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Abstract. Aviation contributes to climate change, and the

climate impact of aviation is expected to increase further.

Adaptations of aircraft routings in order to reduce the climate

impact are an important climate change mitigation measure.

The air traffic simulator AirTraf, as a submodel of the Euro-

pean Center HAMburg general circulation model (ECHAM)

and Modular Earth Submodel System (MESSy) Atmospheric

Chemistry (EMAC) model, enables the evaluation of such

measures. For the first version of the submodel AirTraf, we

concentrated on the general setup of the model, including de-

parture and arrival, performance and emissions, and techni-

cal aspects such as the parallelization of the aircraft trajectory

calculation with only a limited set of optimization possibili-

ties (time and distance). Here, in the second version of Air-

Traf, we focus on enlarging the objective functions by seven

new options to enable assessing operational improvements in

many more aspects including economic costs, contrail occur-

rence, and climate impact. We verify that the AirTraf setup,

e.g., in terms of number and choice of design variables for

the genetic algorithm, allows us to find solutions even with

highly structured fields such as contrail occurrence. This is

shown by example simulations of the new routing options, in-

cluding around 100 North Atlantic flights of an Airbus A330

aircraft for a typical winter day. The results clearly show that

AirTraf 2.0 can find the different families of optimum flight

trajectories (three-dimensional) for specific routing options;

those trajectories minimize the corresponding objective func-

tions successfully. The minimum cost option lies between the

minimum time and the minimum fuel options. Thus, aircraft

operating costs are minimized by taking the best compromise

between flight time and fuel use. The aircraft routings for

contrail avoidance and minimum climate impact reduce the

potential climate impact which is estimated by using algo-

rithmic climate change functions, whereas these two routings

increase the aircraft operating costs. A trade-off between the

aircraft operating costs and the climate impact is confirmed.

The simulation results are compared with literature data, and

the consistency of the submodel AirTraf 2.0 is verified.

1 Introduction

Climate impact due to aviation emissions is an important is-

sue. Nowadays global aviation contributes only about 5 %

to the anthropogenic climate impact (Skeie et al., 2009;

Lee et al., 2009, 2010). However, the aviation’s contribu-

tion to the climate impact is expected to increase further

because global air traffic strongly grew in terms of rev-

enue passenger kilometers (RPKs) by 7.4 % in 2016 com-

pared to 2015 (ICAO, 2017). The aviation climate impact

consists of carbon dioxide (CO2) emissions and of non-

CO2 effects. The non-CO2 effects comprise nitrogen ox-

ides (NOx) which lead to concentration changes of ozone

and methane, water vapor (H2O), hydrocarbons (HC), car-

bon monoxide (CO), sulfur oxides (SOx), non-volatile par-

ticulate matter such as black carbon (BC), persistent lin-

ear contrails, and contrail-induced cirrus clouds (Wuebbles

et al., 2007; Lee et al., 2009; Brasseur et al., 2016). These

effects change the radiative balance of the Earth’s climate

system and cause radiative impact. The radiative impact

potentially drives the climate system into a new state of

equilibrium through temperature changes. Lee et al. (2009)
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stated that the CO2 emissions have the main impact and

that the estimated radiative forcing (RF) of aviation CO2

in 2005 was 28.0 mWm−2 (15.2–40.8 mWm−2, 90 % likeli-

hood range). The non-CO2 emissions and the induced clouds

also have a large effect on RFs; for example, the esti-

mated RFs in 2005 for total NOx and for persistent linear

contrails were 12.6 mWm−2 (3.8–15.7 mWm−2, 90 % like-

lihood range) and 11.8 mWm−2 (5.4–25.6 mWm−2, 90 %

likelihood range), respectively (Lee et al., 2009). In par-

ticular, the radiative impact of contrails remains uncertain,

and recent studies report higher RF. Burkhardt and Kärcher

(2011) estimated the contrail cirrus RF of 37.5 mWm−2 for

the year 2002; Schumann et al. (2015) reported the RF of

63 mWm−2 for the year 2006; and Bock and Burkhardt

(2016) estimated the RF of 56 mWm−2 for the year 2006.

As for timescales of their impacts, the emitted CO2 becomes

uniformly mixed in the whole atmosphere, and its perturba-

tion remains for millennia. In contrast, the non-CO2 effects

occur on short timescales, e.g., the emitted NOx remains for

a few days to months; the contrails last several hours. Thus,

the non-CO2 effects depend strongly on the ambient (local)

atmospheric conditions (Fichter et al., 2005; Mannstein et al.,

2005; Gauss et al., 2006; Grewe and Stenke, 2008; Fröm-

ming et al., 2012; Brasseur et al., 2016; Lund et al., 2017).

To investigate measures for reducing the aviation climate im-

pact, the impact of both CO2 and non-CO2 effects must be

considered; therefore, geographic location, altitude, the time

of released non-CO2 emissions and induced clouds, and cor-

responding local atmospheric conditions need to be consid-

ered.

In recent years, Grewe et al. (2017a, b) and Matthes

et al. (2012, 2017) have proposed a climate-optimized rout-

ing as an important operational measure for reducing the avi-

ation climate impact. This routing allows a significant re-

duction of the climate impact by optimizing flight routes to

avoid regions where released emissions (including contrails)

have a large climate impact. The climate-optimized routing

is immediately applicable to present airline fleets, whereas

other, more technological measures (e.g., efficient engines,

blended wing–body configurations, and laminar flow con-

trols; Green, 2005) require several years before implemen-

tation. Moreover, the routing can be used in addition to the

technological measures for reducing the aviation climate im-

pact.

Benefits of the climate-optimized routing have been ex-

amined before (Gierens et al., 2008; Schumann et al., 2011;

Sridhar et al., 2013; Søvde et al., 2014; Lührs et al., 2016);

for example, Frömming et al. (2013) and Grewe et al.

(2014b) developed climate cost functions (CCFs) for the

climate-optimized routing. They calculated global-average

RFs resulting from local unit emissions (CO2, NOx, H2O,

and contrails) over the North Atlantic for typical weather

patterns by using the European Center HAMburg general

circulation model (ECHAM) and Modular Earth Submodel

System (MESSy) Atmospheric Chemistry (EMAC) model

(Jöckel et al., 2010, 2016). Those RFs were used to calcu-

late the global and temporal average near-surface tempera-

ture response over 20 years, which describes the climate im-

pacts (i.e., future temperature changes) caused by those emis-

sions on a per unit basis. The resulting data set is called the

CCFs. The CCFs describe the climate impact which is in-

duced by aviation’s CO2 and non-CO2 effects (H2O, ozone,

methane, ozone originating from methane changes, and con-

trails including the spread into contrail-cirrus), and the CCFs

of those effects except CO2 are a function of geographic lo-

cation, altitude, and time. Because of the long residence time

of CO2, its impact is the same regardless of location, altitude,

and time of emission. The obtained CCFs can be used as a

measure of the climate impact of aviation and form the basis

for the climate-optimized routing. Grewe et al. (2014a) cal-

culated the CCFs for a winter day and optimized 1 d transat-

lantic air traffic (391 eastbound and 394 westbound flights)

using the CCFs in the system for traffic assignment and anal-

ysis at macroscopic level (SAAM; Eurocontrol, 2012). They

reported that the climate impact decreased by up to 25 % with

a small increase in economic costs of less than 0.5 %. This re-

vealed a great potential for the climate-optimized routing. On

the other hand, a trade-off between climate impact and eco-

nomic cost existed; i.e., the climate-optimized and the cost-

optimized routings were conflicting strategies. Grewe et al.

(2017b) extended this study and investigated the feasibil-

ity of the climate-optimized routing for realistic conditions.

Similar transatlantic air traffic simulations (about 800 flights)

were performed for five representative winter and three rep-

resentative summer days, which took safety aspects into ac-

count. They found that a decrease in potential climate impact

of 10 % was achieved at a cost increase of only 1 %.

The benefits of the climate-optimized routing were inves-

tigated by using different climate metrics. Ng et al. (2014)

optimized flight trajectories for a total climate cost which

was calculated by the absolute global temperature change

potential (AGTP) (pulse AGTP values for three time hori-

zons; Shine et al., 2005) due to CO2 emissions and contrails.

A total of 960 transatlantic flights (482 eastbound and 478

westbound flights) were analyzed for a specific summer day.

They reported that the climate-optimized routing reduced the

total AGTP (for the medium-term climate goal of 50 years)

by 38 % with an additional flight time of 3.1 % and with

extra fuel use of 3.1 % for the eastbound flights, whereas

the routing reduced the total AGTP by 20 % with an addi-

tional flight time of 3.0 % and with extra fuel use of 3.7 %

for the westbound flights. Generally, aircraft operating costs

depend on time and on fuel. Thus, those results indicate the

aforementioned trade-off between climate impact and eco-

nomic cost; this trade-off was also found for the short-term

(25 years) and long-term (100 years) climate goals. Grewe

et al. (2014a) compared the trade-off between economic costs

and climate impact from the transatlantic air traffic simu-

lations described above with respect to three climate met-

rics: the average temperature response with future increas-
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ing emissions (F-ATR20) and the absolute global warming

potential with pulse emissions at a 20-year time horizon (P-

AGWP20) for short-term climate impacts and P-AGWP100

(time horizon of 100 years) for long-term climate impacts.

