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ABSTRACT

Principal component analysis (PCA) is commonly used to
compute a bounding box of a point set in R?. The popu-
larity of this heuristic lies in its speed, easy implementation
and in the fact that usually, PCA bounding boxes quite well
approximate the minimum-volume bounding boxes. Since
there are examples of discrete points sets in the plane, show-
ing that the worst case ratio of the volume of the PCA
bounding box and the volume of the minimum-volume bound-
ing box tends to infinity, we consider PCA bounding boxes
for continuous sets, especially for the convex hull of a point
set. Here, we contribute new upper bounds on the approxi-
mation factor of PCA bounding boxes of convex sets in R?
and R3.

Categories and Subject Descriptors

F.2.2 [Nonnumerical Algorithms and Problems|: Geo-
metrical problems and computations

General Terms
Algorithms, Theory

Keywords

Principal component analysis, Bounding boxes

1. INTRODUCTION

Substituting sets of points or complex geometric shapes
with their bounding boxes is motivated by many applica-
tions. For example, in computer graphics, it is used to
maintain hierarchical data structures for fast rendering of
a scene or for collision detection. Additional applications
include those in shape analysis and shape simplification, or
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in statistics, for storing and performing range-search queries
on a large database of samples.

Computing a minimum-area bounding box of a set of n
points in R? can be done in O(nlogn) time, for example
with the rotating caliper algorithm [13]. O’Rourke [10] pre-
sented a deterministic algorithm, a rotating caliper variant
in R® for computing the minimum-volume bounding box
of a set of n points in R®. His algorithm requires O(n®)
time and O(n) space. Barequet and Har-Peled [2] have con-
tributed two (1+e€)-approximation algorithms for comput-
ing the minimum-volume bounding box for point sets in R,
both with nearly linear complexity. The running times of
their algorithms are O(n + 1/€**) and O(nlogn + n/e),
respectively.

Numerous heuristics have been proposed for computing
a box which encloses a given set of points. The simplest
heuristic is naturally to compute the axis-aligned bound-
ing box of the point set. Two-dimensional variants of this
heuristic include the well-known R-tree, the packed R-tree
[11], the R*-tree [3], the Rt -tree [12], etc.

A frequently used heuristic for computing a bounding box
of a set of points is based on principal component analysis.
The principal components of the point set define the axes of
the bounding box. Once the axis directions are given, the di-
mension of the bounding box is easily found by the extreme
values of the projection of the points on the correspond-
ing axis. Two distinguished applications of this heuristic
are the OBB-tree [5] and the BOXTREE [1], hierarchical
bounding box structures, which support efficient collision
detection and ray tracing. Computing a bounding box of a
set of points in R? and R® by PCA is simple and requires
linear time. To avoid the influence of the distribution of the
point set on the directions of the PCs, a possible approach
is to consider the convex hull, or the boundary of the con-
vex hull CH(P) of the point set P. Thus, the complexity
of the algorithm increases to O(nlogn). The popularity of
this heuristic, besides its speed, lies in its easy implementa-
tion and in the fact that usually PCA bounding boxes are
tight-fitting, c.f. see [8] for some experimental results.

Given a point set P C R? we denote by BBpca(P) the
PCA bounding box of P and by BB,pt(P) the bounding
box of P with smallest possible volume. The ratio of the
two volumes A\g(P) = Vol(BBpca(P))/Vol(BBop:(P)) de-



fines the approximation factor for P, and
Ad = sup {,\d(P) | P C R Vol(CH(P)) > 0}

defines the general PCA approximation factor. To the best
of our knowledge, the only known results about the quality
of the PCA bounding boxes were given in [4]|, where lower
bounds on \q for arbitrary dimension d, and an upper bound
on A2 were presented. Here, we give a new upper bound on
A2, and the first upper bound on As.

The paper is organized as follows: In Section 2 we review
the basics of principal component analysis and the known
results about the quality of PCA bounding boxes. In partic-
ular, we introduce the continuous version of PCA, which re-
sults in a series of approximation factors Aq ;, where ¢ ranges
from 0 to d and denotes the dimension of the faces of the
convex hull that contribute to the continuous point set for
which the principal components are computed. In Section
3 we give an upper bound on A2 2 and an upper bound on
A3,3. We conclude with future work and open problems in
Section 4.

