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Abstract 

A new formula is presented for computing Maslov indices in integrable 

and near-integrable Hamiltonian systems. For several kinds of applica

tions the new formula is particularly easy to use. It does not rely on 

counting caustics or other kinds of discontinuities. Its theoretical jus

tification calls on wave packet concepts and the topological properties 

of the group of symplectic matrices. Techniques are also presented for 

manipulating the Maslov index in analytical expressions .. 
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1. Introduction 

The main purpose of this paper is to present and prove, in as nontechnical a 

manner as possible, a new formula for computing the Maslov indices, as well as 

to provide examples of algebraic techniques for working with them. The Maslov 

indices to which we refer are the even integers J.l.k which occur in the Einstein

Brillouin-Keller~(EBK) semiclassical quantization conditions.
1

-
4 

As is well known, 

these conditions apply to integrable and near-integrable· Hamiltonian systems, and 

are represented by the formula 

(1) 

where Jk is the k-th action and nil: is the corresponding quantum number. We shall 

not discuss the other principal version of the Maslov index (which may be even or 

odd), which occurs in the phase shifts of WKB wave functions; 

We believe our formula is easier to use in certain kinds of calculations than are 

traditional methods for determining the Maslov index, which are based on counting 

caustics. This is especially true when more than two degrees of freedom are consid

ered, or'when resonances complicate the caustic structure. (We have dealt with the 

Maslov indices of resonant tori as a separate issue in another publication.
5 

) Even 

for simple problems, however, our method is probably easier to automate than tra

ditional methods, and it is free of worries about exceptional cases (such as caustics 

of higher order than the first, or curves which do not cross a caustic transversally, 

etc.) Furthermore, completely apart from any consideration of numerical calcula

tion, our formula ,can be used in an analytical way, for deriving relations and proving 

theorems about the Maslov -index; Some examples of this are given in this paper, 

and some in Ref. 5. 

Since it is easy to state our result and explain how to use it, we will do this 

first, in Sec. 2. Although the theory behind our formula is based on wave packet 

concepts, it can nevertheless be used in a practical way without any explicit need for 

wave packets. However, an excursion into wave packet theory is needed to prove our 

formula, which we undertake in Sec. 3. We begin by reviewing the essentials of the 

semiclassical evolution of wave packets, as well as some recent ideas which provide 

,. 
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a general relationship between wave packet evolution and EBK quantization. We 

also show how the spreading of wave packets in quasiperiodic systems can be de

composed into two parts, one of which itself is quasiperiodic, and the other of which 

is unbounded in time. The latter kind of behavior is inimical to quantization, since 

it is aperiodic, and it is dispensed with by shifting attention to the action variables 

as evolution operators. This leads to the EBK rules and a formula for the Maslov 

index, Eq. (26). This formula suffers from certain drawbacks in a practical sense, 

so in Sec. 4 we invoke topological methods to show its equivalence to a more useful 

formula, Eq. (7), which is our principal result. We also show that our formula for 

the Maslov index is invariant under canonical transformations. Section 4 contains 

in addition a number of useful relations for manipulating the Maslov index. We 

expect our results to be mainly of value in applications to physical problems, and 

we make no claim for new mathematics. 

2. The Result and How to Use It 

The most common application for the Maslov index is in connection with the 

invariant tori of integrable and near-integrable systems. Therefore we shall explain 

our result in this context, although, as will become apparent in Sec. 4, the result is 

actually more general than this. 

We consider a system of any number N of degrees of freedom, in which there 

exist invariant tori in some region of phase space. Although the action-angle vari

ables (9,J) corresponding to these tori may not be known explicitly, we will assume 

that they exist in principle, and we shall refer to them as need be. In order to use 

our formula for the Maslov indices, it is required that the rectangular canonical 

coordinates (q, p) be known on at least one torus as functions of 9. As a practical 

matter, such information can be obtained either by classical perturbation theory,6,7 

variational principles,3,8 Fourier transforms of numerical orbit integrations,9-11 

solution of the Hamilton-Jacobi equation,12 or other means. Indeed, getting this 

information is the hard part in the use of our formula; fortunately, considerable 

work has been done on this problem, and several methods are known. We do not 
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require that (q, p) be known as functions of the actions J. This is important, be

cause often the .l-dependence is more difficult to obtain than the '-dependence. 

Usually the '-dependence is expressed as a Fourier series, 

q(,) = L q(n) exp(in· '), p(8) = L p(n) exp(in . '), (2) 
D D 

wheren runs over all integer N-vectors. We write q(n), p(n) for the Fourier 

coefficients of q(8), p(8); these are also functions·ofthe actions"J, but we suppress 

this dependency. Various algorithms or numerical schemes produce the coefficients 

q(n), p(n) as tables of numbers; given this information, the rest of the calculation 

we propose is straightforward. 

