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Abstract. In recent years, many new immunosuppressive drugs

have been discovered and developed for clinical use in trans-

plantation. This review focuses on those drugs (leflunomide,

mycophenolate mofetil, sirolimus, tacrolimus) that have been

shown to have immunosuppressive activity in patients. Differ-

ent anti-interleukin-2 receptor antibodies are also reviewed as

an example of a resurgence of development in the area of

monoclonal antibodies. The price for reducing the incidence of

allograft rejection by improved immunosuppression was

thought to be a proportional increase in the incidence of infec-

tion and malignancy. Data from Phase III clinical trials of new

immunosuppressants, however, show a statistically significant

reduction in the incidence of acute rejection produced by these

new drugs, which has not been accompanied by increases in

infection and malignancy rates. The wide array of new drugs

offers the opportunity to use combinations that block different

pathways of immune activation while at the same time select-

ing drug combinations with nonoverlapping toxicity profiles so

that doses of each single drug can be reduced below toxicity

levels. The immunosuppressive therapy for patients can be

tailored according to their individual needs.

In the 1990s, many new small and large molecules have been

discovered and developed for use as immunosuppressants in

solid organ transplantation. This review focuses on those drugs

that have proven immunosuppressive activity in patients (1,2).

Tacrolimus (FK 506) and mycophenolate mofetil (MMF) have

already replaced immunosuppressive maintenance protocols at

some institutions. The other two drugs, leflunomide and siroli-

mus (SRL), are still under investigation for use in solid organ

transplantation. Anti-interleukin-2 (IL-2) receptor antibodies

have shown promising results in phase III trials. Conventional

wisdom has held that the price for reducing the incidence of

allograft rejection by improved immunosuppressants is a pro-

portional increase in the incidence of infection and malig-

nancy. When the data from Phase III trials of new immuno-

suppressants are analyzed, however, the statistically significant

reduction in the incidence of acute rejection produced by these

new drugs has not been accompanied by proportional increases

in infection and malignancy rates in the first year after trans-

plantation. Because most of the new immunosuppressants re-

viewed in this chapter differ in their mechanisms of action, and

because the toxicities are mechanism-based, the wide array of

new drugs offers the opportunity to use combinations that

block different pathways of immune activation while at the

same time selecting combinations with nonoverlapping toxic-

ity profiles so that doses of each drug can be reduced below

toxic levels. The development of so many novel and very

different small molecule and monoclonal antibody immuno-

suppressants will enable the transplant physician to tailor ther-

apy for individual patients more precisely than ever before.

Designing individualized regimens, however, presumes that

the clinician understands the many facets of this new world of

immunosuppression. This review has been prepared to provide

a foundation for this understanding.

Leflunomide and Malononitriloamides
Background

Leflunomide and the malononitriloamides (MNA) are a new

class of immunomodulating drugs that are currently under

investigation for use in transplantation. In 1985, the

anti-inflammatory and immunomodulating properties of le-

flunomide were recognized, which differ from classical anti-

inflammatory and immunosuppressive drugs. The immunosup-

pressive effects of leflunomide have been investigated

extensively in animal models of transplantation. Because of its

long half-life (11 to 16 d) in humans, the clinical development

of leflunomide has been restricted to use in patients with

autoimmune diseases such as rheumatoid arthritis. A large

preclinical program has been started to evaluate the potential

use of the leflunomide analogues HMR 715 and HMR 279.

These analogues, malononitriloamides, are very similar in

structure to the active metabolite of leflunomide, A77 1726,

and may have a more favorable pharmacokinetic profile.

Pharmacokinetics
Leflunomide [N-(4-trifluoro-methylphenyl)-5-methylisox-

azol-4-carboxamide] is a synthetic isoxazole derivative that is

metabolized in the gut and liver to its main metabolite, the

malononitriloamide A77 1726. This pharmacologically active

metabolite is stable and represents more than 90% of the

metabolites in the serum in animals and humans. It is hydro-

philic and readily soluble in water. There is still little informa-

tion about the pharmacology of leflunomide, and no data exists
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regarding MNA in humans. The bioavailability of leflunomide

in rabbits is close to 100% after oral administration. The

plasma to whole blood ratio is one. A77 1726 is primarily

associated (95%) with the lipoprotein-free fraction of plasma

(3). In rats, the peak drug level is reached after 8 to 12 h. In

humans, leflunomide has a half-life between 5 and 18 d (4),

and the plasma clearance rate is 0.3 ml/kg per h. HPLC

methods are available to measure plasma concentrations of

A77 1726 and the other MNA.

