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NEW UPPER BOUNDS FOR KISSING NUMBERS
FROM SEMIDEFINITE PROGRAMMING

CHRISTINE BACHOC AND FRANK VALLENTIN

1. Introduction

In geometry, the kissing number problem asks for the maximum number τn

of unit spheres that can simultaneously touch the unit sphere in n-dimensional
Euclidean space without pairwise overlapping. The value of τn is only known for
n = 1, 2, 3, 4, 8, 24. While its determination for n = 1, 2 is trivial, it is not the case
for other values of n.

The case n = 3 was the object of a famous discussion between Isaac Newton and
David Gregory in 1694. For a historical perspective of this discussion we refer to
[6]. The first valid proof of the fact “τ3 = 12”, as in the icosahedron configuration,
was only given in 1953 by K. Schütte and B.L. van der Waerden in [23].

In the 1970s, P. Delsarte developed a method, initially aimed at bounding codes
on finite fields (see [8]) that yields an upper bound for τn as a solution of a linear
program and more generally yields an upper bound for the size of spherical codes
of given minimal distance. We shall refer to this method as the LP method. With
this method, A.M. Odlyzko and N.J.A. Sloane ([16]), and independently V.I. Leven-
shtein ([14]), proved τ8 = 240 and τ24 = 196560 which are, respectively, the number
of shortest vectors in the root lattice E8 and in the Leech lattice. For other values
of n, the LP method gives in many cases the best known upper bounds. However,
for n = 3 and n = 4 it only gives the upper bounds τ3 ≤ 13 and τ4 ≤ 25.

In 2003, O.R. Musin succeeded in proving the conjectured value τ4 = 24, which
is the number of shortest vectors in the root lattice D4, with a variation of the LP
method (see [15] and the survey [19] of F. Pfender and G.M. Ziegler).

To complete the picture, let us discuss uniqueness of the optimal point con-
figurations. For dimensions 8 and 24, uniqueness was proved by E. Bannai and
N.J.A. Sloane ([3]). Their proof exploits the fact that the LP method obtains
exactly the aimed value. For dimension 3, there are infinitely many possible config-
urations. In the regular icosahedron configuration, the angular distances between
the contact points are strictly greater than the required π/3; hence these points
can be moved around obtaining infinitely many new suitable configurations. This
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910 CHRISTINE BACHOC AND FRANK VALLENTIN

partially explains why the determination of τ3 is difficult. On the contrary, unique-
ness of the optimal configuration of points in dimension 4 is widely believed, but it
remains unproven.

The LP method, which was established by P. Delsarte, J.M. Goethals and
J.J. Seidel in [9], handles the more general problem of the determination of a bound
for the maximal number

A(n, θ) = max{card(C) : C ⊂ Sn−1 with c · c′ ≤ cos θ for c, c′ ∈ C, c �= c′}
of points on the unit sphere with minimal angular distance θ. Such configurations
of points, also called spherical codes with minimal angular distance θ, are of special
interest in information theory. The kissing number problem is equivalent to the
problem of finding A(n, π/3).

In this paper, we define a semidefinite program (SDP for short) whose optimal
solution gives an upper bound for A(n, θ) and strengthens the LP method. Com-
putational results show that for several values of n this SDP method gives better
upper bounds for τn than the LP method.

To be more precise, let us recall that the LP method relies on the existence of
polynomials Pn

k (t), satisfying the so-called positivity property:

(1) for all finite C ⊂ Sn−1,
∑

(c,c′)∈C2

Pn
k (c · c′) ≥ 0.

These polynomials arise as zonal spherical polynomials on the sphere, i.e. the zonal
polynomials associated to the decomposition of the space of polynomial functions
under the action of the orthogonal group O(Rn).

The consideration of the action restricted to a subgroup H of O(Rn), chosen
to be the stabilizer group of a fixed point e ∈ Sn−1, leads us to some symmetric
matrices Sn

k whose coefficients are symmetric polynomials in three variables such
that

(2) for all finite C ⊂ Sn−1,
∑

(c,c′,c′′)∈C3

Sn
k (c · c′, c · c′′, c′ · c′′) � 0

where the sign “� 0” stands for “is positive semidefinite”. The reason why we obtain
matrices instead of functions comes from the fact that, in the decomposition of the
space of polynomial functions on the sphere under the action of H, multiplicities
greater than 1 appear. In fact these multiplicities are exactly the sizes of the
corresponding matrices. From (1) and (2) we derive an SDP whose solution gives
an upper bound for A(n, θ).

Our approach adapts the method proposed by A. Schrijver in [22] to the unit
sphere whereas he obtains new upper bounds for binary codes from an SDP. His
work can also be interpreted in group theoretic terms, involving the isometry group
of the Hamming space F

n
2 and the subgroup stabilizing (0, . . . , 0) which is the group

of permutations of the n positions. It is very likely that many other spaces of
interest in coding theory can be treated likewise. The case of non-binary codes was
considered by D.C. Gijswijt, A. Schrijver and H. Tanaka in [11].