The Maslov indices in Eq. (1) are specified by means of the basis contours on 

the torus which correspond to the different actions. The k-th contour, which we 

shall denote by rk, is formed by letting the angle (Jk vary between 0 and 27r, while 

holding all the other (J's and all the J's fixed. It is also the orbit generated by 

J k , in the sense of the trajectory in phase space which results by treating Jk as a 

Hamilfonian. We prefer to reserve the symbols (Jk for coordinates in phase space, 

and not to use them in the role of parameters for these contours. Instead, we use 

the symbol A for the latter purpose, as in the following specification of the k-th 

contour rlt(>'): 

(J, = (JIO, 

(Jk = (JkO + A; 

J, = J ,O , alII. (3) 

Here (80 ,Jo) are the coordinates of any point on the contour. Clearly, this contour 

is the solution of Hamilton's equations, 

dO, 8H 

dA = 8J,' 

(4) 
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in which we set H = Jk and take (90 ,Jo) as initial conditions. The contour has 

period 211" in the parameter ..\. 

Our prescription for computing the k-th Maslov index is the following. First 

we compute the NxN complex matriX M as a function of ..\ along the contour rk, 
according to the formula 

(5) 

Since q and p are periodic in ..\, so is M. If q and p are expressed in terms of 

Fourier series, as in Eq. (2), then we have 

(6) 
D 

where 9(..\) is given by Eq. (3); As will be shown below, the matriX M('\) can 

never be singular, so long as (q, p) and (9, J) are two sets of canonical variables. 

Therefore det M('\) is a nonzero complex number, which, like M itself, is periodic 

in ,\ with period 211". As ,\ varies from 0 to 211", this complex number executes a 

closed curve in the complex plane, which never passes through the origin. Therefore 

this curve has a well defined winding number, representing the number of circuits 

it makes in a positive (counterclockwise) sense about the origin. As will be shown 

below, it turns out that the Maslov index IJ.k is simply twice this winding number. 

We designate this relation by writing 

IJ.k = 2wn(detM("\)), (7) 

which is our principal result. 

As a practical matter, one could use Eq. (7) by plotting det M (,\) in the com

plex plane, and simply viewing the curve which results. Alternatively, one could 

automate the process by accumulating the phase of det M(,\). One way of doing 

this is to use the Cauchy formula, 

1 f d wndetM(,\) = -. - IndetM("\) d..\. 
211"1 d'\ 

(8) 

, 4" ;.'~ 
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Since the answer must be an integer, high precision is not required in evaluating 

this integral; usually one or two significant digits will suffice. 

An obvious objection to Eq. (7) is that it is not dimensionally correct, since 

q and p may have different physical dimensions. Amazingly enough, however, this 

does not make any difference, for the following reason. As will' be shown below, 

Eq. (7) is-invariant under canonical transformations of the.form (q,p) -- (q',p'), 

including 'nonlinear ones, so long as the transformation is smooth and well.defined 

over-a simply 'connected'region of phase space surrounding the contours 'in question. 

For example, one can set q' = cq, p' = pic, for some nonzero constant c; such a 

scaling transformation can always be used to convert q and p into a form in which 

they have the same physical dimensions. One can, if one likes, precede the use of 

Eq. (7) by such a transformation, in order to deal exclusively with quantities which 

make sense dimensionally. But in view of the invariance of Eq. (7) under canonical 

transformations, the results will be the same even if one,does not do so. 

In a.sense, the reasonJor this peculiar property is that the Maslov indexrepre-~ 

sents only a very small piece of the information which is contained in the periodic 

matrix function M(,x). Therefore M(A) can be subjected to many kinds of modifi

cations without affecting'the Maslov index. This'observation suggests that it might 

be possible to compute the winding number of M(A) with even less work than 

that outlined above, but, so far, we have not been able to find any such improved 

method. 

The justification of Eq. (7) and the other statements we have made involves 

wave packets, to which we now turn. 

3. The Connection with Wave Packet Evolution 

A multiplicative factor similar to det M(A) occurs in the semiclassical evolu

tion of wave packets, and it is not hard to see, in simple examples like the harmonic 

oscillator, that it is responsible for the Maslov phase shifts. This is the factor 

det(A + iB), seen in Eq. (17) below. There are, however, several subtleties in es

tablishing the precise connection between this factor and the results given above, 
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which call for some discussion. For the sake of concreteness, we will work with 

Gaussian wave packets, although in fact our results c::an be justified without refer

ence to Gaussians. The semiclassical evolution of Gaussian wave packets was first 

developed with a degree of thoroughness by Heller, as seen especially in Refs. 13 and 

14. Several of our formulas below are reproductions of Heller's results, although in 

a different notation. In addition, one of us (RoG.L.) has given a group theoretical 

analysis of wave packet evolution in Ref. 15, which explains many details not cov

ered in this paper, such as the reason why Gaussians are not really essential to our 

results, and which also develops much of the basic group theory of the symplectic 

matrices and their unitary representations. 

We begin by reviewing some of the essential features of wave packet evolution. 