2. PRINCIPAL COMPONENT ANALYSIS
AND PCA BOUNDING BOXES

The central idea and motivation of PCA [7] (also known as
the Karhunen-Loeve transform, or the Hotelling transform)
is to reduce the dimensionality of a point set by identifying
the most significant directions (principal components). Let
X = {z1,x2,...,Tm}, where z; is a d-dimensional vector,
and ¢ = (c1,c2,...,cq) € R? be the center of gravity of X.
For 1 < k < d, we use z;x to denote the k-th coordinate of
the vector x;. Given two vectors u and v, we use (u,v) to
denote their inner product. For any unit vector v € R, the
variance of X in direction v is

var(X, v) = iZm—c, )2, (1)

The most significant direction corresponds to the unit vec-
tor v1 such that var(X,v:1) is maximum. In general, after

identifying the j most significant directions B; = {v1,v2,...,v;},

the (5 + 1)-th most significant direction corresponds to the
unit vector v;41 such that var(X,v;41) is maximum among
all unit vectors perpendicular to v1,v2,...,v;.

It can be verified that for any unit vector v € R?,

var(X,v) = (Cv,v), (2)

where C is the covariance matriz of X. C is a symmetric
d x d matrix where the (¢, 7)-th component, c¢;;,1 <1i,7 <d,
is defined as
1 m
cij = — D (@i — i) (@i —¢j). 3)

k=1

The procedure of finding the most significant directions,
in the sense mentioned above, can be formulated as an eigen-
value problem. If Ay > A2 > --- > A4 are the eigenvalues of
C, then the unit eigenvector v; for A; is the j-th most signifi-
cant direction. All \js are non-negative and \; = var(X,v;).
Since the matrix C is symmetric positive definite, its eigen-
vectors are orthogonal. If the eigenvalues are not distinct,
the eigenvectors are not unique. In this case, an orthogonal
basis of eigenvectors is chosen arbitrary. However, we can
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Figure 2: Four points and its PCA bounding-box
(left). Dense collection of additional points signifi-
cantly affect the orientation of the PCA bounding-
box (right).

achieve distinct eigenvalues by a slight perturbation of the
point set.

The following result summarizes the above background
knowledge on PCA. For any set S of orthogonal unit vectors
in R%, we use var(X, S) to denote > ves var(X, v).

LemMA 1. For 1 < j3<d, let A\j be the j-th largest eigen-
value of C and let v; denote the unit eigenvector for \;. Let
Bj = {v1,v2,...,v;}, sp(Bj) be the linear subspace spanned
by Bj, and sp(B;)~ be the orthogonal complement of sp(B;).
Then A\ = max{var(X,v) : v € R ||v|]| =1 }, and for any
2<j<d,

i) Aj = max{var(X,v) : v € sp(B;j—1)*, |jv]| = 1}.
it) A; = min{var(X,v) : v € sp(By), ||v|| = 1}.

111) var(X, B;) > var(X,S) for any set S of j orthogonal
unit vectors.

Since bounding boxes of a point set P (with respect to any
orthogonal coordinate system) depend only on the convex
hull of CH(P), the construction of the covariance matrix
should be based only on CH(P) and not on the distrib-
ution of the points inside. Using the vertices, i.e., the O-
dimensional faces of CH(P) to define the covariance matrix
C we obtain a bounding box BB, c.(4,0)(P). We denote by
Ad,0(P) the approximation factor for the given point set P
and by

Ao = sup {Ad,O(P) | P C R Vol(CH(P)) > o}

the approximation factor in general. The example in Fig-
ure 2 shows that A2,0(P) can be arbitrarily large if the con-
vex hull is nearly a thin rectangle, with a lot of additional
vertices in the middle of the two long sides. Since this con-
struction can be lifted into higher dimensions we obtain a
first general lower bound.

PROPOSITION 1. Ago =00 for any d > 2.

To overcome this problem, one can apply a continuous ver-
sion of PCA taking into account (the dense set of) all points
on the boundary of CH(P), or even all points in CH(P).
In this approach X is a continuous set of d-dimensional vec-
tors and the coefficients of the covariance matrix are defined
by integrals instead of finite sums. The computation of the
coefficients of the covariance matrix in the continuous case
can be done also in linear time, thus, the overall complex-
ity remains the same as in the discrete case. Note that for
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Figure 1: A convex hull of the point set P, its PCA bounding box and its optimal bounding box.

for d = 1 the above problem is trivial, because the PCA
bounding box is always optimal, i.e., A\1,0 and 1,1 are 1.
Variants of the continuous PCA, applied on triangulated
surfaces of 3D objects, were presented by Gottschalk et al.
[5], Lahanas et al. [8] and Vrami¢ et al. [14]. For point sets
P in R? we are especially interested in the cases when X
represents the boundary of CH(P), or all points in CH(P).
Since the first case corresponds to the 1-dimensional faces
of CH(P) and the second case to the 2-dimensional face
of CH(P), the generalization to dimension d > 2 leads to
a series of d — 1 continuous PCA versions. For a point
set P € RY C(P,i) denotes the covariance matrix defined
by the points on the i-dimensional faces of CH(P), and
BByca(a,i)(P), denotes the corresponding bounding box. The
approximation factors Ag;(P) and Ag4 ; are defined as