Pharmacodynamics
The effects of A77 1726 and the other MNA appear to be

identical (5). Leflunomide suppresses T cell and B cell prolif-

eration in vitro (6) and inhibits the proliferation of smooth

muscle cells in vitro (7,8). The primary known effect of the

MNA is the inhibition of protein tyrosine kinases and

DHODH, a critical enzyme for the de novo pyrimidine synthe-

sis. Activated lymphocytes need both the de novo pathway and

the salvage pathway to synthesize a sufficient amount of pyri-

midines to proliferate.

Protein tyrosine kinases play a critical role at various steps

in the signal transduction pathways, including mitogenesis and

transformation (9). However, much higher concentrations of A

77 1726 are needed to block the tyrosine kinase activity than to

inhibit lymphocyte proliferation in vitro. In vitro, DHODH is

inhibited by A 77 1726 in the nanomolar or low micromolar

range (10). At concentrations that block cell proliferation, A77

1726 inhibits DHODH; the antiproliferative effects can be

antagonized by pyrimidine nucleotides (6).

The antiproliferative potency of A77 1726 is species- and

cell type-dependent. Rat lymphocytes are the most sensitive

and human lymphocytes are the least sensitive. More direct

evidence for A77 1726 interfering with the de novo pyrimidine

biosynthetic pathway in vivo comes from murine studies.

Treatment of mice with leflunomide, but not cyclosporin A

(CsA), reduces DHODH activity in lymphocytes infiltrating

heart allografts (11). Although the administration of 20 mg/kg

leflunomide prolonged nonvascularized heart to ear transplants

in mice, the coadministration of leflunomide with high doses of

uridine resulted in mean survival times similar to untreated

control animals.

In vitro and in vivo experiments in allotransplantation and

xenotransplantation showed that A77 1726 prevents antibody

production (8,12–14). The effects of A77 1726 on cytokine

synthesis or growth factor receptor expression are contradic-

tory and are dependent on the cell line, the type of mitogen, and

the A77 1726 concentration. Most studies have shown that

antiproliferative concentrations of A77 1726 have a minimal

effect on cytokine production and cytokine receptor expression

(15–17).

Animal Studies
Leflunomide has been investigated extensively in numerous

animal models of transplantation and autoimmune diseases,

such as tubulointerstitial nephritis in rats (18). The prevention

of acute allograft rejection has been tested in mice (heart), rats

(heart, skin, intestine, lung, myocutaneous), dogs (kidney), and

monkeys (heart).

When administered for 7 d in the heterotopic rat heart model

(Brown Norway to Lewis), leflunomide prolonged graft sur-

vival with doses as low as 0.63 mg/kg. Administration of 5

mg/kg over 21 d resulted in a 50% rate of indefinite graft

survival (19).

Prolonged graft survival (36 d) was achieved in a study in

cynomolgus monkeys with heterotopic heart transplants (8),

when leflunomide was given in a daily dose of 15 mg/kg.

Ongoing acute rejection in heterotopic heart transplants be-

tween different rat strains was successfully treated with le-

flunomide doses between 5 and 20 mg/kg (20).

In rat models for prevention and treatment of chronic rejec-

tion, leflunomide inhibited graft vascular disease in heart,

aorta, and femoral vessel allografts. The delayed treatment

with leflunomide halted the progression of preexisting graft

vascular disease (5,20–23).

Leflunomide has been tested in several models for concor-

dant and discordant xenotransplantation. In the hamster to rat

heart transplant model, graft survival up to 76 d was achieved

with a dose of 15 mg/kg (24). In the guinea pig to rat hetero-

topic heart transplantation model, leflunomide in combination

with cobra venom factor resulted in the longest graft survival

(129 h) reported in this model (25).

Clinical Trials
Available data from human trials with leflunomide are en-

tirely from Phase I and II trials in rheumatoid arthritis. Oral

doses between 10 and 25 mg/patient per d were effective

compared with placebo. A total of 402 patients was enrolled in

the Phase II prospective randomized trial to access the safety

and effectiveness of leflunomide. A dose-dependent improve-

ment in the primary and secondary outcome measures was

observed (4). For the MNA, clinical data are not available.

Adverse Effects and Toxicity
The most important side effect in cynomolgus monkeys was

anemia (8). In the Phase II leflunomide study, adverse effects

included gastrointestinal symptoms, rash and allergic reactions,

weight loss, and reversible alopecia. The incidence of infec-

tions in the leflunomide group was not increased; decreases in

hematocrit and hemoglobin were observed in all groups.

