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Abstract

A new R contributed package written by the authors is introduced. This package com-
putes the probability density function, cumulative distribution function, quantile function,
random numbers and some measures of inference for nineteen families of distributions.
Each family is flexible enough to encompass an uncountable number of structures. The
use of the package is illustrated using a real data set. Also robustness of random number
generation is checked by simulation.
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1. Introduction

Let G be any valid cumulative distribution function defined on the real line. The last decade
or so has seen many approaches proposed for generating new distributions based on G. All
of these approaches can be put in the form

F (x) = B (G(x)) , (1)

where B : [0, 1] → [0, 1] and F is a valid cumulative distribution function. So, for every G
one can use (1) to generate a new distribution.

The first approach of the kind of (1) proposed in recent years was that due to Marshall and Olkin
(1997). In Marshall and Olkin (1997), B was taken to be B(p) = βp/ {1− (1− β)p} for
β > 0. The distributions so generated using (1) will be referred to as Marshall Olkin
G distributions. Since Marshall and Olkin (1997), many other approaches have been pro-
posed. We mention: exponentiated G distributions due to Gupta, Gupta, and Gupta (1998),
beta G distributions due to Eugene, Lee, and Famoye (2002), gamma G distributions due to
Zografos and Balakrishnan (2009), KumaraswamyG distributions due to Cordeiro and Castro
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(2011), generalized beta G distributions due to Alexander, Cordeiro, Ortega, and Sarabia
(2012), beta extended G distributions due to Cordeiro, Ortega, and Silva (2012b), gamma
G distributions due to Ristić and Balakrishnan (2012), gamma uniformG distributions due to
Torabi and Montazeri (2012), beta exponentialG distributions due to Alzaatreh, Lee, and Famoye
(2013b), Weibull G distributions also due to Alzaatreh et al. (2013b), log gamma G I distribu-
tions due to Amini, MirMostafaee, and Ahmadi (2013), log gamma G II distributions also due
to Amini et al. (2013), exponentiated generalized G distributions due to Cordeiro, Ortega, and da Cunha
(2013d), exponentiated KumaraswamyG distributions due to Lemonte, Barreto-Souza, and Cordeiro
(2013), geometric exponential Poisson G distributions due to Nadarajah, Cancho, and Ortega
(2013a), truncated-exponential skew-symmetricG distributions due to Nadarajah, Nassiri, and Mohammadpour
(2013b), modified beta G distributions due to Nadarajah, Teimouri, and Shih (2013c), and
exponentiated exponential Poisson G distributions due to Ristić and Nadarajah (2013).

The nineteen approaches and the corresponding families of G distributions are the ones that
we are aware of since 1997. Each of these family can be motivated by lifetime issues, as we
shall see in Section 2. The applications of these G distributions have been widespread. A list
of applications for each family of G distributions is given in Section 2.

The aim of this paper is to present a new contributed package for R (R Development Core Team
2014) that computes basic properties for any G distribution from each of the nineteen families.
The properties considered include the probability density function, cumulative distribution
function, quantile function, random numbers and measures inferred based on fitting the family
of distributions to some data. Calling sequences for the computation of all of these properties
are given in Section 2. Also given in Section 2 are explicit expressions for the probability
density, cumulative distribution and quantile functions. The computation of the measures of
inference is based on the package AdequacyModel. Illustrations of the practical use of the
new R package are given in Section 3. Finally, the robustness of the routines for random
number generation is checked by simulation in Section 4.

2. Families of distributions and R programs

Here, we list the nineteen families ofG distributions and the corresponding calling sequences to
compute the probability density function, cumulative distribution function, quantile function,
random numbers and measures of inference when the family of distributions is fitted to some
data. The latter include the following:� Maximum likelihood estimates, standard deviations and 95 percent confidence intervals

based on asymptotic normality;� Akaike Information Criterion;� Consistent Akaikes Information Criterion;� Bayesian Information Criterion;� Hannan-Quinn information criterion;� Cramer-von Misses statistic;� Anderson Darling statistic;
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The following format is used for the listing: the first line gives the expression for the probability
density function; the second line gives the expression for the cumulative distribution function;
the third line gives the expression for the quantile function; the fourth line gives the calling
sequence for the probability density function; the fifth line gives the calling sequence for
the cumulative distribution function; the sixth line gives the calling sequence for the quantile
function; the seventh line gives the calling sequence for random number generation; the eighth
line gives the calling sequence for the measures of inference.

The notation used for the calling sequences in the last five lines can be described as follows.

The spec (a character string) specifies the distribution corresponding to the probability den-
sity function, g(·), and the cumulative distribution function, G(·). The distribution should be
one that is recognized by R. It could be one of the distributions implemented in the R base
package or one of the distributions implemented in an R contributed package or one freshly
written by a user. In any case, there should be functions dspec, pspec and qspec, computing
the probability density function, cumulative distribution function and quantile function of the
G distribution.

Some examples of spec are: spec = "norm", meaning that g(x) = (1/σ)ψ ((x− µ)/σ) and
G(x) = Φ ((x− µ)/σ), where ψ(·) and Φ(·) denote, respectively, the probability density func-
tion and the cumulative distribution function of a standard normal random variable; spec
= "lnorm", meaning that g(x) = {1/(σx)}ψ ((log x− µ)/σ) and G(x) = Φ ((log x− µ)/σ);
spec = "exp", meaning that g(x) = λ exp(−λx) and G(x) = 1− exp(−λx).
If log = TRUE then log of the probability density function will be returned. If log.p = TRUE

then log of the cumulative distribution function will be returned and the quantile function will
be computed for exp(p). If lower.tail = FALSE then one minus the cumulative distribution
function will be returned and the quantile function will be computed for 1 - p. The code n

denotes the number of random numbers to be generated.

Additional arguments in the form of ... can be supplied for each calling sequence. These
arguments could give inputs (e.g., parameter values) for the distribution specified by spec.
For example, if spec = "norm" then ... can be replaced by mean = 1, sd = 1 to mean
that g(x) = ψ(x − 1) and G(x) = Φ(x − 1); if spec = "lnorm" then ... can be replaced
by meanlog = 1, sdlog = 1 to mean that g(x) = ψ(log x − 1) and G(x) = Φ(log x − 1);
if spec = "exp" then ... can be replaced by rate = 1 to mean that g(x) = exp(−x) and
G(x) = 1− exp(−x).
In the calling sequence for the measures of inference, spec2 is limited to be one of the following
fourteen distributions:� Chi-square ("chisq") with

g(x) = Γ−1
(r

2

)

2−
r

2x
r

2
−1 exp

(

−x
2

)

for x > 0 and r > 0.
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g(x) = r exp(−rx)

for x > 0 and r > 0.� F ("f") with

g(x) ==
Γ
(

r+s
2

)

Γ(r/2)Γ(s/2)

(r

s

)
r

2

x
r

2
−1
(

1 +
r

s
x
)−( r+s

2 )

for x > 0, r > 0 and s > 0.� Gamma ("gamma") with

g(x) = [srΓ(r)]−1 xr−1 exp
(

−x
s

)

for x > 0, r > 0 and s > 0.� Lognormal ("lognormal") with

g(x) =
(√

2πsx
)−1

exp

[

−1

2

(

log(x)− r

s

)2
]

for x > 0, r > 0 and s > 0.� Weibull ("weibull") with

g(x) =
(r

s

)(x

s

)r−1
exp

[

−
(x

s

)r]

for x > 0, r > 0 and s > 0.� Burr XII ("burrxii") with

g(x) = rsxs−1 (1 + xs)−r−1

for x > 0, r > 0 and s > 0.� Chen ("chen") with

g(x) = rsxr−1 exp (xr) exp {−s [exp (xr)− 1]}

for x > 0, r > 0 and s > 0.� Frechet ("frechet") with

g(x) = rs−1 exp

[

−
(x

s

)−r
]

(x

s

)−r−1

for x > 0, r > 0 and s > 0.
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g(x) = s exp
{

rx− s

r
[exp(rx)− 1]

}

for x > 0, r > 0 and s > 0.� Linear failure rate ("lfr") with

g(x) = (r + sx) exp

(

−rx− sx2

2

)

for x > 0, r > 0 and s > 0.� Log-logistic ("log-logistic") with

g(x) = rs−rxr−1
[(x

s

)r
+ 1
]−2

for x > 0, r > 0 and s > 0.� Lomax ("lomax") with

g(x) = rs (1 + rx)−(s+1)

for x > 0, r > 0 and s > 0.� Rayleigh ("rayleigh") with

g(x) = 2rx exp
(

−rx2
)

for x > 0 and r > 0.