_ Vol(BBpeaga,in (P))
Aai(P) = Vol(BBopt(P))

Aa,i = sup {Aa,i(P) | P CRY Vol(CH(P)) > 0}.

and

In what follows, we give a brief overview of the results from
[4], which to the best of our knowledge are the only known
bounds on the quality of the PCA bounding boxes. First, we
present an extension of Proposition 1, which indicates that
for a given d, there remain only two interesting cases: the
factor A\gq,q—1 corresponding to the boundary of the convex
hull, and the factor Agq,q corresponding to the full convex
hull.

PROPOSITION 2. Ag; = oo for any d > 2 and any 0 <
i<d—1.

The following nontrivial lower bounds are based on the re-
lation between the symmetry of a point set and its principal
components [4, Lemma 4].

THEOREM 1. A32 >4 and A3 3 > 4.

THEOREM 2. If d is a power of two, then Agqa—1 > \/Ed
and Aa.q > V'

In [4] also the first nontrivial upper bound on A21 is given.

THEOREM 3. The PCA bounding boz of a point set P in
R? computed over the boundary of CH(P) has a guaranteed
approzimation factor A2 < 2.737.

Although this result concerns a continuous PCA version, the
proof is mainly based on arguments from discrete geometry.
In contrast to that, the upper bound proofs presented in
this paper essentially make use of integral calculus. In what
follows we present the first upper bounds on A2 2 and Az 3.

3. NEW UPPER BOUNDS
3.1 An upper bound for ).

Given a point set P C R? and an arbitrary bounding box
BB(P), we will denote the two side lengths of BB(P) by a
and b, where a > b. We are interested in the side lengths
Aopt (P) > bopt(P) and apca(P) > bpea(P) of BBopi(P) and
BByca(2,2)(P), see Figure 1. The parameters a = a(P) =
apca(P)/aopt(P) and B = B(P) = bpca(P)/bopt(P) denote
the ratios between the corresponding side lengths, so that
A2,2(P) = a(P) - B(P). If the relation to P is clear, we will
omit the reference to P in the notations introduced above.

Since the side lengths of any bounding box are bounded by
the diameter of P, we can observe that in general bpcq (P) <
apea(P) < diam(P) < V2aopt(P), and in the special case
when the optimal bounding box is a square A2 2(P) < 2.
This observation can be generalized, introducing an addi-
tional parameter 1(P) = aopt(P)/bopt(P).

LEMMA 2. A22(P) < 77+7lz for any point set P with aspect
ratio n(P) = n.

Proor. For both apecq and bpcq, we have the upper bound
diam(P) < /a2, + b2, = aopty/1+ n% Thus, a3 =

2
(aon 1+ )
! __ Qopt (1+ 1)
= Zopt 2.
n

aoptbopt bopt

Apca bpca
aoptbopt —

byn-bopt:n(l—i—n%):n—&—l. O

n

Replacing aopt

Unfortunately, this parametrized upper bound tends to in-
finity for n — oo. Therefore, we are going to derive an-
other upper bound that is better for large values of n. We
derive such a bound by finding a constant that bounds [
from above. In this process we will make essential use of the
properties of BBycq(2,2)(P). We denote by d*(CH (P),1) the
integral of the squared distances of the points on CH(P) to
aline I, ie., d®(CH(P),l) = [, cp(p) d(s,1)ds. Let lpca
be the line going through the center of gravity, parallel to
the longer side of BB)cq(2,2)(P), and lop: be the line going
through the center of gravity, parallel to the longer side of
BB, (py (see Figure 1). By Lemma 1, part ii) lpca is the
best fitting line of P and therefore

d*(CH(P), lpea) < d*(CH(P), lopr)- (4)

We obtain an estimate for 5 by determining a lower bound
on d*(CH(P),lpca) that depends on bycq, and an upper
bound on dz(C’H(P),lopt) that depends on bop:. Having
an arbitrary bounding box of CH(P) (with side lengths a
and b, a > b) the area of CH(P) can be expressed as
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Figure 3: Construction of the lower bound for d*(CH(P),l, ).

b a b
a=aene) = [ [ xenw @ty = [ gy,
o Jo 0
where xcu(p)(2,y) is the characteristic function of CH(P)
defined as

(2,9) 1 (z,y) € CH(P)
PO 0 @y ¢ cHP),

and g(y) = [ Xcu(p)(x,y)dz is the length of the intersec-
tion of CH(P) with a horizontal line at height y. In the
following we call g(y) the density function of CH(P) for
computing the area with the integral fob g(y)dy. Note that
g(y) is continuous and convex in the interval [0, b] (see Fig-
ure 3 (a) for an illustration). Let b; denote the y-coordinate
of the center of gravity of CH(P). The line Iy, (y = b1)
divides the area of the CH(P) into A; and As.