The paper is organized as follows: Section 2 reviews on the LP method. Section
3 introduces and calculates the semidefinite zonal matrices associated to the action
of H and leading to the matrices Sn

k . Section 4 defines the semidefinite program
and its dual that establishes the desired bound. Section 5 discusses computational
results.
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2. Review of the LP method on the unit sphere

We introduce the following notation. The standard inner product of the Eu-
clidean space R

n is denoted by x · y. The unit sphere

Sn−1 := {x ∈ R
n : x · x = 1}

is homogeneous under the action of the orthogonal group O(Rn) = {O ∈ R
n×n :

OtO = In}, where In denotes the identity matrix. It is moreover two-point homo-
geneous, meaning that the orbits of O(Rn) on pairs of points are characterized by
the value of their inner product. The space of real polynomial functions of degree
at most d on Sn−1 is denoted by Pol≤d(Sn−1). It is endowed with the induced
action of O(Rn) and equipped with the standard O(Rn)-invariant inner product

(f, g) =
1
ωn

∫
Sn−1

f(x)g(x)dωn(x),

where ωn = 2 πn/2

Γ(n/2) is the surface area of Sn−1 for the standard measure dωn. It is
a well-known fact (see e.g. [24, Ch. 9.2]) that under the action of O(Rn)

(3) Pol≤d(Sn−1) = Hn
0 ⊥ Hn

1 ⊥ . . . ⊥ Hn
d ,

where Hn
k is isomorphic to the O(Rn)-irreducible space

Harmn
k =

{
f ∈ R[x1, . . . , xn] : f homogeneous, deg f = k,

n∑
i=1

∂2

∂x2
i

f = 0
}

of harmonic polynomials in n variables which are homogeneous and have degree k.
We set hn

k := dim(Harmn
k ) =

(
n+k−1

n−1

)
−

(
n+k−3

n−1

)
.

A certain family of orthogonal polynomials is associated to the unit sphere.
They will be denoted by Pn

k , with the convention that Pn
k has degree k and is

normalized by Pn
k (1) = 1. For n ≥ 3 these polynomials are up to multiplicative

constants Gegenbauer polynomials Cλ
k with parameter λ = n/2 − 1. So they are

given by Pn
k (t) = C

n/2−1
k (t)/C

n/2−1
k (1), and the Gegenbauer polynomials Cλ

k can
be inductively defined by Cλ

0 (t) = 1, Cλ
1 (t) = 2λt, and

kCλ
k (t) = 2(k + λ − 1)tCλ

k−1(t) − (k + 2λ − 2)Cλ
k−2(t), for k ≥ 2.

They are orthogonal with respect to the weight function (1−t2)λ−1/2 on the interval
[−1, 1]. For n = 2 the polynomials Pn

k coincide with the Chebyshev polynomials of
the first kind Tk which can be inductively defined by T0(t) = 1, T1(t) = t, and

Tk(t) = 2tTk−1(t) − Tk−2(t), for k ≥ 2,

and they are orthogonal with respect to the weight function (1 − t2)−1/2 on the
interval [−1, 1].

The polynomials Pn
k (t) are related to the decomposition (3) by the so-called

addition formula (see e.g. [1, Ch. 9.6]): for any orthonormal basis (e1, . . . , ehn
k
) of

Hn
k and for any pair of points x, y ∈ Sn−1 we have

(4) Pn
k (x · y) =

1
hn

k

hn
k∑

i=1

ei(x)ei(y).
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912 CHRISTINE BACHOC AND FRANK VALLENTIN

From the addition formula (4), the positivity property (1) becomes obvious:

∑
(c,c′)∈C2

Pn
k (c · c′) =

∑
(c,c′)∈C2

1
hn

k

hn
k∑

i=1

ei(c)ei(c′)

=
1
hn

k

hn
k∑

i=1

∑
(c,c′)∈C2

ei(c)ei(c′) =
1
hn

k

hn
k∑

i=1

(∑
c∈C

ei(c)

)2

≥ 0.

Now we introduce the unknowns of the LP to be considered. For a spherical
code C we define the two-point distance distribution

x(u) :=
1

card(C)
card{(c, c′) ∈ C2 : c · c′ = u},

where u ∈ [−1, 1]. Clearly, only a finite number of x(u)’s are not equal to zero, and
the positivity property can be rewritten as a linear inequality in the x(u)’s:

(5)
∑

u∈[−1,1]

x(u)Pn
k (u) ≥ 0.

Moreover, the number of elements of C is given by card(C) =
∑

u∈[−1,1] x(u).
Noticing the obvious conditions x(1) = 1, x(u) ≥ 0, and x(u) = 0 for cos θ < u < 1
if the minimal angular distance of C is θ, we are led to consider the following linear
program: For any d ≥ 1, the optimal solution of the linear program

(6)

max
{

1 +
∑

u∈[−1,cos θ]

x(u) :

x(u) = 0 for all but finitely many u ∈ [−1, cos θ],

x(u) ≥ 0 for all u ∈ [−1, cos θ],

1 +
∑

u∈[−1,cos θ] x(u)Pn
k (u) ≥ 0 for all k = 1, . . . , d

}
gives an upper bound for A(n, θ). The dual linear problem is

(7)
min

{
1 +

d∑
k=1

fk :

fk ≥ 0 for all k = 1, . . . , d,∑d
k=1 fkPn

k (u) ≤ −1 for all u ∈ [−1, cos θ]
}
.

