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Abstract     

Financial volatility obeys two well-established empirical properties: it is fat-

tailed (power-law distributed) and it tends to be clustered in time. Many 

interesting models have been proposed to account for these regularities, 

notably agent-based computational models, which typically invoke 

complicated mechanisms, however. It can be shown that trend-following  

speculation generates the power law in an intrinsic way. But this model 

cannot exaplain clustered volatility. This paper extends the model and 

offers a simple explanation for clustered volatility: the impact of exogenous 

news on traders’ expectations. Owing to the famous no-trade results, 

rational expectations, the dominant model of news-driven expectations, is 

hard to reconcile with the incessant high-frequency trading behind the 

volatility clustering. The simplest alternative model of news-driven 

https://doi.org/10.3390/jrfm13010017
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expectations is to assume that traders have prior views about the market 

(an asset’s future price change or its present value) and then modify their 

views with the advent of a news. This simple news-driven random walk of 

traders’ expectations explains volatility clustering in a generic way. Liquidity 

plays a crucial role in this dynamics of volatility, which is emphasized in a 

dicussions section.                 

1. The two empirical regularities 

Financial volatility obeys two well-established regularities: it is fat tailed, 

more precisely power-law distributed (with an exponent often close to 3), 

and it tends to be clustred in time (Fama, 1963; Mandelbrot, 1963; 

Gopikrishnan, Meyer, Amaral, & Stanley, 1998; Plerou, Gabaix, Stanley, & 

Gopikrishnan, 2006; Cont, 2007; Bouchaud & Challet, 2016). These are 

fascinating regularities that hold for various types of finanical products, on 

various markets, and on various time scales. The first regularity implies that 

extreme price changes are much more likely than would suggest the 

standard assumption of normal distribution. The second property, volatility 

clustering, holds that high-amplitude price changes tend to be followed by 

high-amplitude price changes, and low-amplitude price changes, by low-

amplitude price changes. This corresponds to a nontrivial predictability of 
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price changes: while their sign is uncorrelated, its amplitude (or volatility) 

is long-range correlated.    

  

Formally, let 
tP  be the price of a financial asset at the closing of period ,t  let 

the relative price change (or return) be 1 1( ) / ,t t t tr P P P and let 

volatility be measured by means of | |,tr  the amplitude (absolute value) or 

return. Then the two regularities hold that: (a) (| | ) ,tP r x Cx  for big 

values ,x  where 3  and 0;C  and (b) cor( , ) 0t t hr r  for 0h  (except 

FIG. 1. NYSE composite daily index: (a) Price; (b) Return (in percent); (c) 

cumulative distribution of volatility in log-log scale, showing a linear fit of the 

tail, with a slope close to 3; (d) Autocorrelation function of return, which is 

almost zero at all lags, while that of volatility is nonzero over a long range of 

lags (a phenomenon known as volatility clustering).  
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perhaps for 1),h but cor(| |,| |) 0t t hr r  over a long range of lags .h FIG. 

1 illustrates these two regularities for the NYSE daily index1.   

The universality of these laws suggests that there must be some basic, 

general, and stable mechanisms behind them. Standard financial 

economics, despite its important theoretical insights, is nonetheless silent 

on these empirical regularities. In fact, there seems to be an intrinsic 

difficulty in reconciling the high-frequency volatility of financial markets, 

caused by incessant trading at almost all time scales, with the dominant 

assumption of rational expectations, which often leads to a no-trade 

equilibrium, as is well-known (Milgrom & Stokey, 1982; Tirole, 1982). 

Agent-based models of financial markets, on the other hand, offers various 

realistic models of price fluctuations, but these models often involve 

relatively complicated mechanisms, which are handled computationally.2 

This paper, while it is closer in spirit to this alternative, complex-systems 

view, is nonetheless an attempt to pin down the empirical regularities to 

 
1 The linear fit is based on a maximum-likelihood algorithm developed by Clauset, Shalizi, and Newman 

(2009), which is also a good reference for the statistical test of empirical power laws. For an introduction 

to power laws, see, for example, Newman (2005) and Gabaix (2008, 2016).  