Theorem 5, which is derived from the generalized first
mean value theorem of integral calculus (Theorem 4), is our
central technical tool in derivation of the lower and the up-
per bound on d?(CH(P),ly,).

THEOREM 4. (Generalized first mean value theorem of
integral calculus) If h(z) and g(x) are continuous functions
in the interval [a,b], and if g(x) does not change its sign in
the interval, then there is a £ € (a,b) such that

b b
[ n@g()ds=1©) [ g(a)ds.
THEOREM 5. Let f(xz) and g(x) be positive continuous
functions on the interval [a,b] with f: f(z)dz = f: g(z)dz,

and assume that there is some ¢ € [a,b] such that f(z) <
g(z), forallz <c and f(z) > g(x), for all x > c. Then

/ab(:c —b)*f(z)dz < /ab(x —b)?g(x)dr and

/ (&~ 0P f(a)de > / (@~ a)g(e)d.

Proor. We start from the assumptions f: f(x)dz = f: g(x)dx

and f(z) < g(z) for all z < c and f(z) > g(z) for all z > c.

Thus,

c b
/ (9(2) — f(x))dz = / (f@) - g()dz=A  (5)

and the integrands on both sides are nonnegative. Applying
Theorem 4 to the following integrals we obtain

/ (@ 0)2(g(x) — f@)dr = (& —b)? / “(9(x) - f(2))da

= (& -b)°A,

and
b b
[ @=020@ gy = (@0 [ (@) - g@)is

= (52 - b)2A7
for some &1 € [a,c] and &2 € [c, b]. Therefore
[z =0)2(g(x) — f(z)de = (&1 —b)*A> (& —b)°A
= Jl@—b*(f(@) - g(x))da.
It follows that
@ =b)(g(z) - f(z))de =
f:(m — b)2(g(m) — f(z))dx — fcb(ac — b)z(f(ac) —g(x))dz >0

what proves the first claim

b b
/ (x —b)? f(z)dx < / (z — b)’g(x)dz.
The proof of the second claim follows from symmetry. [l

The following theorem was discovered independently by
Griinbaum [6] and Hammer (unpublished manuscript), and
later rediscovered by Mityagin [9]. We use it to prove a lower
and an upper bound of the variance d*(CH(P), 1, ).

THEOREM 6 (GRUNBAUM-HAMMER-MITYAGIN). Let K
be a compact conver set in R with nonempty interior and
centroid p. Assume that the d-dimensional volume of K is
one, that is, Volg(K) = 1. Let H be any (d-1)-dimensional
plane passing through p with corresponding half-spaces H™
and H™. Then,

d
min{ Volg(K N HY), Voly(K NH™)} > (%)



Figure 4: Construction of the upper bound for d*>(CH(P),l,).

Moreover, the bound (T) is best possible.

LeMMA 3. The variance d*(CH(P),ly,) is bounded from
below by 243Ab2

Proor. We split the integral fob(y — b1)%g(y)dy at b,
and prove lower bounds for both parts in the following way:
For the left part consider the linear function fi(y) = ZL—lly

such that fobl fily)dy = g(y)dy = Ay (see Figure 3 (b)

for an illustration). From fo fi(y)dy = Ai, it follows that

fily) = 2‘:21?4. Since g(y) is convex, g(y) and f1(y) intersect
1

only once, at point b’ € (0,b1). By Theorem 5, we have

[y —b)%gy)dy > [y —b)2fi(y)dy =

b 224 A1b3
Ly =b"3Fdy = =

(6)

Analogously7 for the right part consider the linear function
foly ) = bl (y—b) = 7b2 (y — b) such that fb fo(y)dy =
fb y)dy = Az (see Figure 3 (c) for an illustration). From
fb fz )dy = Agz, it follows that fa(y) = 2A2 (y — b). Since

g(y) is convex, g(y) and f2(y) intersect only once, at point
b" € (b1,b). By Theorem 5, we have that

S (5= b1)%g(y)dy > [Py -0 hy)dy =

Agb3
Sy =) W(y —bh)dy = ==
(7)

From (6) and (7) we obtain that

d*(CH(P),ly,) Ty —b1)2g(y)dy  +
2 2
Jy w=b)2g(y)dy > 2514222

From the Griinbaum-Hammer-Mityagin theorem (see Ap-
pendix), we know that A;, Ay € [5A4,3A]. Also, we know
that b1, b2 € [2b, 2b]. It is not hard to show that, under these