By the duality theorem (cf. [10]) any feasible solution of (7) gives an upper bound
for the optimal solution of (6). The dual linear program can be restated in the
following way involving polynomials:

Theorem 2.1 (See e.g. [9, Th. 4.3], [12], [16], [7, Ch. 9]). Let F (t) =
∑d

k=0 fkPn
k (t)

be a polynomial of degree at most d in R[t]. If
(a) fk ≥ 0 for all k ≥ 1 and f0 > 0 and
(b) F (u) ≤ 0 for all u ∈ [−1, cos θ],

then

A(n, θ) ≤ F (1)
f0

.
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3. Semidefinite zonal matrices

Now we fix a point e ∈ Sn−1 and let H := Stab(O(Rn), e) be the stabilizer of
e in O(Rn). Obviously, H � O(Rn−1) since O(Rn−1) can be identified with the
orthogonal group of the orthogonal complement of Re.

It is a classical result (see e.g. [24, Ch. 9.2]) that for the restricted action to H
the decomposition of Harmn

k into H-irreducible subspaces is given by

Harmn
k �

k⊕
i=0

Harmn−1
i .

Hence, each of the Hn
k in (3) decomposes likewise:

(8) Hn
k = Hn−1

0,k ⊥ Hn−1
1,k ⊥ . . . ⊥ Hn−1

k,k ,

where Hn−1
i,k � Harmn−1

i . We give an explicit description of this decomposition in
the proof of Theorem 3.2.

We summarize the situation in the following picture:

Pol≤d(Sn−1) = Hn
0 ⊥ Hn

1 ⊥ . . . ⊥ Hn
d

= Hn−1
0,0 ⊥ Hn−1

0,1 ⊥ . . . ⊥ Hn−1
0,d

⊥ Hn−1
1,1 ⊥ . . . ⊥ Hn−1

1,d

· · · · · · · · · · · · · · · · · ·
⊥ Hn−1

d,d .

The isotypic components of the H-decomposition of Pol≤d(Sn−1) are

(9) Ik := Hn−1
k,k ⊥ . . . ⊥ Hn−1

k,d � (d − k + 1) Harmn−1
k , for k = 0, . . . , d.

Now we show how to associate to each Ik a “zonal matrix” in view of an analogue
of the addition formula (4).

Theorem 3.1. Let I = R0 ⊥ R1 ⊥ . . . ⊥ Rm � (m+1)R be an isotypic component
of Pol≤d(Sn−1) under the action of H, with R an H-irreducible space of dimension
h. Let (e0,1, . . . , e0,h) be an orthonormal basis of R0 and let φi : R0 → Ri be H-
isomorphisms preserving the inner product on Pol≤d(Sn−1). Let ei,j = φi(e0,j), so
that (ei,1, . . . , ei,h) is an orthonormal basis of Ri. Define

E(x) :=
( 1√

h
ei,j(x)

)
0≤i≤m
1≤j≤h

=
1√
h

⎛
⎜⎝

e0,1(x) . . . e0,h(x)
...

...
em,1(x) . . . em,h(x)

⎞
⎟⎠

and
Z(x, y) := E(x)E(y)t ∈ R

(m+1)×(m+1).

Then the following properties hold for the matrix Z:
(a) Z(x, y) does not depend on the choice of the orthonormal basis of R0.
(b) The change of φi to −φi for some i or the choice of another decomposition of

I as a sum of m+1 orthogonal H-submodules changes Z(x, y) to some OZ(x, y)Ot

with O ∈ O(Rm+1).
(c) For all g ∈ H, Z(g(x), g(y)) = Z(x, y).
(d) (Matrix-type positivity property)

(10) For all finite C ⊂ Sn−1,
∑

(c,c′)∈C2

Z(c, c′) � 0.
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914 CHRISTINE BACHOC AND FRANK VALLENTIN

Proof. (a) If (ε0,1, . . . , ε0,h) is another orthonormal basis of R0, then there is an
orthogonal h× h matrix O with (ε0,1, . . . , ε0,h) = (e0,1, . . . , e0,h)O. In this case the
matrix E(x) is changed to E(x)O and, since OOt = Ih, the matrix Z(x, y) stays
unchanged.

(b) By Schur’s Lemma and by the irreducibility of R, there are only two possible
choices for φi, namely φi and −φi, once the subspaces Ri are fixed.

Let I = S0 ⊥ . . . ⊥ Sm be another decomposition of I, together with H-
isomorphisms ψi : Ri → Si preserving the inner product on Pol≤d(Sn−1). Then
ψ = (ψ0, . . . , ψm) defines an H-endomorphism of I. Again by Schur’s Lemma, for
a suitable choice of basis in Ri and by permuting rows and columns, the matrix
of ψ is block diagonal with h blocks of size (m + 1) × (m + 1) and with the same
(m + 1) × (m + 1) matrix O ∈ O(Rm+1) as blocks. This means that E(x) changes
to OE(x) and so Z(x, y) becomes OZ(x, y)Ot.

