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ABSTRACT Fault diagnosis of photovoltaic (PV) arrays is an essential task for improving the reliability and

safety of a photovoltaic system (PVS). The PVS faults at the DC side are difficult to detect by traditional

protective devices, which may reduce power conversion efficiency and even lead to safety matters and

fire disaster. This study investigates a newly-designed fault diagnostic method for a PVS according to the

following three steps. First, optimal fault features are extracted by analyzing I-V curves from different

faults, including hybrid faults of the PVS under the standard test condition (STC). Moreover, the trust-

region-reflective (TRR) deterministic algorithm combined with the particle-swarm-optimization (PSO)

metaheuristic algorithm is proposed to standardize fault features into the ones under the STC. In addition,

a multi-class adaptive boosting (AdaBoost) algorithm, which is the stage-wise additive modeling using

multi-class exponential (SAMME) loss function based on the classification and regression tree (CART) as

the weak classifier, is utilized to establish the fault diagnostic model. The effectiveness of the fault diagnostic

model could long-termmaintain by periodically updating the feature standardization equations to standardize

the fault features into the ones under the STC. Various types of the PV modules are used to validate the

generalization of the fault diagnostic method. Both the numerical simulations and experimental results show

the accuracy and reliability of the proposed fault diagnostic method.

INDEX TERMS Photovoltaic system (PVS), fault diagnosis, I-V curve, trust-region-reflective (TRR),

particle swarm optimization (PSO), SAMME-CART.

I. INTRODUCTION

With the exponential growth in global photovoltaic (PV)

power capacity, the operating maintenance and protection

have received great importance in the last few decades.

PV arrays are vulnerable to suffer various unexpected faults

due to the uncertain outdoor operating environment, which

result in massive power loss, irreversible module damage,

or even fire disaster [1]–[2]. Faults in the DC side of a

PV system (PVS) are difficult to detect and distinguish by

conventional protection devices merely based on NEC, IEC,

and UL Standards [3], mainly due to the lower fault current

magnitudes, the presence of maximum power point tracking

(MPPT), non-linear PV characteristics and the dependency

on the irradiance levels [4]. Therefore, numerous advanced
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PV fault detection approaches have been investigated in

recent years [5]. These methods based on different PV fault

features, which can be roughly divided into four categories to

be based on materials physical properties, power loss, mea-

sured voltage and current, and current-voltage (I-V) curve.

Physical properties of faulty PV modules are studied

and analyzed by physic means such as radiation detec-

tion [6]–[7], electric current injection [8] or incident sig-

nal transmission [9]–[10]. Infrared thermal imaging [6]–[7]

is an effective method to detect hot spot in PV modules,

while electro-luminescence technology [8] can be used to

accurately detect micro-cracks, breaks and finger interrup-

tions. However, the two techniques rely on costly sophisti-

cated sensors and require particular test conditions. Recently,

the spread spectrum time-domain reflectometry (SSTDR) [9]

is utilized to determine the PVS impedance variation rather

than depending on the fault current magnitudes. This method
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can effectively detect the PVS ground fault compared with

time-domain reflectometry [10]. However, the SSTDR needs

a specific external signal function generator and only could be

performed offline. Although the above diagnostic techniques

could accurately identify even locate PV faults, the cost of

maintenance is expensive and difficult to apply on arbitrary

operational PVS.

As for the diagnostic method based on the analysis of

power loss, the theoretical output power of PVS is estimated

compared with the measured one. Chouder and Silvestre [11]

proposed an automatic supervision and fault detection sys-

tem by defining new power loss indicators and establish-

ing theoretical boundaries. Hariharan et al. [12] developed a

method to detect the mismatch and shading by calculating the

power loss and the sudden change of power and irradiance.

Fractional-order color relation classifier is investigated to

quantify the output power degradation and separated normal

conditions from fault events [13]. Dhimish et al. [14] adopted

a 3rd-order polynomial function to describe the behavior

of the faulty region, and then combined with fuzzy logic

classification systems to enhance PV fault detection accuracy.

Harrou et al. [15] proposed a framework with nonparametric

thresholds by combining the benefit of k-nearest neighbors

with univariate monitoring approaches. However, the method

in [15] cannot discriminate partial shading from faults occur-

ring at the dc side of a PV array. These power-loss-based

methods depend on the accuracy and generalization of the

estimated output power model. The corresponding estimated

results may deviate from the theoretical values while chang-

ing to the other module specifications, especially under low

irradiance condition. As a result, the accuracy of the fault

identification will degenerate.

By employing sensors to measure voltages and currents

of a PVS for further characteristic analysis, various diag-

nostic algorithms were presented to identify PV faults. Pillai

and Rajasekar [16] used peculiar operating characteristics

by perturbation and observation (P& O) MPPT, and pro-

posed threshold-based detection rules to detect line-line and

line-ground faults with any level of mismatches. Unfortu-

nately, the performance of faults detection in [16] is sensi-

tive to manual setting thresholds. Hu et al. [17] analyzed

the optimal locations of voltage sensors and omitted cur-

rent sensors, and developed a two-section PV fault detection

method. But this method is unsuitable to implemented in

the large scale PVS for the cost of an increased voltage

sensors and the computational complexity. Aiming to detect

line-to-line faults under low irradiation with an active MPPT

algorithm, Yi and Etemadi extracted fault features based

on multi-resolution signal decomposition, and proposed a

fuzzy inference system in [18] and a two-stage support vec-

tor machine in [19]. A semi-supervised learning algorithm

based on the graph theory is used to identify PV faults,

which can still perform good results by only using a few

labeled training data [20]–[21]. Graph-based semi-supervised

learning (GBSSL) algorithms have been adopted to identify

PV faults, which can perform good results by only using a

few labeled training data [20]–[21]. However, the stability

of GBSSL methods is susceptible to noise, and the speed of

sample testing slows down with the accumulation of histor-

ical data. Moreover, these methods [18]–[21] based on the

total voltage and current of PV arrays are limited to identify

specific PV faults, such as partial shading and abnormal aging

to be more common failures in a PVS.