A b3
6

. . Agb? . . ..
constrains, the expression + % achieves its minimum

of 3L Ab” for Ay = 2A,b1 = 3bor Ay =3Aby=3b. O

LemmA 4. The variance d*(CH(P),ly,) is bounded from
above by 243Ab2

Proor. Without loss of generality, we can assume that
g(y) has it maximum in [b1, b]. We split the integral fob (y—
b1)%g(y)dy at b1, and prove upper bounds for both parts in
the following way. For the left part con51der a linear function
f3(y) = hs such that fo fa(y)dy = [01 g(y)dy = A1 (see
Figure 4 (a) for an 1llustrat10n)

This implies that f3(y) = ’2—11, and since ¢(y) is convex,
g(y) and f5(y) intersect only once, at point b’ € (b1,b). By
Theorem 5, we have

[y —b)2gydy < [Py — b)) fs(y)dy =

b A1b?
fol(y_bl)zf_lldy = gl'

(8)

Now, we are looking for an appropriate function fi(y) to
derive an upper bound of the second part of the integral
f;(y—b1)2g(y)dy. Note that both functions f3(y) and fi(y),
in general can not be of the type f(y) = const, because it
can happen that fi(y) intersects g(y) twice, and we can not
apply Theorem 5. Thus, for the left part we consider a linear
function fa(y) = hsz such that fbb faly)dy = fbl y)dy =

A2 (see Figure 4 (c) for an illustration). fb fa(y)dy = A2
implies that fi(y) = %y, and since g(y) is convex,
g(y) and f4(y) intersect only once, at point b’ € (b1,b). By
Theorem 5, we have
fbl —01)%g(y)dy > fbl —b)?faly)dy =
)2 2Azb _ Abd (b b
fbl —b1) bQ(berlb)ydy = b12+l27 (F+%)

(9)
From (8) and (9) we obtain

A (P, ly,) oy = 0)2g()dy + fy (v —
Aqb? Agb2 bi+b
4 2 (ugta).
From the Griinbaum-Hammer-Mityagin theorem, we know
that A1, A2 € [3A, 2A]. Also, we know that by, by € [+b, 2b].
It is not hard to show that, under these constrains, the ex-

Asb3 (b] +bo )
b1+b 4

SA b =1b DO

b)*g(y)dy

<

achieves its minimum of 2% Ab”

. Ab?
pression —1+
fOI‘ A1 =

We remark that in Lemma 4 we can use the function f4(y) =
ﬁ—;‘(y — b1) instead of fi(y) = “2y (see Figure 4 (b) for an



illustration), but that will give us bigger upper bound for
d*(CH(P),ls, ), namely 2= Ab*.

Now, we are ready to derive an alternative parametrized
upper bound on A2 2(P) which is better than the bound from

Lemma 2 for big values of 7.

LEMMA 5. X22(P) <4/2.9 (1 + n%) for any point set P
with aspect ratio n(P) = n.

ProoF. Applying Lemma 3 and Lemma 4 in (4) we ob-
tain

10 29
mAbf,ca <A (P, lpea) < d* (P, lopt) < mAbipt. (10)
bP

From (10) it follows that 8 = oo S V2.9, We have for apcq

the upper bound diam(P) < y/a2,, + b2, = aopty/1 + ;15

From this, it follows that o < /1 + ;15 Putting this to-

gether, we obtain a8 < /2.9 (1 + ;15) O

THEOREM 7. The PCA bounding box of a point set P in
R? computed over CH(P) has a guaranteed approzimation
factor a2 < 2.104.

PRroOOF. The theorem follows from the combination of the
two parametrized bounds from Lemma 2 and Lemma 5:

A2,2 <sup < min | n+ l, 2.9 (1 + %) .
n>1 n n

It is easy to check that the supremum s ~ 2.1038 is obtained
for n ~ 1.3784. [

3.2  An upper bound for );;

Some of the techniques used here are similar to those used
in Subsection 3.1 where we derive an upper bound on Az 2.
One essential difference is that for the upper bound for Az 3,
we additionally need a bound for the ratio of the middle
sides of BBjcq(s,3)(P) and BB,pt(P), which we derive from
the relation in Lemma 9.

Given a point set P C R® and an arbitrary bounding
box BB(P), we will denote the three side lengths of BB(P)
by a,b and ¢, where a > b > c. We are interested in the
side lengths aopt > bopt > Copt and apca > bpca > Cpea Of
BBopt(P) and BB)pcq(3,3)(P). The parameters o = a(P) =
apea/@opt, B = B(P) = bpca/bopt and v = y(P) = Cpca/Copt
denote the ratios between the corresponding side lengths.
Hence, we have A\33(P) =a- (7.

