
New Upper Bounds on the Quality of the PCA Bounding
Boxes in R

2 and R
3

Darko Dimitrov Christian Knauer Klaus Kriegel Günter Rote

Institut für Informatik
Freie Universität Berlin

Takustrasse 9
D-14195 Berlin, Germany

darko/knauer/kriegel/rote@inf.fu-berlin.de

ABSTRACTPrin
ipal 
omponent analysis (PCA) is 
ommonly used to
ompute a bounding box of a point set in R
d. The popu-larity of this heuristi
 lies in its speed, easy implementationand in the fa
t that usually, PCA bounding boxes quite wellapproximate the minimum-volume bounding boxes. Sin
ethere are examples of dis
rete points sets in the plane, show-ing that the worst 
ase ratio of the volume of the PCAbounding box and the volume of the minimum-volumebound-ing box tends to in�nity, we 
onsider PCA bounding boxesfor 
ontinuous sets, espe
ially for the 
onvex hull of a pointset. Here, we 
ontribute new upper bounds on the approxi-mation fa
tor of PCA bounding boxes of 
onvex sets in R

2and R
3.

Categories and Subject DescriptorsF.2.2 [Nonnumeri
al Algorithms and Problems℄: Geo-metri
al problems and 
omputations
General TermsAlgorithms, Theory
KeywordsPrin
ipal 
omponent analysis, Bounding boxes
1. INTRODUCTIONSubstituting sets of points or 
omplex geometri
 shapeswith their bounding boxes is motivated by many appli
a-tions. For example, in 
omputer graphi
s, it is used tomaintain hierar
hi
al data stru
tures for fast rendering ofa s
ene or for 
ollision dete
tion. Additional appli
ationsin
lude those in shape analysis and shape simpli�
ation, or
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in statisti
s, for storing and performing range-sear
h querieson a large database of samples.Computing a minimum-area bounding box of a set of npoints in R
2 
an be done in O(n log n) time, for examplewith the rotating 
aliper algorithm [13℄. O'Rourke [10℄ pre-sented a deterministi
 algorithm, a rotating 
aliper variantin R

3, for 
omputing the minimum-volume bounding boxof a set of n points in R
3. His algorithm requires O(n3)time and O(n) spa
e. Barequet and Har-Peled [2℄ have 
on-tributed two (1+ǫ)-approximation algorithms for 
omput-ing the minimum-volume bounding box for point sets in R

3,both with nearly linear 
omplexity. The running times oftheir algorithms are O(n + 1/ǫ4.5) and O(n log n + n/ǫ3),respe
tively.Numerous heuristi
s have been proposed for 
omputinga box whi
h en
loses a given set of points. The simplestheuristi
 is naturally to 
ompute the axis-aligned bound-ing box of the point set. Two-dimensional variants of thisheuristi
 in
lude the well-known R-tree, the pa
ked R-tree[11℄, the R∗-tree [3℄, the R+-tree [12℄, et
.A frequently used heuristi
 for 
omputing a bounding boxof a set of points is based on prin
ipal 
omponent analysis.The prin
ipal 
omponents of the point set de�ne the axes ofthe bounding box. On
e the axis dire
tions are given, the di-mension of the bounding box is easily found by the extremevalues of the proje
tion of the points on the 
orrespond-ing axis. Two distinguished appli
ations of this heuristi
are the OBB-tree [5℄ and the BOXTREE [1℄, hierar
hi
albounding box stru
tures, whi
h support e�
ient 
ollisiondete
tion and ray tra
ing. Computing a bounding box of aset of points in R
2 and R

3 by PCA is simple and requireslinear time. To avoid the in�uen
e of the distribution of thepoint set on the dire
tions of the PCs, a possible approa
his to 
onsider the 
onvex hull, or the boundary of the 
on-vex hull CH(P ) of the point set P . Thus, the 
omplexityof the algorithm in
reases to O(n log n). The popularity ofthis heuristi
, besides its speed, lies in its easy implementa-tion and in the fa
t that usually PCA bounding boxes aretight-�tting, 
.f. see [8℄ for some experimental results.Given a point set P ⊆ R
d we denote by BBpca(P ) thePCA bounding box of P and by BBopt(P ) the boundingbox of P with smallest possible volume. The ratio of thetwo volumes λd(P ) = Vol(BBpca(P ))/Vol(BBopt(P )) de-



�nes the approximation fa
tor for P , and
λd = sup

n

λd(P ) | P ⊆ R
d,Vol(CH(P )) > 0

ode�nes the general PCA approximation fa
tor. To the bestof our knowledge, the only known results about the qualityof the PCA bounding boxes were given in [4℄, where lowerbounds on λd for arbitrary dimension d, and an upper boundon λ2 were presented. Here, we give a new upper bound on
λ2, and the �rst upper bound on λ3.The paper is organized as follows: In Se
tion 2 we reviewthe basi
s of prin
ipal 
omponent analysis and the knownresults about the quality of PCA bounding boxes. In parti
-ular, we introdu
e the 
ontinuous version of PCA, whi
h re-sults in a series of approximation fa
tors λd,i, where i rangesfrom 0 to d and denotes the dimension of the fa
es of the
onvex hull that 
ontribute to the 
ontinuous point set forwhi
h the prin
ipal 
omponents are 
omputed. In Se
tion3 we give an upper bound on λ2,2 and an upper bound on
λ3,3. We 
on
lude with future work and open problems inSe
tion 4.
2. PRINCIPAL COMPONENT ANALYSIS