Each of these distributions is defined on the positive real line and has one or two parameters.
These distributions in fact include the most popular distributions for lifetime modeling. As
we shall see the nineteen families of distributions can be motivated by lifetime issues.

In the calling sequence for the measures of inference, data must be a vector of data values
for which the family of distributions is to be fitted. starts must be a vector of initial values
for the parameters of the family of distributions and those of g. The vector must contain
the initial values for the parameters of the family of distributions in the order specified by
the calling sequence for the probability density function, and then the initial value for r if
g has only one parameter. The vector must contain the initial values for the parameters of
the family of distributions in the order specified by the calling sequence for the probability
density function, then the initial value for r and then the initial value for s if g has two
parameters. method is the method for optimizing the log likelihood function. It can be one
of "Nelder-Mead", "BFGS", "CG", "L-BFGS-B" or "SANN". The default is "BFGS". The option
"L-BFGS-B" can be used only if each parameter specified by starts takes values on the
positive real line. The details of these options can be found in the manual pages for optim.

For each of the nineteen families of G distributions, we now list motivation, particular mem-
bers of the family studied in the literature and the applications they have received.
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Beta exponential G distributions due to Alzaatreh et al. (2013b):

f(x) =
λ

B(a, b)
g(x) [1−G(x)]λb−1

{

1− [1−G(x)]λ
}a−1

,

F (x) = 1− I[1−G(x)]λ (λ(b− 1) + 1, a) ,

F−1(p) = G−1

(

1−
{

I−1
1−p (λ(b− 1) + 1, a)

}1/λ
)

,

dbetaexpg(x, spec, lambda = 1, a = 1, b = 1, log = FALSE, ...),

pbetaexpg(x, spec, lambda = 1, a = 1, b = 1, log.p = FALSE, lower.tail = TRUE, ...),

qbetaexpg(p, spec, lambda = 1, a = 1, b = 1, log.p = FALSE, lower.tail = TRUE, ...),

rbetaexpg(n, spec, lambda = 1, a = 1, b = 1, ...),

mbetaexpg(spec2, data, starts, method = "BFGS")

for x in the range of g, 0 ≤ p ≤ 1, λ > 0, the first shape parameter, a > 0, the second shape
parameter, and b > 0, the third shape parameter, where Ix(a, b) =

∫ x
0 t

a−1(1− t)b−1dt/B(a, b)

denotes the incomplete beta function ratio, B(a, b) =
∫ 1
0 t

a−1(1 − t)b−1dt denotes the beta
function, and I−1

x (a, b) denotes the inverse function of Ix(a, b). The default values for λ, a
and b are 1.

Beta extended G distributions due to Cordeiro et al. (2012b):

f(x) =
αg(x)

B(a, b)
{1− exp [−αG(x)]}a−1 exp [−αbG(x)] ,

F (x) = I1−exp[−αG(x)](a, b),

F−1(p) = G−1

(

− 1

α
log
[

1− I−1
p (a, b)

]

)

,

dbeg(x, spec, alpha = 1, a = 1, b = 1, log = FALSE, ...),

pbeg(x, spec, alpha = 1, a = 1, b = 1, log.p = FALSE, lower.tail = TRUE, ...),

qbeg(p, spec, alpha = 1, a = 1, b = 1, log.p = FALSE, lower.tail = TRUE, ...),

rbeg(n, spec, alpha = 1, a = 1, b = 1, ...),

mbeg(spec2, data, starts, method = "BFGS")

for x in the range of g, 0 ≤ p ≤ 1 − exp(−α), α > 0, the scale parameter, a > 0, the first
shape parameter, and b > 0, the second shape parameter. The default values for α, a and b
are 1.

Beta extended G distributions have been used to model lifetimes of mechanical components
(Cordeiro et al. 2012b).

Beta G distributions due to Eugene et al. (2002):

f(x) =
1

B(a, b)
g(x) [G(x)]a−1 [1−G(x)]b−1 ,

F (x) = IG(x)(a, b),

F−1(p) = G−1
(

I−1
p (a, b)

)

,

dbetag(x, spec, a = 1, b = 1, log = FALSE, ...),

pbetag(x, spec, a = 1, b = 1, log.p = FALSE, lower.tail = TRUE, ...),
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qbetag(p, spec, a = 1, b = 1, log.p = FALSE, lower.tail = TRUE, ...),

rbetag(n, spec, a = 1, b = 1, ...),

mbetag(spec2, data, starts, method = "BFGS")

for x in the range of g, 0 ≤ p ≤ 1, a > 0, the first shape parameter, and b > 0, the second
shape parameter. The default values for a and b are 1.

These distributions were motivated to model the failure time of a a-out-of-a + b − 1 system
when the failure times of the components are independent and identical random variables
with cumulative distribution function G.