(c) Since
ei,j(g−1(x)) = (gei,j)(x),

the computation of Z(g−1(x), g−1(y)) amounts to replacing the ei,j by gei,j in the
definition of Z(x, y). Since Ri is H-stable, εi,j := gei,j , with j = 1, . . . , h, is another
orthonormal basis of Ri, and

φi(ε1,j) = φi(ge1,j) = gφi(e1,j) = gei,j = εi,j .

Hence from (a) we conclude Z(g−1(x), g−1(y)) = Z(x, y).

(d) We have
∑

(c,c′)∈C2

Z(c, c′) =
( ∑

c∈C

E(c)
)( ∑

c∈C

E(c)
)t

� 0. �

The orbits of H on pairs of points on the unit sphere x, y ∈ Sn−1 are character-
ized by the values of the three inner products e·x, e·y, and x·y. By definition the co-
efficients Zi,j(x, y) of Z(x, y) are polynomials in the variables x1, . . . , xn, y1, . . . , yn.
Then, property (c) of Theorem 3.1 implies that they can be expressed as polyno-
mials in the three variables u = e · x, v = e · y, and t = x · y.

By Zn
k , for 0 ≤ k ≤ d, let us denote the matrix associated to Ik as defined

above and more precisely to the decomposition (9) of Ik. Now we shall calculate
the matrix Y n

k (u, v, t) with

(11) Zn
k (x, y) = Y n

k (e · x, e · y, x · y).

Theorem 3.2. With the above notation, we have, for all 0 ≤ i, j ≤ d − k,

(12)
(
Y n

k

)
i,j

(u, v, t) = λi,jP
n+2k
i (u)Pn+2k

j (v)Qn−1
k (u, v, t),

where

Qn−1
k (u, v, t) :=

(
(1 − u2)(1 − v2)

)k/2
Pn−1

k

( t − uv√
(1 − u2)(1 − v2)

)
and

λi,j =
ωn

ωn−1

ωn+2k−1

ωn+2k
(hn+2k

i hn+2k
j )1/2.

Proof. We explicitly use an orthonormal basis of Hn−1
k,k+i to calculate Y n

k (u, v, t).
Such a basis is constructed in [1, Ch. 9.8]. Let us recall the construction. For
x ∈ Sn−1, let

x = ue +
√

1 − u2ζ,
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where u = x · e and ζ belongs to the unit sphere Sn−2 of (Re)⊥. With f ∈ Hn−1
k ⊂

Pol≤k(Sn−2) we associate ϕ(f) ∈ Pol≤k(Sn−1) defined by

ϕ(f)(x) = (1 − u2)k/2f(ζ).

Note that the multiplication by (1−u2)k/2 forces ϕ(f) to be a polynomial function
in the coordinates of x. Clearly ϕ commutes with the action of H. Hence ϕ(Hn−1

k )
is a subspace of Pol≤k(Sn−1) which is isomorphic to Harmn−1

k . More generally, the
set {ϕ(f)P (u) : f ∈ Harmn−1

k , deg P ≤ i} is a subspace of Pol≤k+i(Sn−1) which
is isomorphic to i + 1 copies of Harmn−1

k . By induction on k and i there exist
polynomials Pi(u) of degree i such that ϕ(Hn−1

k )Pi(u) = Hn−1
k,k+i. Note that this

construction could be used to derive decomposition (8) explicitly.
We can exploit the fact that the subspaces Hn−1

k,l are pairwise orthogonal to prove
an orthogonality relation between the polynomials Pi. Then this orthogonality
relation will enable us to identify the polynomials Pi as multiples of Gegenbauer
polynomials. Let us recall that the measures on Sn−1 and on Sn−2 are related by

dωn(x) = (1 − u2)(n−3)/2dudωn−1(ζ).

Whenever i �= j, we have for all f ∈ Hn−1
k

0 =
1
ωn

∫
Sn−1

ϕ(f)Pi(u)ϕ(f)Pj(u)dωn(x)

=
1
ωn

∫
Sn−1

f(ζ)2(1 − u2)kPi(u)Pj(u)dωn(x)

=
1
ωn

∫
Sn−2

f(ζ)2dωn−1(ζ)
∫ 1

−1

(1 − u2)k+(n−3)/2Pi(u)Pj(u)du,

from which we derive that∫ 1

−1

(1 − u2)k+(n−3)/2Pi(u)Pj(u)du = 0;

hence the polynomials Pi(u) are proportional to Pn+2k
i (u). We obtain an orthonor-

mal basis of Hn−1
k,k+i from an orthonormal basis (f1, . . . , fh) of Hn−1

k by taking
ei,j = λiϕ(fj)Pn+2k

i (u) for a suitable normalizing factor λi. We compute λi in a
similar way as above:

1 =
1
ωn

∫
Sn−1

(
λiϕ(fj)Pn+2k

i (u)
)2

dωn(x)

=
1
ωn

∫
Sn−2

(
fj(ζ)

)2
dωn−1(ζ)

∫ 1

−1

λ2
i (1 − u2)k+(n−3)/2

(
Pn+2k

i (u)
)2

du

=
ωn−1

ωn

∫ 1

−1

λ2
i (1 − u2)k+(n−3)/2

(
Pn+2k

i (u)
)2

du.