AND PCA BOUNDING BOXESThe 
entral idea and motivation of PCA [7℄ (also known asthe Karhunen-Loeve transform, or the Hotelling transform)is to redu
e the dimensionality of a point set by identifyingthe most signi�
ant dire
tions (prin
ipal 
omponents). Let
X = {x1, x2, . . . , xm}, where xi is a d-dimensional ve
tor,and c = (c1, c2, . . . , cd) ∈ R

d be the 
enter of gravity of X.For 1 ≤ k ≤ d, we use xik to denote the k-th 
oordinate ofthe ve
tor xi. Given two ve
tors u and v, we use 〈u, v〉 todenote their inner produ
t. For any unit ve
tor v ∈ R
d, thevarian
e of X in dire
tion v isvar(X, v) =

1

m

m
X

i=1

〈xi − c , v〉2. (1)The most signi�
ant dire
tion 
orresponds to the unit ve
-tor v1 su
h that var(X, v1) is maximum. In general, afteridentifying the j most signi�
ant dire
tions Bj = {v1, v2, . . . , vj},the (j + 1)-th most signi�
ant dire
tion 
orresponds to theunit ve
tor vj+1 su
h that var(X, vj+1) is maximum amongall unit ve
tors perpendi
ular to v1, v2, . . . , vj .It 
an be veri�ed that for any unit ve
tor v ∈ R
d,var(X, v) = 〈Cv, v〉, (2)where C is the 
ovarian
e matrix of X. C is a symmetri


d× d matrix where the (i, j)-th 
omponent, cij , 1 ≤ i, j ≤ d,is de�ned as
cij =

1

m

m
X

k=1

(xik − ci)(xjk − cj). (3)The pro
edure of �nding the most signi�
ant dire
tions,in the sense mentioned above, 
an be formulated as an eigen-value problem. If λ1 > λ2 > · · · > λd are the eigenvalues of
C, then the unit eigenve
tor vj for λj is the j-th most signi�-
ant dire
tion. All λjs are non-negative and λj = var(X, vj).Sin
e the matrix C is symmetri
 positive de�nite, its eigen-ve
tors are orthogonal. If the eigenvalues are not distin
t,the eigenve
tors are not unique. In this 
ase, an orthogonalbasis of eigenve
tors is 
hosen arbitrary. However, we 
an

1stPC

2ndPC

1stPC

2ndPCFigure 2: Four points and its PCA bounding-box(left). Dense 
olle
tion of additional points signi�-
antly a�e
t the orientation of the PCA bounding-box (right).a
hieve distin
t eigenvalues by a slight perturbation of thepoint set.The following result summarizes the above ba
kgroundknowledge on PCA. For any set S of orthogonal unit ve
torsin R
d, we use var(X, S) to denote Pv∈S var(X, v).Lemma 1. For 1 ≤ j ≤ d, let λj be the j-th largest eigen-value of C and let vj denote the unit eigenve
tor for λj. Let

Bj = {v1, v2, . . . , vj}, sp(Bj) be the linear subspa
e spannedby Bj , and sp(Bj)
⊥ be the orthogonal 
omplement of sp(Bj).Then λ1 = max{var(X, v) : v ∈ R

d, ‖v‖ = 1 }, and for any
2 ≤ j ≤ d,i) λj = max{var(X, v) : v ∈ sp(Bj−1)

⊥, ‖v‖ = 1}.ii) λj = min{var(X, v) : v ∈ sp(Bj), ‖v‖ = 1}.iii) var(X, Bj) ≥ var(X, S) for any set S of j orthogonalunit ve
tors.Sin
e bounding boxes of a point set P (with respe
t to anyorthogonal 
oordinate system) depend only on the 
onvexhull of CH(P ), the 
onstru
tion of the 
ovarian
e matrixshould be based only on CH(P ) and not on the distrib-ution of the points inside. Using the verti
es, i.e., the 0-dimensional fa
es of CH(P ) to de�ne the 
ovarian
e matrix
C we obtain a bounding box BBpca(d,0)(P ). We denote by
λd,0(P ) the approximation fa
tor for the given point set Pand by

λd,0 = sup
n

λd,0(P ) | P ⊆ R
d,Vol(CH(P )) > 0

othe approximation fa
tor in general. The example in Fig-ure 2 shows that λ2,0(P ) 
an be arbitrarily large if the 
on-vex hull is nearly a thin re
tangle, with a lot of additionalverti
es in the middle of the two long sides. Sin
e this 
on-stru
tion 
an be lifted into higher dimensions we obtain a�rst general lower bound.Proposition 1. λd,0 = ∞ for any d ≥ 2.To over
ome this problem, one 
an apply a 
ontinuous ver-sion of PCA taking into a

ount (the dense set of) all pointson the boundary of CH(P ), or even all points in CH(P ).In this approa
h X is a 
ontinuous set of d-dimensional ve
-tors and the 
oe�
ients of the 
ovarian
e matrix are de�nedby integrals instead of �nite sums. The 
omputation of the
oe�
ients of the 
ovarian
e matrix in the 
ontinuous 
ase
an be done also in linear time, thus, the overall 
omplex-ity remains the same as in the dis
rete 
ase. Note that for
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Figure 1: A 
onvex hull of the point set P , its PCA bounding box and its optimal bounding box.for d = 1 the above problem is trivial, be
ause the PCAbounding box is always optimal, i.e., λ1,0 and λ1,1 are 1.Variants of the 
ontinuous PCA, applied on triangulatedsurfa
es of 3D obje
ts, were presented by Gotts
halk et al.[5℄, Lahanas et al. [8℄ and Vrani¢ et al. [14℄. For point sets
P in R