The trade-offs obtained with the three metrics were very sim-

ilar. Although many studies show the benefit of the climate-

optimized routing, this routing is not used for today’s flight

planning; today’s aircraft routing focuses on minimum eco-

nomic cost. However, if additional costs, such as environ-

mental taxes, for aviation climate impact of CO2 and non-

CO2 effects are included in the operating costs, a cost in-

crease due to the climate-optimized routing is possibly com-

pensated for (Grewe et al., 2017b). This inclusion can change

the current routing strategy and incentivize airlines to intro-

duce a climate-optimized flight planning.

Here we present an air traffic simulation model which

serves as a basis for the following ultimate two aims: to

investigate an eco-efficient aircraft routing strategy that re-

duces the climate impact of global air traffic over the next

few decades and to estimate its mitigation gain for different

aircraft routing strategies. For these aims, the submodel Air-

Traf (version 1.0) was developed as one of the submodels of

EMAC (Yamashita et al., 2015, 2016). AirTraf can simulate

global air traffic in EMAC (online) for various aircraft rout-

ing strategies (options). Every flight trajectory is optimized

for a selected routing option under daily changing local at-

mospheric conditions. AirTraf can take into account where

and when aviation emissions are released or contrails form.

The road map for our overall study has been shown elsewhere

(Grewe et al., 2017b; Matthes et al., 2017).

This paper presents a technical description of the new ver-

sion of the submodel AirTraf 2.0. The simple aircraft rout-

ing options of great circle (minimum flight distance) and

flight time (minimum time) were developed in the previ-

ous version of AirTraf 1.0 (Yamashita et al., 2016). In Air-

Traf 2.0, seven new aircraft routing options have been in-

troduced: fuel use, NOx emissions, H2O emissions, contrail

formation, simple operating cost (SOC), cash operating cost

(COC), and climate impact estimated by the algorithmic cli-

mate change functions (aCCFs) (Van Manen, 2017; Yin et al.,

2018b, 2020; Van Manen and Grewe, 2019). The climate

change functions were previously referred to as the climate

cost functions mentioned above. These options represent the

objects to be minimized. Overall the nine options have been

integrated into AirTraf 2.0, which enables air traffic simula-

tions for the ultimate aims of our study (hereinafter the air-

craft routing options are referred to simply as, e.g., the “fuel

option”). Thus, the development described in this paper is an

indispensable update. Moreover, this paper provides exam-

ple applications of AirTraf 2.0. Some simulations of the nine

routing options were carried out for transatlantic routes for

a typical winter day. Optimum flight trajectories and charac-

teristics of the routing options were analyzed.

Here we mention the importance of the variety of the rout-

ing options. Various routing options have been made avail-

able in AirTraf 2.0 because not only the climate and the

cost options but also the other options are important sub-

jects for air traffic routing studies. The time option is use-

ful for delay recovery. Because delays cause costs to air-

lines, pilots are often forced to temporarily use the time op-

tion during a flight to maintain flight schedules, although the

use of this option increases fuel costs (Cook et al., 2009).

The NOx (Mulder and Ruijgrok, 2008) and contrail options

(Fichter et al., 2005; Mannstein et al., 2005; Gierens et al.,

2008; Sridhar et al., 2011; Schumann et al., 2011; Rosenow

et al., 2017) have been examined as a routing strategy to-

wards climate impact reduction. Moreover, conflicting sce-

narios (trade-offs) between different routing strategies have

been studied; for example, avoiding contrail formation gen-

erally increases fuel use and CO2 emissions. Irvine et al.

(2014) assessed the trade-off between contrail avoidance and

increased CO2 emissions (∼ increased fuel use) for a single

flight. AirTraf 2.0 enables the analysis of those subjects all

at once because all the options are integrated. Normally, one

or two specific routing options are available for a flight tra-

jectory optimization in other models. Another aspect to be

emphasized compared to other models is that AirTraf per-

forms air traffic simulations not under International Standard

Atmospheric (ISA) conditions and not under a fixed atmo-

spheric condition for a specific day but under comprehensive

atmospheric conditions which are calculated by EMAC; that

is to say that AirTraf can simulate air traffic for long-term

periods in EMAC, which enables one to examine effects of

aircraft routing strategies on climate impact on a long-term

timescale. Last but not least, the aCCFs are new proxies for

the climate-optimized routing. An important aim of the Air-

Traf development is to verify the aCCFs themselves and the

routing strategy based on the aCCFs (i.e., the climate option)

in multi-annual (long-term) simulations (Yin et al., 2018b).

This paper is organized as follows. Section 2 describes

an overview of AirTraf 2.0. Particularly, key changes in the

model components are stated. Section 3 presents the results

and discussion for the example applications of AirTraf 2.0

using the nine routing options. Section 4 verifies the consis-

tency of the results with literature data. Finally, Sect. 5 con-

cludes this study.

2 Overview of AirTraf 2.0

2.1 Chemistry–climate model EMAC

The EMAC model is a numerical chemistry and climate

simulation system that includes submodels describing tro-

pospheric and middle atmosphere processes and their inter-

action with oceans, land, and influences coming from an-

thropogenic emissions (Jöckel et al., 2010, 2016). It uses

the second version of the Modular Earth Submodel System

(MESSy2) to link multi-institutional computer codes. The

core atmospheric model is the fifth generation European Cen-
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ter HAMburg general circulation model (ECHAM5; Roeck-

ner et al., 2006). For the present study, we applied EMAC

(ECHAM5 version 5.3.02 and MESSy version 2.53 updated

from version 2.41 for AirTraf 1.0) in the T42L31ECMWF

resolution, i.e., with a spherical truncation of T42 (corre-

sponding to a quadratic Gaussian grid of approximately 2.8◦

by 2.8◦ in latitude and longitude) with 31 vertical hybrid

pressure levels up to 10 hPa (middle of the uppermost layer).

The namelist setup for ECHAM5 simulations (referred to the

E5 setup, no chemistry) was employed. Moreover, the sub-

model AirTraf was coupled to the submodel CONTRAIL

(version 1.0; Frömming et al., 2014) for the contrail op-

tion and to the submodel ACCF (version 1.0) for the cli-

mate option using the MESSy interfaces. Further informa-

tion about MESSy, including the EMAC model system, is

available from the MESSy Consortium website (http://www.

messy-interface.org, last access: 17 September 2020).

2.2 Model components of submodel AirTraf

Figure 1 shows the flowchart of the submodel AirTraf 2.0.

The present version is based on the model components of

AirTraf 1.0, and thus this section outlines them (updates

from AirTraf 1.0 are highlighted in Fig. 1). First, air traf-

fic data and AirTraf parameters are read in the main entry

point messy_initialize (Fig. 1, dark blue). They con-

sist of a 1 d flight plan (including departure and arrival air-

port pairs, latitude and longitude of the airports, and depar-

ture time), EUROCONTROL’s Base of Aircraft Data (BADA

Revision 3.9; Eurocontrol, 2011), ICAO engine performance

data (ICAO, 2005), a load factor, jet fuel price, an aircraft

routing option, etc. Any arbitrary number of flight plans is

applicable and is reused for AirTraf simulations longer than

2 d. Table 1 lists the relevant data of an A330-301 aircraft and

constant parameters used in AirTraf 2.0 (the new parameters

are listed in Table 1). Second, all the entries are distributed

in parallel by the message passing interface (MPI) standard

(called for the main entry point messy_init_memory;

Fig. 1, blue). Third, the air traffic simulation (called the

AirTraf integration; Fig. 1, light blue) is called in the main

entry point messy_global_end considering local atmo-

spheric conditions for every flight route. The AirTraf in-

tegration uses three modules: the aircraft routing module

(Fig. 1, light green), the fuel–emissions–cost–climate cal-

culation module (Fig. 1, light orange), and the flight trajec-

tory optimization module (Fig. 1, dark green). The first mod-

ule calculates flight trajectories corresponding to a selected

routing option. The second module comprises a total energy

model based on the BADA methodology (Eurocontrol, 2011;

Schaefer, 2012) and the German Aerospace Center (DLR)

fuel flow method (Deidewig et al., 1996). The third mod-

ule consists of the Adaptive Range Multi-Objective Genetic

Algorithm (ARMOGA version 1.2.0; Sasaki et al., 2002;

Sasaki and Obayashi, 2004, 2005). Finally, simulation results

are gathered from the MPI tasks. Optimum flight trajectories

and global fields of flight properties (four-dimensional Gaus-

sian grid; Fig. 1, rose red) are output. The same assumptions

made in AirTraf 1.0 are applied in AirTraf 2.0; e.g., only the

cruise flight phase is considered, and trajectory conflicts and

operating constraints (e.g., military air space) are neglected.

Further details of the model components have been reported

by Yamashita et al. (2016).

2.3 Calculation procedures of the AirTraf integration

AirTraf 2.0 follows the calculation procedures of AirTraf 1.0

described in detail in Sect. 2.4 of Yamashita et al. (2016).

This section reviews the procedures of the AirTraf integra-

tion (Fig. 1, light blue) with emphasis on changes by intro-

ducing the new routing options.

A 1 d flight plan includes departure time for every flight.

