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ABSTRACT 

 

Scooter emissions have attracted attention in recent years because of human exposure to their direct effects in urban areas. 

Trace toxics, such as polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) 

have thus become important in scooter emissions. In this work, ten Tier 5 and 6 scooters were tested using a 100-second 

model to analyze their PCDD/F and PCB emissions and compare the results with previous Tier 3 studies. Tier 5 and 6 

scooters emitted 1.86–2.91 and 0.133–0.298 pg WHO-TEQ Nm–3 of PCDD/Fs and PCBs, respectively. It was interesting to 

find that the PCDD/Fs were reduced by 94.6–97.4% and 99.4–99.6% in Tier 5 and 6 motors, respectively. The congener 

profiles of PCDD/Fs were affected by improving the emission control. The domination of highly chlorinated congeners 

shown in Tier 3 was reduced in Tier 5 with increases in low chlorinated PCDFs. This showed that de novo synthesis occurred 

and could be inhibited by the OBD system in Tier 6. The tailpipe renews reduced 60.0–93.8% of PCDD/Fs and 85.3–97.7% 

of PCB emissions, but several cases would still exhibit a delay for stable operation of a catalytic converter. The annual 

emissions of PCDD/F TEQ was calculated based on the statistics in 2019 and tested as 1.63 g WHO-TEQ. It could be 99.7% 

reduced to 3.55 mg by replacing all scooters with Tier 6. Consequently, the improvement of electronic fuel injection and on-

board diagnostics systems from a carburetor without feedback control not only reduced the regulated pollutants but 

effectively reduced PCDD/F emissions. 
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INTRODUCTION 

 

The rapid economic development and increasing population  
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leads to more environmental impact by human activities. 

The relative health risks are in terms of pollutant emission 

especially in the urban area (Goel and Guttikunda, 2015; 

Grivas et al., 2018; Wu et al., 2020). The highly intensive 

and complex industrial activities, the traffic emission is also 

an important contributor of urban atmospheric pollutants, 

including carbon monoxide (CO), hydrocarbons (HC), and 

nitrogen oxides (NOx) (Cheng et al., 2018, Tsai et al., 2019a), 

and other toxic pollutants in the urban atmosphere (Grivas 

et al., 2018, Dhital et al., 2019). The volatile organic carbons 

(VOCs) emissions are also concerned in the densely 

populated urban area (Tsai et al., 2018b). They could be 

contributed by both human life activity (Que et al., 2019) 

and locally traffic emission, when the secondary pollutants 

subsequently occurs from the atmospheric chemical reactions 



 
 

 

Chen et al., Aerosol and Air Quality Research, 20: 1495–1509, 2020 

 

1496

and remained in the air around the residents (Liu et al., 2017; 

Liu et al., 2020; Wu et al., 2020). Particulate matter (PM) 

pollution attracted more consideration from environmental 

and public health researchers. The physical and chemical 

characteristics of PM and their containing chemicals (e.g., 

heavy metals, air toxins, acids) could directly affect the 

human health (Tsai et al., 2018a; Lin et al., 2019b; Tsai et 

al., 2019a; Zhang et al., 2019). Ultrafine particle also becomes 

a recent issue for more deeply health effect on the respiratory 

system of the urban residents (Grana et al., 2017, Xiang et al., 

2018, 2019). Fortunately, most of the gaseous pollutants and 

PM from on-road vehicles could be measured (or monitored) 

by either standard method certified by EPA, the consumer-

grade air pollution measurement devices (Manibusan and 

Mainelis, 2020; Park et al., 2020), or even portable monitors. 

The control strategy could be approached smoothly, while 

the emerging measures could be on time. The only challenge 

of pollution issues would be that they cannot quantify some 

pollutants in a quick time. Unfortunately, those pollutants are 

usually more persistent and even toxic, such as polyaromatics 

and their halogenated compounds (Durant et al., 1996, 1999; 

Chen et al., 2018). 

Polychlorinated dibenzo-p-dioxins and dibenzofurans 

(PCDD/Fs) and polychlorinated biphenyls (PCBs) are semi-

volatile organic compounds (SVOCs) that could spread out 

in various media. They are considered as two important 

groups of persistence organic pollutants (POPs), which have 

a long half-life in the environment (Pirkle et al., 1989, 

Sinkkonen and Paasivirta, 2000) and even in the human 

body (Flesch-Janys, 1996; Gao et al., 2019). International 

Agency for Research on Cancer (IARC) classify 2378-

TeCDD in Group 1 (carcinogenic to human), when the other 

PCDD/Fs and dioxin-like PCBs (dl-PCBs) were probable 

human carcinogens (IARC, 1997; Iwata et al., 2004; IARC, 

2016). They are reported to have enzyme induction and 

endocrine effect (Li and Hansen, 1996), bioaccumulation, and 

magnification in many organisms. This persistence property 

led to spread widely around the world even in the place off 

the beaten track (Booth et al., 2013; Vecchiato et al., 2015; 

Corsolini et al., 2017; Ssebugere et al., 2019). Therefore, the 

PCDD/F and PCB exposures attracted prominent concern. 