Particular beta G distributions studied in the literature include the beta Birnbaum-Saunders
distribution (Cordeiro and Lemonte 2011a), the beta Burr III distribution (Gomes, da Silva, Cordeiro, and Ortega
2013), the beta Burr XII distribution (Paranaba, Ortega, Cordeiro, and Pescim 2011), the
beta Cauchy distribution (Alshawarbeh, Famoye, and Lee 2014), the beta Dagum distribu-
tion (Domma and Condino 2013), the beta exponential distribution (Nadarajah and Kotz
2006), the beta exponential geometric distribution (Bidram 2012; Nassar and Nada 2012),
the beta exponentiated Pareto distribution (Zea, Silva, Bourguignon, Santos, and Cordeiro
2012), the beta exponentiated Weibull distribution (Cordeiro, Gomes, da Silva, and Ortega
2013c), the beta Frechet distribution (Barreto-Souza, Cordeiro, and Simas 2011), the beta
gamma distribution (Kong, Carl, and Sepanski 2007), the beta generalized exponential dis-
tribution (Barreto-Souza, Santos, and Cordeiro 2010), the beta generalized gamma distri-
bution (Cordeiro, Castellares, Montenegro, and de Castro 2013a), the beta generalized half
normal geometric distribution (Ramires, Ortega, Cordeiro, and Hamedani 2013), the beta
generalized Lindley distribution (Oluyede and Yang 2014), the beta generalized logistic dis-
tribution (Morais, Cordeiro, and Cysneiros 2013), the beta generalized normal distribution
(Cintra, Rego, Cordeiro, and Nascimento 2014), the beta generalized Pareto distribution (Mahmoudi
2011; Nassar and Nada 2011), the beta generalized Rayleigh distribution (Cordeiro, Cristino, Hashimoto, and
2013b), the beta generalized Weibull distribution (Singla, Jain, and Sharma 2012), the beta
Gompertz distribution (Jafari, Tahmasebi, and Alizadeh 2014), the beta Gumbel distribu-
tion (Nadarajah and Kotz 2004), the beta half-Cauchy distribution (Cordeiro and Lemonte
2011b), the beta inverse Rayleigh distribution (Leao, Saulo, Bourguignon, Cintra, Rego, and Cordeiro
2014), the beta inverse Weibull distribution (Hanook, Shahbaz, Mohsin, and Golam Kibria
2013), the beta linear failure rate distribution (Jafari and Mahmoudi 2014), the beta Laplace
distribution (Kozubowski and Nadarajah 2008; Cordeiro and Lemonte 2011c), the beta Lind-
ley distribution (Merovci and Sharma 2014), the beta lognormal distribution (Montenegro and Cordeiro
2013), the beta Lomax distribution (Rajab, Aleem, Nawaz, and Daniya 2013), the beta mod-
ified Weibull distribution (Silva, Ortega, and Cordeiro 2010), the beta Moyal distribution
(Cordeiro, Nobre, Pescim, and Ortega 2014a), the beta Nakagami distribution (Shittu and Adepoju
2013), the beta normal distribution (Eugene et al. 2002), the beta Pareto distribution (Akinsete, Famoye, and
2008), the beta power distribution (Cordeiro and Brito 2012), the beta power exponential dis-
tribution (Adepoju, Chukwu, and Wang 2014), the beta skew normal distribution (Mameli and Musio
2013), the beta transmuted Weibull distribution (Pal and Tiensuwan 2014), the beta trun-
cated Pareto distribution (Lourenzutti, Duarte, and Azevedo 2014), the beta Weibull geomet-
ric distribution (Cordeiro, Silva, and Ortega 2013e; Bidram, Behboodian, and Towhidi 2013),
the beta Weibull Poisson distribution (Percontini, Blas, and Cordeiro 2013) and the beta
weighted Weibull distribution (Idowu and Ikegwu 2013; Badmus and Bamiduro 2014).

Beta G distributions have been used to model: adult numbers for Tribolium Castaneum
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and Tribolium Confusum (Eugene et al. 2002; Kong et al. 2007); breaking strength of glass
fibers (Barreto-Souza et al. 2010, 2011; Cordeiro and Lemonte 2011a; Cordeiro et al. 2013a;
Domma and Condino 2013; Adepoju et al. 2014; Alshawarbeh et al. 2014); breaking stress
of carbon fibers (Barreto-Souza et al. 2011; Cordeiro and Lemonte 2011a; Alshawarbeh et al.
2014; Leao et al. 2014; Oluyede and Yang 2014); carbon monoxide measurements in several
brands of cigarettes (Cordeiro et al. 2013c); daily ozone level measurements in New York
(Cordeiro et al. 2013e); exceedances of flood peaks of the Wheaton river in Yukon Terri-
tory, Canada (Akinsete et al. 2008; Mahmoudi 2011; Alshawarbeh et al. 2014; Cordeiro et al.
2014a); failure times of a polyster/viscose yarn in a textile experiment (Pal and Tiensuwan
2014); failure times of motorettes with a new insulation (Cordeiro et al. 2013c; Pal and Tiensuwan
2014); failure times of turbocharger of one type of engine (Singla et al. 2012); fatigue life of
6061-T6 aluminum coupons cut parallel with the direction of rolling (Mahmoudi 2011; Bidram
2012; Bidram et al. 2013); fatigue life of bearings of a certain type (Montenegro and Cordeiro
2013); flood data for the Floyd river located in James, Iowa, USA (Akinsete et al. 2008);
household income and consumption in Italy (Domma and Condino 2013); lifetimes of mechan-
ical components (Silva et al. 2010; Badmus and Bamiduro 2014; Jafari et al. 2014); maximum
values of monthly flood rates of the Castelo river, Brazil (Lourenzutti et al. 2014); monthly
actual taxes revenue in Egypt (Nassar and Nada 2011); national index of consumer prices of
Brazil corresponding to health and personal care (Cordeiro and Lemonte 2011c); number of
successive failures of the air-conditioning system of each number of a fleet of Boeing 720 jet
airplanes (Nassar and Nada 2012; Bidram et al. 2013); remission times of a random sample of
bladder cancer patients (Zea et al. 2012; Merovci and Sharma 2014; Oluyede and Yang 2014);
repair times for an airborne communication transceiver (Cordeiro et al. 2013b; Percontini et al.
2013; Cordeiro et al. 2014a); SAR image processing (Cintra et al. 2014); short-term and long-
term outcomes of constraint induced movement therapy after stroke (Nassar and Nada 2012);
strength of ball bearings (Nassar and Nada 2012); stress-rupture life of kevlar epoxy strands
subjected to constant sustained pressure (Cordeiro et al. 2013b); survival times of cutaneous
melanoma (a type of malignant cancer) patients (Paranaba et al. 2011); survival times of
guinea pigs injected with different doses of tubercle bacilli (Cordeiro and Lemonte 2011b;
Merovci and Sharma 2014); survival times of myelogenous leukemia patients (Mahmoudi
2011); times to first failure of devices (Jafari and Mahmoudi 2014).

Exponentiated exponential Poisson G distributions due to Ristić and Nadarajah (2013):

f(x) = aλ {1− exp(−λ)}−1 g(x)Ga−1(x) exp [−λGa(x)] ,

F (x) = {1− exp(−λ)}−1 {1− exp [−λGa(x)]} ,

F−1(p) = G−1

(

[

− 1

λ
log {1− p [1− exp(−λ)]}

]1/a
)

,

deepg(x, spec, lambda = 1, a = 1, log = FALSE, ...),

peepg(x, spec, lambda = 1, a = 1, log.p = FALSE, lower.tail = TRUE, ...),

qeepg(p, spec, lambda = 1, a = 1, log.p = FALSE, lower.tail = TRUE, ...),

reepg(n, spec, lambda = 1, a = 1, ...),

meepg(spec2, data, starts, method = "BFGS")

for x in the range of g, 0 ≤ p ≤ 1, λ > 0, the scale parameter, and a > 0, the shape parameter.
The default values for λ and a are 1.
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These distributions were motivated to model the time to failure of the first out of a Poisson
number of systems functioning independently where each system has a fixed number of parallel
units and their failure times are independent and identical random variables with cumulative
distribution function G. These distributions have been used to model the daily average air
temperature (F) in Cairo (Ristić and Nadarajah 2013).

Exponentiated generalized G distributions due to Cordeiro et al. (2013d):

f(x) = abg(x) [1−G(x)]a−1 {1− [1−G(x)]a}b−1 ,

F (x) = {1− [1−G(x)]a}b ,

F−1(p) = G−1

(

1−
(

1− p1/b
)1/a

)

,

deg(x, spec, a = 1, b = 1, log = FALSE, ...),

peg(x, spec, a = 1, b = 1, log.p = FALSE, lower.tail = TRUE, ...),

qeg(p, spec, a = 1, b = 1, log.p = FALSE, lower.tail = TRUE, ...),

reg(n, spec, a = 1, b = 1, ...),

meg(spec2, data, starts, method = "BFGS")

for x in the range of g, 0 ≤ p ≤ 1, a > 0, the first shape parameter, and b > 0, the second
shape parameter. The default values for a and b are 1.

These distributions were motivated to model the failure of time of a system having b units
functioning in parallel and each of these units have a subunits functioning in series. The
failure times of the subunits are assumed to be independent and identical with cumulative
distribution function G.