A flight moves to the flying process (dashed box in Fig. 1,

light blue) according to the individual departure time in

the time loop of EMAC. The flying process comprises

four steps: flight trajectory calculation, fuel–emissions–cost–

climate calculation, aircraft position calculation, and gather-

ing global emissions (bold black boxes in Fig. 1, light blue).

The first step finds an optimum flight trajectory for a se-

lected routing option by using the aircraft routing module

(Fig. 1, light green) in which the seven new routing options

are introduced in AirTraf 2.0. The flight trajectory optimiza-

tion module (Fig. 1, dark green) executes the flight trajectory

optimization under atmospheric conditions at the departure

day and time of the flight. Thus, the optimum flight trajec-

tory varies day by day. Note that the three-dimensional wind

components (u, v, w) are considered in the flight trajectory

optimization for all routing options. The resulting optimum

flight trajectory consists of waypoints (i = 1,2, · · ·,nwp) and

flight segments (i = 1,2, · · ·,nwp − 1), where i is the index

arranged from the departure (i = 1) to the arrival (i = nwp)

and nwp is the number of waypoints (see Fig. 3 of Yamashita

et al., 2016). Table 2 lists flight properties calculated for the

waypoints, the flight segments, and the whole trajectory. In

AirTraf 2.0, 15 new properties are calculated, as highlighted

in Table 2.

The second step, which is linked to the fuel–emissions–

cost–climate calculation module (Fig. 1, light orange), cal-

culates the flight properties of fuel, NOx emissions, COC,

etc. under the atmospheric conditions (Table 2, third group).

This calculation is performed once at the departure time of

the flight. The methodologies of the fuel and emissions cal-

culation module developed in AirTraf 1.0 are expanded in

AirTraf 2.0. Details of the fuel–emissions calculation mod-

ule and its reliability have been reported in Sects. 2.5, 2.6,

and 5 of Yamashita et al. (2016).

The third step moves the aircraft to a new position along

the optimum flight trajectory corresponding to the time steps

of EMAC by referring to the estimated time when the aircraft

passes through the waypoints (called the estimated time over,

ETO; Table 2).

Geosci. Model Dev., 13, 4869–4890, 2020 https://doi.org/10.5194/gmd-13-4869-2020
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Figure 1. Updated flowchart of the MESSy submodel AirTraf 2.0 (updates from AirTraf 1.0 are highlighted by red texts and arrows). MESSy

as part of EMAC provides interfaces (yellow) to couple various submodels for data exchange, run control, and data input/output. AirTraf

2.0 is coupled to the submodel CONTRAIL (version 1.0; Frömming et al., 2014) and the submodel ACCF (version 1.0). Air traffic data

and AirTraf parameters are imported in the initialization phase (messy_initialize, dark blue). AirTraf includes the flying process

in messy_global_end (dashed box, light blue), which comprises four main computation procedures (bold black boxes). AirTraf uses

three modules: the aircraft routing module (light green), the fuel–emissions–cost–climate calculation module (light orange), and the flight

trajectory optimization module (dark green). Resulting optimum flight trajectories and global fields of flight properties are output (rose red).

At the fourth step, the individual flight properties corre-

sponding to a flight path for one time step of EMAC are gath-

ered into the aforementioned global fields: NOx emissions,

H2O emissions, fuel use, flight distance, contrail distance

(PCCdist), and average temperature responses for the time

horizon of 20 years (ATR20s of ozone, methane, water va-

por, CO2, contrails, and total climate impact; see Sect. 2.5.7)

are gathered along the flight segments (Table 2); the global

fields of PCCdist and ATR20s are newly calculated by Air-

Traf 2.0. If the aircraft reaches the last waypoint in the time

loop of EMAC, the aircraft has landed (i.e., the flight ends),

and the flying process ends for this flight.

https://doi.org/10.5194/gmd-13-4869-2020 Geosci. Model Dev., 13, 4869–4890, 2020
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Table 1. Relevant data of an Airbus A330-301 aircraft and constant parameters applied for AirTraf 2.0. The column “New in V2.0” denotes

parameters newly introduced in AirTraf 2.0.

Parameter Value Unit New in V2.0 Description

AFW 103 070 kg × Airframe weight estimated by AFW = MEW − NengEDW

ct 0.75 (USD) s−1 × Unit time costsa

cf 0.51 (USD)kg−1 × Unit fuel costsa

CD0 0.019805 – Parasitic drag coef. (cruise)b

CD2 0.031875 – Induced drag coef. (cruise)b

Cf1 0.61503 kgmin−1 kN−1 First thrust specific fuel consumption (TSFC) coef. (jet engines)b

Cf2 919.03 kt Second TSFC coef.b

Cfcr 0.93655 – Cruise fuel flow correction coef.b

EDW 5091.62 kg × Engine dry weight; CF6-80E1A2 enginec

EINOx,ref 4.88; 12.66; g(NOx) (kg(fuel))−1 Reference NOx emission index at takeoff, climb out, approach

22.01; 28.72 and idle conditions (sea level); CF6-80E1A2 (2GE051)d

EIH2O 1230 g(H2O) (kg(fuel))−1 H2O emission indexe

fref 0.228; 0.724; kg(fuel) s−1 Reference fuel flow at takeoff, climb out, approach, and idle

2.245; 2.767 conditions (sea level); CF6-80E1A2 (2GE051)d

g 9.8 ms−2 Gravity acceleration

JFD 0.804 kgL−1 × Jet fuel density at 15 ◦C (Jet A-1)

JFP 0.41 (USD)L−1 × Jet fuel pricef

M 0.82 – Cruise Mach numberb

MEW 113 253 kg × Baseline manufacture empty weight (MEW = 0.9053OEW)g

MPL 47 900 kg Maximum payloadb

MTOGW 212 000 kg × Maximum takeoff weighth

Nseat 295 – × Number of seats (3 class)i

Neng 2 – × Number of enginesh

OEW 125 100 kg Operational empty weightb

OLF 0.62 – ICAO overall (passenger/freight/mail) weight load factor in 2008j

P0 101 325 Pa Reference pressure (sea level)

rinf 2.28 % × Ave. United States inflation rate (1994–2014)k

R 287.05 JK−1 kg−1 Gas constant for dry air

S 361.6 m2 Reference wing surface areab

SLST 268.7 kN × Thrust per engine (maximum continuous); CF6-80E1A2h

SPD 86 400 sd−1 Time (Julian date) × SPD = Time (s)

T0 288.15 K Reference temperature (sea level)

Ypre 2015 year × Present year for COC calculation

Yref 1993 year × Reference year for COC calculation

γ 1.4 – Adiabatic gas constant

a Burris (2015); b Eurocontrol (2011); c EASA (2011); d ICAO (2005); e Penner et al. (1999); f IATA (2017); g MEW was estimated because the exact value was unavailable;
h EASA (2013); i Aircraft Commerce (2008); j Anthony (2009); k IMF (2016).

2.4 Flight trajectory optimization

The flight trajectory optimization methodologies described

by Yamashita et al. (2016) are also used for the new routing

options and are outlined in this section. The flight trajectory

optimization module (Fig. 1, dark green) executes the opti-

mization. The module consists of ARMOGA (version 1.2.0;

Sasaki et al., 2002; Sasaki and Obayashi, 2004, 2005), which

is a stochastic optimization algorithm.

A solution x (the term is synonymous with the flight

trajectory) is a vector of ndv design variables: x =

(x1,x2, · · ·,xndv)
T , here ndv = 11. With the design variable

index j (j = 1,2, · · ·,ndv), xj (j = 1,2, · · ·,6) indicate lati-

tudes and longitudes, and xj (j = 7,8, · · ·,11) indicate alti-

tudes. The j th design variable varies between lower and up-

per bounds [xl
j ,x

u
j ]. The bounds of [xl

j ,x
u
j ] (j = 1,2, · · ·,6)

are automatically set for a given airport pair, whereas

those of [xl
j ,x

u
j ] (j = 7,8, · · ·,11) are set as [xl

j ,x
u
j ] =

[FL290, FL410] (flight levels; FL290 and FL410 denote

29 000 and 41 000 ft, respectively). Geographic locations of

the airport pair are set according to the flight plan; alti-

tudes of the airport pair are set to FL290. Given values of

xj (j = 1,2, · · ·,ndv), a three-dimensional flight trajectory is

represented by a B-spline curve (third-order) between the air-
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Table 2. Properties assigned to a resulting flight trajectory. The properties of the three groups (divided by rows) are obtained from the nearest

grid box of EMAC at the departure time of the flight, the flight trajectory calculation (Fig. 1), and the fuel–emissions–cost–climate calculation

(Fig. 1; some properties are calculated in flight trajectory optimizations depending on a selected routing option). The attribute type indicates

where the values of properties are allocated. “W”, “S”, and “T” stand for waypoints (i = 1,2, · · ·,nwp), flight segments (i = 1,2, · · ·,nwp−1),

and a whole flight trajectory in column 3, respectively. The column “New in V2.0” denotes properties newly introduced in AirTraf 2.0.

