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ABSTRACT

The recent emergence of the novel coronavirus (CoV) or severe acute respiratory syndrome 

coronavirus-2 (SARS-CoV-2) poses a global threat to human health and economy. As of June 

26, 2020, over 9.4 million cases of infection, including 482,730 deaths, had been con�rmed 

across 216 countries. To combat a devastating virus pandemic, numerous studies on vaccine 

development are urgently being accelerated. In this review article, we take a brief look at the 

characteristics of SARS-CoV-2 in comparison to SARS and Middle East respiratory syndrome 

(MERS)-CoVs and discuss recent approaches to coronavirus disease-2019 (COVID-19) 

vaccine development.
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INTRODUCTION

Coronaviruses are positive-sense RNA viruses belonging to the family Coronaviridae. They are 

divided into 4 genera: alpha (α), beta (β), gamma (γ), and delta (δ) coronaviruses, based on 

their phylogenetic relationships and genomic structures. α- and β-coronaviruses infect only 

mammals whereas the γ- and δ-coronaviruses mainly infect birds (1). Typically, coronaviruses 

are known to cause only mild illnesses, like the common cold in humans, but the outbreak 

of severe acute respiratory syndrome (SARS) in 2002 (2) demonstrated that coronaviruses 

originating from other animal species may cross the species barrier and could become 

life-threatening pathogens in humans. A decade a�er the SARS outbreak, Middle East 

respiratory syndrome coronavirus (MERS-CoV), another pathogenic coronavirus, emerged in 

Saudi Arabia (3). Most recently, another β-coronavirus—severe acute respiratory syndrome 

coronavirus-2 (SARS-CoV-2)—has been newly identi�ed from a cluster of patients with 

severe pneumonia (4,5). To date, 2 α-coronaviruses (human coronavirus [HCoV]-229E and 

HCoV-NL63) and 5 β-coronaviruses (HCoV-OC43, HKU1, SARS-CoV, MERS-CoV, and SARS-

CoV-2) have been identi�ed that infect humans (1).
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GENOME, VIRION, AND LIFE CYCLE

Coronaviruses are enveloped positive single-stranded RNA viruses. They have 26–32 kb 

genomic RNA, which is the largest among the genomes of RNA viruses (6,7). The genomic 

structures of all coronaviruses are similarly arranged: replicase genes encoded within two-

thirds of the 5′ end and genes encoding structural proteins in the other one-third of the 3′ 
end. Replicase genes, which occupy 20–22 kb of the entire coronavirus genome, is composed 

of open reading frame (ORF) 1a and ORF1b. ORF1a includes papain-like proteases (PLpro 

or PLP) and picornavirus 3C-like protease (3Clpro) genes, and ORF1b features viral RNA-

dependent RNA polymerase (RdRp), helicase, and exoribonuclease (ExoN) genes (8). Upon 

viral infection, translation �rst begins from the 5′ end of ORF1 to create a huge complex 

of ORF1a polyprotein. At a lesser frequency, the −1 ribosomal frameshi� occurs at the 

pseudoknot immediately before the termination codon of ORF1a, and translation resumes 

to constitute the ORF1ab polyprotein. Subsequently, the polyprotein is cleaved by the viral 

proteases into 16 mature nonstructural proteins (nsp1–16). As the frequency of frameshi� is 

roughly 25%–30%, proteins encoded by ORF1b are produced in relatively smaller amounts 

compared to those by ORF1a. Nevertheless, ORF1b is the most conserved gene within the 

coronavirus genome, suggesting that ORF1b plays a crucial role in viral replication.

The latter one-third of the 3′ end of genomic RNA encodes the four major coronavirus 

structural proteins, including spike (S), envelope (E), membrane (M), and nucleocapsid (N) 

proteins, along with accessory proteins that are virus species-speci�c with functions that 

are not fully understood (Fig. 1) (6,7). S, E, and M proteins are displayed on the coronavirus 

virion surface. Certain coronaviruses have hemagglutinin esterase (HE) on their surface, 

but SARS- and MERS-CoVs do not. The S protein is presented on the viral surface as trimers 

and protrude, forming corona-like structure on the envelope. S consists of two functional 

subunits—S1 is responsible for the binding to host receptors and S2 for the fusion of viral 

and cellular membranes. The E protein, formerly called sM, plays a major role in viral 

assembly and release by interacting with M protein via its cytoplasmic tails. In addition, E is 

closely associated with viral pathogenesis by interfering with the formation and maintenance 

of tight junctions in the lung mucosal epithelium, leading to acute alveolar damage (9). M 

protein is the most abundant protein in the virus envelope. It consists of a short N-terminal 

glycosylated domain and three transmembrane domains followed by a long C-terminal tail. 

Moreover, M is localized within the intracellular membrane in the endoplasmic reticulum-

Golgi intermediate compartment (ERGIC), where virion assembly and budding out occur, 

thereby controlling viral assembly by interacting with S and N proteins. N protein is a basic 

RNA-binding protein composed of three highly conserved domains: N-terminal, C-terminal, 

and RNA-binding domains. N binds to viral genomic RNA to form a helical capsid structure 

called the ribonucleoprotein (RNP) complex. The interaction of N, E, and M proteins drive 

the incorporation of the RNP into the assembling virions. In addition to RNP formation, N 

proteins play a critical role in enhancing the replication and synthesis of genomic RNA by 

interacting with nsp3.