2 we are espe
ially interested in the 
ases when Xrepresents the boundary of CH(P ), or all points in CH(P ).Sin
e the �rst 
ase 
orresponds to the 1-dimensional fa
esof CH(P ) and the se
ond 
ase to the 2-dimensional fa
eof CH(P ), the generalization to dimension d > 2 leads toa series of d − 1 
ontinuous PCA versions. For a pointset P ∈ R
d, C(P, i) denotes the 
ovarian
e matrix de�nedby the points on the i-dimensional fa
es of CH(P ), and

BBpca(d,i)(P ), denotes the 
orresponding bounding box. Theapproximation fa
tors λd,i(P ) and λd,i are de�ned as
λd,i(P ) =

Vol(BBpca(d,i)(P ))Vol(BBopt(P ))
, and

λd,i = sup
˘

λd,i(P ) | P ⊆ R
d,Vol(CH(P )) > 0

¯

.In what follows, we give a brief overview of the results from[4℄, whi
h to the best of our knowledge are the only knownbounds on the quality of the PCA bounding boxes. First, wepresent an extension of Proposition 1, whi
h indi
ates thatfor a given d, there remain only two interesting 
ases: thefa
tor λd,d−1 
orresponding to the boundary of the 
onvexhull, and the fa
tor λd,d 
orresponding to the full 
onvexhull.Proposition 2. λd,i = ∞ for any d ≥ 2 and any 0 ≤
i < d − 1.The following nontrivial lower bounds are based on the re-lation between the symmetry of a point set and its prin
ipal
omponents [4, Lemma 4℄.Theorem 1. λ3,2 ≥ 4 and λ3,3 ≥ 4.Theorem 2. If d is a power of two, then λd,d−1 ≥

√
d

dand λd,d ≥
√

d
d.In [4℄ also the �rst nontrivial upper bound on λ2,1 is given.Theorem 3. The PCA bounding box of a point set P in

R
2 
omputed over the boundary of CH(P ) has a guaranteedapproximation fa
tor λ2,1 ≤ 2.737.Although this result 
on
erns a 
ontinuous PCA version, theproof is mainly based on arguments from dis
rete geometry.In 
ontrast to that, the upper bound proofs presented inthis paper essentially make use of integral 
al
ulus. In whatfollows we present the �rst upper bounds on λ2,2 and λ3,3.

3. NEW UPPER BOUNDS

3.1 An upper bound for λ2,2Given a point set P ⊆ R
2 and an arbitrary bounding box

BB(P ), we will denote the two side lengths of BB(P ) by aand b, where a ≥ b. We are interested in the side lengths
aopt(P ) ≥ bopt(P ) and apca(P ) ≥ bpca(P ) of BBopt(P ) and
BBpca(2,2)(P ), see Figure 1. The parameters α = α(P ) =
apca(P )/aopt(P ) and β = β(P ) = bpca(P )/bopt(P ) denotethe ratios between the 
orresponding side lengths, so that
λ2,2(P ) = α(P ) · β(P ). If the relation to P is 
lear, we willomit the referen
e to P in the notations introdu
ed above.Sin
e the side lengths of any bounding box are bounded bythe diameter of P , we 
an observe that in general bpca(P ) ≤
apca(P ) ≤ diam(P ) ≤

√
2aopt(P ), and in the spe
ial 
asewhen the optimal bounding box is a square λ2,2(P ) ≤ 2.This observation 
an be generalized, introdu
ing an addi-tional parameter η(P ) = aopt(P )/bopt(P ).Lemma 2. λ2,2(P ) ≤ η+ 1

η
for any point set P with aspe
tratio η(P ) = η.Proof. For both apca and bpca, we have the upper bound

diam(P ) ≤
q

a2
opt + b2

opt = aopt

q

1 + 1
η2 . Thus, αβ =

apcabpca

aoptbopt
≤

„

aopt

r

1+ 1
η2

«2

aoptbopt
=

aopt

bopt
(1 + 1

η2 ). Repla
ing aoptby η · bopt = η
“

1 + 1
η2

”

= η + 1
η
.Unfortunately, this parametrized upper bound tends to in-�nity for η → ∞. Therefore, we are going to derive an-other upper bound that is better for large values of η. Wederive su
h a bound by �nding a 
onstant that bounds βfrom above. In this pro
ess we will make essential use of theproperties of BBpca(2,2)(P ). We denote by d2(CH(P ), l) theintegral of the squared distan
es of the points on CH(P ) toa line l, i.e., d2(CH(P ), l) =
R

s∈CH(P )
d2(s, l)ds. Let lpcabe the line going through the 
enter of gravity, parallel tothe longer side of BBpca(2,2)(P ), and lopt be the line goingthrough the 
enter of gravity, parallel to the longer side of

BBopt(P ) (see Figure 1). By Lemma 1, part ii) lpca is thebest �tting line of P and therefore
d2(CH(P ), lpca) ≤ d2(CH(P ), lopt). (4)We obtain an estimate for β by determining a lower boundon d2(CH(P ), lpca) that depends on bpca, and an upperbound on d2(CH(P ), lopt) that depends on bopt. Havingan arbitrary bounding box of CH(P ) (with side lengths aand b, a ≥ b) the area of CH(P ) 
an be expressed as
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Figure 3: Constru
tion of the lower bound for d2(CH(P ), lb1).
A = A(CH(P )) =

Z b

0

Z a

0

χCH(P )(x, y)dxdy =

Z b

0

g(y)dy,where χCH(P )(x, y) is the 
hara
teristi
 fun
tion of CH(P )de�ned as
χCH(P )(x, y) =

(

1 (x, y) ∈ CH(P )