PCDD/Fs and PCB were mainly emitted from waste 

incinerators, metallurgical processes, fossil fuel power plants, 

boilers, cement plants, and open burning when the on-road 

transport is a less contribution for PCDD/Fs and PCBs in 

most of the countries (Bawden et al., 2004; Quass et al., 

2004; Lohmann et al., 2007; Wang et al., 2012). In Taiwan, 

the total annual PCDD/F emissions have been reduced by 

83.8% from 329.5 g-TEQ yr–1 in 2002 to 53.3 g-TEQ yr–1 in 

2016 (Tu, 2018). The dominant emission sources were changed 

from the electric arc furnace (54.6%), waste incinerators 

(19.4%), and sinter plant (11.4%) in 2002 to the boiler 

combustion (23.6%), electric arc furnace (22.1%), sinter 

plant (17.7%), waste incinerators (10.0%), non-ferrous metal 

secondary smelting processes (9.6%), and fugitive sources 

(6.9%) in 2012 and remained the similar flat-distribution of 

PCDD/F sources until today. This could be resulted from 

that the stricter emission standards for specific stationary 

sources were established within 2003–2010. The PCDD/F 

emission seems to be well controlled in Taiwan. However, 

the real near-ground exposure levels of PCDD/Fs and PCBs 

were still not clear, especially the peak value occurred by 

traffic sources, since they could not be online continuous 

monitored and could increase the potential health risk in the 

urban area (Oehme et al., 1991; Broz et al., 2000; Chuang et 

al., 2010, Wheatley and Sadhra, 2010). More recently, the 

level of contribution of exhaust emissions from scooters and 

scooters to the contamination of ambient air was reported by 

30% in Rome City (Grana et al., 2017). A latest report showed 

there were 28% of PCDD/F came from traffic emissions in 

Busan, which is a heavily industrialized and densely 

populated city in South Korea (Jang et al., 2020). There are 

still no regulations on PCDD/F and PCBs emissions from 

mobile sources, while several studies have reported the 

technologies to reduce their emissions. 

The scooters could be considered a major contributor to 

traffic-related emissions in Asian cities (Chiang et al., 2014; 

Macedo et al., 2017; Hu et al., 2018). There are over 

350 million scooters around the world and keep increasing 

with the rise of the metropolitan population (Chiang et al., 

2014; Alves et al., 2015; Chernyshev et al., 2018). Among 

the global distribution of scooters, Asia is overriding followed 

by Europe, Latin America, North America, and Africa 

(DeMarini et al., 2004; Costagliola et al., 2014; Costagliola 

et al., 2016). Scooters are more flexible and convenient, 

especially in urban areas where traffic is intensively crowded 

(Durant et al., 1996, 1999). In recent years, the emission from 

the old model scooter was considered as the major source of 

air pollutants. It is expected to grow at a faster rate with no 

strategy to scrap off the older scooters (Alves et al., 2015; 

TWEPA, 2020), which contributes more regulated and 

unregulated pollutants related to environmental and human 

health because of their poor combustion quality. Besides, the 

two-stroke scooter was not performed ideal air-fuel ratio and 

led to higher air pollutant emission (Prati et al., 2011; Yao et 

al., 2013; Platt et al., 2014; Tsai et al., 2017; Tsai et al., 2020). 

In Taiwan, the number of scooters slightly decreased from 

15.9 million in 2010 to 14.0 million in 2019 (TWEPA, 

2020). Unfortunately, the density of the resident population 

remained very high in the major city (e.g., 9,732 people km–2 

in Taipei City), when the scooter density was also higher 

3,232 than most of the cities around the world (as shown in 

Fig. 1). The raising health risk by the exposure of tailpipe 

emissions could be then expectable. Today, the treatment 

technologies for HC, CO, NOx, VOC, and PM (Dhital et al., 

2019, Tsai et al., 2019b) were improved along with the 

generations of scooter emission standards (Tier 1 to Tier 6). 

Fig. 1 also shows the amount of Tier 1+2+3 scooter 

decreased, when the Tier 4 and 5 scooters dominates the on-

road vehicle emissions, leading to lower regulated pollutant 

levels. Fortunately, the motors fit Tier 6 and 7 (established 

in 2021) would increase. However, the unregulated toxic 

pollutants, such as PCDD/Fs and PCBs, were not showed to 

be simultaneously reduced by upgrading the older vehicles 

to the newer generations. 

Therefore, this study focuses on the comparison of the 

PCDD/F and PCB emissions between Tier 3- and Tier 5-

scooters, which have different fuel-feeding systems. Four-  
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Fig. 1. The amount and density of population and various-generation scooters in Taiwan. 

 

and two-stroke Tier 3 engines were also discussed for their 

different emissions. The effectivity of new fuel injection and 

treatment system on PCDD/F and PCB reductions were 

eventually confirmed. 

 

MATERIALS AND METHODS 

 

Tested Scooters 

There were thirty scooters selected from three leading 

brands (over 90% market share) in Taiwan, selected as the 

tested vehicles in the current research. They all had 4-stroke 

(4-ST), 125 cm3 displacement, and electronic fuel injection 

engines, which were manufactured in 2016, fitting the Tier 

5 and Tier 6 emission standards (as shown in Table 1). The 

major improvement to approach the stricter emission standards 

from Tier 3 to 5 was replacing the carburetor by electronic 

fuel injection (EFI) system, when the on-board diagnostics 

with an O2 sensor (OBD/O2) was further added into Tier 6 

scooter. These improvements would lower the pollutants in 

the exhaust. The testing fuels used in this study were 

provided by Chinese Petroleum Corporation. Their benzene, 

sulfur, and oxygen contents were 0.8 vol%, 10 mg kg–1, and 

2.7 wt%, respectively, as well as the fuel-containing aromatic 

and toxic substances were limited. For Tier 5 (abbr. T5) 

/Tier 6 (abbr. T6), the limits of CO, HC, and NOx were 

tightened to 2.0/1.14, 0.8/0.38 and, and 0.15/0.07 g km–1, 

respectively, while the advanced electronic fuel injection 

system and on-board diagnostics (OBD) with O2 sensor 

were equipped. The specifics of compared scooters selected 

from the previous studies were also listed in Table 1, includes 

six Tier 3, 4-stroke scooters (abbr. R3-4ST), and other six 

Tier 3, 2-stroke ones (abbr. R3-2ST). Besides, we investigated 

the emission effect of renewing the tailpipe from each brand 

of scooter. The replacement took place after the driving cycle, 

introduced in the following section tests for the older ones. 

