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We examine the question of when a quadratic polynomial f (x) defined over a
number field K can have a newly reducible n-th iterate, that is, f n(x) irreducible
over K but f n+1(x) reducible over K , where f n denotes the n-th iterate of f .
For each choice of critical point γ , we consider the family

gγ,m(x)= (x − γ )2+m+ γ, m ∈ K .

For fixed n ≥ 3 and nearly all values of γ , we show that there are only finitely
many m such that gγ,m has a newly reducible n-th iterate. For n = 2 we show
a similar result for a much more restricted set of γ . These results complement
those obtained by Danielson and Fein (Proc. Amer. Math. Soc. 130:6 (2002),
1589–1596) in the higher-degree case. Our method involves translating the prob-
lem to one of finding rational points on certain hyperelliptic curves, determining
the genus of these curves, and applying Faltings’ theorem.

1. Introduction

Let K be a number field and f (x) ∈ K [x]. By the n-th iterate f n(x) of f (x),
we mean the n-fold composition of f with itself. Determining the factorization
of f n(x) into irreducible polynomials has proven to be an important problem.
From a dynamical perspective, it is a question about the inverse orbit of zero,
namely O−(0) :=

⋃
n≥1 f −n(0). This set has significance in various ways; for

instance, it accumulates at every point of the Julia set of f [Beardon 1991, p. 71].
The field of arithmetic dynamics seeks to understand sets such as O−(0) from an
algebraic perspective, and finding the factorization of f n(x) fits into this scheme:
a nontrivial factorization arises from an “unexpected” algebraic relation among
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elements of O−(0). In addition, understanding the factorization of f n(x) has proven
to be a key obstacle in determining the Galois groups of f n(x) (see [Hamblen
et al. 2013; Jones 2008] or [Jones and Manes 2011] for the case of some rational
functions). These Galois groups provide a sort of dynamical analogue to the
well-studied `-adic Galois representations [Boston and Jones 2007].

In general, the factorization of the iterates of f can exhibit a wide variety of
behaviors. For instance, in [Fein and Schacher 1996, Lemma 1.1] it is shown that for
each n≥ 1 and d ≥ 2, there exists a number field K such that, for some f (x)∈ K [x]
of degree d, f n+1(x) is newly reducible; that is, f n(x) is irreducible over K but
f n+1(x) is reducible over K . More specifically, it follows from [Stoll 1992, p. 243]
and [Fein and Schacher 1996, Lemma 1.1] that if f (x) = x2

+m for m ∈ Z>0,
m ≡ 1, 2 mod 4, then for any fixed n ≥ 1 there exists a number field K such that
f n+1(x) is newly reducible over K . But what happens when we fix the number
field K to start with, and ask about the factorization of f n(x) as n grows? Many
authors have examined this question, in general with the aim of giving criteria that
ensure all iterates are irreducible (see, e.g., [Jones 2012; Odoni 1985, Section 4]).
Most usefully for our purposes, Danielson and Fein [2002] consider the case when
f (x) = xd

+m, for d ≥ 2. They show, for instance, that if m ∈ Z and f (x) is
irreducible, then all iterates of f are irreducible. In fact they only assume that K is
the quotient field of a unique factorization domain R, and in this case they show that
certain strong diophantine conditions must be satisfied when f n(x) is irreducible
and f n+1(x) is reducible. In particular, for K =Q, they take S(d, n) to be the set
of m ∈Q such that f n+1(x) is newly reducible. Further, let S(d)=

⋃
n≥1 S(d, n).

In [Danielson and Fein 2002, Theorem 7] it is shown that S(2, 1) (and thus S(2)) is
infinite, S(3, n) is finite for all n ≥ 1, and S(d) is finite for d odd, d ≥ 5. Moreover,
the abc conjecture implies that S(d) is finite for d even, d ≥ 4.

One goal of the present paper is to determine whether S(2, n) is finite for n ≥ 2.
Our main result, however, is significantly more general. Consider the family of
polynomials

gγ,m(x)= (x − γ )2+m+ γ, γ,m ∈ K , (1-1)

where K is a number field. Denote the ring of integers of K by OK . Our main
result is the following:

Theorem 1. Let K be a number field, vp the valuation attached to a prime p of OK ,
and gγ,m(x) as in (1-1). If one of the following holds, then there are only finitely
many m such that gn

γ,m(x) is irreducible over K and gn+1
γ,m (x) is reducible over K :

(1) n ≥ 3 and there exists a prime p of OK with vp(2)= e ≥ 1 and vp(γ )= s with
s 6= −e2i for all i ≥ 1;

(2) n = 2 and γ = r/4 for for r ∈ Z such that −200≤ r ≤ 200.
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In particular, when K =Q, part (1) of Theorem 1 holds when v2(γ ) is not of the
form −2 j for j ≥ 1. Hence when γ = 0, we obtain that S(2, n) is finite for n ≥ 2
(in the notation of [Danielson and Fein 2002]); in other words, for each n ≥ 2 there
are at most finitely many m ∈Q such that x2