Mycophenolate Mofetil
Background

Mycophenolic acid (MPA) was initially derived from cul-

tures of Penicillium spp. by Gosio (26) in 1896 and purified by

Alsberg and Black in 1913. Antibacterial and antifungal activ-

ities were recognized in the 1940s. Antitumor activity was

described in 1968 (27), and MPA was further studied for

psoriasis (28), but did not gain clinical use. Mitsui and Suzuki

(29) demonstrated its potential immunosuppressive properties,

but the failure to prolong mouse skin graft survival substan-

tially delayed its further study as an immunosuppressant. The

rapid metabolism of MPA in mice in contrast to other species

(e.g., rats) accounted for its early experimental failure. These
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species differences in half-lives led to its reevaluation in rats as

an immunosuppressant for allograft recipients and prompted

the first studies to show its efficacy for this indication (30–33).

Further developmental work produced an ester prodrug of

MPA, mycophenolate mofetil (MMF), which demonstrated a

higher bioavailability in cynomolgus monkey than MPA (34).

Early clinical studies in cadaveric kidney (35) and liver trans-

plantation (36) showed promising results. In 1995, MMF was

approved by the U.S. Food and Drug Administration for pre-

vention of acute renal allograft rejection. In 1998, approval was

granted for its use in heart transplant recipients. Despite the

variety of other novel purine (mizoribine) and pyrimidine

(leflunomide and MNA, brequinar) inhibitors recently devel-

oped for transplantation, MMF is currently the leading candi-

date for replacement of azathioprine.

Pharmacokinetics
MMF, the 2-morpholinoethyl ester of MPA, is a prodrug. It

is rapidly and completely hydrolyzed into its active metabolite

MPA after oral administration by plasma esterases. The parent

compound is not measurable in plasma [z](34). MMF shows

free solubility in alcohol, but is only slightly soluble in water.

The volume of distribution of MPA in healthy volunteers is 3.6

L/kg (37) after oral or intravenous administration. The ratio of

the oral and intravenous area under the curve is 94% (37). At

clinically relevant concentrations, MPA is almost completely

(.99%) bound to plasma albumin (38). Therefore, plasma is

the matrix of choice for measurement of MPA concentrations

(39). MPA is metabolized to mycophenolic acid glucuronide

(MPAG) by uridine diphosphate-glucuronosyl transferase in

the liver, and MPAG is the primary urinary excretion product

of the drug. Approximately 87% of the drug is eliminated in

urine; 6% is eliminated in the faeces (37,39). MPAG is only a

weak inosine monophosphate dehydrogenase (IMPDH) inhib-

itor. The MPAG inhibitory concentrations (IC50) with recom-

binant IMPDH were found to be 532- to 1022-fold higher than

those for MPA (40). However, in another study MPAG IC50

values for inhibition of human lymphocyte IMPDH were only

10-fold higher compared with MPA (41). Other unidentified

metabolites are suspected to be pharmacologically active

(40,42).

MPA undergoes substantial enterohepatic circulation, con-

tributing to its gastrointestinal toxicity. MPAG is converted by

mucosal enzymes and gut flora to MPA and is reabsorbed. This

results in secondary peaks in pharmacokinetic studies after 6 to

12 and 24 h (39). For clinical use, MPA plasma concentrations

are measured by enzyme multiplication immunoassay tech-

nique. The necessity of therapeutic drug monitoring is still

under investigation (43).

Pharmacodynamics
MPA is a highly selective noncompetitive and reversible

inhibitor of IMPDH. IMPDH is a crucial enzyme in the de

novo biosynthesis of guanosine. Inhibition of IMPDH causes a

depletion of guanine nucleotides (44). Proliferating lympho-

cytes differ from most other cells in that they are fully depen-

dent on both the de novo pathway and the salvage pathway of

purine biosynthesis. Most other cell lines can maintain their

function with the salvage pathway alone. Due to this property

of lymphocytes and the high specificity of MPA for IMPDH

compared with other nicotinamide adenine dinucleotides (45),

MPA is a very specific lymphocyte inhibitor.

MPA inhibits proliferation of both T and B lymphocytes

(46) in response to mitogenic and allospecific stimulation. The

inhibitory effect can be reversed in vitro (peripheral human

blood lymphocytes and lymphoma cell lines) by adding

guanosine or desoxyguanosine (44). Antibody formation in

humans to horse antilymphocyte globulin is also inhibited by

MMF (47). In human spleen cells stimulated by tetanus toxoid,

antibody formation is inhibited even after adding MPA at day

3 (46,48).

Guanosine nucleotides are necessary for glycosylation of

lymphocyte and monocyte glycoproteins; by inhibiting

guanosine nucleotide synthesis, glycosylation of adhesion mol-

ecules is suppressed. The inhibition of migration to sites of

rejection or inflammation may be impaired. In vitro studies in

human cell lines have shown that MPA inhibits the incorpo-

ration of mannose and fucose into cellular glycoproteins (49).

Human monocytes exposed to MPA demonstrate decreased

adherence to endothelial cells or extracellular protein matrix

(50).