Property Unit Attribute type New in V2.0 Description

aCCFO3
K (kg(NO2))−1 W × Algorithmic climate change function of ozoneab; see Eq. (A1)

aCCFCH4
K (kg(NO2))−1 W × Algorithmic climate change function of methaneab; see Eq. (A2)

aCCFH2O K (kg(fuel))−1 W × Algorithmic climate change function of water vaporab; see Eq. (A3)

aCCFCO2
K (kg(fuel))−1 W × Algorithmic climate change function of CO2

c; see Eq. (A4)

aCCFcontrail K (km(contrail))−1 W × Algorithmic climate change function of contrailsd; see Eq. (A5)

Potcov fraction W × Potential persistent contrail cirrus coveragee

P Pa W Pressure

T K W Temperature

ρ kg m−3 W Air density

u,v,w m s−1 W Three-dimensional wind components

a m s−1 W Speed of sound

ATR20O3
K S × Anticipated climate impact of ozone; see Eq. (8)

ATR20CH4
K S × Anticipated climate impact of methane; see Eq. (9)

ATR20H2O K S × Anticipated climate impact of water vapor; see Eq. (10)

ATR20CO2
K S × Anticipated climate impact of CO2; see Eq. (11)

ATR20contrail K S × Anticipated climate impact of contrails; see Eq. (12)

ATR20total K S × Anticipated climate impact (total); see Eq. (13)

d m S Flight distance

ETO Julian date W Estimated time over

FT s T Flight time; FT = (ETOnwp − ETO1) × SPD

h m W Flight altitude

h m T Mean flight altitude; h = 1/nwp
∑nwp

i=1hi with waypoint number nwp

PCCdist km(contrail) S × Contrail distancef

VTAS m s−1 W True airspeed

Vground m s−1 W Ground speed

λ deg W Longitude

φ deg W Latitude

COC USD T × Cash operating costg

EINOx,a g(NOx) (kg(fuel))−1 W NOx emission index

Fcr kg(fuel) s−1 W Fuel flow of an aircraft (cruise)

FUEL kg S Fuel use

H2O g(H2O) S H2O emissions

m kg W Aircraft weight

NOx g(NOx) S NOx emissions

SOC USD T × Simple operating cost

a Van Manen (2017); b Van Manen and Grewe (2019); c Katrin Dahlmann, personal communication, 2018; d Yin et al. (2020); e Frömming et al. (2014);
f Yin et al. (2018a); g Liebeck et al. (1995).

port pair (an illustration is given in Fig. 6 of Yamashita et al.,

2016).

The initial population operator (Fig. 1, dark green) gener-

ates initial values of xj (j = 1,2, · · ·,ndv) at random within

the lower and upper bounds and creates an initial “popula-

tion” which represents a random set of solutions. The popu-

lation size is set by np, and ARMOGA starts its search with

the solutions. An evaluation function f (called an objective

function) is defined depending on a selected routing option

(see Sect. 2.5), and a single-objective optimization problem

can be written as follows:

Minimize f

Subject to xl
j ≤ xj ≤ xu

j , j = 1,2, · · ·,ndv

}

, (1)

where no constraint function is used. The ARMOGA solves

the optimization problem by the following genetic operators:

evaluation, selection, crossover, and mutation (Fig. 1, dark

green; Holand, 1975; Goldberg, 1989). A value of f is cal-

culated for each of the solutions by the evaluation operator.

In this study, good solutions were identified in the popula-

tion by the Fonseca–Fleming Pareto ranking method (Fon-

seca and Fleming, 1993), the stochastic universal sampling

selection (Baker, 1985) was used for the selection operator
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to pick two solutions (parent solutions) from the population,

the Blend crossover operator (BLX-alpha; Eshelman, 1993)

was applied to the parent solutions to create new solutions

(child solutions), and the revised polynomial mutation oper-

ator (Deb and Agrawal, 1999) was used to add a disturbance

to the child solutions. When those processes are iterated for

a number of generations (the term “generation” represents

one iteration of ARMOGA; this is set by ng), the popula-

tion of solutions is improved by reducing f , and another su-

perior population is created in subsequent generations. Fi-

nally, the ARMOGA finds the best solution (one optimum

flight trajectory) with the minimum value of f through the

whole generations; the flight properties of the solution are

stored, as shown in Table 2. The flight trajectory optimiza-

tion stated above is executed for every airport pair. Detailed

descriptions of the optimization methodologies, appropriate

ARMOGA parameter settings, and the accuracy of the op-

timization module have been presented in Sect. 3.2 of Ya-

mashita et al. (2016).

2.5 Formulations of objective functions for new

aircraft routing options

In AirTraf 2.0, seven new objective functions were devel-

oped for the new aircraft routing options. The following sub-

sections describe formulations of the objective function f

for those options. To calculate f , the fuel–emissions–cost–

climate calculation module (Fig. 1, light orange) is used as

necessary by the evaluation operator (Fig. 1, dark green) in

the flight trajectory optimization.

2.5.1 Fuel use

The objective function for the fuel option represents the sum

of fuel use – kg(fuel) – of a flight:

f =

nwp−1
∑

i=1

FUELi, (2)

where FUELi is the fuel use of the ith flight segment (Ta-

ble 2).

2.5.2 NOx emissions

The objective function for the NOx option represents the sum

of NOx emissions – g(NOx) – of a flight:

f =

nwp−1
∑

i=1

NOx,i =

nwp−1
∑

i=1

(FUELiEINOx,a,i), (3)

where NOx,i is the NOx emissions of the ith flight segment;

EINOx,a,i is the NOx emission index under actual flight con-

ditions at the ith waypoint (Table 2) and is calculated us-

ing the ICAO engine performance data (ICAO, 2005; see

Sect. 2.6 of Yamashita et al., 2016).

2.5.3 H2O emissions

The objective function for the H2O option represents the sum

of H2O emissions – g(H2O) – of a flight:

f =

nwp−1
∑

i=1

H2Oi = EIH2O

nwp−1
∑

i=1

FUELi, (4)

where H2Oi is the H2O emissions of the ith flight segment

(Table 2); EIH2O is the emission index of H2O and was set

as EIH2O = 1230 g(H2O)(kg(fuel))−1 (Table 1). The H2O

emissions are proportional to the fuel use by assuming an

ideal combustion of jet fuel. Thus, this option yields the same

results as the fuel option in AirTraf 2.0. If an alternative fuel

option is introduced, the H2O option probably differs from

the fuel option because the emission index may not be con-

stant.

2.5.4 Contrail formation

Yin et al. (2018a) developed the routing option to avoid con-

trail formations by using the submodel CONTRAIL (version

1.0; Frömming et al., 2014) which calculates the poten-

tial persistent contrail cirrus coverage Potcov (Ponater et al.,

2002; Burkhardt et al., 2008; Burkhardt and Kärcher, 2009;

Grewe et al., 2014b) within an EMAC grid box. The Pot-

cov represents the fraction of the grid box which can be

maximally covered by contrails under the simulated atmo-

spheric condition. The threshold for contrail formation is de-

termined from a parameterization scheme based on the ther-

modynamic theory of contrails, i.e., the Schmidt–Appleman

theory (Schmidt, 1941; Appleman, 1953; Schumann, 1996).

In the CONTRAIL submodel, Potcov indicates the difference

between the maximum possible coverage of both contrails

and cirrus and the coverage of natural cirrus alone; values

of Potcov along the waypoints are taken from the nearest

grid box (Table 2). With that, we define a contrail distance

(PCCdist) – in km(contrail) – as Potcov multiplied by the

flight distance in kilometers. The corresponding routing op-

tion minimizes the total contrail distance of a flight, and thus

the objective function is formulated as follows:

f =

nwp−1
∑

i=1

PCCdist,i = 10−3
nwp−1
∑

i=1

(Potcovidi), (5)

where PCCdist,i is the contrail distance of the ith flight seg-

ment, Potcovi is the potential persistent contrail cirrus cover-

age at the ith waypoint, and di is the flight distance of the ith

flight segment (Table 2). Note that the objective function is

formulated in the simple form to consider only the contrail

distance. Thus, further physical processes such as contrail

spreading, changes in contrail coverage area, contrail life-

time, and the contrail radiative forcing are not included.
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2.5.5 Simple operating cost (SOC)

The cost index (CI) is set during a real flight to manage air-

line operation costs and is defined as the ratio of time cost to

fuel cost (CI = time cost/fuel cost). A low CI value causes

an aircraft to minimize fuel use with a sacrifice of flight

time, which enables a long-range flight. Conversely, a high

CI value causes the aircraft to minimize flight time with ex-

tra fuel use. Generally, the operating costs are a function of

flight time and fuel. Thus, the minimum cost solution lies in

a trade-off between flight time and fuel (Cook et al., 2009;

Marla et al., 2016). Here the objective function simply rep-

resents the sum of the time and the fuel costs on the basis of

the CI features:

f = SOC = ct

nwp−1
∑

i=1

di

Vground,i

+ cf

nwp−1
∑

i=1

FUELi, (6)

where ct and cf are the unit costs of time and fuel, respec-

tively (Table 1), and Vground,i is the ground speed at the ith

waypoint (Table 2). Note that the ct includes the cost ele-

ments for flight crew, cabin crew, and maintenance for both

airframe and engines.