NEWLY EMERGING HUMAN CORONAVIRUSES

SARS-CoV

SARS was �rst reported in Guangdong province, China in November 2002 and promptly 

spread worldwide, resulting in 8,096 cases, including 774 deaths in 29 countries (10). The 
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clinical symptoms of SARS are similar to those of other respiratory infections, like in�uenza. 

During the initial phase of infection, patients with SARS exhibited fever, cough, sore throat, 

and other mild symptoms, and some subsequently progressed to severe pneumonia (11). 

High levels of pro-in�ammatory cytokines and chemokines were detected in the sera of 

SARS patients with severe disease (12). They also displayed low levels of anti-in�ammatory 

cytokines, such as IL-10, compared to those of patients with mild symptoms.

The receptor binding domain (RBD) of S protein binds to host angiotensin-converting 

enzyme 2 (ACE2) for their entry into cells (13). ACE2 is expressed on a wide variety of body 

tissues and cells, including small intestine epithelium, arterial and venous endothelium, 

arterial smooth muscle, respiratory tract epithelium, alveolar monocytes, and alveolar 
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Figure 1. Genome structure of human coronaviruses (SARS-CoV, MERS-CoV, and SARS-CoV-2) and an overview of coronavirus vaccine platforms.
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macrophages (14). Owing to the widespread expression of ACE2 throughout the body, SARS-

CoV infects various tissues and causes lesions. Speci�cally, SARS-CoV primarily infects 

airway epithelial cells, resulting in the induction of large amounts of chemokines, such as 

CCL2, CCL3, CCL5, and CXCL10. The virus also infects hematopoietic cells, like dendritic 

cells (DCs) and macrophages. In such cases, DCs and macrophages exhibit the upregulated 

expression of pro-in�ammatory cytokines and chemokines, such as TNF-α, IL-6, and 

CXCL10, but downregulated or delayed type I IFN (IFN-α/β) response (15). Consequently, the 

excess concentrations of pro-in�ammatory molecules recruit various in�ammatory immune 

cells into the lungs, leading to consolidation, hemorrhages, edema, and di�use alveolar 

damage (DAD) (16).

MERS-CoV

Ten years a�er the SARS outbreak, MERS emerged in the Kingdom of Saudi Arabia in 2012. 

To date, 2,519 MERS cases with 866 deaths have been con�rmed in 27 countries across the 

Middle East, Asia, and Europe (17). In 2015, 186 cases of infection, including 38 deaths, were 

reported in South Korea (18), which was the most unique and largest MERS outbreak outside 

the Arabian Peninsula.

Major clinical symptoms of MERS are fever, non-productive cough, dyspnea, myalgia, and 

sore throat (19). Unlike patients with in�uenza and SARS, certain patients with MERS 

distinctively presented gastrointestinal symptoms, including diarrhea and vomiting 

(20). The majority of MERS patients progressed to severe pneumonia; particularly, 

immunocompromised individuals and patients with comorbidities exhibited high incidences 

of acute respiratory distress syndrome (ARDS) and renal dysfunction (21). Similar to SARS, 

in MERS patients, a dysregulated immune response is thought to be the cause of pathological 

changes, such as extensive in�ltration of immune cells into the lungs (22).

In contrast to the case of SARS, MERS-CoV particles or MERS-CoV-speci�c Abs were 

detected in a large number of dromedary camels in the Middle East and North Africa (23). 

This strongly indicates that the virus, which is thought to originate from bats (24,25), has 

been circulating for more than several decades in dromedary camels in those areas, which 

may be a reason for continuing zoonotic transmission of MERS-CoV. Human-to-human 

transmission of MERS-CoV mainly occurs through the nosocomial route, especially between 

hospitalized patients (26), probably because virus shedding takes place e�ciently a�er the 

onset of disease symptoms.

MERS-CoV infects host cells by interacting with dipeptidyl peptidase 4 (DPP4) or CD26 (27). 

DPP4 is expressed in the respiratory tract epithelium, kidney, small intestine, liver, prostate, 

and also on activated leukocytes (28). The virus primarily infects airway epithelial cells, 

resulting in delayed IFN responses and upregulated pro-in�ammatory cytokines, such as 

IL-6, IL-1β, and IL-8 (29). MERS-CoV-infected macrophages and DCs also produce high levels 

of pro-in�ammatory cytokines and chemokines, such as CCL2, CCL3, CCL5, and IL-2 (30,31), 

and the concentration of these soluble factors closely correlates with disease severity (32). 

Increased numbers of neutrophils and monocytes were observed in the lungs of these types 

of patients (22), indicating that these cells are responsible for lung immunopathology.

SARS-CoV-2

In December 2019, severe cases of pneumonia with unknown etiology were reported in 

Wuhan, China (4). As the causative agent of the disease was identi�ed as a coronavirus, the 
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disease and virus were named as coronavirus disease-2019 (COVID-19) and SARS-CoV-2, 

respectively (5,33). As the virus drastically disseminates on a global scale, the World Health 

Organization (WHO) declared a global pandemic on 11th March 2020. To date, over 9.4 

million cases of SARS-CoV-2 infection, including 482,730 deaths, have been reported, and 

the infection curve is still rising at a steep angle (34).