Animal Studies
The first promising animal study of MMF was in the hete-

rotopic heart transplantation rat model. A dose of 40 mg/kg per

d administered over 50 d posttransplant resulted in indefinite

survival of the graft, and 20 mg/kg per d resulted in a 50-d

survival (30,33). In the same model, the combination of CsA

(0.75 mg/kg per d) and MMF (10 mg/kg per d) produced at

least an additive effect with a graft survival over 50 d. Either

drug alone resulted in a graft survival of only 10 to 11 d

(32,33). In a cynomolgus monkey heart allograft model with

MMF doses between 70 and 175 mg/kg per d, prolongation of

graft survival could be achieved (19 to 62 d compared with 9 d

in controls) (32). Ongoing rejection could also be reversed

when MMF was given at the time of rejection (33).

MMF has been found to decrease graft vascular disease in a

chronic heterotopic heart rat model (32). In renal (51) and

aortic (52) transplantation models, chronic rejection was re-

duced. Furthermore, MMF was effective in reducing antibody-

mediated rejection in the rat heterotopic heart model (53).

In animal models of concordant cardiac xenotransplantation,

MMF showed only a very limited improvement in graft sur-

vival (54), and in discordant xenotransplant MMF had no

beneficial effect (55).

Clinical Trials
The first clinical studies were done in 1992 (safety and

efficacy Phase I trials) and showed that oral doses of MMF

from 100 to 3500 mg/d were well tolerated. There was a

significant correlation between rejection episodes and low

MPA blood levels (56). In 1995, results were published from

the first placebo-controlled study of this agent. In Europe,

MMF was combined with CsA and steroids for prevention of
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acute rejection in cadaveric renal transplantation. A total of

491 patients was enrolled in this multicenter trial with three

treatment arms (placebo, MMF 2 g/d, and MMF 3 g/d). This

study showed that MMF significantly reduced the rate of

biopsy-proven rejection or other treatment failure during the

first 6 mo after transplantation. Overall, the frequency of

adverse events was similar in all treatment groups. Gastroin-

testinal problems, leukopenia, and opportunistic infections

were more common in the MMF groups, and there was a trend

toward more events with higher doses (57). The results from a

U.S. study with 499 renal transplant patients were comparable.

Biopsy-proven acute rejection episodes or treatment failure

occurred in 47.6% of patients in the azathioprine group com-

pared with 31.1% in the 2-g MMF and 3-g MMF groups (35).

The tricontinental (Australia, Europe, United States) study in

cadaver kidney transplant recipients showed that MMF signif-

icantly reduced the incidence of rejection episodes in the first

6 mo after transplantation. Significant improvement in graft

survival could not be demonstrated (58). A pooled analysis of

all three studies showed a significant decrease in acute rejec-

tion episodes (40.8% [placebo/azathioprine] versus 16.9% [2 g

MMF] and 16.5% [3 g MMF]), but no significant improvement

in 1-yr graft survival (90.4% [2 g MMF] and 89.2% [3 g MMF]

compared with 87.6% [placebo/azathioprine]) (59). MMF sub-

stituted for azathioprine has been shown to be effective in

treating recurrent or persistent cardiac allograft rejection

(60,61).

In the most recent multicenter heart trial, 28 centers enrolled

650 patients. MMF (3 g/d) was tested versus azathioprine (1.5

to 3 mg/kg per d). Comparing treated patients, in the MMF

group the 1-yr mortality was 6.2% versus 11.4% in the aza-

thioprine group, and the requirement for rejection treatment

was significantly reduced (65.7% versus 73.7%). However,

opportunistic infections were more common in the MMF group

(62).

Currently, MMF is used in patients who have contraindica-

tions for azathioprine (such as the need for allopurinol) or as

the primary choice of an antimetabolite. Based on the experi-

ence in clinical trials, the recommended initial dose is 2 g/d

divided in two doses.

In a preliminary retrospective case-control study in kidney

allograft recipients with established chronic rejection, adding

MMF to maintenance immunosuppression provided no clear

benefit (63).

Adverse Effects and Drug Toxicity
The primary toxic side effects are anemia in rats and leuko-

penia, diarrhea, and anorexia in dogs and monkeys, and these

side effects can be reduced by lowering the dose. The most

common side effects of MMF in humans are diarrhea, vomit-

ing, opportunistic infections, and leukopenia. The mechanism

of myelotoxicity is not well understood. Because of selective

inhibition of the de novo pathway of purine synthesis, MPA

should affect only proliferating lymphocytes. In contrast to

transplant recipients, patients treated with MMF for psoriasis

rarely develop leukopenia (64).