2.5.6 Cash operating cost (COC)

The COC is a comprehensive economic criterion for evalu-

ating airline operation costs (Liebeck et al., 1995). The COC

includes the cost elements for flight crew, cabin crew, landing

fee, navigation fee, fuel, and maintenance for both airframe

and engines (no costs for depreciation, insurance, and interest

are included). The COC calculation method for international

flights (Liebeck et al., 1995) was employed. Those cost ele-

ments were calculated on the basis of the price in 1993 and

were scaled to 2015 by the average United States inflation

rate of average consumer prices rinf (Table 1; IMF, 2016).

Only the fuel cost was directly calculated with the current

jet fuel price (JFP) (Table 1; IATA, 2017). A block time and

a block fuel originally used in the method were replaced by

the total flight time (FT) and the fuel use of
∑nwp−1

i=1 FUELi

in AirTraf 2.0, respectively (Table 2). The objective function

can be written as follows:

f = COC = Cflightcrew + Ccabincrew + Clanding

+ Cnavigation + Cfuel + Cairframe + Cengine,
(7)

where C denotes a cost. A detailed description of the COC

calculation method has been reported in Liebeck et al.

(1995). Given the parameters and variables listed in Tables 1

and 2, Eq. (7) becomes a function of the flight time and the

fuel.

2.5.7 Climate impact

The climate-optimized routing was carried out by using the

aCCFs (Van Manen, 2017; Yin et al., 2018b, 2020; Van Ma-

nen and Grewe, 2019) calculated by the submodel ACCF.

The aCCFs are approximation functions based on regres-

sion analyses for the CCF data set which was obtained from

detailed EMAC model simulations including radiative im-

pacts (see Sect. 1); the CCF data set for contrails was ex-

ceptionally obtained from contrail RF calculations based on

the European Centre for Medium-Range Weather Forecasts

(ECMWF) Re-Analysis Interim (ERA-Interim) data (Dee

et al., 2011) and contrail trajectory data (Yin et al., 2020;

the definition of the aCCFs is provided in the Appendix, and

examples are shown in Fig. S1 in the Supplement). The aC-

CFs represent a correlation of meteorological variables at the

time of flight with anticipated climate impacts; i.e., ATR20s

of ozone, methane, water vapor, CO2, and contrails are esti-

mated on a per unit basis by

ATR20O3,i = aCCFO3,i × NOx,i × 10−3, (8)

ATR20CH4,i = aCCFCH4,i × NOx,i × 10−3, (9)

ATR20H2O,i = aCCFH2O,i × FUELi, (10)

ATR20CO2,i = aCCFCO2 × FUELi, (11)

ATR20contrail,i = aCCFcontrail,i × PCCdist,i, (12)

where the respective aCCF values of ozone, methane, water

vapor, CO2, and contrails are given as flight properties at the

ith waypoint. These five ATR20s are calculated for flight seg-

ments (Table 2) and are combined into an objective function

to represent an anticipated climate impact of a flight (in K):

ATR20total,i = ATR20O3,i + ATR20CH4,i + ATR20H2O,i

+ ATR20CO2,i + ATR20contrail,i, (13)

f =

nwp−1
∑

i=1

ATR20total,i, (14)

where ATR20contrail,i can take positive and negative val-

ues because the aCCFcontrail consists of two formulas for

the daytime and nighttime contrail effects (see Eq. A5 in

the Appendix). We acknowledge the large uncertainties in

the global temperature response especially from contrails

(ATR20contrail) due to uncertainties in the efficacy of the con-

trail forcing (Hansen et al., 2005; Ponater et al., 2005). In

addition, the aCCFs are derived based on the CCF data of

the North Atlantic region and are applicable to the northern

and high latitudes. Further details of the aCCFs have been

reported in the literature mentioned above.

3 Example application: 1 d simulation with new

aircraft routing options

3.1 Simulation setup

Nine 1 d simulations were carried out for a demonstration of

AirTraf 2.0. Table 3 lists the simulation setups. The same se-

tups that we used for the consistency check for AirTraf 1.0

simulations (Yamashita et al., 2016) were employed; only the
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Table 3. Setup for AirTraf 1 d simulations. The setups of the two groups (divided by rows) are used for AirTraf/EMAC and for ARMOGA

(Sasaki et al., 2002; Sasaki and Obayashi, 2004, 2005). The user-specified crossover parameter is α, rm is a mutation rate, and ηm is a

parameter controlling the shape of a probability distribution. Details of these parameters are described in Yamashita et al. (2016).

Parameter Description

ECHAM5 resolution T42L31ECMWF (2.8◦ by 2.8◦)

Simulation period 1 December 2015, 00:00:00–2 December 2015, 00:00:00 GMT

Time step of EMAC 12 min

Flight plan 103 transatlantic flights (eastbound 52 and westbound 51)a

Aircraft type A330-301

Engine type CF6-80E1A2, 2GE051 (with 1862M39 combustor)

Flight altitude changes [FL290, FL410] (fixed at FL350 for the great circle option)

Mach number 0.82

Number of waypoints, nwp 101

Design variable, ndv 11 (6 locations and 5 altitudes)

Population size, np 100

Number of generations, ng 100

Selection Stochastic universal sampling

Crossover Blend crossover BLX-0.2 (α = 0.2)

Mutation Revised polynomial mutation (rm = 0.1; ηm = 5.0)

a Grewe et al. (2014a) and REACT4C (2014).

simulation period was changed to a recent day which showed

a typical weather condition in winter with a strong jet stream

(see Fig. S2 in the Supplement). The flight altitude for the

great circle option was set to FL350; the altitude for the other

options was calculated in the trajectory optimization within

[FL290, FL410], as mentioned in Sect. 2.4. The transatlantic

flight plan (103 flights) of an Airbus A330 aircraft was pro-

vided by Grewe et al. (2014a) and REACT4C (2014). The

setups for the optimization parameters were determined by

the benchmark tests (Yamashita et al., 2016).

3.2 Optimized flight trajectories and global fields

To display typical simulation outputs, the obtained optimized

trajectories and global fields for the contrail, the COC, and

the climate options are shown. Figure 2 shows the opti-

mized trajectories for those options (optimized trajectories

for other options are shown in Supplement Fig. S3). Ob-

viously, the optimum trajectories vary with the routing op-

tions. Figure 2c and d show that the COC optimum trajecto-

ries of the eastbound flights leap up over the North Atlantic

Ocean, whereas the trajectories of the westbound flights are

shifted northward. As the jet stream is located at around

40◦ N and 50◦ W (see Fig. S2 in the Supplement), the east-

bound trajectories are optimized to benefit from tailwinds

of the jet stream and the westbound trajectories avoid head-

winds of the jet stream by detouring northward. In addition,

most of those trajectories are located at high flight altitudes

(∼FL410, 12.5 km). Figure 3 shows the mean fuel consump-

tion – in kg(fuel)min−1 – vs. mean flight altitude (in km)

for individual flights for the three routing options. Because

fuel consumption decreases as a result of aerodynamic drag

reduction at high altitudes (Fichter et al., 2005; Schumann

et al., 2011; Yamashita et al., 2016), the COC optimum tra-

jectories select the high flight altitudes, as shown in Fig. 3.

We acknowledge that limitations of BADA 3 affect the se-

lection of the flight altitudes (the same applies to the fuel,

the NOx, the H2O, and the SOC options; see Fig. S3 in the

Supplement). According to Nuic et al. (2010), BADA 3 has a

tendency to underestimate aircraft fuel consumption at high

altitudes and Mach numbers as the compressibility effect and

wave drag are not modeled. These effects will cause differ-

ences in the selection of the flight altitudes. In contrast, the

contrail and the climate options show complex-shaped trajec-

tories with various flight altitude changes (see Fig. 2a, b, e,

and f).

The global fields of fuel use, contrail distance, and cli-

mate impact indicated by ATR20total for the three options are

shown in Fig. 4, in which distributions represent the sum of

all the flights during the day. We see from Fig. 4b, e, and h

that the contrail option certainly decreases the contrail for-

mation, which is mostly located over northwest Europe and

over the east coast of the United States. A comparison of

Fig. 4a, d, and g shows that the COC option produces a nar-

rower fuel distribution than that of the contrail and climate

options. In addition, Fig. 4c, f and i show that the climate

option decreases the positive values of ATR20total (warm-

ing effects) over northwest Europe and over the east coast

of the United States and produces regionally negative val-

ues (cooling effects) near Iceland and over eastern Canada,

which result in the net climate impact reduction. A compre-

hensive analysis of the optimized trajectories for the calcu-

lated fields is beyond the scope of this paper. However, it is

apparent from Fig. 4 that the optimized trajectories success-

Geosci. Model Dev., 13, 4869–4890, 2020 https://doi.org/10.5194/gmd-13-4869-2020



Yamashita et al.: AirTraf 2.0 4879

Figure 2. Optimized flight trajectories from a 1 d AirTraf simulation (52 eastbound and 51 westbound flights) for the contrail formation (a,

b), the COC (c, d), and the climate impact routing options (e, f). For each figure, the trajectories are shown in the vertical cross section (top)

and projected on the ground (bottom).

fully decrease the respective objects (target measures) which

should be minimized (this point is discussed quantitatively in

Sect. 3.3).