I-V curve measurement of a PVS inherently contains

wealth information. The diagnostic features are extracted

from I-V curves for fault analyses and identifications.

Hachana et al. [22] extracted parameters via the artificial bee

colony optimization and the differential evolution, and distin-

guished fault types according to threshold values in the form

of a look-up table. However, manual selection of the threshold

value easily leads to the limitation of higher accuracy and

generalization. Principal component analysis based statistical

method is used to identify shading faults [23], but it can only

diagnose single fault. Recently, artificial intelligence (AI)

technologies have received great attention [24]–[27]. Fuzzy

classifiers, artificial neural network, kernel-based extreme

learning machine algorithm (KELM) and multiclass adaptive

neuro-fuzzy classifier (MC-NFC) are used to establish PV

fault diagnostic models respectively. Although AI technolo-

gies can improve the fault classification rate to some extent,

few researchers attempt to verify the generalization ability

of AI fault diagnostic algorithms or AI training models. The

reasons are that the sensitivity of PV modules to irradiances

and temperaturesmakes the output voltages and currents to be

greatly varied, and the installation environments of a PVS are

diverse. Moreover, the values of extracted indicators without

effective normalization may greatly differ due to different

datasheet STC parameters of PV modules.

To address the issues discussed previously, this study pro-

poses a newly-designed method based on I-V curve measure-

ment to diagnose PVS faults including short circuit, abnormal

aging, two types of partial shading and hybrid faults. Accord-

ing to the varying degrees of the four faults and hybrid faults,

the fault types are classified into 25 kinds in numerical simu-

lations, and sorted into 11 categories in the experimentations.

Four specifications of PV module in numerical simulations

and two different modules on the real PVS are applied to

verify the generalization of the proposed fault diagnostic

method. This study is organized as five sections. Following

the Introduction, Section II introduces the research procedure

and analyzes optimal fault features. In Section III, the pro-

posed PSO-TRR-based feature normalization process and the

SAMME-CART algorism for the PV fault diagnostic model

are expressed in detail. In Section IV, the performance of the

fault diagnostic method is verified by numerical simulations

and experimental results. Conclusions are given in Section V.

II. RESEARCH PROCEDURE AND FAULT

ANALYSIS OF PVS

A. INTRODUCTION OF RESEARCH PROCEDURE

Since various faults exist in a photovoltaic system (PVS),

it is difficult to distinguish simply by the voltage and current
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measurement at the corresponding maximum-power-point-

tracking (MPPT) point. Thanks to the integration of online

I-V tracers into new-type smart photovoltaic (PV) invert-

ers [23], the measurement of I-V curves is available to reflect

the state of a PVS truly without additional hardware. In this

study, a solar system analyzer (PROVA1011) manufactured

by TES Electrical Electronic Corp. is used to extract I-V

curves for practical verification as in [26]. Based on I-V

curve measurement, the flowchart of the proposed research

procedures is depicted in Fig. 1. The output voltage and

current vary widely as PV modules are sensitive to the exter-

nal environment, which makes it hard to identify possible

faults. However, in a specific environment such as the stan-

dard test condition (STC), faults have significant impact on

I-V curves and even can identify hybrid faults. Therefore,

electrical characteristics and I-V curves in different faults

are analyzed under STC for the optimal features extraction.

Moreover, selected features under different temperatures and

irradiances convert to the ones under STC could obtain higher

recognition and generalization.

FIGURE 1. Flowchart of research procedure.

By simplifying the equivalent PV model, the STC param-

eters of I-V curves can be transformed into the ones

under given irradiance and temperature via approximate for-

mula [28]–[31]. Then shifting the formula, parameters under

different temperatures and irradiances can be converted into

the ones under STC. This idea is also used in the per-unit

method [26] to eliminate the influence of irradiations and

temperatures. However, this method suffers several problems

in real operating PVS. For example, it will result in a low

accuracy, especially under low irradiances.Moreover, various

effects among different PV modules. In addition, the inherent

deviation in the same module due to the difference in the

installation of PV and the placement of the sensors.

Therefore, fault detection method needs to be separately

tuned within a particular PVS. Based on low-cost and easily

obtained normal samples, the PV normalization equations of

fault features are built by a nonlinear least-square method

based on the hybrid PSO-TRR algorithm. Finally, a variant

of the basic AdaBoost, called stage-wise additive modeling

via a multi-class exponential (SAMME) loss function based

on the classification and regression tree (CART) as the weak

classifier, is utilized to establish the PV fault diagnosis model.

B. FAULT ANALYSIS AND FEATURE EXTRACTION

I-V testing circuit and PV module modeling via

MATLAB/Simulink simulation are depicted in Fig. 2. In this

study, the configuration of a PVS is formed by a string with

13 series PV modules. Each module consists of 60 cells con-

nected in series, which evenly gathered into three sub-strings

with three bypass diodes. By controlling the output value

of the voltage source to linearly increase, the output current

and voltage of the PV string are recorded. Then input the

corresponding data into the MATLAB workspace to obtain

final I-V curves. A rectifier diode is employed in the output

of the PV string to avoid the occurrence of negative currents.