0 (x, y) /∈ CH(P ),and g(y) =
R a

0
χCH(P )(x, y)dx is the length of the interse
-tion of CH(P ) with a horizontal line at height y. In thefollowing we 
all g(y) the density fun
tion of CH(P ) for
omputing the area with the integral R b

0
g(y)dy. Note that

g(y) is 
ontinuous and 
onvex in the interval [0, b] (see Fig-ure 3 (a) for an illustration). Let b1 denote the y-
oordinateof the 
enter of gravity of CH(P ). The line lb1 (y = b1)divides the area of the CH(P ) into A1 and A2.Theorem 5, whi
h is derived from the generalized �rstmean value theorem of integral 
al
ulus (Theorem 4), is our
entral te
hni
al tool in derivation of the lower and the up-per bound on d2(CH(P ), lb1).Theorem 4. (Generalized �rst mean value theorem ofintegral 
al
ulus) If h(x) and g(x) are 
ontinuous fun
tionsin the interval [a, b], and if g(x) does not 
hange its sign inthe interval, then there is a ξ ∈ (a, b) su
h that
Z b

a

h(x)g(x)dx = h(ξ)

Z b

a

g(x)dx.Theorem 5. Let f(x) and g(x) be positive 
ontinuousfun
tions on the interval [a, b] with R b

a
f(x)dx =

R b

a
g(x)dx,and assume that there is some c ∈ [a, b] su
h that f(x) ≤

g(x), for all x ≤ c and f(x) ≥ g(x), for all x ≥ c. Then
Z b

a

(x − b)2f(x)dx ≤
Z b

a

(x − b)2g(x)dx and
Z b

a

(x − a)2f(x)dx ≥
Z b

a

(x − a)2g(x)dx.Proof. We start from the assumptions R b

a
f(x)dx =

R b

a
g(x)dxand f(x) ≤ g(x) for all x ≤ c and f(x) ≥ g(x) for all x ≥ c.

Thus,
Z c

a

(g(x) − f(x))dx =

Z b

c

(f(x) − g(x))dx = ∆ (5)and the integrands on both sides are nonnegative. ApplyingTheorem 4 to the following integrals we obtain
Z c

a

(x − b)2(g(x)− f(x))dx = (ξ1 − b)2
Z c

a

(g(x)− f(x))dx

= (ξ1 − b)2∆,and
Z b

c

(x − b)2(f(x) − g(x))dx = (ξ2 − b)2
Z b

c

(f(x) − g(x))dx

= (ξ2 − b)2∆,for some ξ1 ∈ [a, c] and ξ2 ∈ [c, b]. Therefore
R c

a
(x − b)2(g(x) − f(x))dx = (ξ1 − b)2∆ ≥ (ξ2 − b)2∆

=
R b

c
(x − b)2(f(x) − g(x))dx.It follows that

R b

a
(x − b)2(g(x)− f(x))dx =

R c

a
(x − b)2(g(x) − f(x))dx−

R b

c
(x − b)2(f(x) − g(x))dx ≥ 0what proves the �rst 
laim

Z b

a

(x − b)2f(x)dx ≤
Z b

a

(x − b)2g(x)dx.The proof of the se
ond 
laim follows from symmetry.The following theorem was dis
overed independently byGrünbaum [6℄ and Hammer (unpublished manus
ript), andlater redis
overed by Mityagin [9℄. We use it to prove a lowerand an upper bound of the varian
e d2(CH(P ), lb1).Theorem 6 (Grünbaum-Hammer-Mityagin). Let Kbe a 
ompa
t 
onvex set in R
d with nonempty interior and
entroid µ. Assume that the d-dimensional volume of K isone, that is, Vold(K) = 1. Let H be any (d-1)-dimensionalplane passing through µ with 
orresponding half-spa
es H+and H−. Then,

min{Vold(K ∩ H+),Vold(K ∩ H−)} ≥
„

d

d + 1

«d
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Figure 4: Constru
tion of the upper bound for d2(CH(P ), lb1).Moreover, the bound ( d
d+1

)d is best possible.Lemma 3. The varian
e d2(CH(P ), lb1) is bounded frombelow by 10
243

Ab2.Proof. We split the integral R b

0
(y − b1)

2g(y)dy at b1,and prove lower bounds for both parts in the following way:For the left part 
onsider the linear fun
tion f1(y) = h1
b1

ysu
h that R b1
0

f1(y)dy =
R b1
0

g(y)dy = A1 (see Figure 3 (b)for an illustration). From R b1
0

f1(y)dy = A1, it follows that
f1(y) = 2A1y

b21
. Sin
e g(y) is 
onvex, g(y) and f1(y) interse
tonly on
e, at point b′ ∈ (0, b1). By Theorem 5, we have

R b1
0

(y − b1)
2g(y)dy ≥

R b1
0

(y − b1)
2f1(y)dy =

R b1
0

(y − b)2 2A1
b1

2 dy =
A1b21

6
.

(6)Analogously, for the right part 
onsider the linear fun
tion
f2(y) = h2

b1−b
(y − b) = h2

−b2
(y − b) su
h that R b

b1
f2(y)dy =

R b

b1
g(y)dy = A2 (see Figure 3 (
) for an illustration). From

R b

b1
f2(y)dy = A2, it follows that f2(y) = 2A2

b22
(y − b). Sin
e

g(y) is 
onvex, g(y) and f2(y) interse
t only on
e, at point
b′′ ∈ (b1, b). By Theorem 5, we have that
R b

b1
(y − b1)

2g(y)dy ≥
R b

b1
(y − b1)

2f2(y)dy =
R b

b1
(y − b1)

2 2A2
(b−b1)2

(y − b1)dy =
A2b22

6
. (7)From (6) and (7) we obtain that

d2(CH(P ), lb1) =
R b1
0

(y − b1)
2g(y)dy +

R b

b1
(y − b1)