Sirolimus
Background

Sirolimus (rapamycin, SRL), a microbial product isolated

from the actinomycete Streptomyces hygroscopicus, was dis-

covered initially as an antifungal agent in the mid-1970s (65).

Because of its immunosuppressive effects, it was not further

developed for clinical use as an antibiotic. The advent of

tacrolimus and the recognition of the structural similarities

between these two drugs led two research groups indepen-

dently to study its immunosuppressive properties in experi-

mental organ transplantation (Figure 1) (66,67).

Pharmacokinetics
Structurally resembling tacrolimus, SRL contains the same

tricarbonyl region including an amide, a ketone, and a

hemiketal, but a triene segment in SRL differentiates these two

drugs. Because of this structural difference, SRL is a hydro-

phobic drug that has low stability in aqueous solutions. A new

SRL derivative, SDZ-RAD, has been developed with about

two to three times lower in vitro potency, but in vivo potency

not different from that of SRL (68). When administered orally

to human kidney recipients, SRL was absorbed rapidly with a

peak blood concentration at 1.4 h (69). Oral bioavailability of

SRL is 15% in kidney transplant recipients, and the mean

half-life is about 60 h (70,71). In the blood, more than 95% of

the drug is bound to red blood cells (72). The drug is widely

distributed into tissue stores (73). SRL is metabolized by the

cytochrome P450 system and more than 10 metabolites have

been identified, some of them with low immunosuppressive

activity in vitro (74–76). HPLC methods can detect SRL

concentrations in the ng/ml range, and newly developed

HPLC/electrospray-mass spectroscopy methods detect as low

as 0.25 ng/L (77).

Pharmacodynamics
Because it is lipophilic, SRL passes through cell membranes

easily, and the segment of the macrolactam ring identical to

tacrolimus binds to cytosolic FK506-binding proteins (FKBP).

The consequent mechanisms of action for tacrolimus-FKBP12

and SRL-FKBP complexes differ in several ways (78,79).

Unlike tacrolimus, SRL does not inhibit calcineurin phospha-

tase, but its molecular targets include RAFT1/FRAP proteins

in mammalian cells, associated with cell cycle progression

through G1; however, the exact mechanism of inhibition of cell

cycle progression through these proteins is still unknown (Fig-

ure 2) (80–83).

Another possibly even more effective way to prolong the

cell cycle at the G1/S interface is the ability of SRL to selec-

tively inhibit the synthesis of ribosomal proteins and to inhibit

the induction of mRNA for new ribosomal proteins. These

effects are mediated by inactivation of p70 s6 kinase (p70s6k),

specifically the sites of action associated with phosphorylation

(79,84–87). In addition, SRL inhibits IL-2-induced binding of

transcription factors in the proliferating cell nuclear antigen

promoter, thus inhibiting cell cycle progression. As a conse-
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quence of its inability to interfere with early events after T cell

activation, SRL is a less effective inhibitor of cytokine synthe-

sis than CsA and tacrolimus (88,89).

On the other hand, SRL inhibits several of the CsA-resistant

pathways in both T and B cell stimulation (90). SRL inhibits B

cell Ig synthesis and antibody-dependent cellular cytotoxicity,

as well as lymphocyte-activated killer cells and natural killer

cells (91,92).

A characteristic feature of SRL is its ability to inhibit growth

factor signaling for both immune and nonimmune cells (93–

95). This antiproliferative effect includes at least fibroblasts,

endothelial cells, hepatocytes, and smooth muscle cells. This

antiproliferating effect of SRL renders it (at least theoretically)

a promising compound for the prevention of chronic rejection

(93,94,96). Slight interaction between prednisolone and SRL

has been observed in stable human kidney transplant recipi-

ents, and potent interaction has been observed between SRL

and CsA during in vivo animal studies (97,98). SRL and CsA

show synergism in immunosuppression both in vitro and in

vivo (98–103).

Animal Studies
Efficacy of SRL has been proven in several animal models,

many of them in large animals. It prolonged kidney allograft

survival in dogs, and in pigs was at least as effective as

cyclosporin-based immunosuppression (65,104–108). As a

monotherapy, it prolonged graft survival in different cardiac

allograft models (109–112). Transplant vasculopathy is signif-

icantly inhibited in a heterotopic rat cardiac transplant model

and in transplanted femoral artery allografts in a dose-depen-

dent manner (95,113,114). SRL has proven effective in large

animal kidney allograft models, but reports of toxicity have

been more frequent compared with rodent models (105–108).

In cynomolgus monkeys, abdominal heart allograft survival is

prolonged by SRL monotherapy (65,115). SRL effectively

reverses ongoing allograft rejection in several solid organs

including the kidney (116). SRL can also induce strain-specific

long-term tolerance in the rat (117–119). In xenografting, SRL

alone has only a limited effect on prevention of hyperacute or

acute xenograft rejection, but it appears to potentiate the effect

of other drugs when used in combination (120–122).