  

2 For a review of agent-based models of financial markets,  see Samanidou, Zschischang, Stauffer, and Lux 

(2007). Agent-based models are, however, only one of the trends in the complex-systems approach to 

financial markets, which insists on the endogenous, emergent, dynamics of markets. For an introduction 

to this view on financial markets, see, e.g., Bouchaud (2011).      
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simple mechanisms. It can be shown that that the first regularity, the fat tail 

of volatility, derives naturally from trend-following speculative trading, 

which implies that the return process follows a random-coefficient 

autoregressive (RCAR) process (Inoua, 2016). Trend-following expectations, 

which are a popular practice on financial markets, are a realistic alternative 

to rational expectations, which  are hard to reconcile with speculation 

(Tirole, 1982). The power-law tail follows by an important theorem due to 

Kesten (Kesten, 1973; Klüppelberg & Pergamenchtchikov, 2004; 

Buraczewski, Damek, & Mikosch, 2016). While the mathematics of this 

mechanism is rather involved, the underlying economics is elementary: the 

fat tail emerges because of the endogenous amplifying feedback intrinsic to 

speculative trend-following supply and demand. This model is not wholly 

satisfactory, however, because no such process could explain volatility 

clustering, as implies another theorem (Mikosch & Starica, 2000; Basrak, 

Davis, & Mikosch, 2002; Mikosch & Starica, 2003; Buraczewski et al., 2016). 

The basic reason for clustered volatility, this paper suggests, is the impact 

of exogenous news on expectations. The RCAR model is thus extended to 

include, as usual, a second class of agents, fundamental-value investors, 

who attach a value to the asset and buy it when they think it is underpriced, 

or sell it, otherwise; crucially, their valuations of the asset is entirely based 
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on exogenous news. Owing once again to the no-trade results, the 

dominant model of news-driven expectations, rational expectations, is not 

assumed in this paper. Rather, it is simply assumed that a trader holds a 

prior belief about the market (on the future price change or the present 

value of the asset) and then revises this prior belief additively with the 

advent of news. This news-driven random walk of traders’ expectations 

explains volatility clustering in a generic way. The fat-tail of volatility is 

preserved in the extended model; but for simplicity of exposition, and to 

avoid some technicalities inherent to a detailed study of the RCAR  process, 

this paper enphasizes the power law passignly, and focuses on the second 

regularity. Finally, liquidity plays a crucial role in the volatility dynamics, 

which is emphasized in the discussions (section 3).                                                

2. The model      

Following a traditional dichotomy of market participants, consider a 

financial market populated by two types of traders: (short-term) trend-

following speculators, who buy an asset when they anticipate a price rise 

(or sell, otherwise) by using standard moving averages of past price changes 

to detect trends; and (long-run) fundamental-value investors (or ‘investors’ 

for short), who buy the asset based on its anticipated real cash flows, buying 
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the asset when they think it is worth more than its current price, or selling 

it, otherwise: the fundamental value is revised additively with the advent of 

an exogenous3 (or real) news.      

Let the (excess) demands of a speculator and an investor be respectively 4    

           ,
e

est t
st st

t

P P
Z r

P
 (1) 

 ,
e
it t

it
t

V P
Z

P
  (2) 

where estr  is the return the speculator expects to occur in period ,t e
itV  is the 

value that the investor thinks the security is worth at the closing of period 

,t  and , 0. Let 
tM  and 

tN  be respectively the numbers of investors and 

speculators active in period t. The market excess demand is 

 ,
e

e t t
t t t t

t

V P
Z N r M

P
  (3) 

where 1e e
t t sts
r N r   and  e

tV  1 ,et iti
M V  namely, the average investor 

valuation (hereafter referred to simply as ‘the value’ of the security) and 

the average speculator anticipated future price.  