From the addition formula (4) applied to (Pn+2k
i (u))2 one easily shows that∫ 1

−1

(1 − u2)k+(n−3)/2
(
Pn+2k

i (u)
)2

du =
ωn+2k

ωn+2k−1h
n+2k
i

,

so we obtain
λ2

i =
ωn

ωn−1

ωn+2k−1

ωn+2k
hn+2k

i .
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916 CHRISTINE BACHOC AND FRANK VALLENTIN

Now we are in the situation of Theorem 3.1 with

R0 = Hn−1
k,k , R1 = Hn−1

k,k+1, . . . , Rd−k = Hn−1
k,d

and their orthonormal basis (e0,1, . . . , e0,h), . . . , (ed−k,1, . . . , ed−k,h). The isomor-
phisms φi are the multiplications by (λi/λ1)Pn+2k

i (u).
Then, the coefficient (i, j), with 0 ≤ i, j ≤ d − k, of Zn

k is given by(
Zn

k

)
i,j

(x, y)

=
1
h

h∑
s=1

ei,s(x)ej,s(y)

=
1
h

h∑
s=1

λi(1 − u2)k/2fs(ζ)Pn+2k
i (u)λj(1 − v2)k/2fs(ξ)Pn+2k

j (v)

= λiλjP
n+2k
i (u)Pn+2k

j (v)
(
(1 − u2)(1 − v2)

)k/2 1
h

h∑
s=1

fs(ζ)fs(ξ)

= λiλjP
n+2k
i (u)Pn+2k

j (v)
(
(1 − u2)(1 − v2)

)k/2
Pn−1

k (ζ · ξ),

where we have written y = ve+
√

1 − v2ξ and where we applied the addition formula
(4) to get the last equality. Now we define λi,j = λiλj and since

ζ · ξ = (t − uv)/
√

(1 − u2)(1 − v2),

we have completed the proof. �

Remark 3.3. We would like to point out that the role of the number d is only to
cut Y n

k to a matrix of finite size. Indeed, d does not enter into the expression of(
Y n

k

)
i,j

(u, v, t). It is better to view the matrices Y n
k as matrices of infinite size with

all finite principal minors having the matrix-type positivity property.

Remark 3.4. For the semidefinite programming bounds in Section 4 we only use the
matrix-type positivity property of the matrices Y n

k . This property is preserved if
one replaces Y n

k by AY n
k At with an invertible matrix A. So, e.g., one could replace

the expression of
(
Y n

k

)
i,j

(u, v, t) in (12) by the simpler uivjQn−1
k (u, v, t).

Due to the specific choice of the unit vector e defining the subgroup H, the
coefficients of Y n

k are not symmetric polynomials. We introduce the symmetrization
Sn

k of Y n
k and state the announced property (2).

Corollary 3.5. For all d ≥ 0, for all k ≥ 0, let Y n
k be the matrix in Theorem 3.2

and let Sn
k be defined by

(13) Sn
k =

1
6

∑
σ

σY n
k ,

where σ runs through the group of all permutations of the variables u, v, t which acts
on matrix coefficients in the obvious way. Then the matrices Sn

k are symmetric and
have symmetric polynomials as coefficients. We have that

(14) for all finite C ⊂ Sn−1,
∑

(c,c′)∈C2

Y n
k (e · c, e · c′, c · c′) � 0,
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and

(15) for all finite C ⊂ Sn−1,
∑

(c,c′,c′′)∈C3

Sn
k (c · c′, c · c′′, c′ · c′′) � 0.

Proof. Note that
(
Y n

k

)
j,i

(u, v, t) =
(
Y n

k

)
i,j

(v, u, t) which gives the desired proper-
ties of Sn

k . Property (10) rephrases to (14) and property (15) is obtained from (14)
by taking e = c′′ ∈ C and summing over all c′′ ∈ C. �

To end this section, we show that the positivity property (1) is actually a con-
sequence of the matrix-type positivity property (2). As shown in the following
proposition, one can express the polynomials Pn

k as a linear combination of diago-
nal elements of the matrices Y n

k with non-negative coefficients.

Proposition 3.6. We have the following expression for the polynomials Pn
k (t) in

terms of matrix coefficients of Y n
k (u, v, t):

(16) Pn
k (t) =

k∑
s=0

hn−1
s

hn
k

(
Y n

s

)
k−s,k−s

(u, v, t).

Consequently, property (14) or property (2) implies (1).

Proof. The addition formula (4) holds for any orthonormal basis of Hn
k . We take

an orthonormal basis of Hn
k obtained by concatenation of the orthormal basis of the

spaces Hn−1
0,k , Hn−1

1,k , . . . , Hn−1
k,k . If (ek

s,1, e
k
s,2, . . . , e

k
s,hn−1

s
) denotes an orthonormal

basis of Hn−1
s,k , we have from Theorem 3.1

(
Y n

s

)
k−s,k−s

(e · x, e · y, x · y) =
1

hn−1
s

hn−1
s∑
i=1

ek
s,i(x)ek

s,i(y).