SARS-CoV-2 was determined to be a lineage B β-coronavirus, sharing 79% of genome 

sequence identity with SARS-CoV (35). It is thought to originate from bats, like other 

human β-coronaviruses, and to be transmitted to humans through probable, but unproven, 

intermediate hosts, such as snakes or pangolins (36,37). However, despite ongoing studies, 

the hosts have not been speci�ed to date, suggesting transmission took place incidentally, 

like in the case of SARS-CoV.

Similar to SARS-CoV, the S protein of SARS-CoV-2 binds to ACE2 as its receptor (38,39), and 

subsequently trigger fusion of viral and cellular membranes, therea�er entering host cells. 

As such, amino acid sequence and distribution of ACE2 is the major determinant of host and 

cell tropism (40). In the human body, ACE2 is expressed at a high level in the small intestine, 

testis, and kidneys, and at a relatively low level in the lungs and heart in healthy individuals. 

However, in the case of smokers and patients with heart conditions, ACE2 levels are elevated 

compared to that in the healthy (41,42), partially accounting for the high pathogenicity in 

those populations.

Most patients with COVID-19 exhibit mild to moderate clinical symptoms, such as fever 

and dry cough, and sometimes muscle and/or joint pain (43). However, the elderly or 

individuals with underlying diseases, such as asthma, heart conditions, and diabetes, are 

more vulnerable to SARS-CoV-2, leading to severe pneumonia or ARDS, the main cause of 

COVID-19-related death (43). Other less common symptoms have also been reported, such as 

gastrointestinal symptoms (44) and loss of taste or smell (45).

Upon infection, SARS-CoV-2 activates the innate immune system and induces pro-

in�ammatory cytokines and chemokines in the lungs along with recruitment of monocytes 

and T cells (43). In most healthy individuals, this local immune response contributes to 

the clearance of viral infection, but in patients with preconditions, dysregulated immune 

response results in massive in�ltration of immune cells, respiratory failure, or systemic 

in�ammation. In particular, unlike other respiratory viruses causing mild symptoms, SARS-

CoV-2 is unique, as it drives low type I and III interferon levels and a moderate IFN-stimulated 

gene (ISG) response (46,47). Consistent with these observations, SARS-CoV-2 ORF3b, a 

22-amino acid-long nonstructural protein, exhibited a signi�cantly stronger antagonistic 

activity against type I IFN induction than that displayed by SARS-CoV ORF3b ortholog 

(48). Contrary to this weak antiviral response, in�ammatory response represented by the 

production of proin�ammatory cytokines and chemokines, such as IL-6, CCL8, and CXCL9, 

was markedly elevated under SARS-CoV-2 infection both in vitro and in vivo (46). Patients 

with severe COVID-19 also exhibited abundant distribution of proin�ammatory monocyte-

derived macrophages in the bronchoalveolar lavage �uid (BALF) (49) and high serum levels 

of proin�ammatory cytokines and chemokines, such as IL-1β, IL-2, IL-6, IL-8, IL-17, IFN-γ-
induced protein (IP)-10, MCP-1, TNF-α, G-CSF, and GM-CSF (43,50,51). This imbalanced—

low antiviral but high in�ammatory—host response is believed to be a major factor a�ecting 

disease outcome.
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In addition to uncontrolled innate immune responses, impaired adaptive immune responses 

can a�ect disease severity. The number of lymphocytes including T, B, or NK cells was 

signi�cantly reduced in patients with severe COVID-19 requiring intensive care unit (ICU) 

care (50-52). Decreased T cell number has also been observed in patients with SARS (53), 

and MERS-CoV has been reported to infect human T lymphocytes and activate apoptotic 

pathways in the infected cells (54). Further investigation is required to elucidate the reason 

underlying the decrease in the number of lymphocytes in patients with severe COVID-19. 

It is intriguing that T cells from patients with COVID-19 highly express PD-1 and T-cell 

immunoglobulin mucin-3 (TIM-3), which are exhaustion markers (52). Additionally, the 

frequency of T and NK cells producing CD107a, IFN-γ, IL-2, and granzyme B was signi�cantly 

reduced in patients with severe infection, compared to those from healthy controls (55). 

However, despite the increased exhaustion marker levels and decreased cellular function, it 

should be carefully de�ned whether the T cells are really “exhausted” by continuous antigenic 

stimulation through Ag-speci�c TCRs.

ANIMAL MODELS

To elucidate the mechanisms of viral pathogenesis and develop optimal prophylactic and 

therapeutic strategies for newly emerging human coronaviruses, several animal models have 

been developed and evaluated (Table 1).

SARS-CoV and SARS-CoV-2

As mentioned earlier, SARS-CoV and SARS-CoV-2 enter target cells by binding to ACE2 as 

their receptor (38-40). In mice, SARS-CoV is able to interact with murine ACE2 and replicate 

in mouse tissues, including the lungs and small intestine (57), but disease symptoms are 

limited to mild respiratory disease and minimal bodyweight loss that is less than 5%. Aged 

mice present a relatively larger number of severe symptoms than young mice (59-61). To 

improve the availability of a murine SARS model, mouse-adapted SARS-CoV strains (149,150) 

and transgenic mice expressing human ACE2 (hACE2) were developed (62,63). Myeloid 

di�erentiation primary response 88 (MyD88) as well as STAT1 knock-out mice presented 

severe respiratory diseases, like pneumonitis and bronchiolitis, along with reduced survival 

compared to wild-type mice (58,64,65), suggesting that innate immunity involved with these 

molecules plays an important role in the clearance of SARS-CoV.