Irradiances and temperatures are set by the gain amplifier of

each sub-string.

FIGURE 2. I-V testing circuit and PV module modeling via MATLAB/
Simulink.

Faults of short-circuit, abnormal-aging, partial-shading

and the corresponding hybrid faults of PV strings are consid-

ered. Typical I-V curves at single fault condition under STC

is depicted in Fig. 3. Note that, in partial shading conditions,

different from quantitative analyses according to the voltage

at the peak power on the right-hand side in [16], this study

analyses qualitatively from another perspective based on the

activation of bypass diodes inside shaded PV modules at the

global MPPT (GMPPT) point. Shading faults are divided

into two types, which contain the partial shading with the

bypass-diode reversed (PSBR) and the partial shading with
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FIGURE 3. Typical I-V curves at single fault condition under STC.

the bypass-diode on (PSBO). Owing to the relatively small

shading area in the PSBR condition, the GMPPT point at

the right-hand side of the peak power still works in all mod-

ules together with a low current drop, which leads to being

overheated and results in hot spots. In the PSBO condition,

the considerable decrease of the current in the PSBO module

leads to the activation of the bypass diode, which makes the

voltage to be negative in shaded modules, and the GMPPT

point is moved to the left-hand side of the peak power. As for

the abnormal aging fault, it refers to a sudden increase in the

series resistance and causes the bypass on under STC. The

equivalent series resistance Rs of a PV module [30]–[31] can

be represented as

Rs = −
dV

dI

∣

∣

∣

∣

V∼=Voc

=
Voc − V1

I1
(1)

Rs =
1

3
(
Voc − V1

I1
+
Voc − V2

I2
+
Voc − V3

I3
) (2)

where (I1,V1), (I2,V2) and (I3,V3) are three closest I-V points

to (0, Voc). In order to suppress external interference and

measurement noise in experimentations, one can modify (1)

to (2) by averaging three estimated values of Rs.

Since hybrid faults are superposition of single faults, elec-

trical parameters in individual fault I-V curves are summa-

rized in Table 1. Due to the value of Isc just has a little change

in the aforementioned faults, only the open circuit voltage

Voc, the equivalent series resistance Rs, and Vm and Im at

the MPPT point are considered as the diagnostic features of

a PVS. These features with different variations perform the

characteristics of different faults under the STC. Therefore,

the fault type of the PV array can be accurately discriminated

when selected features of the PVS can be converted into the

ones under the STC.

III. NEWLY-DESIGNED FAULT DIAGNOSTIC

TECHNIQUES FOR PVS

The proposed fault diagnostic method for a photovoltaic

system (PVS) in this study includes the data pre-processing

and pattern-recognition theory. The output parameters of

the I-V curve are normalized by a nonlinear least-squares

method based on the hybrid particle-swarm-optimization

TABLE 1. Variations of fault features at STC.

trust-region-reflective (PSO-TRR) algorithm. The stage-wise

additive modeling with a multi-class exponential loss func-

tion (SAMME) based on the classification and regression

tree (CART) is trained by using normalized features and

labels. The detection procedure is elaborated in the following

subsections.

A. PROPOSED FEATURE NORMALIZATION PROCESS

In this study, the characteristic functions are extracted partly

according to the traditional approximation formula of out-

put parameters [28]–[31]. Coefficients in the characteristic

function can be represented by unknown coefficients (a, b, c,

and d). The characteristic equations for I-V curves can be

rewritten as

Voc = Voc·stc+ a1 · ln
G

Gstc
+ a2 · dT+ a3 ·

G

Gstc
dT (3)

Vm = Vm·stc+ b1 · ln
G

Gstc
+ b2 · dT+ b3 ·

G

Gstc
dT (4)

Im = c1 · Im·stc
G

Gstc
+ c2 · dT + c3 ·

G

Gstc
dT (5)

Rs = Rs·stc

(

G

Gstc

)d1

+ d2 · dT + d3 ·
G

Gstc
dT (6)

where the third item in the right-hand side of (3)-(6) is the

error reduction factor, and the corresponding fitting result can

be further optimized. G is the measured irradiance, Gstc is

a constant of 1000W/m 2; dT is the measured temperature

minus the STC temperature.Voc.stc, Vm.stc, Im.stc, and Rs.stc
represent the open-circuit voltage, the voltage and current at

the MPPT point, and the equivalent series resistance of the

PVS at the STC, respectively.

Due to the nonlinearity of the characteristic formula,

the nonlinear least-squares method based on the PSO-TRR

algorithm is proposed to calculate unknown coefficients.

The nonlinear least-squares fitting is a parameter searching

method for estimating the parameters of nonlinear static mod-

els by minimizing the following objective error function.

min
x
f (x, gti) = min

x

∑n

i=0
[(F(x, gti) − y(gti))

2] (7)

where gti represents the vector consist of measured tem-

peratures and irradiances, F(x, gti) is the PV characteristic

equations from (3) to (6), x is the unknown coefficients of

F(x, gti), y(gti) is the measured value from a PVS, and n is

the number of measured samples.

Numerical optimization methods have been widely used to

solve non-linear minimization problems as well as overcome
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the difficulty of parameter determinations. In this study,

the TRR algorism plus the PSO algorism is proposed to

search the optimal solution. In the hybrid PSO-TRR algo-

rithm, the PSO is used to globally explore the initial value

of x0, since the local optimization is accomplished using the

TRR. The hybrid algorithm can enhance the convergence

without sacrificing the accuracy and stability, and are briefly

introduced later.