By the addition formula (4)

Pn
k (x · y) =

1
hn

k

k∑
s=0

hn−1
s∑
i=1

ek
s,i(x)ek

s,i(y)

=
k∑

s=0

hn−1
s

hn
k

(
Y n

s

)
k−s,k−s

(e · x, e · y, x · y),

and hence

Pn
k (t) =

k∑
s=0

hn−1
s

hn
k

(
Y n

s

)
k−s,k−s

(u, v, t).

Since the coefficients hn−1
s /hn

k are non-negative, and since the diagonal elements
of a semidefinite matrix are non-negative, (1) is a consequence of (14).

With the action of the permutation group of the variables u, v, t

1
3
(
Pn

k (u) + Pn
k (v) + Pn

k (t)
)

=
k∑

s=0

hn−1
s

hn
k

(
Sn

s

)
k−s,k−s

(u, v, t).

Replacing u = c · c′, v = c · c′′, t = c′ · c′′ and summing over (c, c′, c′′) ∈ C3 for a
code C, we obtain (1) from (2). �
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4. The semidefinite programming bound

In this section we set up an SDP whose optimum gives an upper bound for
A(n, θ) which is at least as good as the LP method.

For a spherical code C we define the three-points distance distribution

x(u, v, t) :=
1

card(C)
card{(c, c′, c′′) ∈ C3 : c · c′ = u, c · c′′ = v, c′ · c′′ = t},

where u, v, t ∈ [−1, 1] and the matrix⎛
⎝1 u v

u 1 t
v t 1

⎞
⎠ ,

being the Gram matrix of three vectors on a unit sphere, is positive semidefinite.
The last condition together with the first is equivalent to the fact that the de-

terminant of the Gram matrix is non-negative; hence

(17) 1 + 2uvt − u2 − v2 − t2 ≥ 0.

The two-point distance distribution x(u) as defined in Section 2 and the three-point
distance distribution x(u, v, t) are related by x(u, u, 1) = x(u). The three-point
distance distribution satisfies the following obvious properties:

x(u, v, t) ≥ 0,

x(1, 1, 1) = 1,

x(σ(u), σ(v), σ(t)) = x(u, v, t) for all permutations σ,∑
u,v,t

x(u, v, t) = card(C)2,∑
u

x(u, u, 1) = card(C).

Furthermore, from the positivity properties (5) and (15), we have for any d ≥ 0∑
u

x(u, u, 1)Pn
k (u) ≥ 0 for k = 1, . . . , d,∑

u,v,t

x(u, v, t)Sn
k (u, v, t) � 0 for k = 0, . . . , d,

where the matrix Sn
k has size (d − k + 1) × (d − k + 1). If the minimal angular

distance of C is θ, we have moreover

x(u, v, t) = 0 whenever u, v, t /∈ [−1, cos θ] ∪ {1}.
To factor out the action of the permutations of the variables u, v, t, we introduce
the domains

D = {(u, v, t) : −1 ≤ u ≤ v ≤ t ≤ cos θ and 1 + 2uvt − u2 − v2 − t2 ≥ 0},

D0 = {(u, u, 1) : −1 ≤ u ≤ cos θ}, I = [−1, cos θ],
and m(u, v, t) with

m(u, v, t) =

⎧⎪⎨
⎪⎩

6 if u �= v �= t,
3 if u = v �= t or u �= v = t or u = t �= v,
1 if u = v = t.
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From the discussion above, a solution to the following semidefinite program in the
variables x′(u, v, t) = m(u, v, t)x(u, v, t) is an upper bound for A(n, θ):

1+ max
{1

3

∑
u∈I

x′(u, u, 1) :

x′(u, v, t) = 0 for all but finitely many (u, v, t) ∈ D ∪ D0,

x′(u, v, t) ≥ 0 for all (u, v, t) ∈ D ∪ D0,

( 1 0
0 0 ) +

1
3

∑
u∈I

x′(u, u, 1) ( 0 1
1 1 ) +

∑
(u,v,t)∈D

x′(u, v, t) ( 0 0
0 1 ) � 0,

3 +
∑
u∈I

x′(u, u, 1)Pn
k (u) ≥ 0 for k = 1, . . . , d,

Sn
k (1, 1, 1) +

∑
(u,v,t)∈D∪D0

x′(u, v, t)Sn
k (u, v, t) � 0 for k = 0, . . . , d

}
.

The third constraint deserves some further explanation. We have already noticed
that

card(C)2 = 1 +
∑

(u,v,t)∈D∪D0

x′(u, v, t) =
(
1 +

∑
u∈I

x(u, u, 1)
)2

,

which implies∑
(u,v,t)∈D

x′(u, v, t) +
1
3

∑
u∈I

x′(u, u, 1) −
(1

3

∑
u∈I

x′(u, u, 1)
)2

≥ 0,

and this is equivalent to the semidefinite condition⎛
⎜⎜⎜⎝

1
1
3

∑
u∈I

x′(u, u, 1)

1
3

∑
u∈I

x′(u, u, 1)
∑

(u,v,t)∈D

x′(u, v, t) +
1
3

∑
u∈I

x′(u, u, 1)

⎞
⎟⎟⎟⎠ � 0.