In addition to mice, various other animal models are available for SARS-CoV studies. 

Golden Syrian and Chinese hamsters (66) and ferrets (67,68) are susceptible to SARS-CoV 

infection and display moderate to severe respiratory symptoms. SARS-CoV infects non-

human primates (NHPs), including rhesus macaques, cynomolgus macaques, African 

green monkeys, common marmosets, squirrel monkeys, and mustached tamarins because 

these NHP species express a form of ACE2 closely related to that of humans (69-71). More 

importantly, the virus successfully replicates in these NHPs and causes severe symptoms, like 

fever, pneumonitis, diarrhea, and hepatitis (72).

As SARS-CoV-2 was revealed to also utilize ACE2 for viral entry (38-40), SARS animal 

models were promptly tested in SARS-CoV-2 studies. hACE2 transgenic mice exhibited 

moderate interstitial pneumonia (84), and Golden Syrian hamsters presented clinical 

symptoms and histopathological �ndings closely resembling what is observed in humans 

(85). In ferrets, SARS-CoV-2 viral RNA was detected in the nasal turbinate, so� palate, and 
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Table 1. Epidemiology, biological characteristics, and vaccine studies of SARS-CoV, MERS-CoV, and SARS-CoV-2

SARS MERS COVID-19

Emergence 2002 Nov 2012 Jun 2019 Nov

Guangdong, China The Kingdom of Saudi Arabia Wuhan, China

Areas affected [No. of countries] China, Hong Kong, etc. [29 countries] Middle East, Korea, etc. [27 countries] Worldwide [216 countries]

Cases (Death, case fatality rate) 8,096 (774, 9.6%) (10) 2,519 (866, 34.3%) (17) 9.4 million (482,730, 5.1%) (34)

Common symptoms Fever, dry cough, shortness of breath, 

myalgia (11)

Fever, cough, shortness of breath, 

diarrhea, nausea vomiting (19)

Fever, dry cough, shortness of breath or 

difficulty breathing, loss of smell or taste (43-45)

Etiologic agents SARS-CoV MERS-CoV SARS-CoV-2

Reservoirs → Intermediate hosts Bats → Palm civets (56) Bats (24) → Dromedary camels (23) Bats (35) → Snakes (?) (36), pangolins (?) (37)

Host receptor ACE2 (13) DPP4 (27) ACE2 (38-40)

Animal models Mice (C57BL/6, BALB/c, 129S) (57,58), aged 

mice (59-61), hACE2 transgenic mice (62,63), 

knock-out mice (MyD88, STAT1, Rag1, etc.) 

(57,58,64,65), golden Syrian hamsters (66), 

ferrets (67,68), NHPs (rhesus macaques, 

cynomolgus macaques, African green 

monkeys, common marmosets, squirrel 

monkeys, and mustached tamarins) (69-72)

rAd-hDPP4-transduced mice (73), 

hDPP4 transgenic (74-76) or knock-

in mice (77,78), camelid (76,79,80), 

NHPs (rhesus macaques, common 

marmosets) (76,81-83)

hACE2 transgenic mice (84), golden Syrian 

hamsters (85), ferrets (86,87), NHPs (rhesus 

macaques, cynomolgus macaques) (88,89), 

rAd-hACE2-transduced mice (90)

Vaccines

Live-attenuated virus vaccine rSARS-CoV-ΔE (91,92), nsp16 mutant SARS-

CoV (D130A) (93)

rMERS-CoV-ΔE (94), nsp16 mutant 

MERS-CoV (D130A) (95), MERS-CoV-Δ3, 

MERS-CoV-Δ4ab, MERS-CoV-Δ5 (94)

-

Inactivated whole-virus vaccine Inactivated with UV light (96,97), 

formaldehyde (97), or β-propiolactone (98)

Inactivated by gamma (γ) irradiation 

(99) or formaldehyde (100)

Inactivated with β-propiolactone (PiCoVacc) 

(101)

Inactivated SARS-CoV-2*

- Phase 1/2: ChiCTR2000031809

- Phase 1/2: ChiCTR2000032459

- Phase 1: NCT04412538

Inactivated SARS-CoV-2 with alum*

- Phase 1/2: NCT04352608

- Phase 1/2: NCT04383574

Recombinant protein Recombinant S, S1, RBD, trimeric form of S 

and RBD proteins (102-106)

Recombinant S, RBD, trimeric RBD, 

NTD proteins (107-115), S protein 

nanoparticles (116-118)

S protein nanoparticles with Matrix-M*

- Phase 1/2: NCT04368988

Virus-like particle VLP exhibiting S, M, and E proteins (119-121) VLP exhibiting S, M, and E proteins (123) -

Chimeric VLP consisting of S and influenza 

M1 (122)

DNA vaccine S, S1, RBD, N antigens (98,124-128) S, S1 antigens (114,129,130) S Ag (131,132)

INO-4800*

- Phase 1: NCT04336410

GX-19†

- Phase 1/2a: NCT04445389

RNA vaccine No investigated vaccine No investigated vaccine Lipid nanoparticle (LNP) encapsulated mRNA-