Particular exponentiated generalized G distributions studied in the literature include the
exponentiated generalized Birnbaum-Saunders distribution (Cordeiro and Lemonte 2014).

Exponentiated generalized G distributions have been used to model: breaking stress of carbon
fibers (Cordeiro et al. 2013d); effects of mechanical damage on banana fruits (Cordeiro et al.
2013d); exceedances of flood peaks of the Wheaton river near Carcross in Yukon Territory,
Canada (Cordeiro et al. 2013d; Cordeiro and Lemonte 2014); lifetimes for industrial devices
put on life test at time zero (Cordeiro and Lemonte 2014); stress-rupture life of kevlar epoxy
strands subjected to constant sustained pressure (Cordeiro et al. 2013d).

Exponentiated G distributions due to Gupta et al. (1998):

f(x) = ag(x)Ga−1(x),

F (x) = Ga(x),

F−1(p) = G−1
(

p1/a
)

,

dexpg(x, spec, a = 1, log = FALSE, ...),

pexpg(x, spec, a = 1, log.p = FALSE, lower.tail = TRUE, ...),

qexpg(p, spec, a = 1, log.p = FALSE, lower.tail = TRUE, ...),

rexpg(n, spec, a = 1, ...),

mexpg(spec2, data, starts, method = "BFGS")

for x in the range of g, 0 ≤ p ≤ 1 and a > 0, the shape parameter. The default value for a is
1.
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These distributions were motivated to model the failure of time of a system having a units
functioning in parallel the failure times of which are assumed to be independent and identical
with cumulative distribution function G.

Particular exponentiated G distributions studied in the literature include the exponenti-
ated Frechet distribution (Nadarajah and Kotz 2003), the exponentiated gamma distribu-
tion (Nadarajah and Gupta 2007), the exponentiated generalized inverse Weibull distribution
(Elbatal and Muhammed 2014), the exponentiated Gumbel distribution (Nadarajah 2006),
the exponentiated Lomax distribution (Abdul-Moniem and Abdel-Hameed 2012; Salem 2014),
the exponentiated Pareto distribution (Shawky and Abu-Zinadah 2009) and the exponenti-
ated transmuted Weibull distribution (Hady and Ebraheim 2014).

Exponentiated G distributions have been used to model: annual maximum daily rainfall
from Orlando, Florida (Nadarajah 2006); drought data from Nebraska (Nadarajah and Gupta
2007); remission times of a random sample of bladder cancer patients (Elbatal and Muhammed
2014).

Exponentiated Kumaraswamy G distributions due to Lemonte et al. (2013):

f(x) = abcg(x)Ga−1(x) [1−Ga(x)]b−1
{

1− [1−Ga(x)]b
}c−1

,

F (x) =
{

1− [1−Ga(x)]b
}c
,

F−1(p) = G−1

(

{

1−
[

1− p1/c
]1/b

}1/a
)

,

dexpkumg(x, spec, a = 1, b = 1, c = 1, log = FALSE, ...),

pexpkumg(x, spec, a = 1, b = 1, c = 1, log.p = FALSE, lower.tail = TRUE, ...),

qexpkumg(p, spec, a = 1, b = 1, c = 1, log.p = FALSE, lower.tail = TRUE, ...),

rexpkumg(n, spec, a = 1, b = 1, c = 1, ...),

mexpkumg(spec2, data, starts, method = "BFGS")

for x in the range of g, 0 ≤ p ≤ 1, a > 0, the first shape parameter, b > 0, the second shape
parameter, and c > 0, the third shape parameter. The default values for a, b and c are 1.

These distributions were motivated to model the failure of time of a system having c units
functioning in parallel and each of these units have b subunits functioning in series and each of
these subunits have a subsubunits functioning in parallel. The failure times of the subsubunits
are assumed to be independent and identical with cumulative distribution function G. These
distributions have been applied model lifetimes (Lemonte et al. 2013).

Gamma G I distributions due to Zografos and Balakrishnan (2009):

f(x) =
1

Γ(a)
g(x) {− log [1−G(x)]}a−1 ,

F (x) = Q (a,− log [1−G(x)]) ,

F−1(p) = G−1
(

1− exp
[

−Q−1(a, p)
])

,

dgammag1(x, spec, a = 1, log = FALSE, ...),

pgammag1(x, spec, a = 1, log.p = FALSE, lower.tail = TRUE, ...),

qgammag1(p, spec, a = 1, log.p = FALSE, lower.tail = TRUE, ...),
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rgammag1(n, spec, a = 1, ...),

mgammag1(spec2, data, starts, method = "BFGS")

for x in the range of g, 0 ≤ p ≤ 1, and a > 0, the shape parameter, where Q(a, x) =
∫ x
0 t

a−1 exp(−t)dt/Γ(a) denotes the regularized incomplete gamma function, Γ(a) =
∫∞
0 ta−1 exp(−t)dt

denotes the gamma function, and Q−1(a, x) denotes the inverse function of Q(a, x). The de-
fault value for a is 1.

These distributions were constructed as the distribution of the ath upper record value for a
random sample from the cumulative distribution function G.

Particular gamma G I distributions studied in the literature include the gamma Dagum distri-
bution (Oluyede, Huang, and Pararai 2014), the gamma exponentiated Weibull distribution
(Castellares and Lemonte 2014), the gamma extended Frechet distribution (da Silva, de Andrade, Maciel, Camp
2013), the gamma half normal distribution (Alzaatreh and Knight 2013), the gamma inverse
Weibull distribution (Pararai, Warahena-Liyanage, and Oluyede 2014), the gamma linear fail-
ure rate distribution (Cordeiro, Ortega, and Popovic 2014b), the gamma log-logistic distri-
bution (Ramos, Cordeiro, Marinho, Dias, and Hamedani 2013), the gamma logistic distribu-
tion (Castellares, Santos, Montenegro, and Cordeiro 2015), the gamma Lomax distribution
(Cordeiro, Ortega, and Popovic 2015) and the gamma normal distribution (Alzaatreh, Famoye, and Lee
2014).

GammaG distributions have been used to model: breaking stress of carbon fibers (Alzaatreh et al.
2014; Cordeiro et al. 2014b); flood levels for the Susquehanna river at Harrisburg, PA (Alzaatreh and Knight
2013); gene expression levels on human cancer cells (Castellares et al. 2015); number of mil-
lion of revolutions before failure of ball bearings in a life testing experiment (Pararai et al.
2014); number of successive failures for the air conditioning system of each member in a fleet
of Boeing 720 jet airplanes (Oluyede et al. 2014); remission times of a random sample of
bladder cancer patients (Cordeiro et al. 2015; Oluyede et al. 2014; Castellares and Lemonte
2014); salaries of professional baseball players (Oluyede et al. 2014); strengths of glass fibers
(Alzaatreh et al. 2014); survival times of breast cancer patients (Ramos et al. 2013); survival
times of cutaneous melanoma (a type of malignant cancer) patients (Cordeiro et al. 2014b);
survival times of guinea pigs injected with different doses of tubercle bacilli (Pararai et al.
2014); tensile strength for single-carbon fibers (Alzaatreh and Knight 2013); the cDNA mi-
croarray data of the NC160 cancer cell lines (Castellares et al. 2015); waiting times between
consecutive eruptions of the Kiama Blowhole (da Silva et al. 2013).