 
3 Throughout, exogenous is with respect to the asset price dynamics.  

4 Since demand and supply can treated symmetrically (supply being formally identified as formally 

identified as a negative demand) one can think formally in terms of excess demand of a trader, which is 

either a demand or a supply, depending on its sign.     
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Trend-following implies that speculators’ overall anticipated return is of the 

form 
1

,He
t ht t kh
r r to which we add an additive component to capture 

the impact of exogenous news on speculators’ expectations. The weights 

ht
 can be computed explicitly from standard trend-following techniques 

used by financial practitioners (Beekhuizen & Hallerbach, 2017). Let the 

arrival of exogenous news relevant to investors and speculators, 

respectively, be modeled as random events It  and J ,t  occurring with 

probabilities t(I ) and (J ),t  and making them revise additively their prior 

views by the amounts 
t
 and ,t respectively. That is, assume e

tV

1 (I )e
t t tV 1  and e

tr  
1

(J ),H
ht t h t th
r 1  where (I )t1  and (J )t1  are 

indicator functions. The pure news-driven random walk of investors’ 

valuations conveys the notion that the asset’s value incorporates all the 

exogenous news relevant to fundamental-value investors, in the sense that 

10 ( ).te e
k k ktV V I1  This makes e

tV  the natural definition of the asset’s 

fundamental value in this model.       

Finally, assume the following price adjustment, in accordance with the 

market-microstructure literature: 

 ,tt
t

Z
r

L
  (4) 
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where 
tL  is the overall market liquidity (or market depth).   

All in all, the the asset’s price dynamics reads: 

 1(1 ) ,t t tP r P  (5) 

 ,
e

e t t
t t t t

t

V P
r n r m

P
  (6) 

 
1

(J ),He
t ht t h t th
r r 1  (7) 

 1 (I ).e e
t t t tV V 1   (8) 

where the following notations are adopted: 

 / ,t t tn N L   (9) 

 / .t t tm M L  (10) 

No general study of the model is attempted here, since the focus of this 

paper is clustered volatility. To this end, FIG. 2 illustrates a simplified version 

of the model using the following specification (where the parameters are 

chosen arbitrarily, except to reflect realistic orders of magnitude): 

10000T periods; 0 0 100,eP V 1r 1 0;er ,tn tm iid exponentially 

distributed processes with E( ) 0.11,tn E( ) 0.1;tm  ,t t
 iid Gaussian 

processes with E( )t E( ) 0,t std( ) 5,t std( ) 0.1;t (I ) 0.1,t

(J ) 0.01;t
1,H  1 1 0.99.t
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FIG. 2 The model. 
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FIG. 3. For model-data comparison: General Electric’s stock price.  

 

3. Discussions          

In the simulation, trend-following has been reduced to its simplest 

formulation. More generally, the key to the fat-tailed volatility is trend-

following speculation (the systematic analysis of which being the subject of 

another paper): the purely speculative return process, namely the RCAR 

1 (J ),H
htht t t h t tr n r 1  genetrates a power law (| | )tr x Cx  with 

the exponent  that depends solely on the joint distribution of { },ht the 

trend-following coefficients, and the ratio of the number of speculators to 

liquidity. It can be shown that the less liquid the market is on average, the 
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lower is the tail exponent ,  hence the more extreme is volatility5, as should 

be expected. The advent of exogenous news, on the other hand,  is essential 

for clustered volatility, which the purely speculative model cannot explain, 

as noted earlier. That is, any such autorregresive model, and for any arbitary 

function ,f cov[ ( ), ( )],t t hf r f r  if well-defined, decays exponentially with the 

lag h  (Mikosch & Starica, 2000; Basrak et al., 2002). So volatility, whether 

measured as | |,tr  2,r  or any other function f , cannot be clustered in this 

version of the model.  

In sum, this paper suggests a simple explanation for excess and clustered 

volatility in financial markets. Excess volatility means that that price 

fluctuations are too high given the underlying fundamentals; clustered 

volatility simply reflects, in this model, the flow of exogenous news 

affecting the traders’ expectations.   
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