1273*

- Phase 1: NCT04283461

- Phase 2: NCT04405076

3LNP mRNA-BNT162*

- Phase 1/2: 2020-001038-36

- Phase 1/2: NCT04368728

LNP-nCoVsaRNA*

- Phase 1: ISRCTN17072692

Viral vector-based vaccine rAd/S or N, rMVA/S (98,133-135) Human rAdV/S, chimpanzee rAdV 

(ChAdOx1)/S, rMVA/S or N (136-147)

rAd5/S*

- Phase 1: ChiCTR2000030906

- Phase 2: ChiCTR2000031781

ChAdOx1-S*

- Phase 1/2: 2020-001072-15

- Phase2b/3: 2020-001228-32

- Phase 3: ISRCTN89951424

Gam-COVID-Vac and Gam-COVID-Vac Lyo*

- Phase 1: NCT04436471

- Phase 1: NCT04437875

The list of clinical trials for COVID-19 vaccine has been adopted from *the database of the World Health Organization (148) and †the U.S National Library of 

Medicine (www.ClinicalTrials.gov).
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tonsil, but the viral infection induced only mild clinical symptoms (86). In NHP models, 

the virus was excreted from the respiratory tract and detected in multiple organs in virus-

infected cynomolgus macaques, but they did not develop any clinical signs (88). Aged rhesus 

macaques exhibited more severe and di�use pneumonia along with serious in�ammatory 

responses versus young monkeys (89), suggesting the age is a decisive factor in both NHP 

models and humans. SARS-CoV-2 susceptibility was also investigated in domesticated 

animals—SARS-CoV-2 can e�ciently replicate in cats but does so poorly in dogs, pigs, 

chickens, and ducks (87). Most recently, a new mouse model using recombinant adenovirus 

5 expressing hACE2 (Ad5-hACE2) was reported (90), which is similar to the model developed 

for a MERS study by the same group (73). Upon intranasal transduction with Ad5-hACE2, 

mice transiently expressed hACE2 in their respiratory tract and exhibited signi�cant viral 

replication and lung in�ammation upon subsequent SARS-CoV-2 infection.

MERS-CoV

MERS-CoV employs host cellular DPP4 as its receptor for entry (27). Whereas humans and 

NHPs are susceptible to MERS-CoV infection, hamsters, ferrets, and mice are not because 

of di�erences in major amino acid sequences of DPP4 (151-153). The �rst model for MERS-

CoV study was based on mice transduced with recombinant adenovirus expressing human 

DPP4 (Ad5-hDPP4) (73). The Ad5-hDPP4-transduced mice developed clinical symptoms 

including pneumonitis and lung edema upon MERS-CoV infection. Global or tissue-speci�c 

hDPP4 transgenic mice were successfully infected with MERS-CoV and displayed respiratory 

symptoms and weight loss (74,75). hDPP4 knock-in mice have also been developed within 

which murine DPP4 is replaced by hDPP4 using CRISPR/Cas9 (77,78).

In addition to these mouse models, dromedary camels, an intermediate animal in MERS-

CoV transmission, and alpacas were tested for a MERS study. Although they were susceptible 

to the virus, they were asymptomatic or exhibited, if any, only mild respiratory symptoms 

(79,80). In NHPs, MERS-CoV e�ectively infected the host cells and replicated within their 

lungs (81-83), but disease severity was higher in the common marmosets than that in rhesus 

macaques. Furthermore, symptoms observed in severe patients, such as lung consolidation 

and liver or kidney failure, were reproduced only in common marmosets (76), indicating that 

they are a more reliable animal model for MERS study.

VACCINE RESEARCH

Although there are still no approved vaccines for SARS and MERS, studies on the two previous 

coronaviruses provided important information about a strategy and considerations for COVID-19 

vaccine development. First, as S protein, especially RBD, was known to be responsible for 

binding to host receptors, it has been extensively evaluated as a primary target Ag for vaccine 

development. Second, the majority of vaccine studies have utilized various recombinant vaccine 

platforms, including recombinant proteins, nucleic acids, and virus-vectored vaccines, rather 

than conventional live-attenuated or inactivated virus platforms (Fig. 1 and Table 1).

Live-attenuated virus vaccines

As the live-attenuated virus vaccine is composed of almost all proteins of the virus, immune 

responses induced by attenuated virus vaccination are most similar to those by real viral 

infection (154). In a conventional method, live-attenuated virus has been made by serial culture 

of the virus, which leads to a spontaneous deletion of or mutation within a pathogenic gene. 
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However, in recent studies, recombination technology-based modi�cation of the target gene 

has been more widely studied in coronavirus vaccines. Among the coronavirus proteins, E and 

nsp16 have been thought of as the most potential targets because of their potential association 

with the virulence in vivo (9). Immunization of engineered mutant SARS-CoV lacking the E 

protein (rSARS-CoV-ΔE) provided protective immunity in hACE2 transgenic mice and golden 

Syrian hamsters against viral challenge (91,92). E gene-deleted MERS-CoV (rMERS-CoV-

ΔE) was able to replicate only by providing E protein in trans, but unable to propagate in vivo 

(94). Recombinant MERS-CoV lacking the accessory genes 3, 4a, and 5, was also replication-

competent in vitro but propagation-defective in vivo, indicating that recombinant MERS-CoV 

could be a safe and promising vaccine candidate (94). SARS- and MERS-CoVs harboring a 

D130A mutation in each nsp16 gene (SARS-CoV [D130A] and MERS-CoV [D130A]) induced a 

neutralizing Ab response and protected against lethal virus challenge in young animals without 

any pathologic symptoms (93,95). Currently, 2 live-attenuated COVID-19 vaccines based on 

codon-deoptimization are under preclinical development (148).