Since the side lengths of any bounding box are bounded
by the diameter of P, we can observe that in general cpca <
bpca < apea < diam(P) < \/§aom, and in the special case
when the optimal bounding box is a cube A3 3(P) < 3/3.
This observation can be generalized, introducing two addi-
tional parameters 17(P) = aopt/bopt and O(P) = aopt/Copt-

LEMMA 6. A33(P) < né (1 + n% + 6%)% for any point
set P with aspect ratios n(P) =n and 0(P) = 0.

Proor. We have for apca, bpca and cpeq the upper bound
diam(P) < /a2, + b2, + 2,0 = Gopty /1 + n% + z5. Thus,

3
3 1)2
Aopt <1+ﬂ7>

aoptboptCopt

Apca bpca Cpca
afy < <

PR —— Replacing aopt in

the nominator once by 1 bop: and once by 6 cop: we obtain

Na(P)<no(1+ 5+ %)% O

Unfortunately, this parametrized upper bound tends to
infinity for n — oo or § — oo. Therefore we are going to
derive another upper bound that is better for large values of
n and 6. We derive such a bound by finding constants that
bound $ and « from above. In this process we will make
essential use of the properties of BByq3,3)(P). We denote
by d*(CH(P), H) the integral of the squared distances of
the points on CH(P) to a plane H, ie., d*(CH(P),H) =
fseCH(P) d*(s, H)ds. Let Hpeq be the plane going through
the center of gravity, parallel to the side apca X bpca of
BBycas,3)(P), and Hopt be the bisector of BB,y (py par-
allel to the side aopt X bopt. By Lemma 1, part ii) Hpeq is
the best fitting plane of P and therefore

d*(CH(P), Hpeo) < d*(CH(P), Hopt). (11)

We obtain an estimation for 8 by determining a lower bound
on d?*(CH(P),Hpc,) that depends on bpe,, and an upper
bound on d? (CH(P), Hopt) that depends on bop:. Having
an arbitrary bounding box of CH(P) (with side lengths a,
b, and ¢, a > b > ¢) the volume of C'H(P) can be expressed
as

V = V(CH(P) =
focfobfoaXCH(P)(x7y7Z)dmdydz = focg(z)dz7

where xcu(p) (2, y, 2) is the characteristic function of CH(P)
defined as

1 (x,y,2) € CH(P)

XCH(P)(x7y7Z)7 { 0 (x,y,Z) %CH(P),

and g(z) = f(j’ foa XcH(p)(T,y, z)dxdy is the area of the in-
tersection of C'H(P) with the horizontal plane at height z.
As before we call g(z) the density function of CH(P). Let ¢1
denote the z-coordinate of the center of gravity of CH(P).
The line I, (y = c1) divides the volume of CH(P) into Vy
and V> (see Figure 5 (1) for an illustration).

Note that g(z) is continuous, but in general not convex
in the interval [0,b]. Therefore, we can not use linear func-
tions to derive a lower and an upper bound of the function
d*(CH(P), Ha,), as we did in Subsection 3.1, because a lin-
ear function can intersect g(z) more than once, and we can
not apply Theorem 5. Instead of linear functions, we use
quadratic functions.

PROPOSITION 3. Let g(z) be the density function of CH(P)
defined as above, and let f(z) = kz> be the parabola such
that [ f(z)dz = [;* g(2)dz. Then, 3co € [0,c1] such that
f(z) < g(z) for all z < co and f(z) > g(z) for all z > co.

ProoF. We give a constructive proof. Let co :=inf { d |
vz € [der] 9(z) < f(2)} Tfeo = 0, then f(2) = g(),
and the proposition holds. If ¢g > 0, then consider the
polygon which is the intersection of C'H(P) with the plane
z = c¢o. We fix a point po in CH(P) with z-coordinate
0 and construct a pyramid @ by extending all rays from po
through the polygon up to the plane z = ¢ (see Figure 5 for
an illustration). Since, f(co) = g(co) the quadratic function
f(z) is the density function of Q). Therefore, since the part
of @ below ¢ is completely included in the CH(P), we can



Cpy +

Po

Figure 5: Construction of the intersection of f(z) and g(z).

conclude that f(z) < g(z) for all z < ¢o. On the other side,
f(z) > g(z) for all z > co by the definition of co. [

Now, we present a lower and an upper bound on the vari-

ance d*(CH(P), Hap), from which we can derive a bound on
v = Cpca

LemMA 7. The variance d*(CH(P), Hap) is bounded from
below by 226 Vel

Proor. We split the integral foc(z—cl)2g(z)dz at c1, and
prove upper bounds for both parts in the following way:

For the left part consider the parabola fi(z) = %%22 such
1

that [;* fi1(z)dz = [;* g(z)dz = V1 (see Figure 6 (b) for an

1llustrat10n) From fo fi(z)dz = Vi we have that fi(z) =

3%122. Since f1(2) and g(z) define the same volume on the
l

Copt

interval [0, ¢1], they must intersect, and by Proposition 3 we
know that if f1(z) # g(z), then they can intersect only once,
at a point ¢’ € (0,c1). Under these conditions, we can apply
Theorem 5, and obtain

It z=a)g(z)dz 2 [§H(z—c)*fi(z)dz =

2 12
Ji' e —e)*igds = Sk (12

10

Analogously, for the right part consider the parabola f2(z) =
(clh—c)z(z c)? = Z—g(z—c)z such that [ fa(y)dy = [ g(2)dz
= V4 (see Figure 6 (b) for an illustration). From fccl fa(y)dy
= V2 we have that fi(z) = %(z — )%
2
ments as above in the case of f1(z), we can show that g(z)
and f2(z) intersect only once, at a point ¢’ € (c1,c). Ap-
plying Theorem 5 we have that

By similar argu-

[ (= — erg =) > [T e) ()i =
fccl(z—cl)z%(z—cfdz = Vigz.

(13)
From (12) and (13) we obtain that

d*(CH(P), Hyy) = g(z)dz + [

2
Viet

e - er)? (2 — 1)’ (2)dz

2
-2
From the Grunbaum Hammer-Mityagin theorem, we know
that Vi, V2 € [V, 22V]. Also, we know that c1,c2 € [+¢, 3¢].
It is not hard to show that, under these constralns the ex-

>

. Vlc% V2€2
pression —5- + —5*

V1:%V,C1:§60r Vi =

achieves its minimum of 256 L Vc? for
7 —_— =
=Via = 4c. O

LEMMA 8. The variance d>(CH(P), Hup) is bounded from

above by ﬁgggv 2

Proor. Without loss of generality, we can assume that
g(2) has its maximum in [c1, c]. We split the integral [ (z—
c1)?g(z)dz at c¢1, and prove upper bounds for both parts in
the following way: For the left part consider the linear func-
tion f3(z) = hs such that [;* f3(2)dz = [ g(z)dz = Vi
(see Figure 6 (c) for an 1llustrat10n) From [ f3(2)dz = V1

we have that f3(z) = ‘c/—ll Since f3(z) is constant, it inter-

sects g(z) only once, at a point ¢’ € (¢1,¢). By Theorem 5,
we have that

f061(2_01)2g(z)dz < fo z—c1) f3( ydz = 14
[ z—a)d: = Vl;l (14)
Now, we are looking for an appropriate function fi(z) to
derive an upper bound on the second part of the integral
fo 2z—c1)?g(2)dz. Note that both functions f5(z) and f1(2),
in general can not be of the type f(y) = const, which give us
the best upper bound, because it can happen that f4(2) in-
tersects g(z) twice, and we can not apply Theorem 5. Thus,
for the left part we consider the parabola f4(z) = h“ 22 such
that fccl fa(z)dz = fccl g(z)dz = V> (see Figure 6 ( ) for an
illustration). Since fi(z) and g(z) define the same volume
on the interval [c1, ¢], they must intersect, and by Proposi-
tion 3 we know that if f4(z) # g(z), they can intersect only
once, at a point ¢’ € (c1,c). Under these conditions, we can

apply Theorem 5, and since fa(z) = 3V2'CS 2%, we obtain

[ —a)g@d: > [C-a)fiz)d: =

2 3
_\2.3Vs 2 _ 3Vhcd 5] C2C1 g
fcl (Z Cl) c3— ch dz = c2+cc1+c% 5 + + 3

From (14) and (15) we can conclude that

d? (P,Hap) focl (z — c)2g(z)dz + fccl (z — c)2g(z)dz

Vic? 3Vae3 <3 Loeer g 3
3 c2+ccl+c% 5 2 3 )"

IA

From the Griinbaum-Hammer-Mityagin theorem, we know

that V1, Vs € [?jV7 zZV] Also, we know that c¢1, c2 € [ c, ic].

It is not hard to show that, under these constrains, the ex-
3V2c2 432
(s

c2+cc1+c
imum of 12729 Ve for Vi = ZV,e1 = 3. O

71680

3
pression 1 iy %1) achieves its min-
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Figure 6: Construction of the lower and upper bounds for d*(CH(P), Hu)

So far, we are ready to present a new parametrized bound
on A3 3(P), which is good for a large values of n and 6.
Additional, crucial relation we exploit in its derivation is
the fact given in the following lemma.

