouchered sequences were available. We ran 
the sequence �les through the USEARCH60 command “cluster_fast” with an identity threshold of 95%. We then 
used the percentage similarity values between clustered sequences from the cluster format output �le to iden-
tify, for cut-o�s between 95 and 100%, how many di�erent species and haplotypes would be clustered together. 
Resolution at each clustering threshold is displayed as heat maps, at the order level. Heat maps were created using 
the “heatmap.2” function in the gplots package61 in R56.

Dietary case studies. �ese primers were originally designed for dietary analysis in two separate studies: 
one assessing the diet of Pink Pigeons Nesoenas mayeri, Telfair’s skinks and Aldabra giant tortoises Aldabrachelys 
gigantea in Mauritius; and one investigating the diet of UK doves and pigeons (turtle dove, collared dove 
Streptopelia decaocto, woodpigeon Columba palumbus and stock dove). Detailed results for these two stud-
ies will be published elsewhere39,40), but to demonstrate the e�ectiveness of our primers on faecal samples, we 
present comprehensive data from one species from each study (stock dove: Case Study 1; Telfair’s skinks: Case 
Study 2) here. Detailed methods for sample collection, laboratory protocols and data analyses are provided in 
Supplementary Note S1.

Data availability. New accession numbers for sequences generated from this study, and those used in our 
databases are provided in the Supplementary Information, along with our detailed case study data. Raw MiSeq 
data from the UK columbid case study is available on the NCBI Sequence Read Archive under accession number 
SRP136381, and detailed individual level taxonomic unit presence-absence data are available from JCD upon 
reasonable request. Raw MiSeq data from the Mauritian study will be deposited in the NCBI Sequence Read 
Archive upon acceptance.

Accession numbers. DNA sequences: available on GenBank under the accession numbers listed in 
Supplementary Data S1. Raw MiSeq data from the UK columbid case study is available on the NCBI Sequence 
Read Archive under accession number SRP136381, and detailed individual level taxonomic unit presence-absence 
data are available from JCD upon reasonable request. Raw MiSeq data from the Mauritian study will be deposited 
in the NCBI Sequence Read Archive upon acceptance.
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