The trust-region approach incorporated with the interior-

reflective Newton algorithm and the subspace algorism

[32]–[35] is simple and efficient to solve the bound con-

strained minimization problems. It can be used to solve

nonlinear least-squares problems. The error vector function

f (x) in (7) is the minimization object of the TRR algorithm,

in which x is a vector to be optimized with upper and lower

bounds (l < x < u). Coleman and Li [32] used a new

affine scaling transformation to construct a standard scaled

unconstrained trust region sub-problem. As for calculating

the sub-problem, the TRR algorithm restricts the sub-problem

to a two-dimensional subspace S [34]–[35] to accelerate the

convergence for large-scale problems.

The TRR algorithm is implemented and coded in the

MATLAB software in this study. The termination tolerance

includes the tolerance on the function value, the tolerance

on variables, maximum function evaluation numbers and

maximum iteration numbers. Note that, unreasonable values

can be eliminated by setting the upper and lower bounds

of variables in the initialization of the TRR algorithm. For

example, a1 is used as Vt in the conventional formula, and the

lower constraint of a1 is set to a1 >0. The constrained bounds

for unknown coefficients xi are summarized in Table 2.

TABLE 2. Constrained bounds for unknown coefficients.

The powerful local optimization algorithm of the TRR can

quickly and accurately calculate the optimal solution while

given a reasonable initial value of x0. However, when the

initial value is irrational, the TRR algorithm is easily trapped

into the local optima. In order to enhance the stability of the

algorithm, the PSO is utilized to search the moderate initial

values of the characteristic coefficients. Although the PSO

does not always guarantee to discover the globally optimal

solution during a finite time, it often quickly provides a

sub-optimal near globally optimal. The PSOused in this study

is briefly introduced as follows.

The PSO is one of the swarm intelligence algorithms intro-

duced by Kennedy and Eberhart [36]–[37], which inspired by

swarm behavior in birds flocking and fish schooling to solve

optimization problems. This study uses the global variant of

PSO, which learns from the personal best position and the

best position attained so far by the whole swarm. The inertia

weight used to balance between the global and local search

abilities [38], which is linearly decreased with the iterative

generations. In this study, the linearly weight is set to [0.8, 1]

to enhance the global search ability. Since the fitting problem

is to minimize the root-mean-square error (RMSE) objective

function as

RMSE = (

n
∑

i=1

(F(x, gti) − y(gti))
2/n)

1
2 (8)

The fitness function of the PSO is defined as

Fitness =
1

1 + RMSE
(9)

Since the PSO can converge quickly to the optimal posi-

tions at the beginning of the run, it may slowly converge

with a low speed near a local solution [39]. In this study,

the number particles and evolutions are only set to be 30 for

obtaining a good initial value of xo. The constrained position

is the same as the TRR algorithm in Table 2.

When characteristic coefficients are calculated by the non-

linear PSO-TRR least-squares method, the complete charac-

teristic equations for PV parameters can be obtained. Then,

parameter normalization equations (10)-(13) can be obtained

by shifting and normalizing the formula, which convert the

output parameters of I-V curves under different temperatures

and irradiances into the per-unit ones at STC.

Voc.norm

=
1

Voc.stc
(Voc− a1 · ln

G

Gstc
−a2 · dT−a3 ·

G

Gstc
dT ) (10)

Vm.norm

=
1

Vm.stc
(Vm−b1 · ln

G

Gstc
−b2 · dT−b3 ·

G

Gstc
dT ) (11)

Im.norm

=
1

Im.stc
(
Gstc

c1 · G
(Im.−c2 · dT− c3 ·

G

Gstc
dT )) (12)

Rs.norm

=
1

Rs.stc
((
G

Gstc
)−d1 (Rs−d2 · dT−d3 ·

G

Gstc
dT )) (13)

where Voc, Vm, Im, and Rs respectively represent the

open-circuit voltage, the voltage and current at the MPPT

point, and the equivalent series resistance. Voc.norm, Vm.norm,

Im.norm, and Rs.norm are the corresponding normalized

parameters.

The premise of the parameter normalization is to measure

I-V curves of the normal operating PVS under different irra-

diances and temperatures. Since the irradiance variable has

a great influence on PV power generation compared to the

temperature variable, the irradiance variable is used as the

reference of measurement. Normal I-V curves are measured

in a clear weather with different irradiances for the parameter

normalization. Since the natural aging of PV arrays is over

time, periodically re-extracting new I-V curves and recon-

structing normalization equations can improve the long-term

effectiveness of PV fault diagnostic techniques.
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B. PVS FAULT CLASSIFIED METHOD BASED ON

SAMME-CART

The adaptive boosting (AdaBoost) algorithm [40]–[41] is a

typical case of the boosting algorithm, which can improve

the performance of any given learning algorithm [42]. The

AdaBoost algorithm combines weak classifiers generated

by iterations to form a stronger final classifier. Compared

with most learning algorithms, ensemble learning is less

prone to over-fitting [43]. This study uses the multi-class

Adaboost algorithm proposed by Zhu et al. [44], referred as

the stage-wise additive modeling using a multi-class expo-

nential loss function (SAMME), which extends the Adaboost

from two-class to multi-class without reducing it to multiple

two-class problems. In the k-class problem, the SAMME

algorithm can be theoretically proven that it only requires

the performance of each weak classifier to be better than

the one with random guessing. In this study, the decision

tree (DT) grown by the classification and regression (CART)

algorithm is utilized as the weak classifier. 10-folder

cross-validation is utilized to optimize the parameters of the

SAMME algorithm.