Gamma G II distributions due to Ristić and Balakrishnan (2012):

f(x) =
1

Γ(a)
g(x) {− logG(x)}a−1 ,

F (x) = 1−Q (a,− logG(x)) ,

F−1(p) = G−1
(

exp
[

−Q−1(a, 1 − p)
])

,

dgammag2(x, spec, a = 1, log = FALSE, ...),

pgammag2(x, spec, a = 1, log.p = FALSE, lower.tail = TRUE, ...),

qgammag2(p, spec, a = 1, log.p = FALSE, lower.tail = TRUE, ...),

rgammag2(n, spec, a = 1, ...),

mgammag2(spec2, data, starts, method = "BFGS")

for x in the range of g, 0 ≤ p ≤ 1, and a > 0, the shape parameter. The default value for a
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is 1.

These distributions were constructed as the distribution of the ath lower record value for a
random sample from the cumulative distribution function G.

Particular gamma G II distributions studied in the literature include the gamma exponential
distribution (Ristić and Balakrishnan 2012) and the gamma exponentiated Weibull distribu-
tion (Pinho, Cordeiro, and Nobre 2012).

Gamma G distributions have been used to model: annual maximum precipitation for one
rain gauge in Fort Collins, Colorado (Ristić and Balakrishnan 2012); daily minimum wind
speed at the Midwest ISO area in the USA (Pinho et al. 2012); survival times of guinea
pigs which received a dose of tubercle bacilli (Ristić and Balakrishnan 2012); the number
of successive failures of the air conditioning system of a fleet of Boeing 720 jet airplanes
(Ristić and Balakrishnan 2012).

Gamma uniform G distributions due to Torabi and Montazeri (2012):

f(x) =
1

Γ(a)

g(x)

[1−G(x)]2

[

G(x)

1−G(x)

]a−1

exp

[

− G(x)

1−G(x)

]

,

F (x) = Q

(

a,
G(x)

1−G(x)

)

,

F−1(p) = G−1

(

Q−1(a, p)

1 +Q−1(a, p)

)

,

dgammag(x, spec, a = 1, log = FALSE, ...),

pgammag(x, spec, a = 1, log.p = FALSE, lower.tail = TRUE, ...),

qgammag(p, spec, a = 1, log.p = FALSE, lower.tail = TRUE, ...),

rgammag(n, spec, a = 1, ...),

mgammag(spec2, data, starts, method = "BFGS")

for x in the range of g, 0 ≤ p ≤ 1, and a > 0, the shape parameter. The default value for a
is 1.

These distributions were constructed by considering the distribution of G−1 (W/(1 +W )),
where W is a gamma random variable. These distributions have been used to model survival
times of leukemia patients (Torabi and Montazeri 2012).

Generalized beta G distributions due to Alexander et al. (2012):

f(x) =
c

B(a, b)
g(x)Gac−1(x) [1−Gc(x)]b−1 ,

F (x) = IGc(x)(a, b),

F−1(p) = G−1
(

[

I−1
p (a, b)

]1/c
)

,

dgbg(x, spec, a = 1, b = 1, c = 1, log = FALSE, ...),

pgbg(x, spec, a = 1, b = 1, c = 1, log.p = FALSE, lower.tail = TRUE, ...),

qgbg(p, spec, a = 1, b = 1, c = 1, log.p = FALSE, lower.tail = TRUE, ...),

rgbg(n, spec, a = 1, b = 1, c = 1, ...),

mgbg(spec2, data, starts, method = "BFGS")
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for x in the range of g, 0 ≤ p ≤ 1, a > 0, the first shape parameter, b > 0, the second shape
parameter, and c > 0, the third shape parameter. The default values for a, b and c are 1.

Particular generalized beta G distributions studied in the literature include the generalized
beta exponentiated Pareto distribution (Mead 2014), the generalized beta gamma distribu-
tion (Marciano, Nascimento, Santos-Neto, and Cordeiro 2012) and the generalized beta log-
logistic distribution (Tahir, Mansoor, Zubair, and Hamedani 2014).

Generalized beta G distributions have been used to model: effects of mechanical damage on
banana fruits (Alexander et al. 2012); exceedances of flood peaks of the Wheaton river near
Carcross in Yukon Territory, Canada (Mead 2014); monthly actual taxes revenue in Egypt
(Mead 2014); survival times of breast cancer patients (Tahir et al. 2014); times of failure
and running times for a sample of devices from a field-tracking study of a larger system
(Alexander et al. 2012); times of unscheduled maintenance actions for the USS Halfbeak
number 4 main propulsion diesel engine (Marciano et al. 2012).

Geometric exponential Poisson G distributions due to Nadarajah et al. (2013a):

f(x) =
θ(1− η) [1− exp(−θ)] g(x) exp [−θ + θG(x)]

{1− exp(−θ)− η + η exp [−θ + θG(x)]}2
,

F (x) =
exp [−θ + θG(x)]− exp(−θ)

1− exp(−θ)− η + η exp [−θ + θG(x)]
,

F−1(p) = G−1

[

1

θ
log

{

[1− exp(−θ)− η] p+ exp(−θ)
(1− ηp) exp(−θ)

}]

,

dgepg(x, spec, theta = 1, eta = 0.5, log = FALSE, ...),

pgepg(x, spec, theta = 1, eta = 0.5, log.p = FALSE, lower.tail = TRUE, ...),

qgepg(p, spec, theta = 1, eta = 0.5, log.p = FALSE, lower.tail = TRUE, ...),

rgepg(n, spec, theta = 1, eta = 0.5, ...),

mgepg(spec2, data, starts, method = "BFGS")

for x in the range of g, 0 ≤ p ≤ 1, θ > 0, the first scale parameter, and 0 < η < 1, the second
scale parameter. The default values for θ and η are 1 and 0.5, respectively.

These distributions were motivated to model the time to failure of the first out of a geometric
number of systems functioning independently where each system has a Poisson number of
parallel units and their failure times are independent and identical random variables with
cumulative distribution function G. These distributions have been used to model adult num-
bers of Tribolium Confusum and failure times for epoxy insulation specimens in an accelerated
voltage life test (Nadarajah et al. 2013a).

Kumaraswamy G distributions due to Cordeiro and Castro (2011):

f(x) = abg(x)Ga−1(x) [1−Ga(x)]b−1 ,

F (x) = 1− [1−Ga(x)]b ,

F−1(p) = G−1

(

1−
[

1− (1− p)1/b
]1/a

)

,

dkumg(x, spec, a = 1, b = 1, log = FALSE, ...),

pkumg(x, spec, a = 1, b = 1, log.p = FALSE, lower.tail = TRUE, ...),

qkumg(p, spec, a = 1, b = 1, log.p = FALSE, lower.tail = TRUE, ...),
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rkumg(n, spec, a = 1, b = 1, ...),

mkumg(spec2, data, starts, method = "BFGS")

for x in the range of g, 0 ≤ p ≤ 1, a > 0, the first shape parameter, and b > 0, the second
shape parameter. The default values for a and b are 1.

These distributions were motivated to model the failure of time of a system having b units
functioning in series and each of these units have a subunits functioning in parallel. The
failure times of the subunits are assumed to be independent and identical with cumulative
distribution function G.