2g(y)dy ≥ A1b21
6

+
A2b22

6
.From the Grünbaum-Hammer-Mityagin theorem (see Ap-pendix), we know that A1, A2 ∈ [ 4

9
A, 5

9
A]. Also, we knowthat b1, b2 ∈ [ 1

3
b, 2

3
b]. It is not hard to show that, under these
onstrains, the expression A1b21

6
+

A2b21
6

a
hieves its minimumof 10
243

Ab2 for A1 = 4
9
A, b1 = 5

9
b or A1 = 5

9
A, b1 = 4

9
b.Lemma 4. The varian
e d2(CH(P ), lb1) is bounded fromabove by 29

243
Ab2.

Proof. Without loss of generality, we 
an assume that
g(y) has it maximum in [b1, b]. We split the integral R b

0
(y −

b1)
2g(y)dy at b1, and prove upper bounds for both parts inthe following way. For the left part 
onsider a linear fun
tion

f3(y) = h3 su
h that R b1
0

f3(y)dy =
R b1
0

g(y)dy = A1 (seeFigure 4 (a) for an illustration).This implies that f3(y) = A1
b1
, and sin
e g(y) is 
onvex,

g(y) and f3(y) interse
t only on
e, at point b′ ∈ (b1, b). ByTheorem 5, we have
R b1
0

(y − b1)
2g(y)dy ≤

R b1
0

(y − b1)
2f3(y)dy =

R b1
0

(y − b1)
2 A1

b1
dy =

A1b21
3

.
(8)Now, we are looking for an appropriate fun
tion f4(y) toderive an upper bound of the se
ond part of the integral

R b

0
(y−b1)

2g(y)dy. Note that both fun
tions f3(y) and f4(y),in general 
an not be of the type f(y) = const, be
ause it
an happen that f4(y) interse
ts g(y) twi
e, and we 
an notapply Theorem 5. Thus, for the left part we 
onsider a linearfun
tion f4(y) = h2
b

y su
h that R b

b1
f4(y)dy =

R b

b1
g(y)dy =

A2 (see Figure 4 (
) for an illustration). R b

b1
f4(y)dy = A2implies that f4(y) = 2A2b1

b2(b1+b)
y, and sin
e g(y) is 
onvex,

g(y) and f4(y) interse
t only on
e, at point b′′ ∈ (b1, b). ByTheorem 5, we have
R b

b1
(y − b1)

2g(y)dy ≥
R b

b1
(y − b1)

2f4(y)dy =
R b

b1
(y − b1)

2 2A2b1
b2(b1+b)

ydy =
A2b22
b1+b

`

b1
4

+ b2
4

´

. (9)From (8) and (9) we obtain
d2(P , lb1) =

R b1
0

(y − b)2g(y)dy +
R b

b1
(y − b)2g(y)dy

≤ A1b21
3

+
A2b22
b1+b

`

b1+b2
4

´

.From the Grünbaum-Hammer-Mityagin theorem, we knowthat A1, A2 ∈ [ 4
9
A, 5

9
A]. Also, we know that b1, b2 ∈ [ 1

3
b, 2

3
b].It is not hard to show that, under these 
onstrains, the ex-pression A1b21

3
+

A2b22
b1+b

`

b1+b2
4

´ a
hieves its minimum of 29
243

Ab2for A1 = 4
9
A, b1 = 1

3
b.We remark that in Lemma 4 we 
an use the fun
tion f4(y) =

h4
b2

(y − b1) instead of f4(y) = h2
b

y (see Figure 4 (b) for an



illustration), but that will give us bigger upper bound for
d2(CH(P ), lb1), namely 34

243
Ab2.Now, we are ready to derive an alternative parametrizedupper bound on λ2,2(P ) whi
h is better than the bound fromLemma 2 for big values of η.Lemma 5. λ2,2(P ) ≤

r

2.9
“

1 + 1
η2

” for any point set Pwith aspe
t ratio η(P ) = η.Proof. Applying Lemma 3 and Lemma 4 in (4) we ob-tain
10

243
Ab2

pca ≤ d2(P , lpca) ≤ d2(P , lopt) ≤
29

243
Ab2

opt. (10)From (10) it follows that β =
bpca

bopt
≤

√
2.9. We have for apcathe upper bound diam(P ) ≤

q

a2
opt + b2

opt = aopt

q

1 + 1
η2 .From this, it follows that α ≤

q

1 + 1
η2 . Putting this to-gether, we obtain αβ ≤

r

2.9
“

1 + 1
η2

”.Theorem 7. The PCA bounding box of a point set P in
R

2 
omputed over CH(P ) has a guaranteed approximationfa
tor λ2,2 ≤ 2.104.Proof. The theorem follows from the 
ombination of thetwo parametrized bounds from Lemma 2 and Lemma 5:
λ2,2 ≤ sup

η≥1

(

min

 

η +
1

η
,

s

2.9

„

1 +
1

η2

«

!)