+m has a newly reducible (n+ 1)-st
iterate. In Proposition 10, we show further that S(2, 3) is empty. Note also that
part (1) of Theorem 1 applies whenever γ belongs to the ring of integers of K , and
in particular for γ ∈ Z. In fact, part (1) holds whenever γ is taken so that

gi
γ,m(γ ) ∈ K [m] does not have repeated roots for any i ≥ 1. (1-2)

(See Theorem 6, Proposition 9, and the discussion immediately before Proposition 9.)
Condition (1-2) is the same as the condition appearing in [Faber et al. 2009] for the
preimage curve Y pre(i,−γ ), given by the vanishing of the polynomial

(gi
0,m(x)+ γ ) ∈ K [x,m],

to be nonsingular for all i ≥ 1. In Proposition 9, we give a new criterion ensuring
that (1-2) holds for given γ , thereby improving [Faber et al. 2009, Proposition 4.8].
The full strength of condition (1-2) is not required to prove part (1) of Theorem 1;
see the remark following the proof of Proposition 9.

For given K , denote by S(2, n, γ ) the set of m ∈ K such that gn+1
γ,m (x) is newly

reducible. Thus Theorem 1 establishes the finitude of S(2, n, γ ) for n ≥ 2 and
certain γ . In Theorem 3, we show that for each γ ∈ K , the set S(2, 1, γ ) is infinite,
and we explicitly describe its elements. In the case γ = 0, this result follows from
[Danielson and Fein 2002, Proposition 2]. When n ≥ 2, the sets S(2, n, γ ) may still
be nonempty, even for K =Q. For instance, when f (x)= x2

−x−1, corresponding
to γ = 1

2 and m =− 7
4 , we have that f (x) and f 2(x) are irreducible but

f 3(x)= (x4
− 3x3

+ 4x − 1)(x4
− x3
− 3x2

+ x + 1), (1-3)

and thus − 7
4 ∈ S

(
2, 2, 1

2

)
. For K =Q, the sets S(2, n, γ ) are likely to be empty for

n ≥ 3, since as we will see they correspond to rational points on high-genus curves.
However, without effective algorithms to find such points, a new approach will be
required to precisely determine S(2, n, γ ).

To prove Theorem 1, we first examine the case where n ≥ 3 and use the fact
that comparing constant terms of a hypothetical nontrivial factorization of gn+1

γ,m (x)
gives rise to K -rational points on a hyperelliptic curve (at least for the γ satisfying
part (1) of Theorem 1). This allows us to use Faltings’ theorem to conclude that
S(2, n, γ ) is finite for these γ and for n ≥ 3. We then examine the case n = 2
using a system of equations generated from a factorization of the third iterate. After
defining certain cases for this system, we use Faltings’ theorem on a plane curve
arising from the Gröbner basis of the system to show that S(2, 2, γ ) is finite for
certain γ .



484 CHAMBERLIN, COLBERT, FRECHETTE, HEFFERMAN, JONES AND ORCHARD

2. The case n= 1

Before we approach the main theorem, let’s examine the case where n = 1. It is
possible for g2

γ,m(x) to be reducible and gγ,m(x) irreducible:

Example 2. Let γ = 0, m =− 4
3 , and K =Q. Then

g0,− 4
3
(x)= x2

−
4
3

is irreducible over Q since 4
3 is not a rational square. However, we have

g2
0,− 4

3
(x)=

(
x2
−

4
3

)2
−

4
3 =

(
x2
− 2x + 2

3

)(
x2
+ 2x + 2

3

)
.

Because it has degree 4, g2
γ,m(x) could a priori have nontrivial factors of de-

gree 1, 2, or 3. We will show in Corollary 5 that if gγ,m(x) is irreducible, then
the only nontrivial factorization for g2

γ,m(x) is p1(x)p2(x), with deg p1(x) =
deg p2(x)= 2.

Theorem 3. We have gγ,m(x) irreducible and g2
γ,m(x) reducible if and only if either

(1) γ 6= 1
4 and m = (c4

1− 4γ )/(4− 4c2
1), where c1 ∈ K \ {−1, 1} and (4γ − c2

1)/

(1− c2
1) is not a square in K ; or

(2) γ = 1
4 and −4m− 1 is not a square in K .

In particular, for each γ ∈ K , the set S(2, 1, γ ) is infinite.

Remark. It is interesting to note that when γ = 1
4 , we have

g2
1/4,m(x)=

(
x2
−

3
2 x +

(
m+ 13

16

))(
x2
+

1
2 x +

(
m+ 5

16

))
, (2-1)

and so g2
1/4,m(x) is reducible for all m ∈ K . This phenomenon has already been

noticed, albeit in somewhat different language, in [Faber et al. 2009, Remark 2.6
and p. 94].

Proof. Suppose that gγ,m(x) is irreducible and g2
γ,m(x) is reducible, so that

g2
γ,m(x) = p1(x)p2(x). Write p1(x) = (x − γ )2 + b1(x − γ )+ b0 and p2(x) =
(x − γ )2+ c1(x − γ )+ c0, where bi , ci ∈ K , and note that

g2
γ,m(x)= (x − γ )

4
+ 2m(x − γ )2+m2

+m+ γ. (2-2)

Comparing coefficients in the equality g2
γ,m(x)= p1(x)p2(x) gives the following

system of equations:

(a) c1+ b1 = 0;

(b) c0+ b1c1+ b0 = 2m;

(c) b1c0+ b0c1 = 0;

(d) b0c0 = m2
+m+ γ .