It is convenient to establish a standard or reference Gaussian wave packet, which 

we take to be 

1 (lxI2) 
tPo(x) = (xIO) = ('J!"Ii)N/4 exp - 21i . (9) 

Here x is a scaled configuration space variable, with dimensions of Ii 1/2. Following 

Klauder/
6 

we call 10) the "fiducial" state. The fiducial state is not generally suitable 

as an initial state in studies of wave packet evolution, because its expectation values 

of both q and p vanish. (The hats denote quantum operators, as distinct from the 

classical phase space coordinates (q, p)). If instead an initial state centered at 

location (qo, Po) in phase space is desired, i.e. one for which (q) = qo, (p) = Po, 

then it can be obtained by applying the Heisenberg operator T( qo, Po) to the fiducial 

state, as is well known in the theory of coherent states.
17 

The Heisenberg operators 

are defined by 

T ( qo, Po) =, exp [ * (Po . q - qo . p) ] , (10) 

and act as displacement operators in phase space. We apply this Heisenberg oper

ator to 10), to obtain a state which we denote by 

(11) 

which has the wave function 

(12) 



-8-

This state is simply a coherent state in the usual sense, which is characterized by 

its expectation values of q and p. It may still not be suitable as an initial state, 

because it has rather special values for the second moments of q and p. We shall 

return to this question in Sec. 4; for now we will simply proceed to use it as an 

initial state. 

The state Iqo, Po) may be propagated forward in time under the. quantum 

Hamiltonian H (q~ p) by using,the quadratic approximation 'of Heller. 13 The expec

tation values of q, p obey the Ehrenfest relations, Le. (q.)(t) = q(t), (p)(t) = p(t), 

where q(t), p(t) are the solutions of Hamilton's equations under the classical Hamil

tonian H( q, p), with initial conditions (qo, Po). In addition, the wave packet 

spreads. As apparently first observed by Heller, 14 the spreading can be described 

in terms of the 2Nx2N matrix S, given by 

( 

8q 

S _ 8(q,p) _ 8qo 

- 8(qo,Po) - 8p 

8qo 

(13) 

where q, p represent q(t), p(t). (In formulas of this type, we shall always let- the 

row index be determined by the numerator of the partial derivatives shown, and 

the column index by the denominator.) 

This was a most important observation, because such a matrix is a symplec

tic matrix, and it turns out that the entire structure of semiclassical wave packet 

evolution is founded on the symplectic matrices. The special properties of these ma

trices arise in the following way. By a general property of the solutions to Hamilton's 

equations, the transformation (qo, Po) -+ (q, p) is canonical, so S (t) is the Jacobian 

matrix of a canonical transformation. Therefore the Poisson brackets of (q(t),p(t)) 

among themselves, computed with respect to (qo, Po), must take on their standard 

forms of 1 's and D's. These can be summarized by writing 

SJS = J; (14) 

where the tilde represents the transpose, and where J is the 2Nx2N antisymmetric 

matrix, 

(15) 
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Equation (14) is the defining relation for the symplectic matrices, so that this 

matrix S, and, more generally, the Jacobian matrix of any canonical transformation, 

is a symplectic matrix. Many of the properties of the symplectic matrices are 

summarized in Appendix A of Ref. 15; the main ones for our present purposes are 

that the symplectic matrices form a group, and that every symplectic matrix has 

the determinant +1. For any symplectic matrix (not just the one in Eq. (13)) we 

shall adopt the decomposition, 

(16) 

where A, B, C, D are four NxN real matrices. 

To return to the wave packet evolution in the quadratic approximation, it turns 

out that the final wave packet at time t can be written 

1 1 

~(x,t) = (7rh)N/4 y'det(A + iB) 

x exp { ~ ria + ip· (x - q) 

- i(x - q). (D - iC)(A + iB)-l. (x - q)]}, (17) 

where A, B, C, D are obtained by identifying the matrices of Eqs. (13) and (16), 

and where a is a Bohr-Sommerfeld phase, obtained by integrating along the orbit, 

r(q,p) 

a = J( p . dq - Et. 
(qO,po) 

(18) 

Here E is the (conserved) energy of the classical orbit. The factor under the square 

root in Eq. (17) is responsible for the Maslov phase shifts; the choice of branch of 

the square root is determined by continuity, giving a complex number which may 

pass back and forth between the two Riemann sheets. [It may help the reader in 

making a detailed comparison of this formula with the results of Ref. 14 to note 

that the symbols q, qt, Pt, Z, P~, and A of Ref. 14 correspond respectively to x, 

q, p, A + iB, C + ID, and ~(C + ID)(A + iB)-l of this paper.] 
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The matrix A + iB, which is of special concern to us, can never be singular. 

IT it were, the wave function ",(x, t) would diverge, and we do not expect this. 

(Of course, wave functions do diverge in WKB theory.) Nevertheless, it is not 

immedia.tely apparent why Hamilton's equations should forbid such a singularity. 

Furthermore, this nonsingularity is important in making our formula for the Maslov 

indices, Eq. (7), well defined. Since the proof of this fact was incorrectly stated in 

Ref. 15, we will provide a correct proof here. 