LEMMA 9. Let (z1,z2,...,2z4) and (y1,Y2,...,Yd) be two
sets of orthogonal base vectors in R%. For any point set
P € R? it holds that

d d
Z var(P,x;) = Z var(P,y;).
i=1 i=1

Proor. We have that

a d
;var(R xi) = Z% Z & (p, o),

i=1 " peP

where H, is a hyperplane orthogonal to the vector x;, pass-
ing through the origin of the coordinate system, d*(p, Ha,)
denotes the Euclidean distance of p to Hy,, and n = |P|.
Since Z‘Z:l d*(p, H,,) is the squared distance of p to the ori-
gin of the coordinate system, it can be expressed as the sum
of squared distances to the (d — 1)-dimensional hyperplanes
spanned by any set of orthogonal base vectors. Therefore,

d d
Zdz(p,Hzi) = Zdz(p, H,), and
i=1 i=1

Z?:l V&I‘(P, 1’7,) = TIL Zpep Z?:l d2 (p, Hf%) =
% ZPEP Z?:l dz(p7 Hyl) = Z?:l VaI‘(P7 yi)‘
When P is a continuous point set,
1 2
var(P, z;) = —/ d”(p,Hz, )ds
Vol(P) Jyep
and the claim can be shown as in the discrete case. [

LEMMA 10. A33(P) < 6.43,/1+ n% + 3z for any point
set P with aspect ratios n(P) =n and 0(P) = 6.

PROOF. Let Zpca,Ypea, Zpca De a set of basis vectors that
determine the direction of BByq3,3)(P), and let Zopt, Yopt,
Zopt be a set of basis vectors that determine the direction of
BBopt(CH(P)). By Lemma 9, we have that

var(CH (P), Zpca) + var(CH (P),Ypca) + var(CH (P), zpca) =
var(CH (P), xopt) + var(CH (P), Yopt) + var(CH(P), :/Eopt)).
16

By Lemma 1, part i), the variance of C H(P) in the direction
Tpea 18 the biggest possible, and therefore

var(CH (P),Tpca) > var(CH (P), Topt). (17)
Combining (16) and (17) we obtain

var(CH(P),Ypca) + var(CH (P), zpca) < (1)
var(CH (P),Yopt) + var(CH(P), zopt ).

We denote by H,,», the plane orthogonal to zpca, going
through the origin of the coordinate system. We assume that
the side apcabpca Of BBpca(3,3)(P) lies in Hypp,. Similarly,
we define Ho,e,, Ha,b, and Ha,c,. We can rewrite (18) as
d*(CH(P),Happ,) + d*(CH(P), Hape,) <

d*(CH(P), Ha,,) + d*(CH(P), Ha,c,)-

By Lemma 7, the lower bound for d2(C’H(P),Hapbp) is
5=V coea, and the lower bound for d*(CH(P),Ha,c,) is

(19)

256
%Vb?,ca. By Lemma 8, the upper bound for d*(CH(P), Ha_s,)

is 2229V ¢2,,, and the lower bound for d*(CH(P), Ha,c,) is

229V bz, Plugging these bounds into (19) we obtain
(A 7o, 12720, 12729,
LVt VbR < VR, VB2, (20
256" ea + 355V Oree < 71gg0 " “ort + 71680 ¥ Cortr (20)

pca

Since vy = ZO? and bopt > Copt, we get from (20) that

g=lree o o992 (21)

opt

The expression /12.99 — 2~ (> () has its maximum of
~ 6.437 for v ~ 2.714. This together with the bound o <

L+ -5 + 55 gives
I 1
Aos(P) = @By <643 /14 5+ 55

Lemma 6 gives us a bound on A3 3(P) which is good
for small values of  and 6. In contrary, the bound from
Lemma 10 behaves worse for small values of n and 6, but
better for big values of  and 6. Therefore, we combine both
of them to obtain the final upper bound.

O

THEOREM 8. The PCA bounding boz of a point set P in
R® computed over CH(P) has a guaranteed approzimation
factor A3 3 < 7.72.



ProoF. The theorem follows from the combination of the [14] D. V. Vrani¢, D. Saupe, and J. Richter. Tools for

two parametrized bounds from Lemma 6 and Lemma 10: 3D-object retrieval: Karhunen-Loeve transform and
a spherical harmonics. In IEEE 2001 Workshop
X33 < SUD,sy g3y {min (77‘9(1 4 n% 4 0%) 27 Multimedia Signal Processing, pages 293-298, 2001.

6.43,/1+ % +% )}

By numerical verification we obtained that the supremum
occurs at =~ 7.72. [

4. FUTURE WORK AND OPEN PROBLEMS

Improving the upper bound for A3 3, A2,2 and A2 1, as well
as obtaining an upper bound for A3 is of interest. A very
demanding open problem is to get an approximation factor
on the quality of PCA bounding boxes in higher dimensions.
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