Clinical Studies
Clinical studies with SRL immunosuppression have mainly

been published from kidney transplant recipients (70,71,123).

Phase I studies suggest interindividual variations in the phar-

macokinetic parameters in stable renal transplant patients, in-

dicating that optimal use in humans may require monitoring of

drug concentrations (124). SRL has been reported in the use of

rescue therapy for refractory renal allograft rejection in human

kidney recipients (123).

Adverse Effects and Toxicity
The current profile of adverse effects in humans is mainly

predicted based on preclinical studies and Phase I and II studies

in stable kidney recipients (70,125). Headache, nausea, dizzi-

ness, changes in blood glucose level, epistaxis, infection, and

decrease in platelets and white blood cells have been des-

cribed in association with short-term SRL administration

(70,110,126,127). One concern may be hypertriglyceridemia,

which has been reported in association with long-term (several

months) use of rapamycin (128).

The nephrotoxicity associated with tacrolimus and CsA was

avoided by SRL in several studies in rats and in pigs possibly

Figure 1. Molecular structures of different immunosuppressive xenobiotics. Modified from reference (1).
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due to the lack of calcineurin inhibition (129–132). However,

hypomagnesemia and tubular injury were side effects in nor-

mal rats receiving SRL, and progression of kidney failure in

spontaneously hypertensive rats has been described (133).

Myocardial and retinal infarctions have been described in rats

after a high dosage of SRL (132,134). In dogs, severe gastro-

intestinal toxicity with mucosal necrosis and submucosal vas-

culitis has been described (105,135). Severe vasculitis was also

seen in primates (106).

Tacrolimus (FK506)
Background

Tacrolimus, a metabolite of an actinomycete Streptomyces

tsukubaensis, was first demonstrated to be immunologically

effective in vivo in rat heart allograft recipients in 1987

(136,137). It was soon found to be a potent alternative to CsA

in several experimental models.

Pharmacokinetics
Because tacrolimus is minimally soluble in aqueous sol-

vents, it is formulated in alcohol and a surfactant for continu-

ous intravenous administration (138). The oral formulation is

composed of capsules of a solid dispersion of tacrolimus in

hydroxypropyl methylcellulose (139). Absorption of tacroli-

mus is incomplete after oral administration. Its bioavailability

ranges from 10 to 60%, with peak blood levels after 1 to 2 h

and half-life of 8 to 24 h (140–142). The oral dose of tacroli-

mus needs to be higher than intravenous doses. Administration

of tacrolimus by the intravenous route leads to a rapid distri-

bution of the drug reflected as a rapid decline of the initial peak

concentration, followed by a slower decline over the next 24 h

(143). Tacrolimus is highly bound to plasma proteins, e.g.,

albumin, and to red blood cells and lymphocytes (144,145).

Most of the solid organs exhibit a high concentration of ta-

crolimus, particularly the lungs, heart, kidney, pancreas,

spleen, and liver. The major part of the metabolism takes place

in the intestinal wall and in the liver by the cytochrome P450

system (146,147). At least 15 metabolites have been detected,

and some of them show pharmacologic activity (148,149).

Drug level monitoring is required, because tacrolimus has high

inter- and intraindividual variability and a narrow therapeutic

index (142). Drug levels can be monitored by an enzyme-

linked immunosorbent assay or by RIA from whole blood

(150,151).

Pharmacodynamics
The mechanism of action is similar for tacrolimus and CsA

(98,152–154). The process is initiated by binding of the ta-

crolimus molecule to cytoplasmic immunophilins, FKPB, of

which the isoform FKBP12 seems to be involved in the im-

munosuppressive effect caused by tacrolimus (155–157). The

tacrolimus-FKBP complex inhibits the activity of calcineurin,

a serine-threonine phosphatase that regulates IL-2 promoter

induction after T cell activation (158,159). Inhibition of cal-

cineurin impedes calcium-dependent signal transduction, and

inactivates transcription factors (NF-AT) that promote cyto-

kine gene activation, because they are direct or indirect sub-

strates of calcineurin’s serine-threonine phosphatase activity

(160,161). As a consequence, the transcription of cytokines

IL-2, IL-3, IL-4, IL-5, interferon-g, tumor necrosis factor-a,

and granulocyte-macrophage colony-stimulating factor, and

IL-2 and IL-7 receptors, is suppressed by tacrolimus (162–

165).