If Eq. (16) is substituted into Eq. (14), we find that the submatrices satisfy 

AB = BA and DA - CB = I. Now suppose that A + iB were singular. Then 

its Hermitian conjugate A - iB must also be singular. Multiplying these together 

gives the real singular matrix, AA + BB (the imaginary part vanishes on account of 

AB = B.A.) This matrix must possess a real, nonzero eigenvector u with eigenvalue 

zero. Hence 

ii· (AA + BB) . u = (AU)2 + (BU)2 = 0, (19) 

implying Au = Bu = O. But this yields the contradiction u = Iu = DAn - CBu = 
O. Therefore A + iB is nonsingular. (The proof of Ref. 15 was incorrect because it 

worked with complex matrice.s, and ignored the possibility of complex eigenvectors.) 

Let us now consider the relationship between wave packet evolution and the 

EBK quantization rules, in which the Maslov indices are contained. We begin with 

the matrix A + iB, which is given explicitly as a function of time by 

A + &13 = 8q(t) + i 8q(t) . 
8qo 8po 

(20) 

As mentioned previously, experimentation with the one-dimensional harmonic oscil

lator shows that the square root of the determinant of this matrix (in this case only 

a scalar), by passing onto the second Riemann sheet, gives the ~ in the quantization 

of this system. Therefore we.have the strong suggestion that this matrix is related 

to the Maslov index. Unfortunately, it is hard to pursue this idea for. other Hamil

tonians, even in one dimension. The most immediate problem is that for nonlinear 

Hamiltonians, A + iB is not periodic in time, even when the orbit itself, given by 

q(t), p(t), is. That is, the time evolution of wave packets in the quadratic approxi

mation is not generally periodic, and does not give rise to quantization conditions 

(either the EBK rules or any other). 
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The resolution of this problem is given in detail in Ref. 18. Briefly, the main 

idea is to propagate the wave packet, not with the physical Hamiltonian as the 

evolution operator, but rather to use the actions Jk , k = 1, ... , N, as a set of 

evolution operators. Now the parameter describing the orbits is no longer physical 

time; we may call it .\ instead. There is no difficulty in propagating a wave packet 

with one of the actions, say Jk , as an evolution operator. We merely use Eq. (17), as 

before, for the evolution of the wave packet along the orbit, writing tIJ(x,.\) instead 

of tIJ(x, t). Now, however, q and p represent, not q(t) and p(t), but rather q(.\) and 

p(.\), obtained by solving Hamilton's equations, 

dq 8Jk (q,p) 
d.\ = ap , 

dp 8Jk (q,p) 
d.\ = - 8q 

(21) 

where the initial conditions are still the same (qo,Po) which appear in the initial 

wave packet. Here Hamilton's equations have been written with Jk expressed as a 

function of (q,p), but, since Hamilton's equations can be transformed to any set 

of canonical coordinates, we could just as well use the action-angle variables (fJ, J) 

themselves as phase space coordinates. Doing so, we obtain Eq. (4) above, whose 

solution is given by Eq. (3). Thus we see that the orbit q(.\), p(.\) is nothing but 

the contour rk, expressed in terms of the variables q,p. 

As for the matrices A, B, C, D (or collectively, S), which occur in Eq. (17), 

they are still defined by Eqs. (13) and (16), except, again, q and p stand for q(.\) 

and p(.\). Now, however, these matrices are periodic in the independent variable 

'x. This is a crucial fact, which is worth elaboration. To see why the matrix S is 

periodic (in .\) when Jk is used as an evolution operator and not (in t) when H is so 

used, it is convenient to use the chain rule to rewrite Eq. (13), in order to represent 

a shift from (q, p) to action-angle variables and back again: 

s = 8(q,p) = 8(q,p). 8(fJ,J) . 8(fJo,Jo) 

8(qo,Po) 8(fJ,J) 8(fJo,Jo) 8(qo,Po)" 
(22) 

All three of these matrices on the right are Jacobian matrices of canonical trans

formations, and are, therefore, symplectic. This formula can be used in both cases, 

when q, p stand for q(t), p(t), or for q(.\), p(.\). 
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In both cases, the first of these matrices is periodic in the angles IJ. Thus, under 

the H-evolution, this matrix is quasiperiodic in t, while under the Jk-evolution, it is 

strictly periodic in A. The third matrix, in both cases, is constant. It is the middle 

matrix, which represents the transformation from initial to final conditions under 

the H- or Jk-evolution, as expressed in action-angle variables, which really distin

guishes the two cases. For the H-evolution, the solution of Hamilton's equations 

can be written 

so that 

9(t) = 90 + w(Jo)t, 

J(t) = J o, 

a(9,J) (I 
8(90 ,Jo) - 0 

[PH) 
aJ8J

t 
. 

r 

(23) 

(24) 

It is the matrix in the upper right corner, of Eq. (24) which is responsible for the 

lack of periodicity (or even: quasiperiodicity) of the wave packet under the evolution 

governed by the Hamiltonian. This matrix causes an unbounded spreading of the 

wave packet, a phenomenon which is always present when H is used as the evolution 

operator, and which prevents S(t) from being periodic. (The only exception is when 

H is linear in the actions, as in the harmonic oscillator.) On the other hand, when 

J k is used as an evolution operator, then, by differentiating Eq. (3) with respect 

to initial conditions, the middle matrix is seen to be simply the 2N x 2N identity 

matrix, which is constant. Altogether, this shows that S(.A) is periodic in A. 