Particular Kumaraswamy G distributions studied in the literature include the Kumaraswamy
Birnbaum-Saunders distribution (Saulo, Leao, and Bourguignon 2012), the Kumaraswamy
Burr XII distribution (Paranaiba, Ortega, Cordeiro, and de Pascoa 2013), the Kumaraswamy
exponentiated Pareto distribution (Elbatal 2013b), the Kumaraswamy generalized exponenti-
ated Pareto distribution (Shams 2013a), the Kumaraswamy generalized gamma distribution
(de Pascoa, Ortega, and Cordeiro 2011), the Kumaraswamy generalized half normal distri-
bution (Cordeiro, Pescim, and Ortega 2012c), the Kumaraswamy generalized linear failure
rate distribution (Elbatal 2013a), the Kumaraswamy generalized Lomax distribution (Shams
2013b), the Kumaraswamy generalized Pareto Distribution (Nadarajah and Eljabri 2013),
the Kumaraswamy generalized Rayleigh distribution (Gomes, da Silva, Cordeiro, and Ortega
2014), the Kumaraswamy geometric distribution (Akinsete, Famoye, and Lee 2014), the Ku-
maraswamy Gumbel distribution (Cordeiro, Nadarajah, and Ortega 2012a), the Kumaraswamy
half-Cauchy distribution (Ghosh 2014), the Kumaraswamy inverse exponential distribution
(Oguntunde, Babatunde, and Ogunmola 2014), the Kumaraswamy inverse Rayleigh distri-
bution (Roges, de Gusmao, and Diniz 2014), the Kumaraswamy inverse Weibull distribution
(Shahbaz, Shahbaz, and Butt 2012), the KumaraswamyKumaraswamy distribution (El-Sherpieny and Ahmed
2014), the Kumaraswamy Lindley distribution (Cakmakyapan and Kadilar 2014), the Ku-
maraswamy log-logistic distribution (de Santana, Ortega, Cordeiro, and Silva 2012), the Ku-
maraswamymodified inverseWeibull distribution (Aryal and Elbata 2015), the Kumaraswamy
modified Weibull distribution (Cordeiro, Ortega, and Silva 2014c), the Kumaraswamy Pareto
distribution (Bourguignon, Silva, Zea, and Cordeiro 2013), the Kumaraswamy quasi Lindley
distribution (Elbatal and Elgarhy 2013) and the KumaraswamyWeibull distribution (Cordeiro, Ortega, and Nadara
2010).

Kumaraswamy G distributions have been used to model: breaking strengths of glass fibers
(Paranaiba et al. 2013); breaking strengths of polyster/viscose yarns (Aryal and Elbata 2015);
breaking stress of carbon fibers (Shams 2013b,a); carbon monoxide levels from several cigarette
brands (Gomes et al. 2014); exceedances by the river Nidd at HunsingoreWeir (Nadarajah and Eljabri
2013); exceedances of flood peaks of the Wheaton river near Carcross in Yukon Territory,
Canada (Bourguignon et al. 2013); failure times for epoxy insulation specimens (Gomes et al.
2014); failure times of mechanical components (Cordeiro et al. 2012c); flood data for the Floyd
river located in James, Iowa, USA (Cordeiro et al. 2012c); flood discharge of at least seven con-
secutive days and return period of 10 years in the Brazilian Pantanal (Cordeiro et al. 2012a);
frequencies of the purchases of a brand X breakfast cereals (Akinsete et al. 2014); lifetimes of
industrial devices put on life test at time zero (de Pascoa et al. 2011; Cordeiro et al. 2014c);
number of absences among shift-workers in a steel industry (Akinsete et al. 2014); stress-
rupture life of kevlar epoxy strands subjected to constant sustained pressure (Paranaiba et al.
2013); survival times of cutaneous melanoma (a type of malignant cancer) patients (de Santana et al.
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2012); survival times of guinea pigs injected with different doses of tubercle bacilli (Cordeiro et al.
2012c); survival times of patients given radiation therapy and radiation plus chemotherapy
(Cordeiro et al. 2014c); the number of millions revolutions reached by ball bearings before fa-
tigue failure (Ghosh 2014); times of failure and running times of devices from a field-tracking
study of a larger system (Cordeiro et al. 2010); times to serum reversal of children exposed to
HIV by vertical transmission (de Pascoa et al. 2011; de Santana et al. 2012; Paranaiba et al.
2013); times until bulls reach the weight of 160kg since birth (Roges et al. 2014).

Log gamma G I distributions due to Amini et al. (2013):

f(x) =
ba

Γ(a)
g(x) {− log [1−G(x)]}a−1 [1−G(x)]b−1 ,

F (x) = 1−Q (a,−b log [1−G(x)]) ,

F−1(p) = G−1

(

1− exp

[

−1

b
Q−1(a, 1− p)

])

,

dloggammag1(x, spec, a = 1, b = 1, log = FALSE, ...),

ploggammag1(x, spec, a = 1, b = 1, log.p = FALSE, lower.tail = TRUE, ...),

qloggammag1(p, spec, a = 1, b = 1, log.p = FALSE, lower.tail = TRUE, ...),

rloggammag1(n, spec, a = 1, b = 1, ...),

mloggammag1(spec2, data, starts, method = "BFGS")

for x in the range of g, 0 ≤ p ≤ 1, a > 0, the first shape parameter, and b > 0, the second
shape parameter. The default values for a and b are 1.

These distributions were motivated as the distribution of the ath upper b-record value for
a random sample from the cumulative distribution function G. They have been applied to
model weekly earnings of full-time wage and salary workers from the US Bureau of Labor
Statistics (Amini et al. 2013).

Log gamma G II distributions also due to Amini et al. (2013):

f(x) =
ba

Γ(a)
g(x) {− logG(x)}a−1Gb−1(x),

F (x) = Q (a,−b logG(x)) ,

F−1(p) = G−1

(

exp

[

−1

b
Q−1(a, p)

])

,

dloggammag2(x, spec, a = 1, b = 1, log = FALSE, ...),

ploggammag2(x, spec, a = 1, b = 1, log.p = FALSE, lower.tail = TRUE, ...),

qloggammag2(p, spec, a = 1, b = 1, log.p = FALSE, lower.tail = TRUE, ...),

rloggammag2(n, spec, a = 1, b = 1, ...),

mloggammag2(spec2, data, starts, method = "BFGS")

for x in the range of g, 0 ≤ p ≤ 1, a > 0, the first shape parameter, and b > 0, the second
shape parameter. The default values for a and b are 1.

These distributions were motivated as the distribution of the ath lower b-record value for
a random sample from the cumulative distribution function G. They have been applied to
model weekly earnings of full-time wage and salary workers from the US Bureau of Labor
Statistics (Amini et al. 2013).
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Marshall Olkin G distributions due to Marshall and Olkin (1997):

f(x) =
βg(x)

[β + (1− β)G(x)]2
,

F (x) =
G(x)

β + (1− β)G(x)
,

F−1(p) = G−1

(

βp

1− (1− β)p

)

,

dmog(x, spec, beta = 1, log = FALSE, ...),

pmog(x, spec, beta = 1, log.p = FALSE, lower.tail = TRUE, ...),

qmog(p, spec, beta = 1, log.p = FALSE, lower.tail = TRUE, ...),

rmog(n, spec, beta = 1, ...),

mmog(spec2, data, starts, method = "BFGS")

for x in the range of g, 0 ≤ p ≤ 1 and β > 0, the scale parameter. The default value for β is
1.

These distributions were motivated to model the time to failure of the first out of a geometric
number of systems. The failure times of the systems are independent and identical random
variables with cumulative distribution function G.