1) CART ALGORITHM

The CART algorithm is characterized by constructing binary

DTs in a top-down manner [45]. The DT begins with a root

node derived fromwhichever variable in the feature space and

minimizes a measure of the impurity of the two sibling nodes

by a defined splitting rule. The Gini splitting rule to be most

broadly used is employed as the splitting algorithm in this

study. To avoid the over-fitting problem, limiting the splits

number smaller than the classification category is utilized

as the pre-prune method of the CART. The DTs based on

the CART algorithm is used as the weak classifiers of the

SAMME owing to its simple binary structure and easily

handle outliers in a separate node.

2) SAMME-CART ALGORITHM

Let S ={(x1, y1), (x2, y2), . . . , (xn, yn)} be entire training

set, where n is the total number of the training set, xi is

the training vectors containing four PV diagnostic features,

Yi ∈ Y = {1, 2, . . . , k} is the k-class label with respect to

xi. The initial sample weight D1.i and the number of iteration

T are set. In the t-th iteration, the DT based on the CART

algorism is used to classify the weighted training samples,

and theweak hypothesis ht :X → Y can be obtained. Based on

the weak hypothesis results, the current DT is implemented

with a calculated certain weight αt , and the sample weight

Dt.i is further updated by the exponential loss function. After

the T round, all the weak hypotheses h1,. . . ,hT are weighted

to get the final strong classifier H . Note that, the SAMME

algorism is the same as the original AdaBoost as k = 2. The

executed steps are expressed as follows.

1) Initialize sample weights as

D1·i =
1

n
, i = 1, 2, . . . , n (14)

2) For t = 1 to T :

a. Train DT on the current Di and compute the clas-

sification error of DT by

εt =
∑n

i=1
(Dti · I (ht (xi) 6= yt)) /

∑n

i=1
Dti (15)

where I(∗) equals to unity when the condition (∗) is satisfied.

Otherwise, it is zero.

b. Compute the classification weight of the DT as

αt = log
1 − εt

εt
+ log(k − 1) (16)

where k denotes the number of class.

c. The sample weight is updated according to the follow-

ing equation:

D(t+1)i=
Dti · exp(αt · I(ht(xi) 6= yt))

Z
, i = 1, . . . , n (17)

where Zt is the normalization factor.

1) Assigning the weights to the classification of DTs pro-

vides the final strong classifier as follows:

H (x) = argmax
k

∑T

t=1
αt · I (ht (x) = k) (18)

3) SAMME PARAMETER OPTIMIZATION

The training error of the SAMME will be decreased with the

increase of DTs. In order to get the optimalmodel, the number

of weak classifiers DTs (i.e., the number of iterations) needs

to determine. Since only one hyper-parameter should be

tuned, this study uses 10-folds cross-validation for parameter

optimization, and the number of weak classifiers increases

from 1 to 100 with the increment step of 1. Based on the

minimum average of ten verification errors, the number of

weak classifiers can be obtained as the optimal number of

the SAMME iterations. By using 10-folds cross-validation

to fully take advantage of the training data, the PV fault

diagnostic model can further avoid the over-fitting problem

and has higher generalization ability.

IV. VERIFICATION OF PVS DIAGNOSTIC TECHNIQUES

In this study, the performance of the proposed PV fault diag-

nostic method is verified by numerical simulations and exper-

imental results. Five specifications of PV module referred to

PVM1-PVM5 are given in Table 3, and used to verify the

generalization ability of the proposed method.

A. NUMERICAL SIMULATIONS OF PVS DIAGNOSES

Four common photovoltaic (PV) faults including

the short-circuit fault (SCF), the partial shading with the

bypass-diode on (PSBO), the partial shading with the

bypass-diode reversed (PSBR), and the abnormal aging

fault (AAF) are considered here. The type of partial shading

depends on the number and shading level of PV modules.

In this study, only the partial shading within three modules

is considered. The value of the gain amplifier is randomly

set during the range of [0.85, 0.92] to simulate the PSBR
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FIGURE 4. RMSE records of four module parameters for PVM1-PVM4 in comparison with other approximate methods in [28]–[31] and
per unit method in [26]: (a) Parameter Vm; (b) Parameter Im;(c) Parameter Voc ;(d) Parameter Rs.

TABLE 3. Variations of fault features at STC.

condition, while set randomly during the range of [0.3, 0.75]

to simulate the PSBO condition. As for simulating the AAF

condition, the series aging resistor is randomly set during the

range of [2�, 10�]. Because the proposed diagnostic basis

in this study is I-V curves, the presence of MPPT will not

affect the performance of the proposed method. In order to

cover a wide range of operating environmental conditions,

the irradiance range is from 100W/m 2 to 1200W/m 2, while

the temperature range varies from 35◦ C to 65◦ C. The varied

steps are determined by a certain value (A) and a randomly

varying value (random(B)) in (19) to truly reflect the real

environment. In order to verify the accuracy of the proposed

fault diagnostic method for a PVS, 25 types of PV fault

situations including the normal condition are considered.

The total amount of 10,560 simulated data can be obtained

according to the datasheet parameter of a module at the STC.

Different types including PVM1-PVM4modules are used for

simulated verification.

Step = A+ random(B) (19)

1) PERFORMANCE OF PARAMETER NORMALIZATION

The characteristic parameters (Voc, Vm, Im, and Rs) are

extracted from I-V curves of the normal operating PV

string under irradiances varied from 100W/m2 to 1200W/m2.