A more pictorial way of seeing the same thing is to note that the matrix S, 

which represents the changes in final conditions due to small changes in initial 

conditions along some orbit, must be periodic under the Jk-evolution, because the 

Jk orbits all have the same period (namely, 21r), independent of initial conditions. 

That is, a localized ensemble of particles, propagated with Jk as an evolution op

erator, will exactly return to its initial state when .A = 21r. Under the Hamiltonian 

evolution, however, even when orbits are periodic, different orbits generally have 

different periods, so even if one particle in a localized ensemble has returned to its 
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initial conditions in some time T, the other particles generally will not have done 

so. 

Since q(>.), p(>.), and S(>') are all periodic under the Jk-evolution, the wave 

packet tP(x, >.) returns at >. = 211" to its original condition tPo(x), to within an overall 

phase. The Bohr-Sommerfeld phase a, with -Et replaced by -Jk >', vanishes at 

>. = 21r, since 

!P.dq =21rJk• (25) 

The only remaining phase is that due to the crossing of y'det(A + iB) onto succes

sive Riemann sheets of the square root function. We write this phase in the form 

exp( -iJJ.k1r /2), where JJ.k is the Maslov index and is an even integer. Effectively, 

JJ.k/2 represents the number of Riemann sheet crossings of the square root function, 

and it can therefore be represented by 

JJ.k (aq (>.) . aq (>.)) - = wn det(A + £B) = wn det a +, a . 
2 qo Po 

(26) 

This formula represents the manner in which the Maslov index emerges from wave 

packet evolution. 

The rest of the EBK quantization conditions, including the integer nk shown 

in Eq. (1), emerge by considering the spectrum of the >.-evolution of the wave 

packet, as discussed in more detail in Ref. 18. The same reference also explains 

how wave functions, as well as energy eigenvalues, can be obtained from the action 

propagation. Since we are mainly interested in the Maslov index here, we will not 

pursue these issues. 

For the purposes of this paper, we are now done with wave packets, since 

Eq. (26) is the result for which we needed them. Note that Eq. (26), while similar in 

appearance to Eq. (7), is actually distinct in several respects. In particular, Eq. (26) 

would be less convenient to use in a practical calculation than Eq. (7), since often q 

is not known as a function of both qo, Po along an action trajectory. (That is, the 

differentiations indicated effectively involve the consideration of nearby trajectories, 

including those which are not on the same torus as the initial conditions qo, Po.) 

It is true that if q and p were known analytically as functions of both IJ and J 



-14 -

(perhaps through perturbation theory or by solving the Hamilton-Jacobi equation 

analytically), then Eq. (26) could be used without much trouble. However, often 

one has less information than this, as was indicated in the introduction. In fact, it 

was the realization that Eqs. (7) and (26) were equivalent, and that Eq. (7) is more 

practical, that motivated us to write this paper. We turn now to a proof of this 

equivalence, which involves the topological properties of the group of symplectic 

matrices. In the process, we will also prove some"'other"statements made above, 

such asrthat concerning the invariance.of Eq. (7) ~der canonicaL transformations. 

4. The Maslov Index and the Topology of the Symplectic Group 

Equation (26) allows us to associate a Maslov index with any periodic sym

plectic matrix function, S(,x), by setting p. = 2wndet(A(,x) + iB(,x)), whether or 

not S(,x) is given by Eq. (13) or: derived from an action orbit. This is definitely 

a useful generalization, as is shown by the applications below, and it causes .us to 

shift our attention to the space of symplectic matrices, in which S(,x) can be viewed 

geometrically as a closed curve. This space is the symplectiC group manifold, which 

can be. thought-of as a.surface imbedded in the space of all 2Nx2N real matri

ces, i.e. the surface specified by the defining relation of the symplectic matrices, 

Eq. (14). This relation represents a set of constraints on the 4N2 numbers present 

in a 2Nx2N matrix. In fact, .since both sides of Eq. (14) are antisymmetric, there 

are 2N(2N - 1)/2 independent constraints, which leave N(2N + 1) independent 

components in a symplectic matrix. Thus, the symplectic group manifold can be 

thought of as an N(2N + I)-dimensional surface in 4N2-dimensional matrix space. 

The symplectic group manifold has a simple but nontrivial topological struc

ture. This means that different closed curves in this space fall into different so-called 

homotopy classes, depending on whether they can be continuously deformed into 

one another. (Here and below we shall always mean "parameterized curve" when 

we say "curve." In the case we are mainly interested in, the parameterization is 

provided by the variable ,x.) As was apparently first observed by Arnold/
9 

there is 

a close relationship between the topological properties of these curves in the sym

plectic group manifold (namely, the homotopy classes to which they belong), and 
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the associated Maslov indices. In this section we shall exploit such ideas to develop 

certain calculational tools, and to prove various facts. As we will show, there is 

definite computational power which comes from this topological point of view. 