.It is easy to 
he
k that the supremum s ≈ 2.1038 is obtainedfor η ≈ 1.3784.
3.2 An upper bound for λ3,3Some of the te
hniques used here are similar to those usedin Subse
tion 3.1 where we derive an upper bound on λ2,2.One essential di�eren
e is that for the upper bound for λ3,3,we additionally need a bound for the ratio of the middlesides of BBpca(3,3)(P ) and BBopt(P ), whi
h we derive fromthe relation in Lemma 9.Given a point set P ⊆ R

3 and an arbitrary boundingbox BB(P ), we will denote the three side lengths of BB(P )by a,b and c, where a ≥ b ≥ c. We are interested in theside lengths aopt ≥ bopt ≥ copt and apca ≥ bpca ≥ cpca of
BBopt(P ) and BBpca(3,3)(P ). The parameters α = α(P ) =
apca/aopt, β = β(P ) = bpca/bopt and γ = γ(P ) = cpca/coptdenote the ratios between the 
orresponding side lengths.Hen
e, we have λ3,3(P ) = α · β · γ.Sin
e the side lengths of any bounding box are boundedby the diameter of P , we 
an observe that in general cpca ≤
bpca ≤ apca ≤ diam(P ) ≤

√
3aopt, and in the spe
ial 
asewhen the optimal bounding box is a 
ube λ3,3(P ) ≤ 3

√
3.This observation 
an be generalized, introdu
ing two addi-tional parameters η(P ) = aopt/bopt and θ(P ) = aopt/copt.Lemma 6. λ3,3(P ) ≤ η θ

“

1 + 1
η2 + 1

θ2

” 3
2 for any pointset P with aspe
t ratios η(P ) = η and θ(P ) = θ.Proof. We have for apca, bpca and cpca the upper bound

diam(P ) ≤
q

a2
opt + b2

opt + c2
opt = aopt

q

1 + 1
η2 + 1

θ2 . Thus,
α β γ ≤ apca bpca cpca

aopt bopt copt
≤

a3
opt

„

1+ 1
η2

« 3
2

aoptboptcopt
. Repla
ing aopt in

the nominator on
e by η bopt and on
e by θ copt we obtain
λ3,3(P ) ≤ η θ

“

1 + 1
η2 + 1

θ2

” 3
2 .Unfortunately, this parametrized upper bound tends toin�nity for η → ∞ or θ → ∞. Therefore we are going toderive another upper bound that is better for large values of

η and θ. We derive su
h a bound by �nding 
onstants thatbound β and γ from above. In this pro
ess we will makeessential use of the properties of BBpca(3,3)(P ). We denoteby d2(CH(P ),H) the integral of the squared distan
es ofthe points on CH(P ) to a plane H , i.e., d2(CH(P ),H) =
R

s∈CH(P )
d2(s, H)ds. Let Hpca be the plane going throughthe 
enter of gravity, parallel to the side apca × bpca of

BBpca(3,3)(P ), and Hopt be the bise
tor of BBopt(P ) par-allel to the side aopt × bopt. By Lemma 1, part ii) Hpca isthe best �tting plane of P and therefore
d2(CH(P ),Hpca) ≤ d2(CH(P ),Hopt). (11)We obtain an estimation for β by determining a lower boundon d2(CH(P ),Hpca) that depends on bpca, and an upperbound on d2(CH(P ),Hopt) that depends on bopt. Havingan arbitrary bounding box of CH(P ) (with side lengths a,

b, and c, a ≥ b ≥ c) the volume of CH(P ) 
an be expressedas
V = V (CH(P )) =
R c

0

R b

0

R a

0
χCH(P )(x, y, z)dxdydz =

R c

0
g(z)dz,where χCH(P )(x, y, z) is the 
hara
teristi
 fun
tion of CH(P )de�ned as

χCH(P )(x, y, z) =

(

1 (x, y, z) ∈ CH(P )

0 (x, y, z) /∈ CH(P ),and g(z) =
R b

0

R a

0
χCH(P )(x, y, z)dxdy is the area of the in-terse
tion of CH(P ) with the horizontal plane at height z.As before we 
all g(z) the density fun
tion of CH(P ). Let c1denote the z-
oordinate of the 
enter of gravity of CH(P ).The line lc1 (y = c1) divides the volume of CH(P ) into V1and V2 (see Figure 5 (1) for an illustration).Note that g(z) is 
ontinuous, but in general not 
onvexin the interval [0, b]. Therefore, we 
an not use linear fun
-tions to derive a lower and an upper bound of the fun
tion

d2(CH(P ),Hab), as we did in Subse
tion 3.1, be
ause a lin-ear fun
tion 
an interse
t g(z) more than on
e, and we 
annot apply Theorem 5. Instead of linear fun
tions, we usequadrati
 fun
tions.Proposition 3. Let g(z) be the density fun
tion of CH(P )de�ned as above, and let f(z) = kz2 be the parabola su
hthat R c1
0

f(z)dz =
R c1
0

g(z)dz. Then, ∃c0 ∈ [0, c1] su
h that
f(z) ≤ g(x) for all z ≤ c0 and f(z) ≥ g(z) for all z ≥ c0.Proof. We give a 
onstru
tive proof. Let c0 := inf { d |
∀z ∈ [d, c1] g(z) ≤ f(z)}. If c0 = 0, then f(z) = g(z),and the proposition holds. If c0 > 0, then 
onsider thepolygon whi
h is the interse
tion of CH(P ) with the plane
z = c0. We �x a point p0 in CH(P ) with z-
oordinate
0 and 
onstru
t a pyramid Q by extending all rays from p0through the polygon up to the plane z = c1 (see Figure 5 foran illustration). Sin
e, f(c0) = g(c0) the quadrati
 fun
tion
f(z) is the density fun
tion of Q. Therefore, sin
e the partof Q below c0 is 
ompletely in
luded in the CH(P ), we 
an



y

z

c0

xf (c0) = g(c0)

Q
CH(P )

p0Figure 5: Constru
tion of the interse
tion of f(z) and g(z).
on
lude that f(z) ≤ g(z) for all z ≤ c0. On the other side,
f(z) ≥ g(x) for all z ≥ c0 by the de�nition of c0.Now, we present a lower and an upper bound on the vari-an
e d2(CH(P ),Hab), from whi
h we 
an derive a bound on
γ =

cpca

copt
.Lemma 7. The varian
e d2(CH(P ),Hab) is bounded frombelow by 7
256

V c2.Proof. We split the integral R c

0
(z−c1)