3.3 Characteristics of aircraft routing options

To examine the characteristics of the routing options, Table 4

lists a summary of nine performance measures of the 1 d

air traffic (total 103 flights) for specific routing options (bar

charts are given in Supplement Fig. S4). Relative changes (in

%) to the COC option are also listed in Table 4, considering

this option as a reference (the COC option is assumed to be

the current aircraft routing strategy). Table 4 shows that indi-

vidual options successfully minimize their own object (target

measure; see measures marked with an asterisk in Table 4).

These results confirm that the new routing options work cor-

rectly in AirTraf 2.0 since we solve a single-objective mini-

mization problem defined by Eq. (1) for each routing option.

The individual routing options are now discussed in turn.

We see from Table 4 that the great circle option has the min-

imum flight distance of 660.3 × 103 km, whereas this option

increases the other measures. The time option shows the min-

imum flight time of 739.4 h with a large penalty on fuel use,

NOx emissions, H2O emissions, SOC, COC, and ATR20total

(further discussion in Sect. 4). The fuel option shows the
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4880 Yamashita et al.: AirTraf 2.0

T
a

b
le

4
.

T
h

e
n

in
e

p
erfo

rm
an

ce
m

easu
res

o
b

tain
ed

fro
m

th
e

1
d

A
irT

raf
sim

u
latio

n
s

w
ith

d
ifferen

t
aircraft

ro
u

tin
g

o
p

tio
n

s
(th

e
valu

es
in

d
icate

th
e

su
m

o
f

1
0

3
fl

ig
h

ts).
T

h
e

m
in

im
u

m

valu
es

o
f

each
p

erfo
rm

an
ce

m
easu

re
are

m
ark

ed
w

ith
an

asterisk
;

ch
an

g
es

(in
%

)
relativ

e
to

th
e

C
O

C
o

p
tio

n
are

g
iv

en
in

p
aren

th
eses.

B
ar

ch
arts

o
f

th
e

sam
e

d
ata

are
g

iv
en

in
F

ig
.
S

4
in

th
e

S
u

p
p

lem
en

t.

R
o
u
tin

g
o
p
tio

n
F

lig
h
t

d
istan

ce
F

lig
h
t

tim
e

F
u
el

u
se

N
O

x
em

issio
n
s

H
2
O

em
issio

n
s

C
o
n
trail

d
istan

ce
S

O
C

C
O

C
A

T
R

2
0

to
tal

(1
0

3
k
m

)
(h

)
(t)

(t)
(t)

(1
0

3
k
m

)
(m

illio
n

U
S

D
)

(m
illio

n
U

S
D

)
(1

0
−

7
K

)

G
reat

circle
6
6
0
.3

∗
(−

0
.4

)
7
5
7
.4

(+
0
.1

)
3
9
7
9
.1

(+
5
.8

)
4
4
.6

(+
5
.5

)
4
8
9
4
.2

(+
5
.8

)
1
5
4
.9

(+
1
9
.1

)
4
.0

7
2

(+
2
.9

)
5
.4

6
3

(+
2
.1

)
6
.8

5
(+

1
2
.5

)

F
lig

h
t

tim
e

6
6
3
.2

(+
0
.0

2
)

7
3
9
.4

∗
(−

2
.3

)
4
5
2
1
.9

(+
2
0
.2

)
5
7
.8

(+
3
6
.8

)
5
5
6
2
.0

(+
2
0
.2

)
1
2
7
.7

(−
1
.9

)
4
.2

9
9

(+
8
.6

)
5
.6

7
3

(+
6
.1

)
1
0
.4

4
(+

7
1
.5

)

F
u
el

u
se

6
6
3
.3

(+
0
.0

3
)

7
5
7
.3

(+
0
.1

)
3
7
5
8
.5

∗
(−

0
.1

)
4
2
.2

(−
0
.2

)
4
6
2
3
.0

(−
0
.1

)
1
2
8
.5

(−
1
.2

)
3
.9

6
0

(+
0
.0

3
)

5
.3

5
1

(+
0
.0

3
)

5
.8

5
(−

3
.9

)

N
O

x
em

issio
n
s

6
6
4
.5

(+
0
.2

)
7
5
8
.8

(+
0
.3

)
3
7
6
6
.8

(+
0
.1

)
4
2
.1

∗
(−

0
.5

)
4
6
3
3
.1

(+
0
.1

)
1
3
1
.8

(+
1
.3

)
3
.9

6
8

(+
0
.2

)
5
.3

6
0

(+
0
.2

)
5
.8

3
(−

4
.2

)

H
2
O

em
issio

n
s

6
6
3
.3

(+
0
.0

3
)

7
5
7
.3

(+
0
.1

)
3
7
5
8
.5

(−
0
.1

)
4
2
.2

(−
0
.2

)
4
6
2
3
.0

∗
(−

0
.1

)
1
2
8
.5

(−
1
.2

)
3
.9

6
0

(+
0
.0

3
)

5
.3

5
1

(+
0
.0

3
)

5
.8

5
(−

3
.9

)

C
o
n
trail

fo
rm

atio
n

7
1
7
.4

(+
8
.2

)
8
1
2
.3

(+
7
.4

)
4
6
2
5
.5

(+
2
3
.0

)
5
7
.0

(+
3
4
.9

)
5
6
8
9
.3

(+
2
3
.0

)
2
6
.3

∗
(−

7
9
.8

)
4
.5

4
9

(+
1
4
.9

)
5
.9

9
0

(+
1
2
.0

)
3
.4

5
(−

4
3
.4

)

S
O

C
6
6
3
.2

(+
0
.0

2
)

7
5
6
.6

(+
0
.0

3
)

3
7
6
0
.4

(−
0
.0

2
)

4
2
.2

(−
0
.1

)
4
6
2
5
.3

(−
0
.0

2
)

1
3
0
.2

(+
0
.1

)
3
.9

5
9
∗

(0
.0

)
5
.3

4
9

(0
.0

)
6
.0

2
(−

1
.1

)

C
O

C
6
6
3
.1

7
5
6
.4

3
7
6
1
.1

4
2
.3

4
6
2
6
.2

1
3
0
.1

3
.9

5
9

5
.3

4
9
∗

6
.0

9

C
lim

ate
im

p
act

7
0
3
.2

(+
6
.0

)
8
0
1
.4

(+
5
.9

)
4
4
7
4
.0

(+
1
9
.0

)
5
2
.3

(+
2
3
.8

)
5
5
0
3
.1

(+
1
9
.0

)
9
2
.6

(−
2
8
.8

)
4
.4

4
3

(+
1
2
.2

)
5
.8

7
4

(+
9
.8

)
1
.9

6
∗

(−
6
7
.9

)

Figure 3. Mean fuel consumption vs. mean flight altitude for 103

individual flights obtained by the contrail formation, the COC and

the climate impact routing options.

minimum fuel use of 3758.5 t. Of the nine routing options,

the fuel (and also the H2O), the NOx, the SOC, and the

COC options obtain similar values on all the measures (see

also Supplement Fig. S4); these options show decreased fuel

use, NOx and H2O emissions, SOC, and COC, whereas con-

trail distance and ATR20total increase. The difference among

these options is considered significant for airline operations

and thus is discussed in more detail in Sect. 4. The con-

trail option shows the minimum contrail distance of 26.3 ×

103 km and the second-lowest ATR20total of 3.45 × 10−7 K,

whereas the other measures increase considerably. This op-

tion allows aircraft to widely detour the potential contrail re-

gions (because no constraint function is used in Eqs. 1 and

5; see below for more discussion). Thus, the flight distance,

the flight time, and the fuel use increase drastically, which

results in the increase of NOx and H2O emissions, SOC,

and COC. In particular, the contrail option shows the high-

est COC of 5.99 millionUSD of the nine routing options.

Comparing the contrail option with the COC option indi-

cates that the contrail distance decreases with an additional

fuel use of 8.3 kg(fuel)(km(contrail))−1, i.e., the additional

COC of 6.20 USD(km(contrail))−1. The SOC and the COC

options are comparable. The two options show similar val-

ues for all the measures and have the same minimum SOC of

3.96 millionUSD and COC of 5.35 millionUSD. In fact, the

obtained optimum trajectories for those options are approxi-

mately the same (see Fig. 2c, d and Supplement Fig. S3k, l).

This is because the objective function of the two options

is a function of flight time and fuel, as defined in Eqs. (6)

and (7). An interesting aspect of their performance mea-

sures is that both options do not correspond to the minimum
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Figure 4. Vertically integrated distribution of fuel use, contrail distance, and climate impact indicated by ATR20total during the day (from

1 December 2015, 00:00:00 to 1 December 2015, 00:00:00 GMT). (a–c) Contrail formation option. (d–f) COC option. (g–i) Climate impact

option. These distributions were obtained with the optimized flight trajectories shown in Fig. 2 (sum of 103 flights).

Figure 5. Contrail distance vs. ATR20contrail for 103 individual

flights obtained by the contrail formation, the COC, and the climate

impact routing options.

flight time and fuel use (see further discussion in Sect. 4).