 

Dynamometer and Gaseous Pollutant Monitoring 

The overall testing system for the current research could 

be classified into three parts, dynamometer unit, sampling 

unit, and vacuum system, which are illustrated in Fig. 2. The 

dynamometer unit is composed of an AXIS DYNO MOTO 

VX-12 (290 cm × 96.5 cm × 127 cm), a controlling computer, 

and the tested scooters. The maximum testing power, torque, 

and speed were 180 hp, 136 kg-m, and 262 km h–1, respectively, 

when the system could be driven by 12 V/60 Hz electricity 

power. 

The standard locomotive testing driving cycle in Taiwan 

is Urban Driving Cycle (UDC), which is a part of New 

European Driving Cycle (NEDC). This study further 

simplified the UDC to a 100-second model, which included 

29.70% idling, 24.75% acceleration, 18.81% cruising, and 

26.73% deceleration periods. This model operated all tested 

scooters, while the 100-second emission data of regulated 

pollutants, PCDD/F, and PCBs were simultaneously collected 

from an extended stack connected to the tailpipe of each 

scooter (as shown in Fig. 2). The gaseous pollutants were 

then monitored by an emission analyzer (HORIBA MEXA-

584L), which used a non-dispersive infrared (NDIR) sensor 

for CO (0.00–10.00% vol.), HC (0–10,000 ppmv), and CO2 

(0.00–20.00% vol.), as well as a yttrium-stabilized ZrO2 

(YSZ) electrochemical sensor for NOx (0–5,000 ppmv) and 

O2 (0.00–25.00 vol%) on-line monitoring. The precisions of 

CO, HC, and CO2 sensors were ±0.01% vol., ±3.3 ppmv, and 

0.17% vol., respectively. 

 

Sampling and Analyzes of PCDD/Fs and PCBs 

An isokinetic flue gas sampling procedure referred to 

USEPA Method 23A and NIEA A808.75 was used to collect 

the PCDD/F and PCB samples from an extended stack 

connected with the scooters’ tailpipes. The sampling train 

and vacuum system is illustrated in Fig. 2. The particulate 

phase of PCDD/Fs and PCBs were collected by a 70-mm 

quartz fiber filter paper (Pallflex®), which was pretreated by 

heating to 400°C for 6 hours with a high-temperature furnace 

and storage in electronic desiccator (47% relative humidity) 

for 24 hours before being weighed by an electronic balance 

(model CP225D, five-digit balance manufactured by Sartorius) 

to eliminate the interference of background medium. The  
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Table 1. Specifications of testing and referenced scooters. 

Scooters type 

(amounts of samples) 
Brand A (n = 4) Brand B (n = 3) Brand C (n = 3) R3-4ST (n = 6) R3-2ST (n = 6) 

Engine type 4-stroke 4-stroke 4-stroke 4-stroke 2-stroke 

Year of manufacture 2016 2016 2017 1998–2001 2003–2004 

Displacement (cm3) 125 125 125 50, 100, 125 50, 100 

Fuel feeding system EFI1 EFI1 EFI1 Carburetor Carburetor 

Mileage (km) 8,098–29,564 7,235–20,392 6,668–26,363 2,788–10,919 17,077–49,956 

APCS2 PUFF3 

TWC5 

PUFF3 

TWC5 

PUFF3 

TWC5 

OBD/O2 

NFF4 NFF4 

Emission standard Tier 5 Tier 5 Tier 6 Tier 3 Tier 3 

CO, gkm–1 2.00 2.00 0.38 3.50 3.50 

HC, gkm–1 0.80 0.80 1.14 - - 

NOx, gkm–1 0.15 0.15 0.07 - - 

Data resources This study (Chuang et al., 2010) 
1 Electronic fuel injection; 2 Air pollution control system; 3 Non-woven fabric filter; 4 Polyurethane foam filter; 5 Three-way 

catalytic converters; 6 On-board diagnostics with O2 sensor. 

 

 

Fig. 2. Dynamometer and sampling system. 

 

above particle collection unit was followed by an electric 

condenser (M&C Tech Group gas conditioning system, 

PSS-5/3) to remove moisture in exhaust and simultaneously 

reduce the temperature to 4℃ to inhibit the evaporation loss 

of semi-volatile PCDD/Fs and PCBs. A preliminary test 

used a three-stage glass-cartridge adsorption unit packed 

with 60-g XAD-2® resin (Supelpak, Sigma-Aldrich Co., St. 

Louis, MO) for each cartridge to collect the gaseous 

PCDD/Fs and PCBs in the exhaust. Results showed that the 

masses of both PCDD/F and PCB congeners in the third-

stage cartridge were only contributed 0.07–1.73% of the 

total three-cartridge adsorption unit. Therefore, a two-stage 

cartridge unit was used to collect the gaseous PCDD/Fs and 

PCBs in this study. All samples were spiked with PCDD/F 

and PCB surrogate standard solutions (SS) before the 

sample collection. Each sample was collected isokinetically 

from the tested scooter-dynamometer system for 60 minutes. 

After the sample was transferred to the laboratory, each 

of them was added with the 13C-labeled internal standard 

(IS) solution of PCDD/Fs and PCBs and later extracted by a 

240-mL toluene-Soxhlet extraction for 24 hours (about 

6 extraction cycles per sample). The extract was concentrated 
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in a vacuum concentrator and transferred to a 6-dram sample 

tube. There were 30 µL of alternative standard (AS) solution 

subsequently added to the extract to estimate the recovery of 

analytes during the following clean-up processes. Furthermore, 

the sulfuric acid was added by 4 mL into the concentrate and 

well mixed by an ultrasonic homogenizer for 10 minutes. 