Particular Marshall Olkin G distributions studied in the literature include the Marshall-Olkin
asymmetric Laplace distribution (Krishna and Jose 2011), the Marshall-Olkin beta distri-
bution (Jose, Joseph, and Ristic 2009), the Marshall-Olkin Birnbaum-Saunders distribution
(Lemonte 2013), the Marshall-Olkin Burr type XII distribution (Al-Saiari, Baharith, and Mousa
2014), the Marshall-Olkin discrete uniform distribution (Sandhya and Prasanth 2014), the
Marshall-Olkin Frechet distribution (Krishna, Jose, Alice, and Ristic 2013), the Marshall-
Olkin gamma distribution (Ristic, Jose, and Ancy 2007), the Marshall-Olkin Laplace distribu-
tion (George and George 2013), the Marshall-Olkin Lindley distribution (Zakerzadeh and Mahmoudi
2012), the Marshall-Olkin log-logistic distribution (Gui 2013b), the Marshall-Olkin Lomax dis-
tribution (Ghitany, Al-Awadhi, and Alkhalfan 2007), the Marshall-Olkin MorgensternWeibull
distribution (Jose and Sebastian 2013), the Marshall-Olkin q-Weibull distribution (Jose, Naik, and Ristic
2010), the Marshall-Olkin Weibull distribution (Ghitany, Al-Hussaini, and Al-Jarallah 2005),
the Marshall-Olkin uniform distribution (Jose and Krishna 2011) and the Marshall-Olkin Zipf
distribution (Perez-Casany and Casellas 2014).

Marshall Olkin G distributions have been used to model: daily ozone measurements in New
York (Jose et al. 2009); daily weighted discharge of Neyyar river in Kerala (Jose et al. 2010);
frequency of occurrence of words in the novel Moby Dick by Herman Melville (Perez-Casany and Casellas
2014); length of time until a breakdown is recorded in electrical insulating (Al-Saiari et al.
2014); number of connections of a total of 225409 electronic mail addresses (Perez-Casany and Casellas
2014); number of days students attended a class for the whole year (Sandhya and Prasanth
2014); number of miles to first and succeeding major motor failures of buses operated by a
large city bus company (Gui 2013a); number of times that a given paper is cited in a given
database (Perez-Casany and Casellas 2014); permeability values from horizons of the Dom-
inquez field of Southern California (Jose et al. 2009); remission times of a random sample
of bladder cancer patients (Ghitany et al. 2005, 2007); survival times of guinea pigs injected
with different doses of tubercle bacilli (Krishna et al. 2013); vinyl chloride data obtained from
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clean up gradient monitoring wells (Zakerzadeh and Mahmoudi 2012); waiting times before
service of bank customers (Zakerzadeh and Mahmoudi 2012).

Modified beta G distributions due to Nadarajah et al. (2013c):

f(x) =
βa

B(a, b)

g(x) [G(x)]a−1 [1−G(x)]b−1

[1− (1− β)G(x)]a+b
,

F (x) = IβG(x)/{1+(β−1)G(x)}(a, b),

F−1(p) = G−1

(

I−1
p (a, b)

β − (β − 1)I−1
p (a, b)

)

,

dmbetag(x, spec, beta = 1, a = 1, b = 1, log = FALSE, ...),

pmbetag(x, spec, beta = 1, a = 1, b = 1, log.p = FALSE, lower.tail = TRUE, ...),

qmbetag(p, spec, beta = 1, a = 1, b = 1, log.p = FALSE, lower.tail = TRUE, ...),

rmbetag(n, spec, beta = 1, a = 1, b = 1, ...),

mmbetag(spec2, data, starts, method = "BFGS")

for x in the range of g, 0 ≤ p ≤ 1, β > 0, the scale parameter, a > 0, the first shape parameter,
and b > 0, the second shape parameter. The default values for β, a and b are 1.

These distributions were constructed by combining beta G distributions due to Eugene et al.
(2002) with Marshall Olkin G distributions due to (Marshall and Olkin 1997). They have
been applied to model S & P / IFC (Standard & Poor’s / International Finance Corporation)
global daily price indices in United States dollars for South Africa (Nadarajah et al. 2013c).

Truncated-exponential skew-symmetric G distributions due to Nadarajah et al. (2013b):

f(x) =
λ

1− exp(−λ)g(x) exp {−λG(x)} ,

F (x) =
1− exp {−λG(x)}

1− exp(−λ) ,

F−1(p) = G−1

(

− 1

λ
log {1− p (1− exp(−λ))}

)

,

dtessg(x, spec, lambda = 1, log = FALSE, ...),

ptessg(x, spec, lambda = 1, log.p = FALSE, lower.tail = TRUE, ...),

qtessg(p, spec, lambda = 1, log.p = FALSE, lower.tail = TRUE, ...),

rtessg(n, spec, lambda = 1, ...),

mtessg(spec2, data, starts, method = "BFGS")

for x in the range of g, 0 ≤ p ≤ 1, and −∞ < λ < ∞, the skewness parameter. The default
value for λ is 1.

These distributions were constructed as modifications of Azzalini (Azzalini 1985)’s skew-
symmetric distributions. They have been used to model annual maximum daily rainfall data
for 14 locations in west central Florida: Clermont, Brooksville, Orlando, Bartow, Avon Park,
Arcadia, Kissimmee, Inverness, Plant City, Tarpon Springs, Tampa International Airport, St
Leo, Gainesville and Ocala (Nadarajah et al. 2013b).
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Weibull G distributions also due to Alzaatreh et al. (2013b):

f(x) =
c

βc
g(x)

1−G(x)

{

− log [1−G(x)]

β

}c−1

exp

{

−
[

− log [1−G(x)]

β

]c}

,

F (x) = 1− exp

{[

− log [1−G(x)]

β

]c}

,

F−1(p) = G−1
(

1− exp
{

−β [− log(1− p)]1/c
})

,

dweibullg(x, spec, beta = 1, c = 1, log = FALSE, ...),

pweibullg(x, spec, beta = 1, c = 1, log.p = FALSE, lower.tail = TRUE, ...),

qweibullg(p, spec, beta = 1, c = 1, log.p = FALSE, lower.tail = TRUE, ...),

rweibullg(n, spec, beta = 1, c = 1, ...),

mweibullg(spec2, data, starts, method = "BFGS")

for x in the range of g, 0 ≤ p ≤ 1, β > 0, the scale parameter, and c > 0, the shape parameter.
The default values for β and c are 1.

Particular Weibull G distributions studied in the literature include the Weibull exponenti-
ated exponential distribution (Salem and Selim 2014) and the Weibull Pareto distribution
(Alzaatreh, Famoye, and Lee 2013a).

Weibull G distributions have been used to model: adult numbers for Tribolium Confusum
and Tribolium Castaneum cultured at 24C and Tribolium Confusum strain (Alzaatreh et al.
2013a); breaking stress of carbon fibers (Salem and Selim 2014).

The new package Newdistns (Nadarajah 2013) computes the probability density function,
f(x), the cumulative distribution function, F (x), and the quantile function, F−1(p), for each
of the nineteen families of G distributions. It also generates random numbers from each of
the nineteen families of G distributions. It also computes the measures of inference for each
of the nineteen families of G distributions. The package has been uploaded to CRAN, see

http://cran.r-project.org/web/packages/Newdistns/index.html.

3. Illustrations

Here, we provide three illustrations of the practical use of the package Newdistns.

The first illustration plots the probability density function of the beta-gamma distribution
for varying parameter values. We have taken the shape and scale parameters of the gamma
distribution to be one of (1, 1), (2, 2), (3, 1) or (5, 2). The shape parameters of the beta
distribution are taken to be 2 and 3.

The following codes will produce Figure 1, the plot of the probability density functions of the
beta-gamma distribution.