The climate option achieves the minimum ATR20total of

1.96 × 10−7 K and shows the second-shortest contrail dis-

tance of 92.6×103 km, whereas the other measures increase;

this option in particular shows the second-highest COC of

5.87 millionUSD. The present results indicate that the con-

trail and the climate options considerably reduce the climate

impact indicated by ATR20total; however, these options in-

crease COC. The cost–benefit performance (i.e., the COC in-

crement per ATR20total reduction) for the contrail and the cli-

mate options are 0.24 and 0.13 millionUSD(10−7K)−1, re-

spectively. Thus, the climate option seems to be a more cost-

effective option. Note that this performance is a narrow result

obtained using AirTraf 2.0 under specific conditions (e.g.,

the simulations were carried out with the 103 North Atlantic

flights on 1 December 2015, as shown in Table 3). Figure 5

shows the contrail distance (in 103 km) vs. ATR20contrail (in

10−7 K) for individual flights for the contrail, the COC, and

the climate options. We see that the contrail option decreases

the contrail distance drastically and shows the positive values

of ATR20contrail for almost all the flights. On the other hand,

the climate option has longer contrail distances than those

of the contrail option (although the climate option achieves

the second-shortest total contrail distance, as shown in Table

4) and shows the negative values of ATR20contrail for many

flights. These results imply that the contrail option minimizes

the overall contrail distance at all times, whereas the climate

option actively forms cooling contrails during the day and

avoids the formation of warming contrails during the day and

night. Finally, we believe that the climate benefits described

above are most likely an upper limit because airspace con-

gestion and air traffic management could reduce the flexibil-

ity for flights to perform these trajectory optimizations.
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4 Discussion: verification of the 1 d AirTraf simulation

results

This paper presents the extended version of the submodel

AirTraf which offers additional aircraft routing options for

defining overall target functions for the flight trajectory opti-

mization. To confirm the consistency of AirTraf simulations,

the relative changes in the performance measures among the

routing options (listed in Table 4 in parentheses) are com-

pared with previous studies. The quantitative values of the

changes in the performance measures vary depending on

different methodologies, atmospheric conditions, simulation

periods, flight plans, aircraft/engine types, cost/climate im-

pact metrics, etc. Thus, a direct comparison in magnitude of

our results with published studies is difficult; the sign of the

relative changes in the measures is compared. Note that the

great circle and the time options have been verified before

(Yamashita et al., 2016). In addition, the H2O option yields

the same results as the fuel option (see Sect. 2.5.3 and Ta-

ble 4); the SOC option is comparable to the COC option (see

Sect. 3.3 and Table 4). Thus, we omit any discussion of the

H2O and the SOC options here.

First, the time, the fuel, and the COC options are analyzed.

As defined in Sect. 2.5.6, COC is a combined function of

flight time and fuel. To minimize COC, one may attempt to

reduce both factors simultaneously; however, a trade-off be-

tween the flight time and the fuel generally exists. Table 4

shows that the time penalty of flying minimum fuel trajec-

tories is 2.4 percentage points, whereas the fuel penalty of

flying minimum time trajectories is 20.3 percentage points. A

similar trade-off was reported by two published studies. Celis

et al. (2014) addressed a single-objective flight trajectory op-

timization on total flight time and fuel use under ISA con-

ditions. A typical single-aisle aircraft (150 passengers) with

twin turbofan engines was assumed; the aircraft speed and

the flight altitude in eight flight segments were optimized for

a given flight trajectory (a quasi-full flight profile optimiza-

tion). Compared to the minimum time trajectory, the fuel op-

timum trajectory decreased the fuel use by 31.7 percentage

points with an increased flight time of 14.0 percentage points.

Rosenow and Fricke (2016) compared performances for the

minimum time and the minimum fuel trajectories for a flight

from Frankfurt (Main) to Dubai for a Boeing B777 freighter

on 2 February 2016 at 12:00 GMT. The comparison showed

that the fuel optimum trajectory decreased fuel use by 8.0 %

with an increased flight time of 3.7 %. These studies imply

that the minimum COC solution lies between the minimum

time and the minimum fuel solutions. In fact, Table 4 shows

that the COC option has more flight time than that of the time

option and that the COC option consumes more fuel than that

of the fuel option. The COC option yields the values of com-

promise (i.e., not minimum) of flight time and fuel. Nonethe-

less, this option achieves the minimum COC. The submodel

AirTraf 2.0 can consistently differentiate those three solu-

tions.

To support the discussion above, the fuel and the COC

options are compared in detail. Erzberger and Lee (1980)

compared the minimum fuel and the minimum direct operat-

ing cost (DOC) trajectories for a short-haul route for a Boe-

ing 727-100 aircraft on the basis of optimum control theory

(Bryson and Ho, 1969) under United States standard atmo-

spheric conditions. They showed that flying “minimum fuel”

reduced fuel use by 6.9 %, whereas the time and the DOC

penalties of the trajectory were 23 % and 6 %, respectively

(constrained thrust case). Our results in Table 4 show that

the fuel option reduces fuel use by 0.1 %, whereas the time

and the COC penalties of the option are 0.1 % and 0.03 %

compared to those measures of the COC option. The signs

of these relative changes obtained from our results agree

with those shown by Erzberger and Lee (1980). In addition,

the time and the COC options are compared in a perspec-

tive of airline operating economics. Although the time op-

tion increases fuel use, NOx emissions, H2O emissions, SOC,

COC, and ATR20total (fuel use and COC increase by 20.2 %

and by 6.1 %, respectively), the option decreases flight time

by 2.3 % compared to that of the COC option. In other

words, the time option reduces flight time with the extra cost

of 19 034.74 USD h−1 (= 269.66 EUR min−1, converted as

1USD = 0.85EUR on 18 September 2018; European Cen-

tral Bank, 2018). In a context of delay recovery, this extra

cost is the same order of magnitude to flight delay costs. If

the flight delay costs exceed the extra cost due to the time op-

tion, operators would determine to fly faster by using the time

option to recover the delay. Cook et al. (2004, 2009) reported

that the flight delay costs, which are associated with delayed

passengers, additional fuel use, flight crew, cabin crew, and

marginal maintenance costs, reached several hundred Euros

per minute. The extra cost calculated from our results agrees

well with this report.

Compared to the COC option, the NOx option decreases

the NOx emissions by 0.5 %, leading to a COC increase of

0.2 %. Mulder and Ruijgrok (2008) analyzed the effects of

varying cruise conditions on NOx emissions and on DOC

from the cruise NOx simulation model (Bremmers, 1999) by

assuming a cruise range of 5800 km with a Boeing 747-400

aircraft under ISA conditions. They clearly concluded that

a reduction of NOx emissions caused a cost increase. Our

results agree well with this conclusion. Moreover, the NOx

option differs from the fuel option because the amount of

NOx emissions depends not only on fuel use but also on the

NOx emission index, as defined in Eq. (3). The emission in-

dex depends strongly on the ambient atmospheric conditions

at every waypoint (see Sect. 2.6 of Yamashita et al., 2016).

Table 4 shows that the NOx option decreases the NOx emis-

sions by 0.3 percentage points, whereas this option increases

flight time by 0.2 percentage points and fuel use by 0.2 per-

centage points compared to those measures of the fuel op-

tion. Celis et al. (2014) addressed a single-objective flight

trajectory optimization on total fuel use and on NOx emis-

sions with the same simulation setup described above. Com-
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pared to the minimum fuel trajectory, the minimum NOx tra-

jectory decreased NOx emissions by 10.4 percentage points,

whereas the trajectory increased time by 1.0 percentage point

and fuel use by 3.9 percentage points. The signs of the rela-

tive changes obtained from our results are in good agreement

with those shown by Celis et al. (2014).

The contrail option drastically decreases contrail distance

by 79.8 % and ATR20total by 43.4 %, whereas this option in-

creases fuel use by 23.0 % and COC by 12.0 % compared

to those measures of the COC option. The contrail option is

effective in order to reduce the climate impact, as pointed

out by previous studies introduced in Sect. 1. Here those rel-

ative changes in the measures are compared with two pub-

lished studies. Rosenow et al. (2017) performed a 1 d Eu-

ropean air traffic optimization on 25 July 2016. The total

number of 13 584 flights over Europe (containing 16 aircraft

types) was employed; their three-dimensional flight profiles

were optimized for airline costs (termed as the cost perfor-

mance indicators, CPI) and environmental impacts (termed

as the ecological performance indicators, EPI). They re-

vealed that an additional contrail avoidance intent decreased

contrail costs by 31.5 % (contrail formations were converted

into a monetary value) and EPI by 5.2 %, whereas the in-

tent increased fuel use by 0.05 % and CPI by 0.5 % over

those of the minimum cost strategy. The signs of the relative

changes obtained from our simulations are consistent with

those shown by Rosenow et al. (2017). Furthermore, Sridhar

et al. (2013) applied a contrail reducing strategy to aircraft

flying between 12 airport pairs (287 flights) in the United

States on 12 April 2010. The three-dimensional contrail re-

ducing strategy showed a trade-off between contrail forma-

tion time (time spent in traveling through contrail formation

regions) and fuel consumption. Representative points on the

trade-off curve showed that the contrail formation time de-

creased by 4415 and by 5301 min with an additional fuel use

of 20 000 and of 131 000 kg(fuel), respectively, over those

of a wind-optimal strategy (this strategy is regarded as an

economically optimal strategy; see Sect. 2.4 of Yamashita

et al., 2016). This study clearly indicated the fuel increase

by avoiding contrail formations. Our results agree well with

the finding of Sridhar et al. (2013).