2g(z)dz at c1, andprove upper bounds for both parts in the following way:For the left part 
onsider the parabola f1(z) = h1

c21
z2 su
hthat R c1

0
f1(z)dz =

R c1
0

g(z)dz = V1 (see Figure 6 (b) for anillustration). From R c1
0

f1(z)dz = V1 we have that f1(z) =
3V1

c31
z2. Sin
e f1(z) and g(z) de�ne the same volume on theinterval [0, c1], they must interse
t, and by Proposition 3 weknow that if f1(z) 6= g(z), then they 
an interse
t only on
e,at a point c′ ∈ (0, c1). Under these 
onditions, we 
an applyTheorem 5, and obtain
R c1
0

(z − c1)
2g(z)dz ≥

R c1
0

(z − c1)
2f1(z)dz =

R c1
0

(z − c1)
2 3V1

c31
z2dz =

V1c21
10

.
(12)Analogously, for the right part 
onsider the parabola f2(z) =

h2
(c1−c)2

(z−c)2 = h2

c22
(z−c)2 su
h that R c

c1
f2(y)dy =

R c

c1
g(z)dz

= V2 (see Figure 6 (b) for an illustration). From R c

c1
f2(y)dy

= V2 we have that f1(z) = 3V2

c32
(z − c)2. By similar argu-ments as above in the 
ase of f1(z), we 
an show that g(z)and f2(z) interse
t only on
e, at a point c′′ ∈ (c1, c). Ap-plying Theorem 5 we have that

R c

c1
(z − c1)

2g(z)dz ≥
R c

c1
(z − c1)

2f2(z)dz =
R c

c1
(z − c1)

2 3V2

c32
(z − c)2dz =

V2c22
10

. (13)From (12) and (13) we obtain that
d2(CH(P ),Hab) =

R c1
0

(z − c1)
2g(z)dz +

R c

c1
(z − c1)

2g(z)dz

≥ V1c21
10

+
V2c22
10

.From the Grünbaum-Hammer-Mityagin theorem, we knowthat V1, V2 ∈ [ 27
64

V, 37
64

V ]. Also, we know that c1, c2 ∈ [ 1
4
c, 3

4
c].It is not hard to show that, under these 
onstrains, the ex-pression V1c21

10
+

V2c22
10

a
hieves its minimum of 7
256

V c2 for
V1 = 27

64
V, c1 = 3

4
c or V1 = 37

64
V, c1 = 1

4
c.

Lemma 8. The varian
e d2(CH(P ),Hab) is bounded fromabove by 12729
71680

V c2.Proof. Without loss of generality, we 
an assume that
g(z) has its maximum in [c1, c]. We split the integral R c

0
(z−

c1)
2g(z)dz at c1, and prove upper bounds for both parts inthe following way: For the left part 
onsider the linear fun
-tion f3(z) = h3 su
h that R c1

0
f3(z)dz =

R c1
0

g(z)dz = V1(see Figure 6 (
) for an illustration). From R c1
0

f3(z)dz = V1we have that f3(z) = V1
c1
. Sin
e f3(z) is 
onstant, it inter-se
ts g(z) only on
e, at a point c′ ∈ (c1, c). By Theorem 5,we have that

R c1
0

(z − c1)
2g(z)dz ≤

R c1
0

(z − c1)
2f3(z)dz =

R c1
0

(z − c1)
2 V1

c1
dz =

V1c21
3

.
(14)Now, we are looking for an appropriate fun
tion f4(z) toderive an upper bound on the se
ond part of the integral

R z

0
(z−c1)

2g(z)dz. Note that both fun
tions f3(z) and f4(z),in general 
an not be of the type f(y) = const, whi
h give usthe best upper bound, be
ause it 
an happen that f4(z) in-terse
ts g(z) twi
e, and we 
an not apply Theorem 5. Thus,for the left part we 
onsider the parabola f4(z) = h4
c2

z2 su
hthat R c

c1
f4(z)dz =

R c

c1
g(z)dz = V2 (see Figure 6 (
) for anillustration). Sin
e f4(z) and g(z) de�ne the same volumeon the interval [c1, c], they must interse
t, and by Proposi-tion 3 we know that if f4(z) 6= g(z), they 
an interse
t onlyon
e, at a point c′ ∈ (c1, c). Under these 
onditions, we 
anapply Theorem 5, and sin
e f4(z) = 3V2

c3−c31
z2, we obtain

R c

c1
(z − c1)

2g(z)dz ≥
R c

c1
(z − c1)

2f4(z)dz =
R c

c1
(z − c1)

2 3V2

c3−c31
z2dz =

3V2c22
c2+c c1+c21

“

c22
5

+ c2c1
2

+
c31
3

”

.(15)From (14) and (15) we 
an 
on
lude that
d2(P ,Hab) =

R c1
0

(z − c)2g(z)dz +
R c

c1
(z − c)2g(z)dz

≤ V1c21
3

+
3V2c22

c2+c c1+c21

“

c22
5

+ c2c1
2

+
c31
3

”