Tacrolimus inhibits lymphocyte activation in vitro 10 to 100

times more potently than CsA (165). One explanation might be

the higher binding affinity of tacrolimus to FKPB compared to

the binding of CsA to its immunophilin called cyclophilin

(156). Other immunosuppressive effects of tacrolimus include

Figure 2. Possible sites of action in lymphocytes of new immunosuppressants. TCR, T cell receptor. Modified from reference (1).
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the inhibition of T cell proliferation and the inhibition of

primary or secondary cytotoxic cell proliferation in vitro,

whereas direct cytotoxicity and calcium-independent T cell

stimulation are not affected (166,167). Tacrolimus also sup-

presses B cell activation in vitro: both induced Ig production by

B cells and the proliferation of stimulated B cells (168). In

vivo, tacrolimus inhibits proliferative and cytotoxic responses

to alloantigens and suppresses primary antibody responses to T

cell-dependent antigens, whereas secondary antibody re-

sponses, IL-2-stimulated cell proliferation, and natural killer or

antibody-dependent cytotoxic cell function are not inhibited

(169–171).

Animal Studies
Tacrolimus was first described as a promising immunosup-

pressive agent to control acute rejection in experimental heart

transplantation in rats (172). Later studies showed its efficacy

for suppression of heart allograft rejection in nonhuman pri-

mates (113,173–175). Controversial results have been pub-

lished concerning the role of tacrolimus in prevention of

chronic rejection. In a heterotopic rat cardiac transplant model,

high dose tacrolimus treatment reduced the incidence of car-

diac allograft vascular disease (176), whereas other studies

showed that tacrolimus was not able to prevent graft-vessel

disease (113,177). In a rat hind limb transplant model, tacroli-

mus was superior to SRL or CsA in prolongation of allograft

survival (178).

Tacrolimus has been shown to prolong the survival of concor-

dant heart xenografts in a hamster to rat model when combined

with antiproliferative drugs or splenectomy (54,179,180), as well

as in a concordant model in primates (181).

Clinical Trials
Tacrolimus has been investigated in clinical transplantation

of all solid organs, and it has been approved as an immuno-

suppressant agent for primary therapy in patients with liver and

kidney transplants. In renal transplantation, tacrolimus was

used first in 1989 in Pittsburgh (182). Many clinical trials and

reports in renal allograft recipients have been published (183–

189). Tacrolimus has been proven effective in patients with

steroid-resistant rejection episodes. In the most recent random-

ized, comparative multicenter trial including 412 patients, ta-

crolimus was equivalent to CsA in 1-yr graft and patient

survival. The number and severity of biopsy-proven acute

rejection episodes were significantly lower in the tacrolimus

group (190). After 3 yr, patient and graft survival was still

equivalent for both groups, but the number of graft failures

defined as loss of graft excluding death was significantly lower

in the tacrolimus group. A higher overall incidence of post-

transplant diabetes mellitus was observed in the tacrolimus

group (191).

Adverse Effects and Toxicity
Significant nephro- and neurotoxicity have been reported in

patients receiving tacrolimus treatment (192–194). One possi-

ble mechanism for the neurotoxicity is the inhibition of cal-

cineurin phosphatase, but the etiology of its renal vasculo-

pathic effects is unclear. Reduced renal glomerular and cortical

blood flow and increased renal vascular resistance are gener-

ally associated with increased thromboxane A2, endothelin

production, or stimulated intrarenal renin production (192).

Cardiomyopathy, anemia, chronic diarrhea, onset of diabetes,

and allergies have been reported in patients receiving tacroli-

mus (195,195). Compared with CsA, hypercholesteremia and

hypertension are less common, and gingival hyperplasia and

hirsutism are notably absent in patients receiving chronic ta-

crolimus treatment (192,194,195). Lymphoproliferative dis-

ease and infections are associated with tacrolimus-based im-

munosuppressive protocols (195,196).

IL-2 Receptor Monoclonal Antibodies
Background

In the late 1960s, the introduction of polyclonal T cell

antibodies (antilymphocyte globulin, antithymocyte serum, an-

tithymocyte globulin) was a breakthrough in solid organ trans-

plantation leading to prolonged graft survival. Because of the

nonspecific immunosuppression achieved with polyclonal an-

tibodies and the increased knowledge about rejection and T cell

activation, research was directed at the development of specific

monoclonal T cell antibodies.

The first commercially available monoclonal antibody was

OKT3 in 1981 (mouse CD3). It is used routinely for both

induction therapy and rejection therapy. Because OKT3 is a

nonhuman protein and because of its interaction with all lym-

phocytes, there are significant side effects in patients treated

with OKT3, including cytokine release syndrome and malig-

nancies (197). Recent studies have been focusing on more

specific monoclonal antibodies, thereby reducing the side ef-

fects (198–200). Another major achievement is the develop-

ment of chimeric and humanized monoclonal antibodies, thus

reducing the immunogenicity and increasing human immune

effector functions (201). The important role of the IL-2/IL-2

receptor system in lymphocyte proliferation and the selective

expression of this receptor on activated T lymphocytes led to

investigation of the IL-2 receptor as a target for monoclonal

antibody therapy.