Clearly b1 =−c1 from (a), and then from (c) we have c1(b0− c0)= 0. If c1 = 0,
then from (b) we obtain c0+b0=2m. Squaring both sides and subtracting four times
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equation (d), one verifies that −m−γ = 1
4(c0−b0)

2. As this is a square, gγ,m(x) is
reducible (see (1-1) on page 482), and from this contradiction we conclude that c1 6=

0, and hence b0= c0. See (3-1) in the proof of Theorem 6 for a generalization of this
statement. From (b) and (d) we now derive the following system of two equations:

(e) 2c0− c2
1− 2m = 0;

(f) c2
0−m2

−m− γ = 0.

Solving (e) for c0 and substituting the result into (f) gives

c4
1+ 4mc2

1− 4m− 4γ = 0. (2-3)

Note that c1 = ±1 if and only if γ = 1
4 . Thus in the case where γ 6= 1

4 , we may
solve (2-3) for m to obtain m = (c4

1− 4γ )/(4− 4c2
1). Because gγ,m(x) is assumed

to be irreducible, we have that −m − γ is not a square in K , and one computes
−m−γ = (c2

1(4γ−c2
1))/(4(1−c2

1)). In the case where γ = 1
4 , we may take c1=±1

and c0= (1+2m)/2 to get a solution to equations (e) and (f) (this is the same as the
factorization in (2-1)). Hence g2

1/4,m(x) is reducible for all m ∈ K . Since g1/4,m(x)
is assumed to be irreducible, −m− γ =−m− 1

4 cannot be a square in K , which
holds if and only if −4m− 1 is not a square in K .

Assume now that either of the conditions in the statement of Theorem 3 hold.
Then −m− γ is not a square in K , so gγ,m(x) is irreducible. The other hypotheses
ensure that equations (e) and (f) above have solutions in K , and hence g2

γ,m(x) is
reducible. �

Note that when γ = 0, taking c1 = 2 in Theorem 3 yields Example 2. We also
remark that in the case of γ = 0, taking c1 = 2z in Theorem 3 yields Proposition 2
of [Danielson and Fein 2002], at least in the case where K is a number field. (Note
that there the polynomial under consideration is x2

−m, and hence the results differ
by a minus sign.)

3. The case n ≥ 3

Having handled the case n = 1, we now address the case where n ≥ 3. We postpone
the case n = 2 until Section 4 because the curves we must analyze have genus one,
while for n ≥ 3 the curves that arise have genus at least two, allowing us to apply
Faltings’ theorem.

Understanding the roots of gn+1
γ,m (x) is central to our analysis. In general, if βi is a

root of gn
γ,m(x), then the two roots of gγ,m(x)−βi are roots of gn+1

γ,m (x). Calling them
α+i and α−i , we have α+i = γ +

√
βi −m− γ and α−i = γ −

√
βi −m− γ . Note that

2γ −α+i = 2γ −
(
γ +

√
βi −m− γ

)
= γ −

√
βi −m− γ = α−i .
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The following picture summarizes the relation of the roots to one another. Note
that they are arranged in a tree.
Roots
of gn+1

γ,m α1 2γ−α1 α2 2γ−α2 α2n 2γ−α2n

of gn
γ,m β1 β2 β2n

of g2
γ,m γ+

√
−m+

√
−m−γ γ−

√
−m+

√
−m−γ γ+

√
−m−

√
−m−γ γ−

√
−m−

√
−m−γ

of gγ,m γ+
√
−m−γ γ−

√
−m−γ

0

In this section we establish two principal results on the structure of hypothetical
factors in the case where gn+1

γ,m (x) is newly reducible. Our first result is similar to
[Jones and Boston 2012, Proposition 2.6].

Theorem 4. Let gγ,m(x) = (x − γ )2 +m + γ with γ,m ∈ K . Suppose gn
γ,m(x)

is irreducible, and gn+1
γ,m (x) = p1(x)p2(x) where p1(x) and p2(x) are nontrivial

factors. If α is a root of p1(x), then 2γ −α is a root of p2(x) but not a root of p1(x).

Proof. Let Gn+1 =Gal(En+1/K ), where En+1 is the splitting field of gn+1
γ,m (x) over

K . Because gn
γ,m(x) is irreducible over K , Gn+1 acts transitively on the roots of

gn
γ,m(x). Let α be a root of p1(x) and α′ be a root of gn+1

γ,m but not a root of p1. By
the transitivity of the action of Gn+1 on the roots of gn

γ,m , we may take φ ∈ Gn+1

such that φ(gγ,m(α))= gγ,m(α′). Hence

φ((α− γ )2+ γ +m)= (α′− γ )2+ γ +m,

from which we deduce that φ(α)−γ =±(α′−γ ). Indeed, we must have φ(α)−γ =
−(α′− γ ), for otherwise φ(α)= α′, contradicting our assumption that α′ is not a
root of p1. We thus obtain φ(α)= 2γ −α′. In other words, 2γ −α = φ−1(α′), and
is therefore not a root of p1. �

Corollary 5. Let gγ,m(x) = (x − γ )2 +m + γ with γ , m ∈ K . Let n ∈ Z+, and
assume gn

γ,m(x) is irreducible with gn+1
γ,m (x)= p1(x)p2(x), where p1(x) and p2(x)

are nontrivial factors. Then, deg p1(x)= deg p2(x)= 2n , and p1(x) and p2(x) are
irreducible.
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Proof. Observe that deg gn
γ,m(x) = 2n and deg gn+1

γ,m (x) = 2n+1. By Theorem 4,
the roots of p1(x) are in bijection with the roots of p2(x), whence deg p1(x) =
deg p2(x) = 2n . If {α1, . . . , α2n } are all the roots of p1(x), then by Theorem 4,
{2γ −α1, . . . , 2γ −α2n } are all the roots of p2(x). Thus the set

{gγ,m(αi ) : i = 1, . . . , 2n
}

coincides with the set of all roots of gn
γ,m(x). Because gn

γ,m(x) is irreducible, the
action of Gn+1 on {gγ,m(αi ) : i = 1, . . . , 2n

} consists of a single orbit, and thus
the action of Gn+1 on {α1, . . . , α2n } must consist of a single orbit. Hence p1(x) is
irreducible. Similar reasoning gives that p2(x) is irreducible. �

3.1. Curves and Faltings’ theorem. We now use Theorem 4 to show that if gn+1
γ,m (x)

is newly reducible, then there is a K -rational point, depending on m, on a certain
curve.

Theorem 6. If gn
γ,m(x) is irreducible and gn+1

γ,m (x) is reducible for some n ≥ 1, then
there exist x , y ∈ K with x = m such that

y2
= tn+1(x),

where the polynomials ti (x) are defined by the recurrence relation t1(x) = x + γ
and, for i ≥ 2,

ti (x)= (ti−1(x)− γ )2+ x + γ.

Remark. Note that ti (x) = (gi
γ,m(γ ))|m=x , as will be shown below (or can be

easily seen by induction).

Proof. Assume gn
γ,m is irreducible and gn+1

γ,m (x) = p1(x)p2(x) for some p1(x),
p2(x) ∈ K [x] of positive degree. By Theorem 4, if {α1, . . . , α2n } are all the roots
of p1(x), then {2γ −α1, . . . , 2γ −α2n } are all the roots of p2(x). Then,

p1(x)= (x −α1)(x −α2) · · · (x −α2n ) and

p2(x)= (x − (2γ −α1))(x − (2γ −α2)) · · · (x − (2γ −α2n ))

= (x − 2γ +α1)(x − 2γ +α2) · · · (x − 2γ +α2n ).

So we have

p1(γ )= (γ −α1)(γ −α2) · · · (γ −α2n ) and

p2(γ )= (−γ +α1)(−γ +α2) · · · (−γ +α2n )

= (−1)2
n
(γ −α1)(γ −α2) · · · (γ −α2n ), (3-1)

and therefore p1(γ )= p2(γ ). Set y = p1(γ )= p2(γ ), so gn+1
γ,m (γ )= y2. We have

gn+1
γ,m (γ )= gγ,m(g

n
γ,m(γ ))= (g

n
γ,m(γ )− γ )

2
+m+ γ.
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Moreover, gγ,m(γ )=m+γ , and thus gi
γ,m(γ ) satisfies the same recurrence relation

as ti (x), with x replaced by m. �

The polynomials ti (x) play a critical role in our argument. The first few are

t1(x)= x + γ, t2(x)= x2
+ x + γ, t3(x)= x4

+ 2x3
+ x2
+ x + γ,

t4(x)= x8
+ 4x7

+ 6x6
+ 6x5

+ 5x4
+ 2x3

+ x2
+ x + γ. (3-2)

Equations of the form y2
= ti (x) may be interpreted geometrically as plane curves.

A plane curve defined over a field F is the set of solutions (x, y) ∈ F × F of an
equation of the form h(x, y)= 0, where h(x, y) ∈ F[x, y]. If K is a subfield of F ,
a K -rational point on the curve is one whose coordinates lie in K . For instance,
(1,−1) is a Q-rational point on the curve y2

= x3
+ x−1, while (−1,

√
−3) is not

(though it is K -rational for K =Q(
√
−3)).

The genus of a plane curve is a measure of its geometric complexity, and for
curves of the form y2

= r(x), which is the case of interest to us in light of Theorem 6,
there is a convenient way to calculate it — at least, when the roots of r(x) in the
algebraic closure of K are distinct.

Theorem 7 [Goldschmidt 2003]. Consider the curve C : y2
= r(x). If r(x) is

separable and of degree d, then the genus g of C is given by

g =
{
(d − 1)/2 for d odd,
(d − 2)/2 for d even.