Inactivated whole-virus vaccines

Inactivated whole-virus vaccines are prepared by inactivation of the cultured virus by heat, 

ultraviolet (UV), or chemicals, such as formalin. When compared to a live-attenuated virus 

vaccine, they can be produced relatively quickly and easily upon the emergence of a new or 

variant virus. In coronavirus vaccine studies, inactivated virus vaccine induced high-titer 

neutralizing Abs and cell-mediated immune responses. Immunization with SARS-CoV 

inactivated with UV light (96,97), formaldehyde (97), and β-propiolactone (98) induced 

potent neutralizing Abs and CD4+ and CD8+ T cell responses in mice and rabbits. In addition 

to SARS-CoV, MERS-CoV treated with γ-irradiation or formaldehyde also o�ered protection 

against MERS-CoV infection (99,100). Some studies have shown that inactivated SARS- and 

MERS-CoV vaccines were e�cacious in protection from challenge in mice and NHPs (155-158). 

The e�cacy of an inactivated virus COVID-19 vaccine has been tested in mice, rats, and rhesus 

macaques (101). Currently, at least nine research groups are developing COVID-19 vaccines 

using an inactivated virus platform. Among them, four institutions in China (Sinovac, Wuhan 

Institute of Biological Products, Beijing Institute of Biological Products, and Chinese Academy 

of Medical Sciences) have started clinical studies (148).

Recombinant protein vaccines

Recombinant protein vaccines have long been studied and assessed in terms of e�cacy and 

safety. Many researchers have also evaluated human coronavirus vaccines, mainly focusing 

on S and RBD proteins of SARS- and MERS-CoVs. Immunization with the full-length, 

extracellular domain of S proteins or Fc-fused RBD proteins of SARS-CoV induced potent 

neutralizing Abs in mice and/or rabbits (102-105). Trimeric S or RBD proteins also induced 

humoral and cellular immune responses and provided protection against SARS-CoV infection 

in hamsters (106). Similar to the results from SARS vaccine studies, recombinant S, RBD, Fc-

fused RBD, and trimeric RBD proteins of MERS-CoV also elicited neutralizing Abs in various 

animal models, including mice and monkeys, and exhibited protective e�ects upon viral 

challenge (107-114,116). Immunization of the N-terminal domain (NTD) of the MERS-CoV S 

protein also led to protection against MERS-CoV challenge in a transient hDPP4-expressing 

mice model (Ad5-hDPP4 mice) (115). In most of these experiments, recombinant protein Ags 

were used with an adjuvant, such as alum and MF59, to increase Ab or cell-mediated immune 

responses. Intriguingly, MERS-CoV S proteins alone self-assemble into nanoparticles of a 

size of approximately 25 nm. With this, the S nanoparticles e�ectively induce neutralizing 

Abs and Th1-type cellular immune responses in mice and NHPs (116,123), providing 
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protection against MERS-CoV infection in mice (117). In addition, heterologous prime-boost 

vaccination with adenoviral vector-expressing S and S nanoparticles led to balanced Th1/Th2 

responses and safeguarded mice from MERS-CoV challenge (118).

In terms of SARS-CoV-2, Novavax (Gaithersburg, MD, USA) is developing a spike nanoparticle 

vaccine at phase 1/2 clinical stage, and another 50 institutions are working on recombinant 

protein vaccines focusing on S or RBD proteins at a pre-clinical stage (148). One of the most 

outstanding advances in the recent study of recombinant protein vaccines is the design of 

a prefusion form of viral surface Ags based on structural biology. Target Ags expressed as 

a stable prefusion form induced more potent and high-a�nity neutralizing Ab responses 

than wild-type proteins in various infectious disease models (159-162). Several institutions, 

including Queensland University (Brisbane, Australia) and Clover Biopharmaceuticals 

(Chengdu, China), are applying this technology to COVID-19 vaccine development.

Meanwhile, for the optimal e�cacy and dose sparing of recombinant protein Ags, it is essential 

to develop a vaccine in combination with an appropriate adjuvant. In previous SARS and MERS 

vaccine studies, the e�ects of diverse adjuvants such as alum (106,108,109,115,116,118,123), 

MF59® (109,110,112), Matrix™ M (116,117), Montanide ISA™ 51 (109,111,113), and 

monophosphoryl-lipid A plus trehalose dicorynomycolate (MPL® + TDM) (102,104,114), have 

been widely tested. During the development of a recombinant protein-based COVID-19 vaccine, 

the choice of an adjuvant would be a considerable factor a�ecting the quality of the immune 

response, the e�cacy and safety of the vaccine, and the economic feasibility of the developer.

Virus-like particle (VLP) vaccines 

VLPs are nano-sized particles composed of viral proteins with self-assembly properties. 