The solution was then transferred to an acid-silica-gel column 

and eluted with 20 mL of n-hexane. The eluent was collected, 

vacuum concentrated, transferred to an alumina column with 

n-hexane, and eluted by a mixture of 25-mL n-hexane and 

15-mL dichloromethane/n-hexane (4/96, v/v). The non-planar 

PCBs passed through the column with the eluent as solution 

A. Furthermore, the alumina column was washed again with 

a 25-mL solvent composed of dichloromethane/n-hexane in 

40/60, v/v. The eluent was collected and concentrated to the 

near-dry amount, transferred to the third column packed 

with activated carbon/diatomaceous earth, and eluted with 

5 mL of toluene/methanol/ethyl acetate/n-hexane (5/5/10/80, 

v/v) when the planar PCBs could be eluted out as solution 

B. On the other hand, the PCDD/Fs were eventually washed 

out by eluting 40-mL toluene through the third packed 

column into solution C. the solution A and B were then 

mixed and added with 15-µL PCBs recovery standard (RS) 

solution, while the RS of PCDD/Fs was added into solution 

C before the instrumental analysis to evaluate the recovery 

process (EAL, 2019). 

High-resolution gas chromatography coupled with high-

resolution mass spectrometry (HRGC/HRMS) was employed 

to quantify the PCDD/F and PCB compounds. The HRGC 

(Hewlett-Packard 6970, CA) equipped a DB-5 column (L: 

60 m, id: 0.25 mm, film thickness: 0.25 µm, J&W Scientific, 

CA) connected to the auto-injection port and liner. The oven 

temperature was set at 413 K for a minute and then raised to 

473, 503, and 583 K at the rates of 30, 1.5, and 4 K min–1, 

respectively, and hold for 4 minutes. The column again 

heated to 588 K at a rate of 20 K min–1 and held for the last 

3.5 minutes for following ionization process. The HRMS 

(Micromass Autospec Ultima, Manchester, UK) with a 

positive electron impact source was operated at 523 K and 

35 eV. The selected ion monitoring (SIM) mode was applied 

with > 10,000 resolution power to quantify the PCDD/F and 

PCB samples accurately (Lin et al., 2019a). 

 

RESULTS AND DISCUSSION 

 

Transient Emissions of Pollutants from Scooters 

The emissions of scooters are continuous during their 

operation. The emission concentration (or rate) would vary 

with the different engine speeds, that a transient cycle test is 

essential to be utilized for emission inspection. Fig. 3 shows 

the transient averaging emission concentrations of CO, HC, 

and NOx from Tier 6 scooters, which has been expected to 

have the lowest emissions in the market so far. The idling 

period at the beginning of the 100-second cycle kept the CO, 

HC, and NOx emission by 0.07%, 118, and 47 ppm, 

respectively, showing the relatively low emission from the 

steady engine speed. This observation did not conflict with 

the idling emission control strategy around the world, 

because the idling operation provides extra emission and 

exposure to the scooter driver nearby. Thus, the prohibition 

of idling operation or auto-start-stop system design is useful 

for emission reduction. The production of CO and HC are 

generally caused by incomplete combustion with unsteady 

air-fuel control (Yang et al., 2007; Chiang et al., 2014), 

while the oxidation rate of CO to CO2 was sensitively 

affected by the local temperature in the combustion zone 

(Chang et al., 2014). Therefore, the CO increased with the 

raising engine speed, which had a higher fuel injection rate 

and increased the equivalent ratio (Φ) of combustion and 

instantly lower flame temperature. The above phenomenon 

could further lead to both slower the thermal breakdown of 

residual fuel gases in the combustion area and increase the 

probability of the reaction among hydrocarbon radicals to 

form HC. That could be why CO emissions increased first 

and is then followed by the HC peak value. The OBD/O2 

sensor in the Tier 5 scooter could detect the abnormal Φ 

value and inform the next air-intake stroke (injection and air-

intake valve) to stabilize the combustion. On the same time,  

 

 

Fig. 3. Dynamic emissions of regulated gaseous pollutants along with testing cycle. 
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the three-way catalytic converter (TWC) was heated up by 

exhaust gas to its operating temperature (generally about 

300–400°C), that started to convert the CO, HC, and NOx to 

unharmful CO2, H2O, and N2 simultaneously (Lin et al., 

2018). Therefore, the high emission concentration would not 

take long during the speed increasing period. Notably, the 

CO and HC occurred relatively high values during the slow-

down period. The sudden release of the accelerator would 

quench the in-cylinder temperature and result for CO and 

HC productions. This period could also significantly produce 

PM, VOC, and SVOC, which include PCDD/Fs and PCBs. 

 

PCDD/F and PCB concentrations 

The mean PCDD/F concentrations of the brand-A and 

brand-B scooters (Tier 5, 4-stroke; abbr. T5-4ST) were 

31.7 and 25.7 pg Nm–3, respectively, as shown in Table 2. 

These PCDD/F mass emissions were 97.3–97.8% and 96.5–

97.2% lower than those from 2-stroke (avg. 1170 pg Nm–3) 

and 4-stroke (avg. 912 pg Nm–3) scooters fit Tier 3 in the 

previous study (Chuang et al., 2010). Meanwhile, the 

PCDD/F toxicity emissions from T5-4ST were 2.91 and 

1.86 pg WHO-TEQ Nm–3, showing 96.0–97.4% and 94.6–

96.5% reductions from T3-2ST (72.7 WHO-TEQ Nm–3) and 

T3-4ST (53.4 WHO-TEQ Nm–3), respectively. More 

excitingly, the 4-stroke scooters approaching Tier 6 standard 

(T6-4ST) showed extremely lower mass and TEQ 

concentrations of PCDD/Fs by 6.68 pg Nm–3 and 0.314 

pg WHO-TEQ Nm–3, respectively, which showed 99.4 and 

99.3% of mass and 99.6% and 99.4% of toxicity reductions 

from T3-2ST and T3-4ST, respectively. 