Remark 4.1. We want to point out that, despite of the fact that (2) implies (1), as
is proved in Proposition 3.6, the inequalities 3 +

∑
u∈I x′(u, u, 1)Pn

k (u) ≥ 0 should
not be removed from our SDP. Indeed, the last inequalities do not imply them for
an arbitrary set of numbers x′(u, v, t), unless these numbers satisfy the additional
equalities ∑

u,v

x(u, v, t) =
(∑

u

x(u, u, 1)
)
x(t, t, 1) for all t.

These equalities do hold for codes, but they are not semidefinite conditions. It can
be noticed that the third constraint in the maximization problem above is a weaker
consequence of them.

Just as in the LP method, the main problem with the above SDP is that the
unknowns x(u, v, t) are indexed by a continuous domain of R

3. We cannot exploit
the information that only a finite number of them are not equal to zero, because
we don’t know to which values of (u, v, t) they correspond. We solve this problem
by applying duality theory.

Before we derive the SDP dual to the above one, we recall the principle of weak
duality. We use the standard notation for the inner product of symmetric matrices:
〈A, B〉 = Trace(AB). Let J be a (possible infinite) set of indices, let Sj ∈ R

m×m

be symmetric matrices with j ∈ J , let C ∈ R
m×m be a symmetric matrix, and
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let cj ∈ R be real numbers. Suppose that the real numbers xj ∈ R are a feasible
solution of the primal problem, i.e. xj = 0 for all but finitely many j ∈ J and
C −

∑
j∈J xjSj � 0. Furthermore, suppose that the symmetric matrix F ∈ R

m×m

is a feasible solution of the dual problem, i.e. 〈F, Sj〉 = cj for all j ∈ J and F � 0.
Then, we have

∑
j∈J cjxj = 〈

∑
j∈J xjSj , F 〉 ≤ 〈C, F 〉.

In our case this specializes as follows: The set of indices is J = D0 ∪ D. The
matrices S(u,v,t) are block matrices with four blocks of different type. We get one
block for each positivity constraint in the above SDP. So F is also a block matrix
with four blocks of different type. In this case it can be simplified to three blocks.
The first block of F consists of the matrix

(
b11 b12
b12 b22

)
. The second block of F is

the diagonal matrix with coefficients a1, . . . , ad. The third block of F is again a
block matrix with blocks F0, . . . , Fd which have the same size as the matrices Sn

k .
The matrix C is a block matrix as well. The first block of C contains the matrix
( 1 0

0 0 ). The first entry of the second block is 3; the other entries in this block are
zero. The third block of C consists of the matrices Sn

k (1, 1, 1). The real numbers
c(u,v,t) are zero if (u, v, t) ∈ D and they are equal to 1/3 if (u, v, t) ∈ D0. In the
following theorem we give the SDP dual to the above one. Furthermore we apply
the simplification Sn

k (1, 1, 1) = 0 for k ≥ 1.

Theorem 4.2. Any feasible solution of the following semidefinite problem gives an
upper bound on A(n, θ):

1 + min
{ d∑

k=1

ak + b11 + 〈F0, S
n
0 (1, 1, 1)〉 :(

b11 b12
b12 b22

)
� 0,

ak ≥ 0 for k = 1, . . . , d,
Fk � 0 for k = 0, . . . , d,

d∑
k=1

akPn
k (u) + 2b12 + b22 + 3

d∑
k=0

〈Fk, Sn
k (u, u, 1)〉 ≤ −1,

b22 +
d∑

k=0

〈Fk, Sn
k (u, v, t)〉 ≤ 0

}
,

where the last inequality holds for all (u, v, t) ∈ D and the second to last inequality
holds for all u ∈ I.

Note that if the last inequality holds for all (u, v, t) ∈ D, then it also holds for
the larger domain

D′ := {(u, v, t) : −1 ≤ u, v, t ≤ cos θ and 1 + 2uvt − u2 − v2 − t2 ≥ 0},

because the coefficients in Sn
k are symmetric polynomials.

5. Computational results

In this section, we describe one possible strategy to derive explicit upper bounds
for τn from Theorem 4.2. Thereby we make use of techniques from polynomial
optimization introduced e.g. in [13] and [17] which we shall briefly recall here.
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We consider the polynomials

p(u) = −(u + 1/4)2 + 9/16,

p1(u, v, t) = p(u), p2(u, v, t) = p(v), p3(u, v, t) = p(t),

p4(u, v, t) = 1 + 2uvt − u2 − v2 − t2,

and we obviously have

I = {u ∈ R : p(u) ≥ 0},
D′ = {(u, v, t) ∈ R

3 : pi(u, v, t) ≥ 0, i = 1, . . . , 4}.
We say that a polynomial f ∈ R[x1, . . . , xn] is a sum of squares if it can be written

as f =
∑k

i=1 g2
i , for k ∈ N and gi ∈ R[x1, . . . , xn]. A polynomial p(x1, . . . , xn)

of degree 2m is a sum of squares if and only if there is a positive semidefinite
matrix Q so that p(x1, . . . , xn) = ztQz where z is the vector of monomials z =
(1, x1, . . . , xn, x1x2, . . . , xn−1xn, . . . , xm

n ). So assuring that a polynomial is a sum
of squares is a semidefinite condition.