.From the Grünbaum-Hammer-Mityagin theorem, we knowthat V1, V2 ∈ [ 27
64

V, 37
64

V ]. Also, we know that c1, c2 ∈ [ 1
4
c, 3

4
c].It is not hard to show that, under these 
onstrains, the ex-pression V1c21

3
+

3V2c22
c2+c c1+c21

“

c22
5

+ c2c1
2

+
c31
3

” a
hieves its min-imum of 12729
71680

V c2 for V1 = 27
64

V, c1 = 1
4
c.
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∆1

∆3

∆3Figure 6: Constru
tion of the lower and upper bounds for d2(CH(P ),Hab)So far, we are ready to present a new parametrized boundon λ3,3(P ), whi
h is good for a large values of η and θ.Additional, 
ru
ial relation we exploit in its derivation isthe fa
t given in the following lemma.Lemma 9. Let (x1, x2, . . . , xd) and (y1, y2, . . . , yd) be twosets of orthogonal base ve
tors in R
d. For any point set

P ∈ R
d it holds that

d
X

i=1

var(P, xi) =

d
X

i=1

var(P, yi).Proof. We have that
d
X

i=1

var(P, xi) =

d
X

i=1

1

n

X

p∈P

d2(p, Hxi
),where Hxi

is a hyperplane orthogonal to the ve
tor xi, pass-ing through the origin of the 
oordinate system, d2(p,Hxi
)denotes the Eu
lidean distan
e of p to Hxi

, and n = |P |.Sin
ePd

i=1 d2(p, Hxi
) is the squared distan
e of p to the ori-gin of the 
oordinate system, it 
an be expressed as the sumof squared distan
es to the (d− 1)-dimensional hyperplanesspanned by any set of orthogonal base ve
tors. Therefore,

d
X

i=1

d2(p,Hxi
) =

d
X

i=1

d2(p, Hyi
), and

Pd

i=1 var(P, xi) = 1
n

P

p∈P

Pd

i=1 d2(p, Hxi
) =

1
n

P

p∈P

Pd

i=1 d2(p, Hyi
) =

Pd

i=1 var(P, yi).When P is a 
ontinuous point set,var(P, xi) =
1Vol(P )

Z

p∈P

d2(p,Hxi
)dsand the 
laim 
an be shown as in the dis
rete 
ase.Lemma 10. λ3,3(P ) ≤ 6.43

q

1 + 1
η2 + 1

θ2 for any pointset P with aspe
t ratios η(P ) = η and θ(P ) = θ.Proof. Let xpca, ypca, zpca be a set of basis ve
tors thatdetermine the dire
tion of BBpca(3,3)(P ), and let xopt, yopt,
zopt be a set of basis ve
tors that determine the dire
tion of
BBopt(CH(P )). By Lemma 9, we have thatvar(CH(P ), xpca) + var(CH(P ), ypca) + var(CH(P ), zpca) =var(CH(P ), xopt) + var(CH(P ), yopt) + var(CH(P ), zopt).(16)

By Lemma 1, part i), the varian
e of CH(P ) in the dire
tion
xpca is the biggest possible, and thereforevar(CH(P ), xpca) ≥ var(CH(P ), xopt). (17)Combining (16) and (17) we obtainvar(CH(P ), ypca) + var(CH(P ), zpca) ≤var(CH(P ), yopt) + var(CH(P ), zopt).

(18)We denote by Hapbp the plane orthogonal to zpca, goingthrough the origin of the 
oordinate system. We assume thatthe side apcabpca of BBpca(3,3)(P ) lies in Hapbp . Similarly,we de�ne Hapcp , Haobo and Haoco . We 
an rewrite (18) as
d2(CH(P ),Hapbp ) + d2(CH(P ),Hapcp) ≤
d2(CH(P ),Haobo) + d2(CH(P ),Haoco).

(19)By Lemma 7, the lower bound for d2(CH(P ),Hapbp) is
7

256
V c2

pca, and the lower bound for d2(CH(P ),Hapcp) is
7

256
V b2

pca. By Lemma 8, the upper bound for d2(CH(P ),Haobo)is 12729
71680

V c2
opt, and the lower bound for d2(CH(P ),Haoco) is

12729
71680

V b2
opt. Plugging these bounds into (19) we obtain

7

256
V c2

pca +
7

256
V b2

pca ≤ 12729

71680
V c2

opt +
12729

71680
V b2

opt. (20)Sin
e γ =
cpca

copt
and bopt ≥ copt, we get from (20) that

β =
bpca

bopt

≤
p

12.99 − γ2. (21)The expression p12.99 − γ2 γ (≥ β γ) has its maximum of
≈ 6.437 for γ ≈ 2.714. This together with the bound α ≤
q

1 + 1
η2 + 1

θ2 gives
λ3,3(P ) = α β γ ≤ 6.43

r

1 +
1

η2
+

1

θ2
.Lemma 6 gives us a bound on λ3,3(P ) whi
h is goodfor small values of η and θ. In 
ontrary, the bound fromLemma 10 behaves worse for small values of η and θ, butbetter for big values of η and θ. Therefore, we 
ombine bothof them to obtain the �nal upper bound.Theorem 8. The PCA bounding box of a point set P in

R
3 
omputed over CH(P ) has a guaranteed approximationfa
tor λ3,3 ≤ 7.72.



Proof. The theorem follows from the 
ombination of thetwo parametrized bounds from Lemma 6 and Lemma 10:
λ3,3 ≤ supη≥1, θ≥1



min

„

η θ
“

1 + 1
η2 + 1

θ2

” 3
2
,

6.43
q

1 + 1
η2 + 1

θ2

”o

.By numeri
al veri�
ation we obtained that the supremumo

urs at ≈ 7.72.
4. FUTURE WORK AND OPEN PROBLEMSImproving the upper bound for λ3,3, λ2,2 and λ2,1, as wellas obtaining an upper bound for λ3,2 is of interest. A verydemanding open problem is to get an approximation fa
toron the quality of PCA bounding boxes in higher dimensions.
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