Table 4 clearly shows a trade-off between economic cost

and climate impact (see also Supplement Fig. S4). Compared

to the COC option, the climate option decreases ATR20total

by 67.9 % with an additional COC of 9.8 %. A similar trade-

off certainly exists between the minimum COC and the min-

imum climate impact trajectories for each airport pair. The

trade-off obtained from our results agrees with that indicated

by many studies (see Sect. 1). Moreover, Niklaß et al. (2017)

performed an aircraft trajectory optimization for nine North

Atlantic flight routes varying weighting factors on average

temperature response over 100 years (ATR100) and on COC

under ISA conditions. They showed a clear trade-off between

the cost and the climate impact. The minimum climate im-

pact trajectories, on average, reduced ATR100 by 28.4 %

with an additional COC of 7.1 % compared to those measures

of the minimum COC trajectories. Our results agree with

those shown by Niklaß et al. (2017). As discussed above,

many previous studies corroborate the consistency of the Air-

Traf simulations.

5 Conclusions

We introduced updates to the air traffic simulation model Air-

Traf in the chemistry–climate model EMAC. The submodel

AirTraf 2.0 was developed according to the MESSy standard

and was described in detail in this paper. This submodel in-

troduces seven new aircraft routing options for air traffic sim-

ulations: the fuel use, the NOx emissions, the H2O emissions,

the contrail formation, the simple operating cost, the cash

operating cost, and the climate impact options. Our flight

trajectory optimization methodology consists of genetic al-

gorithms; the methodology was similarly used and was val-

idated beforehand (Yamashita et al., 2016). The particular

strength of AirTraf is to enable a flight trajectory optimiza-

tion for a global flight movement set in the atmosphere which

is comprehensively described by EMAC. The novel routing

option, i.e., the climate impact option, has been integrated

in AirTraf 2.0. This option uses meteorological variables in

terms of (spatially and temporally varying) aviation climate

impact estimated by the aCCFs, and optimizes flight trajec-

tories by minimizing their anticipated climate impact. As

the aCCFs are new proxies for the climate-optimized rout-

ing, AirTraf takes a role in verifying the aCCFs themselves

and the climate impact option based on the aCCFs in multi-

annual (long-term) simulations.

To test the submodel AirTraf 2.0, example simulations

were carried out with 103 North Atlantic flights of an Airbus

A330 aircraft for a typical winter day. AirTraf 2.0 simulates

the 1 d air traffic successfully for the newly developed rout-

ing option concerning different optimization objectives, e.g.,

contrail avoidance, cash operating cost, and climate impact

(represented by average temperature response over 20 years)

and finds the different families of optimum flight trajecto-

ries which minimize the corresponding objective functions.

The characteristics of these routing options include that air-

craft are flown as the minimum economic cost with both the

SOC and the COC options. These options are comparably

effective for economic cost indices. AirTraf 2.0 differenti-

ates the minimum time, the minimum fuel, and the minimum

COC options. The COC option lies between the minimum

time and the minimum fuel options and thus minimizes COC

by taking the best compromise between the flight time and

the fuel use into account. The NOx option minimizes NOx

emissions; this option differs from the fuel and the COC op-

tions. The contrail and the climate options decrease the cli-

mate impact (indicated by ATR20total), which causes extra

operating costs. A trade-off between the cost and the cli-

mate impact certainly exists. Compared to the COC option,
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the climate and the contrail options decrease ATR20total by

67.9 % and by 43.4 % with an increase of COC of 9.8 % and

of 12.0 %, respectively. Thus, the climate option seems to

be more effective on the cost–benefit performance than the

contrail option. We believe that these climate benefits are

most likely an upper limit. The simulation results were com-

pared with literature data. The relative changes in the per-

formance measures among the various routing options agree

well with those shown by many previous studies. This com-

parison has limitations because of different methodologies,

different atmospheric conditions, etc. Nonetheless, a lot of

literature data offer evidence to indicate the consistency of

the AirTraf simulations.

The integration of AirTraf into EMAC allows one to op-

timize flight trajectories and to study aircraft routings under

historical, present-day, and future conditions of the climate

system. We acknowledge that the simulation results depend

on the atmospheric conditions of the target day. Thus, it is

important to examine whether the findings, e.g., the trade-off

between the cost and the climate impact, are common un-

der any atmospheric conditions. Recently, Yamashita et al.

(2020) examined this for representative weather types over

the North Atlantic by using EMAC with AirTraf 2.0. Fur-

thermore, the integrated aircraft routing options could be

extended to conflicting scenarios. Yin et al. (2018a) inves-

tigated a trade-off between flight time and contrail forma-

tion for transatlantic flights by combining the time and the

contrail options. Another option could easily be created by

adding a corresponding objective function. The AirTraf de-

velopment presented in this paper leads to a further detailed

understanding of characteristics of various aircraft routing

strategies.
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Appendix A: The algorithmic climate change functions

The aCCFs are calculated by the submodel ACCF (version

1.0). The derivation and validation of the aCCFs of ozone,

methane, and water vapor have been published by Van Ma-

nen (2017), Yin et al. (2018b), and Van Manen and Grewe

(2019); the aCCF of contrails is described by Yin et al.

(2020). The aCCFs for ozone, methane, water vapor, CO2,

and contrails are formulated as follows:

aCCFO3 =























− 5.20 × 10−11 + 2.30 × 10−13T

+ 4.85 × 10−168

− 2.04 × 10−18T 8, if aCCFO3 > 0,

0, if aCCFO3 ≤ 0,

(A1)

aCCFCH4 =























− 9.83 × 10−13 + 1.99 × 10−188

− 6.32 × 10−16Fin

+ 6.12 × 10−218Fin, if aCCFCH4 < 0,

0, if aCCFCH4 ≥ 0,

(A2)

aCCFH2O = 4.05 × 10−16 + 1.48 × 10−16|PV|, (A3)

aCCFCO2 = 6.35 × 10−15, (A4)

aCCFcontrail =































1.0 × 10−10(0.0073 × (100.0107T − 1.03))

× 0.114, if Potcov > 0 and nighttime,

1.0 × 10−10(−1.7 − 0.0088OLR) × 0.114,

if Potcov > 0 and daytime,

0, if Potcov ≤ 0,

(A5)

where T is the atmospheric temperature (in K), 8 is the

geopotential (in m2 s−2), Fin is the incoming solar radiation

at the top of atmosphere (in Wm−2), PV is the potential

vorticity (in PVU; 1PVU = 10−6 Km2 kg−1 s−1), and OLR

is the outgoing longwave radiation (in Wm−2). Given val-

ues of these meteorological variables, Eqs. (A1) and (A2)

yield aCCFO3 and aCCFCH4 (in K(kg(NO2))
−1), Eqs. (A3)

and (A4) yield aCCFH2O and aCCFCO2 (in K(kg(fuel))−1),

and Eq. (A5) yields aCCFcontrail (in K(km(contrail))−1). The

aCCFCO2 is the sole constant value (K. Dahlmann: Personal

communication, 2018). The aCCFCO2 is calculated by us-

ing the nonlinear climate–chemistry response model AirClim

(Grewe and Stenke, 2008; Dahlmann, 2012; Dahlmann et al.,

2016) assuming a 1 Tg fuel use in 2010 with the annual

growth rate according to the future global aircraft scenario

Fa1 (Penner et al., 1999). The aCCFCO2 is the averaged tem-

perature response of CO2 for the period 2010–2029 (in K per

kilogram of fuel) calculated by AirClim. The aCCFcontrail for

the nighttime contrails takes positive values; if the temper-

ature is less than 201 K, aCCFcontrail for the nighttime con-

trails is set to 0. The aCCFcontrail for the daytime contrails

can take positive and negative values depending on the OLR

(the threshold is −193.18 Wm−2). As for the time bound-

aries of day and night, the local time and solar zenith an-

gle are calculated for locations where contrails could form

(Potcov > 0). For locations in darkness, the time of sunrise is

then calculated. If the time between the local time and sunrise

is greater than 6 h, the aCCFcontrail for the nighttime contrails

is applied. If the contrail forms in daylight, or in darkness

but with less than 6 hours before sunrise, the aCCFcontrail for

the daytime contrails is applied. These calculations are per-

formed online in EMAC by the submodel ACCF. In AirTraf

2.0, those five aCCFs are calculated as flight properties for

waypoints, and then the corresponding ATR20s are calcu-

lated for flight segments (see Table 2).
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Code and data availability. AirTraf is implemented as a submodel

of the Modular Earth Submodel System (MESSy). MESSy is being

continuously developed and applied by a consortium of institutions.

The usage of MESSy and access to the source code are licensed

to all affiliates of institutions which are members of the MESSy

Consortium. Institutions can become a member of the MESSy Con-

sortium by signing the MESSy Memorandum of Understanding.

More information can be found on the MESSy Consortium website

(http://www.messy-interface.org). The submodel AirTraf 2.0 pre-

sented here has been developed on the basis of MESSy version 2.53

and has been available since the official release of MESSy version

2.54. The status information for AirTraf including the license con-

ditions is available on the website. The data from the simulations

will be provided by the authors on request.
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