They mimic the morphology of a real virus particle but do not replicate owing to the lack of 

genomic material. As VLPs maintain the ideal conformation of native Ags, they can elicit an 

appropriate and strong immune response (163).

VLPs of SARS- and MERS-CoVs were produced by coexpressing the S, E, and M proteins 

from insect or mammalian cells (119,123), and these VLPs induced potent neutralizing Abs 

and Th1-biased cellular immune responses in mice and NHPs (120,121,123). Interestingly, 

SARS-CoV S and in�uenza virus matrix 1 (M1) coexpression e�ciently formed chimeric VLP 

and induced protective immunity against SARS-CoV (122). At present, ten COVID-19 vaccine 

candidates are under pre-clinical investigation on the basis of VLP technology (148).

DNA and RNA vaccines

Since it was �rst reported that immunization of naked plasmid DNA encoding foreign protein 

induces an Ag-speci�c immune response in mammals in the early 1990s (164), DNA vaccines 

have been widely tested in various pathogen models. Although DNA vaccines have not been 

approved for humans to date, their immunogenicity and therapeutic e�ects have long been 

tested across various clinical trials for infectious diseases as well as human papillomavirus-

mediated cervical intraepithelial neoplasia (165,166). DNA vaccines expressing full-length or 

truncated forms of SARS-CoV S protein induced humoral and cellular immunity, supplying 

protection against SARS-CoV infection in murine models (98,124,125). Further, heterologous 

prime-boost immunization with DNA vaccines and inactivated SARS-CoV induced strong 

CD4+ T cell and Ab responses (126). Meanwhile, DNA vaccines encoding SARS-CoV N 

proteins induced Abs and T cell responses in mice, but their protective e�cacy has not 

been fully investigated (127,128). In MERS vaccine studies, immunization of full-length or 
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S1 subunit-expressing plasmids also induced neutralizing Abs and T cell responses in mice, 

camels, and NHPs (114,129,130), while also alleviating clinical symptoms upon MERS-CoV 

infection in a rhesus macaque model (129).

mRNA vaccines are the most recent vaccine technology characterized by rapid development 

and production along with high potency. Recently, encapsulation and delivery methods 

have been substantially improved—the use of carrier molecules, such as liposomes, cationic 

polymers, and polysaccharide particles, signi�cantly increases delivery e�cacy, allowing for 

rapid uptake and high expression of target Ags. Owing to the safety, potent e�cacy, as well 

as mass and prompt producibility, mRNA vaccines are being extensively evaluated in various 

infectious diseases and cancers (167). Yet, no striking results have been reported in SARS and 

MERS vaccine studies.

Currently, 12 DNA-based and 19 RNA-based COVID-19 vaccine candidates are under 

investigation and development (102). Moderna (Cambridge, MA, USA), together with the 

Vaccine Research Center at National Institutes of Health (NIH) of the USA, has promptly 

begun a phase 1 clinical trial, the �rst clinical study in COVID-19 vaccines, using mRNA 

vaccine, mRNA-1273. The immunogenicity and/or protective e�cacy of COVID-19 DNA 

vaccine candidates has been evaluated in mice and rhesus macaques (131,132), and INOVIO 

Pharmaceuticals (Plymouth Meeting, PA, USA) and Genexine (Seongnam, South Korea) are 

undergoing phase 1 to 2a clinical trials (ClinicalTrials.gov: NCT04445389) (148).

Viral vector-based vaccines

As vesicular stomatitis virus (VSV)-based Ebola vaccine (ERVEBO®) has been approved for 

human use by the Food and Drug Administration (FDA) of the USA in 2019 (168), the use of 

viral vectors for vaccines against infectious diseases appears to be more �exible than how 

it was before. Viral vector-based vaccines are able to induce strong and rapid Ab and cell-

mediated immune responses, and several viral vectors have been developed to date, including 

VSV, modi�ed vaccinia Ankara (MVA), adenovirus (Ad), and adenovirus-associated virus 

(AAV) (169). In coronavirus vaccine studies, Ad and MVA are the most frequently employed. 

Replication-defective adenoviral vector expressing S and N proteins of SARS-CoV elicited 

humoral and cellular immune responses in mice (98,170). MVA expressing SARS-CoV S 

protein induced neutralizing Ab responses in mice, ferrets, and NHPs (133-135), and reduced 

lung viral titer in SARS-CoV-challenged mice (135). Immunization with adenoviral vector 

encoding S protein of MERS-CoV induced systemic neutralizing Abs and T cell responses 

(136,137). To avoid pre-existing immunity against human adenovirus, chimpanzee adenovirus 

(ChAdOx1) was utilized in recent vaccine development (138). The ChAdOx1 vector encoding 

MERS-CoV S induced neutralizing Abs and T cell responses in hDPP4 transgenic mice 

(139,140), and reduced virus shedding and nasal discharge in dromedary camels upon MERS-

CoV infection (141). MVA encoding the S protein of MERS-CoV also induced neutralizing 

Abs and T cell responses, protecting Ad-hDPP4-transduced mice and camels from challenge 

with MERS-CoV (139,142,143). MVA expressing N protein of MERS-CoV elicited CD8+ T 

cell responses in mice, but its protective e�cacy was not determined (144). In addition 

to adenovirus and MVA, several viruses, such as Newcastle disease virus, live-attenuated 

measles virus (MV), rabies virus, Venezuelan equine encephalitis virus, and VSV have also 

been investigated in the context of MERS vaccine studies ((73,145-147,169).