The topological methods we shall use properly belong to the subject of algebraic 

topology. An introduction to this has been given by S chulman ,20 and a more 

complete account may be found in Singer and Thorpe.
21 

It is not a particularly 

difficult subject, nor, as it turns out, do we place very heavy demands on it, since 

the topological structure of the symplectic group manifold is rather simple. As a 

result, a little geometrical intuition will suffice to follow all our arguments below, 

even with no particular background in this area of mathematics. The principal 

topological fact about the symplectic group manifold, from which follow most of 

the unproven statements we make below, is that this manifold is, topologically 

speaking, the Cartesian product of a simply connected space with a circle. It is the 

circle which provides all the nontrivial topological features of interest to us. This 

fact is proven in Appendix A of Ref. 15, by using various matrix manipulations. 

We will not repeat the proof here. 

When thinking about the topological-properties of the symplectic group man

ifold, it is a good idea to keep in mind an image of a certain three-dimensional 

object, consisting of the solid interior of an ordinary 2-torus, but not including the 

surface. Indeed, for N = 1, such an object is homeomorphic, i.e. topologically 

equivalent, to the symplectic group manifold, and even for larger N it provides an 

excellent intuitive guide. The (correct) idea conveyed by this picture is that the 

symplectic group manifold has a single "hole" in it, so that every closed curve is 

characterized by a winding number. A positive sense of traversal around the hole 

must be established by convention, but, once this is done, positive winding numbers 

can be distinguished from negative ones, since the curves are parameterized. 

To be more precise about this, and to state the matter without reference to 

holes, we can say that every closed curve on the symplectic group manifold can be 

characterized by an integer, which we shall call the winding number, such that the 

following properties hold. First, two closed curves can be continuously deformed into 

one another, i.e. they belong to the same homotopy class, if and only if their winding 
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numbers are identical. Second, a curve which does not go anywhere, say, S(>') = 

So = const. for all >., has a winding number of o. Third, if the parameterization of a 

curve is reversed, then the winding number changes sign. And fourth, if two curves 

which begin and end at the same point are concatenated, by going first around the 

first curve and then around the second, then the winding number of the compound 

curve is the sum of the two original winding numbers. (This conc·antenation process 

is the usual way of "multiplying" curves.in homotopy theory.) 

These facts are equivalent to saying that the fundamental group of the sym

plectic group manifold is ZI, the set of the integers under addition. The fact that 

this group is Abelian simplifies certain things, and makes it easier to follow one's 

intuition. All the facts stated are in accordance with the intuitive image of the 

interior of the torus introduced above. 

It is possible to establish a definite algorithm whereby the winding number of 

a periodic symplectic matrix S(>') can actually be computed. We shall denote this 

winding number by wn S(>'), using the same notation "wn" for winding numbers 

in the symplectic group manifold.as for periodic, nonzero closed curves of complex 

numbers in the complex plane. As was shown in Appendix A of Ref. 15, it turns 

out that one way to compute the winding number of a periodic symplectic matrix 

S (>.) is to use the formula, 

wn S (>.) = wn det (A + iB). (27) 

In other words, the winding number in the complex plane which emerges from 

wave.packet evolution, when S(>.) is given by Eq. (13), is:the same as that in the 

symplectic group manifold. Therefore we can restate the relationship between the· 

Ma,slov index and periodic symplectic matrices by writing 

JJ. = 2 wn S (>.) . (28) 

This is the relationship which was recognized early by Arnold 19 and other mathe

maticians. (Actually, Arnold worked with the manifold of Lagrangian planes, and 

not the symplectic group manifold. However, they are closely related.) Apparently, 

,~ 
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however, they established this connection through WKB theory, or more precisely, 

Maslov's version of it,I-4 and not through wave packets, as we have done here. 

We will now use topological reasoning to prove several useful results. Let S(t), 

SI (t) and S2(t) be any three periodic symplectic matrix functions, i.e. any three 

closed curves in the symplectic group manifold, and let So be a constant symplectic 

matrix. Here we have set t = >../27r; t is not time, but merely another parameter, 

designed to make the periods of our curves equal to unity instead of 27r, as is 

customary in homotopy theory. Then we have the following three relations, not all 

of which are independent: 

wn(SoS(t)) = wn(S(t)So) = wn(S(t)); 

wn(S(t)-I) = - wn(S(t)); 

wn(SI(t)S2(t)) = wn(Sdt)) + wn(S2(t)). 

(29) 

(30) 

(31) 

Note in particular that the left side of Eq. (31) is well defined, since the matrix 

product Sl(t)S2(t) is periodic with period unity if Sdt) and S2(t) individually are. 