Assume that r(x) is separable. A curve of the form y2
=r(x) of genus at least two

is called a hyperelliptic curve, while when such a curve has genus one it is known
as a elliptic curve. The reason we care about the genus of a curve is that Faltings’
theorem famously connects it to the number of K -rational points on the curve:

Theorem 8 (Faltings; see [Hindry and Silverman 2000, Theorem E.0.1]). Let K
be a number field, and let C be a curve defined over K of genus g ≥ 2. Then the set
of K -rational points on C is finite.

Suppose for a moment that all of the polynomials ti (x) in Theorem 6 are separable.
Clearly deg ti (x)= 2i−1. By Theorem 7, the genus gi of the curve y2

= ti (x) then
satisfies

gi =

{
0 for i = 1,
2i−2
− 1 for i ≥ 2.

(3-3)

Therefore, by Faltings’ theorem, the curve y2
= tn+1(x) has only finitely many

K -rational points for n ≥ 3. In particular, there are only finitely many x ∈ K such
that (x, y) is a K -rational point on y2

= tn+1(x). Thus, by Theorem 6, when n ≥ 3
there are only finitely many m ∈ K with gn

γ,m(x) irreducible and gn+1
γ,m (x) reducible

over K .
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Hence the lone remaining obstacle to proving part (1) of Theorem 1 is to establish
that the ti (x) in Theorem 6 are separable. Note that this is not true for all γ ∈ K .
Indeed, if γ = 1

4 , then t2(x)=
(
x + 1

2

)2. The set

S := {γ ∈Q : ti (x) is separable for all i ≥ 1}

is the same as the set of a ∈ Q such that the preimage curves Y pre(N ,−a)N≥1

defined in [Faber et al. 2009] are all nonsingular. In general, the set Q \ S is poorly
understood. One result [Faber et al. 2009, Proposition 4.8] gives a criterion for
membership in S. Here we give an improvement on that result.

Proposition 9. Let K be a number field with ring of integers OK , and let ti (x) be
as in Theorem 6. Suppose there exists a prime p of OK with vp(2) = e ≥ 1 and
vp(γ )= s with s 6= −e2 j for all j ≥ 1. Then ti (x) is separable over K for all i ≥ 1.

Remark. When K = Q, Proposition 9 says that if v2(γ ) 6= −2 j for all j ≥ 1,
then ti (x) is separable for all i ≥ 1.

Proof. It suffices to establish that ti (x) and t ′i (x) have no common roots in K , which
we do through the use of Newton polygons with respect to the valuation vp (we
abbreviate these by NP). We assume the reader is familiar with the relationship
between slopes of the Newton polygon of a polynomial and the p-adic valuation of
the polynomial’s roots (see, e.g., [Silverman 2007, Theorem 5.11]). The proposition
is obvious for i =1, so we take i ≥2. We first claim that for each r with 0≤ r ≤ i−2,
t ′i (x) has 2r roots in K with p-adic valuation −e/2r . The statement is trivial for
i = 2, so we assume inductively that it holds for given i ≥ 3, and we consider the
NP of t ′i (x) with respect to the p-adic valuation. By the chain rule,

t ′i+1(x)= 2(ti (x)− γ )t ′i (x)+ 1.

Observe that ti (x)−γ is monic, has integer coefficients, and has linear coefficient 1
(and constant term 0). Thus its NP consists of a single horizontal line segment
from (1, 0) to (2i−1, 0). From our inductive hypothesis, it follows that the NP of
2(ti (x)− γ )t ′i (x) consists of a horizontal line segment from (1, e) to (2i−1, e),
followed by a sequence of segments of slope e/2i−2, e/2i−3, . . . , e and respective
lengths 2i−2, 2i−3, . . . , 1. Hence the NP of 2(ti (x)−γ )t ′i (x)+1 consists of a line seg-
ment from (0, 0) to (2i−1, e), having slope e/2i−1, and otherwise is identical to the
NP of 2(ti (x)−γ )t ′i (x), since e/2i−1< e/2c for 0≤ c≤ i−2. This proves the claim.

For each i ≥ 1, ti (x) is a monic polynomial with degree 2i−1 and constant term γ ,
whose nonconstant coefficients are all integers. If vp(γ )≥ 0, then the NP of ti (x)
consists of nonpositive slopes, and hence all its roots have nonnegative p-adic
valuation, and therefore cannot coincide with roots of t ′i (x) by the above claim. If
vp(γ ) = s < 0, the NP for ti (x) consists of a single line segment from (0, s) to
(2i−1, 0), with length 2i−1 and slope −s/2i−1. Hence if ti (x) and t ′i (x) have a root
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in common, then by the above claim, −s/2i−1
= e/2r with 0≤ r ≤ i − 2. But this

holds if and only if s=−e2i−1−r , and since i−1−r ≥ 1, the proof is complete. �

Remark. To show that the genus of the curve y2
= ti (x) is at least two, we can get

by with a much weaker statement than Proposition 9. Indeed, the genus of y2
= ti (x)

depends on the degree of ti (x)/ f (x), where f (x) is the square polynomial of largest
degree dividing ti (x). It suffices to show that the degree of ti (x)/ f (x) is at least
five, for each i ≥ 4.