It is easy to see that the last two conditions of the semidefinite program in
Theorem 4.2 are satisfied if the following two equalities hold:

−1 −
d∑

k=1

akPn
k (u) − 2b12 − b22 − 3

d∑
k=0

〈Fk, Sn
k (u, u, 1)〉 = q(u) + p(u)q1(u),

−b22 −
d∑

k=0

〈Fk, Sn
k (u, v, t)〉 = r(u, v, t) +

4∑
i=1

pi(u, v, t)ri(u, v, t)

where q, q1 and r, r1, . . . , r4 are sums of squares.
It is not a priori clear that the relaxation of using this specific sum of squares

representation is strong enough. The following theorem of M. Putinar justifies our
approach.

Theorem 5.1 ([20]). Let K = {x ∈ R
n : p1(x) ≥ 0, . . . , ps(x) ≥ 0} be a compact

semialgebraic set. Suppose that there is a polynomial P of the form P = q + p1q1 +
· · ·+psqs, where q and all qi’s are sums of squares, so that the set {x ∈ R

n : P (x) ≥
0} is compact. Then, every polynomial p which is positive on K can be written as
p = r + p1r1 + · · · + psrs, where r and all ri’s are sums of squares.

Now we use these considerations to formulate a finite-dimensional semidefinite
program which gives an upper bound on the kissing number τn: We fix d and
restrict the polynomials q, q1, r, r1, . . . , r4 to polynomials having degree at most N ,
with N ≥ d. Then we can use the computer to find a feasible solution of this
finite-dimensional semidefinite program. A feasible solution of it is at the time a
feasible solution of the SDP in Theorem 4.2. So it gives an upper bound on the
kissing number τn.

We implemented this approach and give our results in Table 5.1.
The values of the last column were found by solving the above semidefinite

program for the values d = 10 and N = 10. The values of the third column were
obtained by Odlyzko and Sloane by Theorem 2.1 using the value d = 30. They
pointed out that even d = 11 would suffice for n ≤ 10. Our calculations were
performed by the program csdp (Version 5.0) of B. Borchers ([2]) which is available
on the Internet (http://infohost.nmt.edu/˜borchers/csdp.html). After solving the
SDP with csdp, we checked independently whether the solution satisfies the desired
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Table 5.1. Bounds on τn.

best lower best upper bound LP SDP
n bound known previously known method method
3 12 12 (Schütte, v.d. Waerden [23]) 13 12
4 24 24 (Musin [15]) 25 24
5 40 46 (Odlyzko, Sloane [16]) 46 45
6 72 82 (O., S. [16]) 82 78
7 126 140 (O., S. [16]) 140 135
8 240 240 (O., S. [16], Levenshtein [14]) 240 240
9 306 379 (Rzhevskii, Vsemirnov [21]) 380 366
10 500 594 (Pfender [18]) 595 567

constraints. This can be done using rational arithmetic only. So our computations
give rigorous proofs of the stated upper bounds. Due to numerical instabilities we
were not able to perform this calculation for larger n and/or larger d, N . The
smallest values of d and N which solve the kissing number problem in dimension 3
is d = N = 5. Then, we obtain by the SDP method τ3 ≤ 12.8721. For the kissing
number problem in dimension 4 it is d = N = 7, and the SDP method gives
τ4 ≤ 24.5797.

For the lower bounds in the first column we refer to the Catalogue of Lattices of
G. Nebe and N.J.A. Sloane (http://www.research.att.com/˜njas/lattices/kiss.html).

Using the polynomial p(u) = −(u + 1/3)2 + 4/9, we computed upper bounds for
A(n, cos−1 1/3). Hereby we improved several entries of Table 9.2 of [7] where all
best upper bounds previously known were obtained by the LP method. We give
our results in Table 5.2. Again we used the values d = 10 and N = 10 to obtain
the last column.

Table 5.2. Bounds on A(n, cos−1 1/3).

best lower best upper bound SDP
n bound known previously known method
3 9 9 9
4 14 15 15
5 20 24 23
6 32 37 35
7 56 56 56
8 64 78 74
9 96 107 99
10 146 135

We were also able to improve the best known upper bounds for the so-called
Tammes problem with N spheres: What is the largest minimal angle θ(N) that
can be obtained by a spherical code of S2 with cardinality N . Let us recall that
the answer is only known for N ≤ 12 and for N = 24 (see [7, Ch. 1]). For
N = 13, the best known lower bound is 0.997223593 ≈ 57.1367031◦ whereas the
best known upper bound is 1.02746114 � 58.8691870◦ due to K. Böröczky and
L. Szabo [4]. We obtained A(3, cos−1(0.5225)) ≤ 12.99 using d = N = 10, giving
the new upper bound of 1.02101593 � 58.4999037◦. Other values are collected
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in Table 5.3; the lower bounds are taken from the homepage of N.J.A. Sloane
(http://www.research.att.com/˜njas/packings/). The upper bounds for N ≥ 14
where established in [5].

Table 5.3. Bounds on θ(N) (given in degrees).

best lower best upper bound SDP
N bound known previously known method
13 57.13 58.87 58.50
14 55.67 58.00 56.58
15 53.65 55.84 55.03
16 52.24 53.92 53.27
17 51.09 52.11 51.69
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