We prove Eq. (29) by continuously deforming the curve SoS(t) or S(t)So into 

S(t). To do this, we call on the fact that the symplectic group manifold is connected 

(or more precisely, arc-wise connected), as the image of the interior of the torus 

would suggest, so that it is always possible to connect So with the identity matrix 

I by means of some continuous curve of symplectic matrices. We denote this curve 

by R(s), where s is a parameter ranging between 0 and 1, such that R(O) = I 
and R(l) = So. Note that R(s) is not a closed curve. Then for each value of 

s, the product R(s)S(t) or S(t)R(s) is a closed curve (in the variable t), which 

continuously deforms between S(t) (for s = 0) and SoS(t) or S(t)So (for s = 1). 

Since the winding number cannot change under continuous deformations, Eq. (29) 

follows. 

We prove Eq. (31) next. The idea is to continuously deform the closed curve 

S 1 (t) S2 (t) into the concatenation, or homotopic product, of S d t) and S2 (t). As 

noted above, and as is clear geometrically, winding numbers simply add under 

the homotopic product, so Eq. (31) will follow. However, the homotopic product 

is only defined if both curves have the same beginning and ending points, so we 

.:: ~ '.J 
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must dispense with this issue first. We do so by setting S~(t) = Sl(O)-lSt{t) and 

S~(t) = S2(t)S2(0)-1, so that both SHt) and S~(t) begin and end at the identity 

matrix. Then, by applying Eq. (29) to both sides of Eq. (31), we see that Eq. (31) 

will be true if and only if its primed equivalent is true. That is, we can, without 

loss of generality, assume that both Sl(t) and S2(t) in Eq. (31) begin and end at 

the identity. 

The homotopic product of S1(t) and S2(t) is a single curve P(t) which crosses':. 

S 1 (t) on the first half of the domain of its independent variable, and S 2 (t) on the 

second half. In order to keep the period of P(t) equal to unity, we set 

o :5 t :5 ~, 
(32) 

To·prove:Eq. (31), we continuously deform the matrix product SI.(t)S2(t) into the 

homotopy product P(t), by again"invoking a deformation parameter s. We set 

S{s,t) = 

.Si(t(l'+s)), 

S1(t(1 + s))S2(t(1 + s) - s), 

S2(t(I + s) - s), 

s 
0< t <-, 

- - I+s 

s 1 
--<t<-
I+s - - l+s' 

1 
--<t<1. 
l+s- -

(33) 

As s varies from 0 to 1, S(s, t) represents a closed curve (in t) which continuously 

varies between Sl(t)S2(t) at s = 0 and P(t) at s = 1. Therefore Eq. (31) is proven. 

This is quite a powerful result, that matrix products behave just like-homotopic 

products, insofar as winding numbers~are concerned. 

Finally, Eq. (30) follows easily from Eq. (31), by setting. SI.(t) =. S(t) and 

S2 (t) = S (t) -1 . On the left we get the winding number of the identity matrix, 

which is zero. 

Equations (29-31) can be used to prove a large number of alternatives to 

Eq. (27) for computing the Maslov index. For example, by noting that the ma

trix J of Eq. (15) is symplectic and constant, we can identify it with So in Eq. (29). 
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Then, decomposing S(t) according to Eq. (16), we have 

wndet(A + iB) = wnS = wnJS 

= wn (_~ ~B) = wndet(C + ID). (34) 

Thus, C+sD will work as well as A+i13 for computing the Maslov index. When this 

is used in Eq. (26), it shows that q(,\) can be replaced by p(,\) , without changing 

the Maslov index. The same result could also have been obtained by studying wave 

packet evolution in momentum space. 

As another example, Eq. (29) implies that S(t) and -S(t) have the same wind

ing numbers, since -lis a constant symplectic matrix. When this is combined with 

the fact that S = -JS- 1J, as follows from Eq. (14), we see that Sand S-1 also 

c have the same winding numbers (but opposite that of S(t) and -S(t)). Thus; by 

Eq. (30), we have 

-wnS = wnS- 1 = wnS· 

(A C) - - --= wn :B D = wndet(A + iC) = wndet(B + ID). (35) 

However, the determinant does not change when we take the transpose, and a 

winding number in the complex plane changes sign when we take the complex 

conjugate. Therefore A - iC and 13 - sD will also work as well as A + i13 for 

computing Maslov indices. Altogether, we have shown that 

wn S = wn det(A + 1"13) = wndet(C + lD) 

= wn det(A - iC) = wn det(B - iD), (36) 

and many other equivalent formulas can be derived as well. The argument used in 

Sec. 3 to show that A + i13 can never be singular is easily extended to all these 

other matrices. In particular, this will show that the matrix M of Eq. 5 is always 

nonsingular, as claimed. 