The mean PCB concentration of the tested scooters were 433 

and 351 pg Nm–3 for brand A and B (T5-4ST), respectively, 

when the level of brand C (T6-4ST) was 118 pg Nm–3 (as 

shown in Table 3). Additionally, the corresponding mean 

PCBs concentrations of toxicity were 0.133–0.298 pg WHO-

TEQ Nm–3 for T5-4ST and 0.0496 pg WHO-TEQ Nm–3 for 

T6-4ST, respectively. There is almost no report on the PCB 

emissions from scooters. In comparison, the emission toxicity 

of total PCBs were 10 times lower than those of simultaneously 

emitted PCDD/Fs from the testing T5-4ST and T6-4ST 

scooters. Moreover, the sum of PCDD/F and PCB TEQ 

concentration from new generation motors were still much 

lower than those of older ones. However, the emissions of 

scooters were near to the ground surface, which could seriously 

increase the exposure of the residents in their daily life. The 

ongoing studies on air pollution in densely cities of Asian 

countries show that the two-wheel vehicles' emissions still 

dominated the contribution, even there were some prohibitions 

established in the metropolitan area (Yang et al., 2005; Goel 

and Guttikunda, 2015; Liu et al., 2017; Wu et al., 2017). 

Therefore, the reduction of scooter emissions, especially 

toxic pollutants become an important and emerging issue. 

As mentioned in the previous section, the fuel feeding 

system of Tier 3 was significantly improved by replacing the 

 

Table 2. PCDD/F concentrations emitted from the testing and referenced scooters. 

PCDD/Fs 

Brand A 

(n = 4) 

Brand B 

(n = 3) 

Brand C 

(n = 3) 

R3-4ST 

(n = 6) 

R3-2ST 

(n = 6) 
WHO2005-

TEFs 
Mean SD Mean SD Mean SD Mean Mean 

2378-TeCDD 0.38 0.07 ND NA ND 1 6.19 8.30 1 

12378-PeCDD 0.66 0.07 0.52 0.02 0.07 1 11.0 9.13 1 

123478-HxCDD 0.25 0.01 0.22 0.01 ND 0.1 7.53 5.81 0.1 

123678-HxCDD 0.68 0.05 0.37 0.16 ND 0.1 15.1 15.8 0.1 

123789-HxCDD 0.47 0.03 0.46 0.17 0.09 0.1 12.9 10.8 0.1 

1234678-HpCDD 2.41 0.22 2.82 0.89 0.80 0.01 81.7 115 0.01 

OCDD 6.15 0.44 4.68 1.00 2.12 0.003 326 446 0.003 

2378-TeCDF 2.75 0.35 1.40 0.27 0.29 0.1 37.2 50.6 0.1 

12378-PeCDF 2.41 0.27 1.49 0.29 0.53 0.03 31.7 39.0 0.03 

23478-PeCDF 2.57 0.04 1.51 0.04 0.32 0.3 49.0 58.9 0.3 

123478-HxCDF 1.92 0.26 1.43 0.40 0.17 0.1 31.1 36.5 0.1 

123678-HxCDF 1.19 0.26 1.48 0.43 0.20 0.1 31.5 39.8 0.1 

123789-HxCDF 1.83 0.27 1.71 0.58 0.26 0.1 NA 0.83 0.1 

234678-HxCDF 0.52 0.05 0.52 0.08 0.18 0.1 31.0 38.2 0.1 

1234678-HpCDF 4.08 0.53 3.70 1.42 0.49 0.01 87.0 91.3 0.01 

1234789-HpCDF 0.65 0.05 0.85 0.33 0.25 0.01 16.2 16.6 0.01 

OCDF 2.79 0.09 2.59 0.90 0.92 0.003 137 187 0.003 

PCDDs, pg Nm–3 11.0 0.876 9.07 2.24 3.07 NA 460 612 NA 

PCDFs, pg Nm–3 20.7 2.17 16.7 4.74 3.61 NA 452 558 NA 

PCDD/PCDF (mass) 0.531 0.403 0.54 0.47 0.85 NA 1.02 1.10 NA 

Total PCDD/Fs, pg Nm–3 31.7 3.51 25.8 7.59 6.68 NA 912 1170 NA 

PCDDs, pg WHO-TEQ Nm–3 1.20 0.15 0.66 0.06 0.08 NA 22.5 27.3 NA 

PCDFs, pg WHO-TEQ Nm–3 1.71 0.14 1.20 0.22 0.23 NA 30.9 45.4 NA 

PCDD/PCDF (TEQ) (McKay, 2002) 0.70 1.01 0.55 0.28 0.37 NA 0.73 0.60 NA 

Total TEQ, pg WHO-TEQ Nm–3 2.91 0.29 1.86 0.27 0.31 NA 53.4 72.7 NA 

ND: not detected; NA: not available. 



 
 

 

Chen et al., Aerosol and Air Quality Research, 20: 1495–1509, 2020 

 

1501 

Table 3. PCBs concentrations emitted from the testing and referenced scooters. 

PCBs 
Brand A (n = 4) Brand B (n = 3) Brand C (n = 3) 

WHO2005-TEFs 
Mean SD Mean SD Mean SD 

Non-ortho-substituted PCBs        

33'44'-TeCB (PCB-77) 38.6 22.1 31.0 8.64 9.94 6.82 0.0001 

344'5-TeCB (PCB-81) 3.30 20.3 6.11 7.73 0.984 1.14 0.0003 

33'44'5-PeCB (PCB-126) 2.45 3.33 1.09 1.45 0.396 0.463 0.1 

33'44'55'-HxCB PCB-169 1.23 2.26 0.309 0.357 0.184 0.246 0.03 

Mono-ortho-substituted PCBs        

233'44'-PeCB (PCB-105) 98.9 77.2 79.0 19.4 27.3 18.9 0.00003 

2344'5-PeCB (PCB-114) 9.44 5.72 4.30 5.42 1.91 2.34 0.00003 

23'44'5-PeCB (PCB-118) 242 186 201 43.5 68.6 45.2 0.00003 

2'344'5-PeCB (PCB-123) 16.4 13.5 13.0 11.1 1.88 2.66 0.00003 

233'44'5-HxCB (PCB-156) 11.7 4.59 8.85 2.38 3.69 1.88 0.00003 

233'44'5'-HxCB (PCB-157) 2.49 0.925 2.13 0.773 0.784 0.614 0.00003 

23'44'55'-HxCB (PCB-167) 5.31 2.61 4.31 1.35 1.72 0.775 0.00003 

(233'44'55'-HpCB (PCB-189) 0.893 0.875 0.633 0.739 0.285 0.356 0.00003 

Total PCB, pgNm–3 433 294 352 72.0 118 79.4 - 

Total TEQ, pg WHO-TEQ Nm–3 0.298 0.391 0.133 0.157 0.0496 0.0549 - 

 