R> x <- seq(0.1, 10, 0.1)

R> y1 <- dbetag(x, "gamma", a = 2, b = 3, shape = 1, scale = 1)

R> y2 <- dbetag(x, "gamma", a = 2, b = 3, shape = 2, scale = 2)

R> y3 <- dbetag(x, "gamma", a = 2, b = 3, shape = 3, scale = 1)

R> y4 <- dbetag(x, "gamma", a = 2, b = 3, shape = 5, scale = 2)

http://cran.r-project.org/web/packages/Newdistns/index.html.
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R> xrange <- range(x)

R> yrange <- range(y1, y2, y3, y4)

R> plot(x, y1, type = "l", xlab = "x", ylab = "PDF",

+ col = "black", xlim = xrange, ylim = yrange)

R> par(new = TRUE)

R> plot(x, y2, type = "l", xlab = "", ylab = "",

+ col = "red", xlim = xrange, ylim = yrange)

R> par(new = TRUE)

R> plot(x, y3, type = "l", xlab = "", ylab = "",

+ col = "blue", xlim = xrange, ylim = yrange)

R> par(new = TRUE)

R> plot(x, y4, type = "l", xlab = "", ylab = "",

+ col = "brown", xlim = xrange, ylim = yrange)

R> legend(3, 1, legend = c("shape=1,scale=1",

+ "shape=2,scale=2",

+ "shape=3,sclae=1", "shape=5,scale=2"),

+ col = c("black", "red", "blue", "brown"), lty = 1)
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Figure 1: Probability density functions of the beta-gamma distribution.

The second illustration plots the cumulative distribution function of the beta-Student’s t
distribution for varying parameter values. We have taken the degree of freedom parameter
of the Student’s t distribution to be one of 1, 2, 5 or 10. The shape parameters of the beta
distribution are taken to be 20 and 3.
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The following codes will produce Figure 2, the plot of the cumulative distribution functions
of the beta-Student’s t distribution.

R> x <- seq(-1, 5, 0.1)

R> y1 <- pbetag(x, "t", a = 20, b = 3, df = 1)

R> y2 <- pbetag(x, "t", a = 20, b = 3, df = 2)

R> y3 <- pbetag(x, "t", a = 20, b = 3, df = 5)

R> y4 <- pbetag(x, "t", a = 20, b = 3, df = 10)

R> xrange <- range(x)

R> yrange <- c(0, 1)

R> plot(x, y1, type = "l", xlab = "x", ylab = "CDF",

+ col = "black", xlim = xrange, ylim = yrange)

R> par(new = TRUE)

R> plot(x, y2, type = "l", xlab = "", ylab = "",

+ col = "red", xlim = xrange, ylim = yrange)

R> par(new = TRUE)

R> plot(x, y3, type = "l", xlab = "", ylab = "",

+ col = "blue", xlim = xrange, ylim = yrange)

R> par(new = TRUE)

R> plot(x, y4, type = "l", xlab = "", ylab = "",

+ col = "brown", xlim = xrange, ylim = yrange)

R> legend(3, 0.4, legend = c(expression(nu==1),

+ expression(nu==2),

+ expression(nu==5), expression(nu==10)),

+ col = c("black", "red", "blue", "brown"), lty = 1)

The third illustration fits the beta-exponential distribution to a strength data reported by
Badar and Priest (1982) and reproduced in the code. The data represent the strength mea-
sured in GPA for single carbon fibers, and impregnated 1000-carbon fiber tows. Single fibers
were tested under tension at gauge lengths of twenty millimeters.

The following code fits the beta-exponential distribution to the strength data.

R> install.packages("AdequacyModel")

R> library(AdequacyModel)

R> x <- c(1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861,

+ 1.865, 1.944, 1.958, 1.966,

+ 1.997, 2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.14, 2.179, 2.224,

+ 2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 2.359, 2.382, 2.382,

+ 2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554, 2.566,

+ 2.57, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.770,

+ 2.773, 2.800, 2.809, 2.818, 2.821, 2.848, 2.88, 2.954, 3.012, 3.067,

+ 3.084, 3.090, 3.096, 3.128, 3.233, 3.433, 3.585, 3.585)

R> mbetag("exp",x,starts=c(1,1,1))

The output will be
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Figure 2: Cumulative distribution functions of the beta-Student’s t distribution.

$Estimates

MLE Std. Dev. Inf. 95% CI Sup. 95% CI

[1,] 25.4776988 6.1826328 13.3599612 37.595436

[2,] 14.9295430 22.8137357 -29.7845573 59.643643

[3,] 0.4148489 0.4541651 -0.4752984 1.304996

$Measures

AIC CAIC BIC HQIC W A Min(-log(Likelihood))

106.4235 106.7928 113.1259 109.0826 0.05017047 0.3683626 50.21177

$`Kolmogorov-Smirnov Test`
KS Statistic KS p-value

0.06003458 0.9647803

$`Convergence Status`
"Algorithm Converged"

This output shows that the maximized log-likelihood is −50.21177, the estimate of the first
shape parameter of the beta distribution is 25.4776988, the estimate of the second shape
parameter of the beta distribution is 14.9295430 and the estimate of the rate parameter
of the exponential distribution is 0.4148489. The output also gives the values of standard
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deviations, 95 percent confidence intervals based on asymptotic normality, Akaike Informa-
tion Criterion, Consistent Akaikes Information Criterion, Bayesian Information Criterion,
Hannan-Quinn information criterion, Cramer-von Misses statistic, Anderson Darling statistic,
Kolmogorov Smirnov test statistic and its p-value, and the convergence status. In particular,
the Kolmogorov-Smirnov test shows that the strength data can be adequately described by the
beta exponential distribution. We see that some of the lower confidence limits are negative,
this is a disadvantage of using asymptotic normality for constructing confidence intervals.

4. Checking of random number generation

In Section 2, we presented routines for random number generation from the nineteen families
of distributions. It is reasonable to check if these routines generate numbers that actually
follow the intended distribution. We performed this check by means of the following simulation
study:

1. generate a random sample of size n from the intended distribution using the routines
provided in Section 2;

2. compute the p-value of the one-sample Kolmogorov-Smirnov test that the sample comes
from the intended distribution;

3. repeat steps 1 and 2 one hundred times, giving p-values p1, p2, . . . , p100 say;

4. draw a boxplot of p1, p2, . . . , p100;

5. repeat steps 1 to 4 for n = 1, 2, . . . , 100.

We executed this simulation for each of the nineteen families and for a wide range of parameter
values encompassing each family.

The general conclusion from the boxplots was that the p-values were significantly above 0.05
for all n = 1, 2, . . . , 100 for all of the nineteen families and for all parameter values. Illus-
trations are given in Figures 3 to 6: Figure 3 shows the boxplots for the beta Student’s t
distribution with a = 2, b = 3 and one degree of freedom; Figure 4 shows the boxplots for
the beta exponential gamma distribution with λ = 1, a = 3, b = 3, the gamma shape param-
eter equal to 2 and gamma scale parameter equal to 1; Figure 5 shows the boxplots for the
exponentiated normal distribution with a = 3, normal mean equal to 1 and normal standard
deviation equal to 3; Figure 6 shows the boxplots for the generalized beta Weibull distribution
with a = 3, b = 2, c = 3, Weibull shape parameter equal to 4 and Weibull scale parameter
equal to 1.

5. Conclusions

We have developed a new R package for computing quantities of interest for nineteen families
of G distributions. Each family is flexible enough to encompass a wide range of uncountable
distributions. The quantities computed for each family include the probability density func-
tion, the cumulative distribution function, the quantile function, random numbers and several
measures of inference.
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Figure 3: p-values of the Kolmogorov-Smirnov test versus n for the beta Student’s t distribu-
tion.

As stated, the nineteen families are the recent ones that we are aware of. The package can
be updated if other families of the kind (1) are developed in the future.
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