Pharmacodynamics
The high-affinity IL-2 receptor consists of three nonco-

valently bound chains: a 55-kD a-chain (CD 25, Tac), a 75-kD

b-chain, and a 64-kD g-chain (202). The a-chain is expressed

only on activated T lymphocytes. The clonal proliferation of

activated T cells is suppressed by blocking CD25. Hypotheti-

cally, by binding the antibody with CD25 the receptor cannot

be activated by free IL-2. The expression of the IL-2 receptor

may be downregulated.

The weak performance of specific murine monoclonal anti-

bodies is caused by a rapid development of neutralizing anti-

bodies against the monoclonal antibodies in about 80% of the

recipients (200). In addition, the ability of murine antibodies to

interact with the human complement system to lyse cells can be

impaired. So-called humanized or chimeric antibodies could

overcome this limitation. They do not elicit an antibody reac-
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tion and are able to interact with the human complement

system.

Animal Studies
Kirkman et al. demonstrated in 1987 a prolongation of

murine cardiac allograft survival by the anti-IL-2 receptor

monoclonal antibody AMT-13 (203). Prolongation of kidney

allograft survival in cynomolgus monkeys has been achieved

with use of an anti-Tac monoclonal antibody (204).

Clinical Trials
A variety of IL-2 receptor antibody studies have been per-

formed in humans with kidney or heart transplantation. A rat

IgG2a monoclonal antibody, 33B3.1, prevented renal allograft

rejection as effectively as antithymocyte globulin, but with

better tolerance (199).

Anti-Tac, a murine IgG2a monoclonal antibody directed

against the a-chain of human IL-2 receptors, combined with

standard CsA therapy showed a marked reduction in the inci-

dence of early renal graft rejection. However, no improvement

in either graft or patient survival could be demonstrated

(205,206). BT 563, a murine IgG1 anti-IL-2 receptor antibody,

has also been shown to effectively prevent rejection after

kidney transplantation without infectious complications or side

effects (207). BT 563 has also been used in an open-label

randomized study in heart transplant recipients with disap-

pointing results attributed to the late onset of CsA therapy and

to the redundancy of the cytokine network (208,209).

A new generation of humanized IL-2 receptor antibodies has

recently been introduced. Daclizumab (HAT [humanized anti-

Tac] or Zenapax®) is a genetically engineered humanized IgG

that binds to the a-chain of the IL-2 receptor. Results from

Phase I and III trials in kidney transplants are encouraging.

Daclizumab significantly reduced the incidence of acute rejec-

tion in kidney transplant patients (210).

Another antibody used for prophylaxis in a Phase III clinical

trial of cadaver kidney transplant patients (211) is basiliximab

(Simulect®), a chimeric (human and mouse) monoclonal anti-

body directed against the a-chain of the IL-2 receptor. It is

produced in vitro by continuous culture fermentation of a

murine-myeloma cell line transfected with plasmid-borne re-

combinant gene construct coding for murine variable regions

and human constant regions. Basiliximab—given on day 1 and

day 4 (20 mg)—was tested against placebo. There was a

significantly lower rejection rate in the basiliximab group, and

the steroid dosage could be reduced.

Adverse Effects and Drug Toxicity
IL-2 receptor antibodies were well tolerated and have almost

no side effects compared with OKT3. No evidence of cytokine

release syndrome was seen. The infection rate was comparable

to the placebo group, and no significant difference regarding

malignancies was observed in these short-term studies.

Summary
More effective and specific immunosuppressive therapy is

needed to further reduce the high morbidity due to infections,

malignancies, and graft loss due to chronic rejection after

kidney transplantation. Two different approaches to improve

immunosuppression are under way: the development of new

small molecules as immunosuppressants and the development

of targeted monoclonal antibodies. Another strategy is the

monitoring of immunosuppressive therapy by pharmacody-

namic markers. The ultimate goal of immunosuppressive ther-

apy—its elimination through the development of allograft-

specific tolerance—has not been reproducibly achieved and

may never be realized for all patients. Perhaps the immune

systems of most patients will be able to be regulated by a more

sophisticated combination of several immunosuppressive

drugs, antibodies, and donor cells to become specifically hy-

poresponsive. By reducing the need of nonspecific immuno-

suppressants, the frequency of infections, malignancies, and

drug toxicity can be diminished, and a clinically acceptable and

more realistic alternative to complete “tolerance” may become

available.
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