4. The case n= 2

Consider now the case where n = 2. From (3-3), we know that when t3(x) is
separable, g3 = 1, and so y2

= t3(x) is an elliptic curve. (When t3(x) is not
separable, y2

= t3(x) gives a curve of genus 0.) Thus we cannot directly apply
Faltings’ theorem, and we must use a different approach to determine the set
S(2, 2, γ ) of m ∈ K such that g2

γ,m(x) is irreducible and g3
γ,m(x) is reducible over K .

Now for some number fields K and some γ ∈ K , it may still be the case that
y2
= t3(x) has only finitely many K -rational points, proving the finiteness of

S(2, 2, γ ) over K . This is the case for γ = 0 and K =Q, as we now show:

Proposition 10. Let γ = 0 and C3 be the curve given by

y2
= t3(x)= x4

− 2x3
+ x2
− x .

The only Q-rational points on C3 are (0, 0) and the point at infinity. In particular,
there are no m ∈Q such that x2

+m has a newly reducible third iterate.

Proof. Let y = u/v2 and x =−1/v define a birational map φ from

C ′3 : u
2
= v3
+ v2
+ 2v+ 1

to C3. We compute the conductor of the elliptic curve C ′3 to be 92, and locate it
as curve 92A1 in [Cremona]. From the same reference, we know that it has rank
zero over Q and torsion subgroup of order 3. Hence the obvious points (0,±1)
together with the point at infinity give all Q-rational points on C ′3. If (x, y) is an
affine rational point on C3 with x 6= 0, then φ−1(x, y) is an affine rational point
(v, u) on C ′3 with v 6= 0. But there are no such points. �

The strategy of Proposition 10, however, won’t even work for all number fields K
in the case γ = 0. Indeed, let K = Q(i) and let φ be the same transformation
as in Proposition 10. One can check that (−1, i) is a nontorsion point of C ′3 in
many ways. One of the more interesting, if not the simplest computationally, is
to show that (−1, i) has positive canonical height. Silverman [1990] gives upper
and lower bounds for the difference between the canonical height ĥ(P) and the
Weil height h(P) of a K -rational point P on an elliptic curve, computed in terms
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of the discriminant and j-invariant of the curve. For C ′3, we have −1.5484 ≤
ĥ(P)− h(P) ≤ 1.4577. In particular, ĥ(P) ≥ h(P)− 1.5484, so h(P) > 1.5484
would imply that P is a nontorsion point. Using MAGMA [Bosma et al. 1997],
we find that although h(P)= 0 for P = (−1, i) on C ′3, we have h([2]P)= 1.6094.
Thus ĥ(P)= 1

4 ĥ([2]P) > 0, using algebraic properties of canonical height.
Since (−1, i) is a nontorsion point on C ′3, the curve C3 has infinitely many

K -rational points. However, when we check some corresponding x-values on C3

as our choices for m in x2
+m, we don’t find a newly reducible third iterate over

Q(i). Thus we must adopt a different approach to have any hope of proving the
case n = 2 of Theorem 1, even for γ = 0.

Let K be a number field and γ ∈ K . Suppose that g3
γ,m(x) is newly reducible,

so that by Corollary 5, g3
γ,m(x) = p1(x)p2(x) for irreducible polynomials p1(x),

p2(x) ∈ K [x] with deg p1(x)= deg p2(x)= 4. Put

p1(x)= (x − γ )4+ a3(x − γ )3+ a2(x − γ )2+ a1(x − γ )+ a0,

p2(x)= (x − γ )4+ b3(x − γ )3+ b2(x − γ )2+ b1(x − γ )+ b0

with ai , bi ∈ K . We also have

g3
γ,m(x)= (x − γ )

8
+ 4m(x − γ )6+ (6m2

+ 2m)(x − γ )4

+ (4m3
+ 4m2)(x − γ )2+m4

+ 2m3
+m2

+m+ γ.

Multiplying p1(x) and p2(x) together, setting this product equal to g3
γ,m(x) and

comparing coefficients, we obtain a system of eight equations. By simplifying this
system using Theorem 6, and noting that a0 6= 0 by the irreducibility of p1(x), we
get two cases:

Case I: a1 6= 0, which implies b1 =−a1, b2 = a2:

(1) 2a2− a2
3 − 4m = 0;

(2) 2a0+ a2
2 − 2a1a3− 6m2

− 2m = 0;

(3) 2a2a0− a2
1 − 4m3

− 4m2
= 0;

(4) a2
0 −m4

− 2m2
−m2

−m− γ = 0.