carburetor with the EFI system to accurately and precisely 

control the fuel injection timing and mass flow before the 

combustion in the power stroke. The more preferable 

equivalent ratios between fuel and air led to more complete 

combustion and lower the CO, HC, prompt NOx, as well as 

the PCDD/F and PCB emissions in the untreated exhaust 

gases. Moreover, the lower entreated pollutant level could 

further reduce the loading of a three-way catalytic converter 

(TWC) to have better performances. Nevertheless, Tier 6 

(brand C) scooter showed an extremely low emission by 

equipping OBD/O2 system. The frequently residual O2 

information feedback from the exhaust gas could sensitively 

tune the EFI system, improve its performance, and reduce 

the PCDD/F and PCB emission. Consequently, the PCDD/Fs 

and PCBs could be effectively reduced with the development 

of scooter generations without a specific treatment design 

for them. However, the mechanism of PCDD/F and PCB 

inhibition could not be identified, since they have two major 

formation pathways, including (1) high-temperature oxidation 

and chlorination of precursors and (2) heterogeneous reaction 

(de novo synthesis) in the post-combustion zone (Lin et al., 

2018). Therefore, an evaluation of their congener mass and 

TEQ distributions would be discussed in the following 

section. 

 

Congener Profiles of PCDD/Fs and PCBs 

The mass contributions of PCDD/F congeners were 

illustrated in Fig. 4(A). The dominant congeners in brand A 

and B (T5-4ST) were OCDD (18.2–19.4%), 1234678-

HpCDF (12.9–14.4%), and OCDF (8.8–10.1%), when brand 

C (T6-4ST) had the same top three congeners, OCDD 

(31.8%), OCDF (13.8%), and 1234678-HpCDF (7.3%). A 

similar PCDD/F congener profile was observed for those of 

unled gasoline-fueled vehicles and diesel-fueled vehicles 

(U.S. EPA, 2001). Notably, the most significant change of 

congener profile from Tier 5 to Tier 6 scooters was the sharp 

increase of OCDD contributions (from 18.7 to 31.8%), 

while most of the lowly chlorinated PCDFs were inhibited. 

The PCDD/F congener contributions of R3-4ST and R3-

2ST were compared with the newer generation of scooters 

in Fig. 4(B). Their profiles were more similar to that of T6-

ST. Highly chlorinated congeners, which could form by 

incompletely combustion of fuel, in the Tier 3 vehicles 

dominated the fingerprint of PCDD/Fs. This could be 

resulted by using carburetor as a fuel-feeding system. The 

carburetor is mechanically distributed the fuel by the intake-

air velocity, which could not satisfy the various fuel 

demands from rapidly changing engine speeds. Therefore, 

the incompletely reacted aromatics were rapidly oxidized, 

chlorinated to form PCDD/Fs in high temperature (McKay, 

2002; Stanmore, 2004) to form PCDDs. The mass ratios of 

PCDDs/PCDFs were then 1.10 and 10.2 for R3-4ST and R3-

2ST, as well as their TEQ ratios, were 0.60 and 0.73, 

respectively (as shown in Table 2). These observations 

supported the PCDD formation mechanism from high-

temperature precursor reactions (McKay, 2002). 

Fortunately, the above problem could be overcome by 

using the EFI system in Tier 5 vehicles, providing a more 

complete combustion in the power stroke. However, there 

were traced amounts of residual soot, catalytic metals, C2H2 

radicals, and aromatics remained in the post-combustion 

area. These residues could react with each other on both the 

inner surface of the exhaust pipe and even in TWC to form 

PCDFs by de novo synthesis (Huang and Buekens, 1995; 

Lin et al., 2018). The latter mechanism would increase the 

contribution of lowly chlorinated PCDFs (4-Cl to 6-Cl 

substitutions) to around 39.3% in Tier 5 vehicles (as shown 

in Fig. 4(B)), and further affect the toxicity distribution of 

PCDD/F congeners. Interestingly, Tier 6 vehicles in the 

current study showed a congener profile very similar to 

those of Tier 3 vehicles, which had 175 and 234 times higher 

of total mass and TEQ concentrations of PCDD/Fs, 

respectively. The stroke number seems no significant effect. 

The aforementioned O2 sensor feedback control could lead 

to this result in the OBD system. The TWC loading on CO, 

HC, and prompt NOx treatments could be inhibited and  



 
 

 

Chen et al., Aerosol and Air Quality Research, 20: 1495–1509, 2020 

 

1502

 

 

Fig. 4. Mass profiles of PCDD/F congeners from (A) three tested scooters (Tier 5 and Tier 6) and (B) their average compared 

with the 2-stroke and 4-stroke scooters (Tier 3 in reference). 

 

released more capacity to oxidize the newly reformed 

PCDFs by de novo synthesis in the post-combustion zone. 

Therefore, the overall PCDD/F emission could be improved 

from Tier 5 vehicles, while the highly chlorinated PCDD/Fs 

predominated the congener profiles. 

Fig. 5 illustrated the congener profiles of the PCB congeners. 