One-quarter of normal samples are used to calculate the

coefficients of the PV characteristic formula in Section III.

Then, the complete PV output characteristic formula can be

obtained via the nonlinear particle-swarm-optimization trust-

region-reflective (PSO-TRR) least-squares method. The fit-

ting characteristic equations of four parameters are evaluated

by the rest three-quarter normal samples and the correspond-

ing RMSE values. The fitting results are compared with the

ones of traditional approximation formulas in [28]–[31] and

per unit method in [26] as shown in Fig. 4. As can be seen

from Fig. 4, the proposed method yields superior approxi-

mation accuracy than other methods in [26], [28]–[31]. All

RMSE values of four parameters via the proposed method

are smaller than 0.68, which indicate the accuracy of the

fitting output characteristic equations. Note that, the errors

of the approximated formulas in [26], [28]–[31] are different

among different module parameters, which will affect the

generalization ability of the diagnostic algorithm.

In order to compare the statistical distribution of the orig-

inal simulated data and the normalized ones, the boxplot is

formed by setting the single fault to show the performance of

the parameter normalization visually. By taking PVM1 as an

example, the corresponding boxplot is depicted in Fig. 5. The

original features overlap and highly skewed among different

faults, while the normalized ones in Fig. 5(b) show better data

clustering and unification.

2) PERFORMANCE OF PV DIAGNOSTIC TECHNIQUES

According to the normalization equations, the samples com-

posed of four PV diagnostic features can be obtained. All

samples are randomly divided into a training set and a testing

set by a ratio of 3:1. By taking PVM1 as an example, the PV

fault diagnostic results are given in Table 4, where the symbol
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FIGURE 5. Boxplot of four simulated feature variables: (a) Original data
samples distribution of PVM1; (b) Normalized data samples distribution
of PVM1.

‘‘-sub’’ represents the extent to which the faults occurred in

sub-string. As can be seen from Table 4, the training accuracy

of each type of fault is 100%. However, the accuracy of

some fault testing results is smaller than 100%, which are

caused by the occurrence of some faults in the sub-string.

As for sub-string faults mixed with different types of fault,

the response with hybrid faults are similar to the one with

single fault, which is difficult to correctly classify.

As for the generalization ability of the proposed diagnos-

tic algorithm, this study uses four datasheet parameters at

the STC for verification. The classified accuracy of simu-

lation data samples from different modules are summarized

in Table 5. As shown in Table 5, all the total fault classified

accuracy at four cases is above 99.70%. These simulated

results conclude that the high precision and generalization

ability by the proposed PV fault diagnostic method can be

obtained.

In order to verify the superiority of the SAMME-CART

classification algorithm, this study uses three other popular

TABLE 4. Detailed classification accuracy of PVM1 simulated data
samples.

TABLE 5. Classified accuracy of simulation data samples from different
modules.

machine-learning algorithms including the Naive Bayesian

algorithm, the extreme learning machine (ELM) algorithm,

and the random forest algorithm to compare the correspond-

ing performances. Comparative results are depicted in Fig. 6.

The results show that the SEMME-CART algorithm has

the highest accuracy, and the corresponding performance is

slightly better than the one of the random forest algorithm.

Note that, the classification accuracy of each algorithm under

different module parameters is higher than 95%. These results

show that the per-unit normalization of equivalent parameters

at the STC has extremely high recognition.

This study also verifies the generalization ability of the

proposed PV fault diagnostic model. The trained PV fault

diagnostic model is used to test the samples under differ-

ent module parameters in Table 6. As shown in Table 6,

the powerful generalization of the proposed PV fault diag-

nostic model can be verified. The result is attributed to the

high fitness of the diagnostic equations of the PV output
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FIGURE 6. Classified result of SAMME-CART in comparison with other
machine learning methods.

TABLE 6. Classification accuracy of testing data from different modules.

parameters. The difference of characteristic parameters in PV

modules is negligible after the data pre-processing. As for

the absence of data, it is only necessary to obtain data on the

normal operation at different irradiances, and use the trained

PV fault diagnostic model from other cases to discriminate

PV faults. The cost for acquiring a large amount of fault data

can be saved.

In practice, especially for utility-scale systems, PV mod-

ules are connected in a parallel-series configuration to expand

the output power and voltage as desired. Therefore, the exten-

sion from a single PV string to multiple PV strings is also

examined to verify the scalability of the proposed method in

numerical simulations. The data are captured by expanding

the capacity to a 6.1kWp PVS with two PV strings and a

9.2kWp PVS with three PV strings via the PVM1 module

modeling in Fig. 2. The number of samples in each system

is 2,640 to be randomly divided into a training set and a

testing set by a ratio of 3:1. Only faults within one PVmodule

occurred in a string of the PV array with multiple strings are

considered under the same condition setup in Table 4. The

classification accuracies with respect to two PV strings and

three PV strings are summarized in Table 7. With the increase

of PV capacity, the classification accuracy of some types of

faults reduces, especially in the hybrid faults. Fortunately,

the average accuracy also can be over 99.23%, and the scala-

bility of the proposed method can be verified.

TABLE 7. Classification accuracy of PVM1 simulated data samples with
multiple PV strings.