A total of 37 vaccine institutions are developing viral vector-based COVID-19 vaccines, and 

among them, University of Oxford (Oxford, UK) and CanSino Biological (Tianjin, China) are 
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performing phase 1 to 2b/3 clinical trials using a replication-de�cient chimpanzee adenovirus 

(ChAdOx1) and adenovirus type 5 (Ad5), respectively (148).

Lessons and remaining questions in SARS and MERS studies

Based on the reports introduced above, the Ab response inhibiting the interaction between 

S or RBD and the corresponding receptors is su�cient for the prevention of SARS- and 

MERS-CoV infection. Passive transfer of human monoclonal Abs also provided considerable 

protection against subsequent viral challenge in mice (171-173). Taken together, these results 

suggest that S is a promising target Ag for coronavirus vaccines. Meanwhile, the contribution 

of T cell immunity for the prevention and clearance of the virus has been widely advocated. 

CD8+ T cells play a crucial role in viral clearance by secreting e�ector molecules directly to 

infected cells (73,174,175). Airway CD4+ T cells also mediate protective immunity against 

SARS- and MERS-CoV infection through rapid production of IFN-γ (176). However, the long-

term e�cacy and safety of SARS or MERS vaccines in humans has not been tested to date. 

Moreover, in some animal studies, vaccine-induced or monoclonal S-speci�c neutralizing 

Abs markedly enhanced the infectivity of SARS- and MERS-CoVs (177,178), necessitating 

further dedicated investigation.

FACTORS TO BE CONSIDERED

As discussed previously, vaccine technology has signi�cantly advanced over the last several 

decades. We also have gained useful information and materials for the study of vaccines 

for the novel coronavirus—how the virus enters the host cells, which Ag we should target, 

and what kind of animal models we can use. From the aspect of a pre-clinical study, some 

scientists appear to already have several successful vaccine candidates. However, in terms of 

a COVID-19 vaccine that is applicable to humans, several factors remain to be considered and 

intensively investigated.

First, safety issues must be initially evaluated. Certain vaccine formulations have induced 

sub-optimal Abs and inappropriate Th2-mediated immune responses, leading to Ab 

dependent enhancement (ADE) and/or vaccine-associated enhanced respiratory disease 

(VAERD) (99,179-183). Additionally, each candidate should be also tested for toxicity in rats 

or rabbits. Although nucleic acid vaccines are regarded as safe in the aspect of nonclinical 

toxicology, long-term safety of an RNA vaccine in humans should be carefully investigated.

The next factor to consider during COVID-19 vaccine development is e�cacy, particularly in the 

elderly and immunocompromised. The mortality of the disease manifests a close correlation 

with age: less than 1.0% under the age 50, but signi�cantly increasing up to 1.25, 3.99, and 

8.61% in the 50s, 60s, and 70s, respectively, and surpassing 13% over 80 (184). This strongly 

suggests that the primary target population for COVID-19 vaccine should be the elderly. In the 

case of conventional vaccines, high-dose or adjuvanted vaccines are recommended to enhance 

weak immune responses in those populations (185-187). Taking this into account, the e�cacy 

of COVID-19 vaccines in the elderly or immunocompromised must be carefully assessed. 

Nevertheless, even if a COVID-19 vaccine is unsatisfactory in those populations, it might still be 

bene�cial because of indirect protection by establishing “herd immunity”.

Other important questions to be addressed are how each immune response contributes 

to the protection against or clearance of the virus and for how long this e�ect can last 
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following vaccination or natural infection and recovery. In most pre-clinical vaccine studies, 

immunization of an S Ag or a part of it e�ciently induced a potent neutralizing Ab response. 

Transfer of a SARS-CoV-2-speci�c monoclonal Ab and convalescent plasma also provided 

signi�cant protection against the disease in an animal model and alleviated disease severity 

in humans (188,189). These reports suggest that neutralizing Abs play a key role in the 

protection or clearance, although partial, of the virus. However, the precise mechanism and 

extent of contribution of virus-speci�c T cells to the quality, quantity, and duration of the Ab 

response have not been addressed, and whether T cells per se provide su�cient protection or 

exert a therapeutic e�ect remains unknown (190). This knowledge is particularly important 

because it can provide critical information for designing a COVID-19 vaccine and developing 

a quarantine policy. Currently, the therapeutic e�ect of adoptively-transferred SARS-CoV-2-

speci�c T cells is being tested in a clinical trial (ClinicalTrials.gov: NCT04351659).

CONCLUSIONS

This review has presented a brief introduction to three human coronaviruses, SARS-CoV, 

MERS-CoV, and SARS-CoV-2, and summarized previous and current coronavirus vaccine 

studies. In addition to the scienti�c issues discussed herein, there also remain several problems 

to be resolved in the e�ort to produce an “available” COVID-19 vaccine—the arrangement 

of existing infrastructure or build-up of new facilities for mass production, distribution of 

�nal goods, and vaccination of large proportions of the population, and so on. Facing a novel 

coronavirus pandemic, we are engaging in desperate e�orts for the development of a safe and 

e�ective vaccine. Ultimately, the information in this review will be bene�cial and valuable for a 

better understanding of human coronaviruses and COVID-19 vaccine development.
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