The dominant PCB congeners of Tier 5 and Tier 6 scooters 

were similar, when 23'44'5-PeCB (PCB-118) and 233'44'-

PeCB (PCB-105) with mono-ortho-Cl substitutions and 

33'44'-TeCB (PCB-77) with non-ortho-Cl substitutions 

contributed 55.9–58.3%, 22.5–23.2%, and 8.4–8.9% mass, 

respectively, of total PCBs (as shown in Fig. 5(A)). Although 

the most toxic non-ortho-congeners, 33'44'5-PeCB (PCB-

126) and 33'44'55'-HxCB PCB-169, had relatively low 

concentrations in the Tier 5 and Tier 6 vehicle emissions, the 

contributions of emission toxicity among PCB congeners 

were still dominated by them (78.9–82.1% for PCB-126 and 

6.9–12.4% for PCB-169) (as shown in Fig. 5(B)). Fortunately, 

all the toxicity equivalent factors of PCBs were lower than 

those of PCDD/Fs to reduce the toxicity contributions of 

them. However, the TEQ emissions of PCBs should be still 

involved in the calculation of real emission factors discussed 

in the following section. 

 

Effects of Tailpipe Renew on PCDD/F and PCB 

Emissions 

The particles from exhaust gases are very complicated, 

including metals, carbon, inorganic salts, acidic droplet, and 

various surfactants, which can inhibit the immune system of 

mammals (Zakharenko et al., 2017). A recent study by 

Emissions Database for Global Atmospheric Research 

(EDGAR) showed that implementing the EURO standards 

led to the reduction of PM emissions in internal combustion 

engine exhaust by 60% worldwide (Crippa et al., 2016). 

Therefore, the pollutants should be effectively removed 

before they escaped from the mobile source. The tailpipe is 
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Fig. 5. (A) Mass and (B) TEQ congener profiles of PCBs in the exhausts of scooters. 

 

the most conventional treatment technique to deal with the 

exhaust from scooters, when it is composed of silencer cotton, 

head cover, barrel body, back pressure structure, muffler 

cotton, tail cover, exhaust outlet, and catalyst. The particles in 

the exhaust might be partially trapped in the TWC converter 

and on the muffler cotton surface, when the exhaust gases 

went through the pipe. A double crisis would happen after a 

long-term operation of the scooters and their tailpipes. The 

catalytical efficiency of TWC would be inhibited by the 

physical and chemical poisoning, while the particles in the 

muffler cotton might become the carbon source for de novo 

synthesis to regenerate PCDD/Fs. Therefore, the exhaust 

pipe of the scooters was replaced and investigate the changes 

of the removal efficiencies on PCDD/Fs and PCBs emissions 

in this study. 

Fig. 6 shows the changes of PCDD/F and PCB TEQ 

concentration by replacing three scooters with brand A 

(Tier 5), B (Tier 5), and C (Tier 6). For brand A, the PCDD/F 

emissions dropped 93.8% from 0.692 to 0.0431 pg WHO-

TEQ km–1, when the PCBs reduced 85.3% from 0.122 to 

0.0179 pg WHO-TEQ km–1 after the recent tailpipe 

replacement. The significant reduction could also be found 

in brand B (Tier 5) scooter. Its PCDD/F emission was reduced 

60.0% from 0.0865 to 0.0346 pg WHO-TEQ km–1 when 

PCB concentrations reduced 97.7% from 0.0021 to 0.0000479 

pg WHO-TEQ km–1. However, the reductions were not 

observed after the tailpipe renew of brand C. The PCDD/F 

emissions increased from 0.0343 to 0.0668 pg WHO-TEQ km–1, 

while PCBs significantly increased from 0.000511 to 0.0237 

pg WHO-TEQ km–1. This abnormal phenomenon might not 

result from the quality of the TWC converter. It is believed 

that the manufacturer of brand C generally apply some 

waterproof glue and thermal insulation paint in the new 

tailpipe which could be released or even reacted to generate 

the SVOC by the hot exhaust gases passed through. 

Consequently, the tailpipe renew could effectively reduce   
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Fig. 6. Changes of (A) PCDD/F and (B) PCB emissions from scooters after the replacement of tailpipes. 

 

the PCDD/F and PCB concentration in the exhaust, when 

several cases would still have a delay to perform enough 

removal efficiencies after a period of operation. 

 

Emission Factors and Annual Emission Reduction 

Emission factors (EFs) are normalized indexes for 

comparing the vehicles with various conditions, mileage, 

emission control equipment, feeding fuels etc. in the same 

base, while most of the emission standards refer to them. 

Table 4 showed the EFs of regulated pollutants, while the 

CO and NOx emissions still excesses the limits of Tier 5 and 

Tier 6 standards in several cases. The trade-off between CO 

and NOx emissions is always a dilemma, when the vehicle 

emission standards are getting stricter worldwide. The well-

controlled combustion by OBD and high-quality TWC 

converter would be the essential solution for a new 

generation of scooters. 

On the other hand, the EFs of total PCDD/Fs (EFPCDD/Fs) 

of the R3-4ST and R3-2ST were 81.0 and 96.6 pg WHO-

TEQ km–1, respectively, as shown in Table 4 (Chuang et al., 

2010). The piston operation design in strokes led to different 

EFPCDD/Fs. The 2-stroke engines had 19.3% higher EFPCDD/Fs 

than those of the 4-stroke ones, when PCDD/F concentration 

of R3-2ST showed 36.1% higher value than R3-4ST in 

tailpipe. Two-stroke scooter was one of the major sources of 

air pollution in many cities (Platt et al., 2014), while there 

are scientific suggestions that scooters will emit more PAHs 

than all other vehicles combined in Europe by 2020 

(Geivanidis et al., 2008). Our finding indicated that the 4-

stroke engine with separate intake and exhaust stroke could 

improve the combustion, decreased the incomplete oxidation 

of fuel, and eventually reduced the PCDD/F formation. The 

EFPCDD/Fs of T5-4ST were 1.18–1.21 pg WHO-TEQ km–1, 

representing 98.7% reduction from R3-2ST scooters. The 

EFPCDD/Fs of T6-4ST was lower by 0.0715 pg WHO-TEQ km–1, 

representing 99.9% reductions from R3-2ST scooters. By 

adding the EFs of PCBs (EFPCBs) into total TEQ emission 

(EFtotal = EFPCDD/Fs + EFPCBs), the EFtotal of T5-4ST and T6-

4ST became 1.30–1.34 and 0.0715 pg WHO-TEQ km–1, 

respectively, which were still extremely lower than those 

from Tier 3 vehicles. That is to say, the improvement of fuel-

feeding and OBE systems could not only reduce the regulated 

pollutants (CO, HC, and NOx) but also could effectively 

reduce the PCDD/Fs emission (Yang et al., 2005). The 

correlation between the emission factors of PCDD/Fs (or 

PCBs) and regulated pollutants (CO, HC, and NOx) were not 

found, even the combustion condition would affect all of 

them simultaneously. This could result from the effective 

operation of the air pollution control system of the scooter. 