-20-

Now let us go back to the periodic symplectic matrix S(.\) given by Eq. (13), 

which occurs in wave packet evolution, where q(.\) and p(.\) represent orbits gen

erated by one of the actions, say Jk • Furthermore, let us decompose this matrix 

according to Eq. (22). As noted previously, the middle matrix is just the identity, 

and the third one is constant. Therefore, by Eq. (29), we have 

( 
8(q,p) ) (8(q, p)) wn . -wn 

8(qo,Po) - 8rO,J)· 
(37) 

But, by combining this with Eqs. (26) and (36), we find 

_ 2 d (8Q(.\) . 8Q(.\)) _ 2 d (8q(A) _ . 8P(.\)) 
J.l.k - wn et 8qo +, 8po - wn et 8S '8e ' (38) 

as well as many other formulas that are easy to write down. This establishes that 

the Maslov indices of Eqs. (7) and (26) are identical, as we have claimed. 

Let us now consider what happens to Eq. (7) under a canonical transformation 

of the form (q,p) -- (q',p'). (We can evaluateEq. (7) along some curve in phase 

space, such as the action orbit, r. k .) If we write,J.I..,and,J,t' for the'two Maslov indices 

obtained from Eq. (7) by using the two sets of canonical variables indicated, then 

we can relate them by using the chain rule, 

8(q',p') 

8(O,J) 

and by applying Eq. (31), to obtain 

8(q',p') 8(q,p) 

8(q,p) 8(O,J) ' 

, (8(ql ,pI)) 
J.I. = J.I. + 2 wn 8( q, p) . . 

(39) 

(40) 

It makes sense to talk about the winding number in the final term on the right in 

this equation~ since the.symplectic matrix indicated is obtained by evaluating the 

Jacobian of 'the canonical transformation (q, p) -- (q', p') along the given closed 

curve in phase space. As long as this transformation is smooth and well defined 

along this curve, then the Jacobian will also be well defined, and periodic. 

The process of associating a periodic symplectic matrix with a closed curve in 

phase space, by evaluating the Jacobian of some canonical transformation along it, 
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is an intex:esting one, because it does not require that the curve in question lie on an 

invariant torus. Furthermore, if the curve in phase space is continuously deformed, 

then the corresponding winding number cannot change, so long as the Jacobian 

matrix remains continuous and well defined. In fact, if the phase space loop can 

be contracted to a point while these conditions are met, then the winding number 

must be zero. This will be the case for the second term on the right in Eq. (40), if 

the canonical transformation (q, p) ~ (q', p') is smooth and well defined on some 

simply connected region in phase space which includes the curve in question, as was 

mentioned in Sec. 2. In this case, we have J.I. = J.I.', and Eq. (7) is indeed invariant 

under canonical transformations. 

One may well wonder why the same contraction argument could not also be 

applied to the winding numbers of the first and third symplectic matrices shown 

in Eq. (39), which correspond to the Maslov indices J.I.' and J.I.. Apparently this 

argument would indicate that both J.I. and J.I.' should always vanish, and we know 

this is not true. The answer is that the canonical transformation (q, p) or (q', p') ~ 

((J,.1) is not well defined on a simply connected region containing the action orbit 
'. 

r k , because the angle Ok is not defined when the action J k vanishes. In other words, 

the action orbit r k cannot be contracted to a point without pulling it through (or 

onto) a point where Jk = O. On the other hand, as long as such singularities are 

avoided, the curve can be deformed without changing the Maslov indices. 

Finally, let us return to the question of what to do if we wish to use an initial 

wave packet with different second moments of q and f> than those afforded by the 

standard coherent state of Eq. (12). Heller
14 

has solved the problem of propagating 

a Gaussian wave packet in the quadratic approximation with any arbitrary Gaussian 

as initial conditions, and it turns out that the solution can stilI be represented in 

the form of Eq. (17), except that A, B, C, D are no longer the submatrices of 

the symplectic matrix 8 of Eq. (13). Instead, they are the submatrices of another 

symplectic matrix, 8' = 880 , where 8 0 is a constant symplectic matrix which is 

related to the choice of initial state. The precise rules for determining 8 0 are given 

in Sec. 8 of Ref. 15i we will not go into them here, except to note that the Maslov 

index of 8' is the same as that of 8, on account of Eq. (29). In other words, no 

matter what initial Gaussian state we choose, it is always the leading square root 

.t:.:.~~ 
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factor which is responsible for the Maslov index, and this Maslov index is always 

the same. 

5. Conclusions 

In this paper we have given a fairly complete accounting of the Maslov index, 

as it occurs in. wave, packet evolution. Something we have not- done is to relate 

the, Maslov index' we discuss here to the -one which occurs in WKB theory. Since. 

the Maslov index and the EBK rules can be derived entirely within wave packet 

theory, as indicated in Sec. 3, there seems to be no logical necessity of doing this. 

Furthermore, we wanted to avoid a lengthy excursion into the subject of caustic 

counting, which is not necessary in wave packet theory. 

It would also be interesting to explore the meaning of the Maslov index for 

phase. spaces which are not flat, such as the spherical phase space which occurs 

in rigid ,body motion. There seems to be some uncertainty for such systems as to 

when and how the Maslov index should be used. In general, it seems to us, the 

semiclassical mechanics of such systems is not-well understood, and we hope to be 

able to shed some light.on this subject in the future., 
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