Case II: a1 = b1 = 0:

(1) b2− a2
3 + a2− 4m = 0;

(2) (b2− a2)a3 = 0;

(3) 2a0+ a2b2− 6m2
− 2m = 0;

(4) (a2+ b2)a0− 4m3
− 4m2

= 0;

(5) a2
0 −m4

− 2m2
−m2

−m− γ = 0.
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We use Gröbner bases to find the solutions to these systems of nonlinear equations.
We dispense with Case II first, noting that it consists of five equations in five variables
so we expect it will have only finitely many solutions in K . We assign an ordering
to the variables in which γ is last, and using MAGMA [Bosma et al. 1997] to
compute a Gröbner basis for each system, we find that the system in Case II has
one K -rational solution for each m ∈ K with

0= m14
+m13γ + 13

3 m13
+

13
3 m12γ + 22

3 m12
+

22
3 m11γ + 57

8 m11
+

33
4 m10γ

+ 5m10
+

9
8 m9γ 2

+
23
3 m9γ + 9

4 m9
+

8
3 m8γ 2

+
25
6 m8γ + 7

12 m8
+

23
12 m7γ 2

+
17
12 m7γ − 1

24 m7
+

13
12 m6γ 2

−
1
12 m6γ − 1

12 m6
+

1
4 m5γ 3

−
1
24 m5γ 2

−
1
4 m5γ − 1

24 m5
−

1
4 m4γ 2

−
1
6 m4γ − 1

12 m3γ 3
−

1
4 m3γ 2

−
1
6 m2γ 3

−
1

24 mγ 4.

Clearly for any γ ∈ K , there are at most 14 such m, and so case II does not affect the
finiteness of the number of m for which gγ,m(x) has a newly irreducible third iterate.

Case I proves more interesting. We compute that for fixed γ ∈ K , Case I has
precisely one solution (a0, a1, a2, a3,m) ∈ K 5 for each K -rational point (a3,m)
on the curve

Cγ : 0= a16
3 +32a14

3 m+352a12
3 m2
−32a12

3 m+1792a10
3 m3
−256a10

3 m2

+4352a8
3m4
−1536a8

3m3
−1792a8

3m2
−2176a8

3m−2176a8
3γ

+4096a6
3m5
−8192a6

3m4
−12288a6

3m3
−10240a6

3m2
−10240a6

3mγ

−16384a4
3m5
−32768a4

3m4
−38912a4

3m3
−22528a4

3m2γ−14336a4
3m2

−14336a4
3mγ−16384a2

3m4
−16384a2

3m3γ−16384a2
3m3
−16384a2

3m2γ

+4096m2
+8192mγ+4096γ 2.

For instance, when γ = 1
2 , one checks that Cγ has the rational point (1,− 7

4), which
corresponds to the newly reducible example given in (1-3). The actual Gröbner
basis is far too long to include here; however, we have included the Gröbner basis in
the case γ = 1 in the Appendix to this article. Thus when Cγ has genus at least two,
there can be only finitely many K -rational solutions to the system given in Case I,
and hence only finitely many m ∈ K such that gγ,m(x) has a newly irreducible third
iterate. Part (2) of Theorem 1 is thus proved when the genus Cγ is at least two.

Using MAGMA again, we checked that Cγ has genus 11 for γ = r/4, −200≤
r ≤ 200, except for the cases g(C−2) = 9, g(C0) = 9, g(C1/4) = 7, g(C1) = 10.
Note that we chose γ to have denominator 4 in order to include the case γ = 1

4 ,
where we strongly suspected degeneracies to occur. The map ψ sending Cγ to γ
has fibers whose genus appears generally to be 11. Even the degenerate fibers seem
to have genus greater than 1, and hence part (2) of Theorem 1 holds even in those
cases. Interestingly, if we take a section of ψ by fixing a value of m and letting γ



NEWLY REDUCIBLE ITERATES IN FAMILIES OF QUADRATIC POLYNOMIALS 493

vary, we appear always to get a curve of genus at most 1. This phenomenon was first
noticed by Michael Zieve (personal correspondence). In other words, writing Cγ,m
instead of Cγ , and choosing ψ ′ to be the map sending Cγ,m to m, the surface Cγ,m
is (birational to) an elliptic surface. This observation may pave the way for a full
understanding of Cγ,m , and hence improvements to part (2) of Theorem 1.
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Appendix

We report the Gröbner basis for Case I from page 491 with γ = 1 as calculated by
MAGMA [Bosma et al. 1997]:

(1) a0− a1a3+
1
8 a4

3 − a2
3q − q2

+ q

(2) a2
1 − a1a3

3 + 4a1a3q + 1
8 a6

3 −
3
2 a4

3q + 3a2
3q2
+ a2

3q

(3) a1a5
3+

1920
571 a1a3q6

−
35582
1713 a1a3q5

+
641146
15417 a1a3q4

−
173966
5139 a1a3q3

+
254212
15417 a1a3q2

−
4322
571 a1a3q+ 35

30834 a14
3 q− 1

1152 a1
34− 4265

123336 a12
3 q2

+
200467

7893504 a12
3 q+ 4199

2631168 a12
3 +

1775
5139 a10

3 q3
−

191455
986688 a10

3 q2
−

75881
986688 a10

3 q

−
22705
15417 a8

3q4
+

516139
986688 a8

3q3
+

315853
493344 a8

3q2
+

54587
986688 a8

3q− 7
48 a8

3

+
36880
15417 a6

3q5
+

76901
61668 a6

3q4
−

148475
30834 a6

3q3
+

219505
61668 a6

3q2
−

11
18 a6

3q

−
240
571 a4

3q6
−

429961
61668 a4

3q5
+

677423
61668 a4

3q4
−

402371
61668 a4

3q3
−

75667
123336 a4

3q2

+
131047
41112 a4

3q+ 1920
571 a2

3q7
−

35582
1713 a2

3q6
+

641146
15417 a2

3q5
−

374378
15417 a2

3q4

+
152233
15417 a2

3q3
−

189763
15417 a2

3q2
+

960
571 q5

−
14911
1713 q4

+
186374
15417 q3

−
104975
15417 q2

+
4
3 q

(4) a1a2
3q+ 720

571 a1q6
−

17791
2284 a1q5

+
320573
20556 a1q4

−
86983
6852 a1q3

+
53275
10278 a1q2

−
4199
2284 a1q

−
45

292352 a15
3 q3
+

14911
18710528 a15

3 q2
−

93187
84197376 a15

3 q+ 104975
168394752 a15

3

+
45

9136 a13
3 q4
−

14911
584704 a13

3 q3
+

93187
2631168 a13

3 q2
−

11415
584704 a13

3 q− 1
3072 a13

3

−
495

9136 a11
3 q5
+

161141
584704 a11

3 q4
−

1915915
5262336 a11

3 q3
+

300037
1754112 a11

3 q2
+

206789
7016448 a11

3 q

+
4199

7016448 a11
3 +

315
1142 a9

3q6
−

101497
73088 a9

3q5
+

1170419
657792 a9

3q4
−

154417
219264 a9

3q3

−
203785
877056 a9

3q2
−

75881
2631168 a9

3q− 765
1142 a7

3q7
+

236207
73088 a7

3q6
−

545431
164448 a7

3q5

−
142777
109632 a7

3q4
+

4272259
877056 a7

3q3
−

4322155
1315584 a7

3q2
+

3623737
2631168 a7

3q+ 360
571 a5

3q8

−
9151
4568 a5

3q7
−

19973
5139 a5

3q6
+

128675
6852 a5

3q5
−

4341377
164448 a5

3q4
+

1413245
82224 a5

3q3

−
830245
164448 a5

3q2
−

41
48 a5

3q− 1440
571 a3

3q8
+

20671
1142 a3

3q7
−

258976
5139 a3

3q6

+
12676049

164448 a3
3q5
−

3880925
54816 a3

3q4
+

688435
18272 a3

3q3
−

881653
109632 a3

3q2
+

172159
109632 a3

3q

+
2160
571 a3q7

−
53373
2284 a3q6

+
320573

6852 a3q5
−

85543
2284 a3q4

+
177007
13704 a3q3

−
148651
41112 a3q2
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(5) a1q7
−

68
9 a1q6

+
1606
81 a1q5

−
578
27 a1q4

+
853
81 a1q3

−
50
9 a1q2

+a1q− 1
8192 a15

3 q4

+
59

73728 a15
3 q3
−

1075
663552 a15

3 q2
+

377
331776 a15

3 q− 25
73728 a15

3 +
1

256 a13
3 q5

−
59

2304 a13
3 q4
+

1075
20736 a13

3 q3
−

83
2304 a13

3 q2
+

35
3456 a13

3 q− 11
256 a11

3 q6

+
5
18 a11

3 q5
−

5647
10368 a11

3 q4
+

9341
27648 a11

3 q3
−

847
13824 a11

3 q2
−

275
27648 a11

3 q

−
1

3072 a11
3 +

7
32 a9

3q7
−

101
72 a9

3q6
+

3497
1296 a9

3q5
−

5249
3456 a9

3q4
+

203
1728 a9

3q3

+
365

10368 a9
3q2
+

11
1152 a9

3q− 17
32 a7

3q8
+

949
288 a7

3q7
−

7261
1296 a7

3q6
+

1103
3456 a7

3q5

+
19607
3456 a7

3q4
−

58525
10368 a7

3q3
+

15673
5184 a7

3q2
−

863
1152 a7

3q+ 1
2 a5

3q9
−

41
18 a5

3q8

−
115
81 a5

3q7
+

4409
216 a5

3q6
−

23737
648 a5

3q5
+

19853
648 a5

3q4
−

2225
162 a5

3q3
+

427
216 a5

3q2

−2a3
3q9
+

154
9 a3

3q8
−

37351
648 a3

3q7
+

8318
81 a3

3q6
−

11993
108 a3

3q5
+

3571
48 a3

3q4

−
776
27 a3

3q3
+

3539
432 a3

3q2
−

41
48 a3

3q+3a3q8
−

68
3 a3q7

+
1606
27 a3q6

−
1147
18 a3q5

+
778
27 a3q4

−
2075
162 a3q3

+
49
18 a3q2

(6) a2−
1
2 a2

3 + 2q

(7) a16
3 − 32a14

3 q + 352a12
3 q2
+ 32a12

3 q − 1792a10
3 q3
− 256a10

3 q2

+ 4352a8
3q4
+ 1536a8

3q3
− 1792a8

3q2
+ 2176a8

3q − 4096a6
3q5

− 8192a6
3q4
+ 12288a6

3q3
− 10240a6

3q2
+ 16384a4

3q5
− 32768a4

3q4

+ 38912a4
3q3
− 14336a4

3q2
− 16384a2

3q4
+ 16384a2

3q3
+ 4096q2
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