B. EXPERIMENTAL VERIFICATION OF PVS DIAGNOSES

In the real PV fault cases, two types of modules including

the PVM1 manufactured by the polycrystalline silicon and

the PVM5 manufactured by the monocrystalline silicon as

shown in Fig. 7 are used to form the PVS with 13 modules

in series for experimental verifications. The specifications

PVM1 and PVM5 are given in Table 3. The experimental

sites for the two PVS (3.51kWp and 3.9kWp) are located

at National Taiwan University of Science and Technology,

Taiwan. The photograph of the experimental hardware plat-

form is depicted in Fig. 8. The short-circuit fault is created

by Y-branch connectors. Small pieces, such as small bricks

or discarded cigarette boxes, are used to simulate the PSBR

condition. Thin plastic sheeting or paper sheets are employed

to simulate the PSBO condition. The abnormal aging fault

utilizes a sliding varistor as the aging resistor to be connected

in series with the PV sub-string. I-V curves of the PVS,

real-time irradiances and temperatures of solar panels are

collected via the solar system analyzer (PROVA1011). The

solar system analyzer measures the temperature of solar cells

of back panels instead of the ones of front panels in the exper-

iment. Besides, the installation angle of the irradiance sensor

is not likely to be the same as the PV module, which will

result in the measurement error. Fortunately, temperatures

and irradiances are only taken as reference quantities in this

study. As long as the sensor position is fixed, the correspond-

ing experimental results will not be affected. Irradiances in

experimental environment are range from 100W/m 2 to 1000

W/m 2, and experimental I-V curves under the occurrence

of single fault at the STC in high and low irradiances are

depicted in Fig. 9(a) and 9(b), respectively. The characteris-

tics in Fig. 9 are similar to the ones in Fig. 3.

1) PERFORMANCE OF PARAMETER NORMALIZATION

Due to complex environmental factors and deviations in the

signal conversion of the acquisition device, the noise inside

the measured data is inevitable. In the data pre-processing

of fitting the characteristic coefficients, the result depends

on given numbers of data. The insufficient amount of data
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FIGURE 7. Two type of experimental modules for verification.

FIGURE 8. Experimental hardware platform.

may affect the fitting result. In order to find the minimum

limit of the required normal data, the total measured normal

data are divided into four levels of irradiances, including

G <300W/m 2, 300W/m 2 < G <500W/m 2, 500W/m 2 < G

<700W/m 2, and G >700W/m 2. Then, one randomly selects

the same number (n) from each level to respectively perform

100 times fitting, and uses the remaining normal samples to

evaluate the fitting results. Each parameter fitting is evaluated

via the average of 100 RMSEs, and the largest average one

is used as a reference for the fitting evaluation. By taking

389 experimental normal samples of PVM1 as an example,

the result in Fig. 10 tends to be stable after n = 7. Therefore,

the parameter normalization only needs 28 normal samples

under different irradiances. The value of n = 10 is selected in

the study to make the fitting results more reliable, i.e., a total

amount of 40 normal samples are used for the parameter

standardization. The parametric fitting result of PVM1 and

PVM5 are evaluated by the average of 100 RMSEs, as shown

in Table 8. Although the average RMSE value of Vm and Voc
are relatively large, the impacts on their actual values can be

negligible.

The boxplot of four normalized feature variables is pro-

vided in Fig. 11 to describe the statistical distribution of

experimental data samples of PVM1 compared with the sim-

ulated one in Fig. 5(b). It can be observed that somemeasured

data deviate from the theoretical values due to various inter-

ferences in the real environment. However, the distribution

FIGURE 9. Experimental I-V curves under the occurrence of single fault at
STC: (a) High irradiance condition; (b) Low irradiance condition.

FIGURE 10. Optimal fitting number selection of PVM1.

of measured data is almost the same as that of the simulation

data. This result verifies the effectiveness of the parameter

normalization and provides a pssibility for the feasibility of

replacing the measured data with simulated ones under the

absence of data.

2) PERFORMANCE OF PV DIAGNOSTIC TECHNIQUES

In the experimental verification, 2,803 and 2,787 samples can

be obtained by measuring I-V curves at each PVS per minute.
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TABLE 8. Average RMSE of fitting results f or PVM1 and PVM5.

FIGURE 11. Boxplot of four normalized feature variables distribution
from experimental data samples of PVM1.

In order to make full use of measured PV fault samples for

fairly verifying the performance of the algorithm, this study

conducts 100 times of random sample division for model

training and testing. After determining the optimal number

of iterations through 10-folds cross-validation, the average

training and testing results are summarized in Table 9. Since

the feature parameters are accurately converted to the ones

at the STC, the training accuracy of the SAMME-CART

algorithm is up to 100%. As for the testing results, the average

testing accuracies for PVM1 and PVM5 are 98.80% and

97.87%, respectively; each type of fault classification accu-

racy is above 94.90 %, which demonstrates the overall per-

formance of PV fault diagnoses in experimental verification.

In order to verify the generalization of the experimental

PVS diagnostic model, the test data of these two PVS are

exchanged. The fault diagnostic model of one PVS is tested

with the fault test data of the other PVS.As shown in Table 10,

the test results still have high recognition accuracy for testing

different material solar modules. The results verify the gener-

alization ability of the PVS diagnostic model. Note that, it is

illustrated to a certain extent that fault samples of different

PVS can be used interchangeably.

C. DISCUSSIONS

Compared with other studies based on I-V curves for fault

diagnoses, the major significant difference in this study is that

TABLE 9. Detailed average classification accuracy of PVM1 and
PVM5 experiment data samples.

TABLE 10. Classification accuracy of experiment testing data from
different modules.

characteristic parameters of I-V curves are converted to the

ones at the STC via the PVS data at the normal state. The

proposed method has the following advantages:

1) Higher fitting precision compared with traditional

approximation equations.