This study estimated the annual reduction of the total 

PCDD/F TEQ emissions according to the following equation. 

 

/

1

n

iPCDD F TEQ i iN EF VKTE      (1) 

 

where EPCDD/F-TEQ is the annual TEQ emissions of PCDD/Fs; 

Ni, EFi, and VKTi represent the amount, TEQ emission  
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factors and the average vehicle kilometers traveled (VKT) 
of the scooter fit the specific Tier 1/2/3/4/5/6 standards in 

Taiwan. In 2019, the amounts of Tier 1 + 2, Tier 3, Tier 4, 

Tier 5, Tier 6-scooters were 1,279,389, 1,787,666, 1,741,999, 

6,539,232, and 2,644,636 vehicles, respectively (as shown 

in Fig. 1). Since there is still very limit of international 

research on the PCDD/F and PCB emissions from scooters, 

the EFs of PCDD/F were then classified into only three 

groups in the current study. The first group used EFR3-4ST 

(81.0 pg WHO-TEQ km–1), standing for the Tier 1–4 scooter 

emissions, when the other two used EFT5-4ST (1.195 pg 

WHO-TEQ km–1) and EFT6-4ST (0.0617pg WHO-TEQ km–1) 

to represent the Tier 5 and 6 emissions, respectively. The 

VKT of scooters reported by Taiwan Emission Database 

System 10.0 (TEDS 10.0) were about 3,471 to 5,070 km yr–1 

in each administrative region. We selected an averaged VKT 

as 4,108 km yr–1 (as shown in Table 5) for further calculation 

(TWEPA, 2019). Finally, the original annual TEQ emissions 

in 2019 is then evaluated as 1.63 g WHO-TEQ, contributing 

only less than 2% of total annual PCDD/F TEQ emission in 

Taiwan. However, the scooter emission is much closer to the 

human life and exposure than those highly contributively 

stationary sources. Therefore, the annual emissions that 

replacing all scooters by Tier 6 levels was then estimated 

based on 2019 statistics. The improved annual emission 

became only 3.55 mg (> 99.7% reduction). This significant 

drop points out that the ongoing new emission standards for 

scooters could not only solve the problem of fine particle 

and regulated pollutant emissions but the potential risks 

from PCDD/F and PCB emissions around us, especially in 

the metropolitan area. 

 

CONCLUSIONS 

 

There were seven Tier 5 and three Tier 6 scooters tested 

with a 100-second transient model to analyze the PCDD/F 

and PCB emission and compare with those from the Tier 3 

motors reported in the previous study. There are several 

important findings as follows. 

1. PCDD/F toxicity emissions from Tier 5 and 6 scooters were 

1.86–2.91 and 0.314 pg WHO-TEQ Nm–3, representing 

94.6–97.4% and 99.4–99.6% reductions from those of 

Tier 3 motors. Meanwhile, the toxicity emissions of PCBs 

were 0.133–0.298 and 0.0496 pg WHO-TEQ Nm–3 from 

Tier 5 and Tier 6 scooters, respectively, which were 

10 times lower than those of PCDD/Fs. 

2. PCDD/F were dominated by OCDD, 1234678-HpCDF, 

and OCDF from Tier 3 scooters, which were contained 

in the incompletely combusted soot and hydrocarbons. 

Lowly chlorinated PCDFs more contributed to Tier 5 

emission, indicating the occurrence of de novo synthesis, 

when it could be inhibited by equipping OBD system in 

Tier 6. The PCB congeners were predominated by 

mono-ortho-PCB-118 and -105 and non-ortho-PCB-77 

with from both Tier 5 and 6 scooters. 

3. The improvement of EFI and OBD systems from a 

carburetor without feedback control not only reduced the 

regulated pollutants but also effectively reduces PCDD/F 

emissions. 
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Table 5. Estimation of annual PCDD/F TEQ emissions from scooters in both original and improved cases. 

Scooter Gen. VKT EF 
Original Improved 

Num. vehicle Emission, g Num. vehicle Emission, mg 

Tier 1-4 4108 81 4,809,054 1.60  0 0 

Tier 5 4108 1.195 6,539,232 0.0321  0 0 

Tier 6 4108 0.0617 2,644,636 0.000670  13,992,922  3.55 

Annual Emission    1.63 g yr–1  3.55 mg yr–1 

 

4. The tailpipe renew could effectively reduce 60.0–93.8% 

of PCDD/F and 85.3–97.7% of PCB concentrations in 

the exhaust, when several cases would still have a delay 

to perform enough removal efficiencies after a period of 

operation. 

5. The annual TEQ emissions in 2019 is evaluated as 1.63 g 

WHO-TEQ and could be improved to 3.55 mg (> 99.7% 

reduction) by replacing all scooters by Tier 6 levels. 

This is the first study that points out the emissions of 

PCDD/Fs and PCBs from scooters could be effectively 

reduced along with the regulated pollutants (CO, HC, and 

NOx) by improving the fuel feeding and on-board diagnostic 

system. Furthermore, the exposure and health risk of human 

near the scooter emission could decrease in the urban area 

when the next generation of scooter comes. 
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