2) Avoid the influence of different installation environ-

ment of PVS and the deviation of sensors placement.

3) Prevent misjudgment of the diagnostic model from

the natural aging of a PVS via periodical parameters

normalization.

More importantly, the high recognition feature can be

obtained according to the data pre-processing, which greatly

improve the accuracy and convergent speed of later classifica-

tion algorithms. In addition, the parameter values of different

PVS converted to the ones at the STC under fault conditions

are nearly the same, which makes the classification algorithm

and the training model to possess a higher generalization.

’ Therefore, under the absence of fault cases data, fault

diagnostic models can be established by using data from

other practical sites or even simulation data. Compared

with other machine-learning algorithms, the SAMME-CART

ensemble learning combines multiple DTs to form the final

strong classifier for reaching a higher accuracy. Furthermore,

the over-fitting problem of the training model in traditional

methods can be solved by pre-pruning the DTs and deter-

mining the optimal number of DTs through 10-fold cross-

validation. In the real PVS with 13 modules connected in

series, the small-scale shading of bird droppings or small
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TABLE 11. Comparative Results Between Proposed Algorithm and Methods in [22], [26]–[27].

fragments can be even accurately identified by the proposed

diagnostic method.

The comparative results between the proposed algorithm

and the methods in [22], [26]–[27] are provided in Table 11.

The intuitive look-up table of parameter thresholds is formed

to detect PV faults in [22]. However, it is time consuming

and difficult to adjust for different PVS. The traditional

approximation formula is applied to standardize the diagnos-

tic parameters in [26]. But this method cannot completely

eliminate the influence of irradiations and temperatures on

various modules. In the process of the feature normalization,

the simulation model is used as the reference to calculate the

theoretical ratio in [27]. However, the result of this method

in [27] is limited by the accuracy of the simulation model.

The performance of the methods in [22], [26]–[27] will be

affected by the location and measured angle of sensors in

a real PVS. Through reasonable parameter normalization,

compared with the literatures [22], [26]–[27], the apparent

advantages of the proposed method are the high general-

ization ability and the long-term effectiveness by using the

low-cost normal data of a PVS. In addition, hybrid faults are

studied and accurately classified thanks to the normalized

features and the high performance of classification algorism.

Although the proposed method requires module-wise mea-

surements which would be costly for large-scale systems,

the same distribution of numerical simulations and exper-

imental data provides a possibility for the feasibility of

replacing experimental data by simulated ones for large-scale

systems. Even though the proposed parameter normalization

method could effectively standardize parameters from differ-

ent irradiances and temperatures for a generalized diagnosis,

its limitation is whether relevant sensors are equipped or not.

Fortunately, operational & maintenance (O& M) companies

usually install sunshine meters and thermometers in a PVS

because irradiances and temperatures are important factors

to judge whether the PV power generation is normal or not.

Moreover, PV inverters without capturing the information of

I-V curves will limit the feasibility of the proposed method.

This issue can be easily solved by vacating a short time from

the main program to execute the I-V curve capturing function

in PV inverters. The proposed PV diagnostic technology com-

bines with smart inverters integrated online I-V tracers would

be the best scheme without additional hardware. If smart

inverters can be popularized in the future, the application of

the proposed method will become easier.

V. CONCLUSIONS

In this study, a new fault diagnostic technique for a pho-

tovoltaic system (PVS) based on measured I-V curves has

been successfully designed. The proposed method con-

sists of the extracted parameters normalization via the

nonlinear particle-swarm-optimization trust-region-reflective

(PSO-TRR) least-squares algorithm, and the pattern recog-

nition via the classification algorithm via the stage-wise

additive modeling using multi-class exponential (SAMME)

loss function based on the classification and regression tree

(CART). Four types of common faults including the short-

circuit fault, the partial shading with the bypass-diode on

(PSBO), the partial shading with the bypass-diode reversed

(PSBR), and the abnormal aging as well as six types of their

hybrid faults are considered for diagnosing. The effectiveness

of the proposed method is verified by four specifications of

PV simulation modules, and is also tested via two practical

PVSwith the power capacities of 3.51kWp and 3.9kWp.With

the development of smart inverters, I-V curves of a PVS can

be easily extracted by a smart inverter during the time gap

of the voltage conversion and data storing in the cloud. The

main contributions of this study are summarized as follows:

The electrical characteristics and I-V curves of PV faults

under standard test conditions (STC) are analyzed, and the

optimal characteristic parameters of PV fault diagnoses are

extracted including the open-circuit voltage, the voltage and

the current at the maximum power point tracking (MPPT),

and the equivalent series resistance. The fault of partial shad-

ing through the analysis and verification is divided into two

situations as PSBO and PSBR.
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The proposed parameter normalization method based on

the PSO-TRR nonlinear least-squares fitting converts char-

acteristic parameters under different temperatures and irradi-

ances into the ones at the STC, which eliminate the impact of

varied environmental factors. Only low-cost data at the nor-

mal state are required to avoid the influence of PV installation

environments as well as the deviation of the environmental

measuring sensors. The parameter normalization equations

can be updated periodically to adapt to the natural aging of

a PVS.

The PV diagnostic model based on the SAMME-CART

algorithm can achieve a higher accuracy in comparison with

other machine-learning algorisms. Both numerical simula-

tions and experimental results show superior classification

and generalization performance than previous researches.

The generalization ability is verified by various modules, and

it concludes that the proposed fault diagnostic model still can

maintain good accuracy by using the data from other PVS

when the fault data is insufficient.
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