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Introduction

A common view of the business cycle gives a central role to anticipations. Consumers and

firms continuously receive information about the future, which sometimes is news, sometimes

just noise. Based on this information, consumers and firms choose spending and, because of

nominal rigidities, spending affects output in the short run. If ex post the information turns

out to be news, the economy adjusts gradually to a new level of activity. If it turns out to

be just noise, the economy returns to its initial state. Therefore, the dynamics of news and

noise generate both short-run and long-run changes in aggregate activity. In this paper, we

ask how aggregate time series can be used to shed light on this view of the business cycle.

We are interested in this view for two reasons. The first is that it appears to capture

many of the aspects often ascribed to fluctuations: the role of animal spirits in affecting

demand—spirits coming here from a rational reaction to information about the future—,

the role of demand in affecting output in the short run, together with the notion that in the

long run output follows a natural path determined by fundamentals.

The second is that it appears to fit the data in a more formal way. More specifically,

it offers an interpretation of structural VARs based on the assumption of two major types

of shocks: shocks with permanent effects and shocks with transitory effects on activity.

As characterized by Blanchard and Quah (1989), Gaĺı (1999), Beaudry and Portier (2006),

among others, “permanent shocks” appear to lead to an increase in activity in the short run,

building up to a larger effect in the long run, while “transitory shocks”—by construction—

lead to a transitory effect on activity in the short run. It is tempting to associate shocks

with permanent effects to news and shocks with transitory effects to noise.

In this paper, we focus on a simple model which provides a useful laboratory to address

two issues: a methodological one and a substantive one. First, can structural VARs indeed

be used to recover news and noise shocks? Second, what is the role of news and noise shocks

in short-run fluctuations?

On the first question, we reach a strong negative conclusion—one which came as an

unhappy surprise for one of the coauthors. In models of expectation-driven fluctuations in

which consumers solve a signal extraction problem, structural VARs can typically recover

neither the shocks nor their propagation mechanisms. The reason is straightforward: If

agents face a signal extraction problem, and are unable to separate news from noise, then

the econometrician, faced with either the same data as the agents or a subset of these data,

cannot do it either.

To address the second question, we then turn to structural estimation, first using a
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simple method of moments and then Maximum Likelihood. We find that our model fits the

data well and gives a clear description of fluctuations as a result of three types of shocks:

shocks with permanent effects on productivity, which build up slowly over time; shocks with

temporary effects on productivity, which decay slowly; and shocks to consumers’ signals

about future productivity. All three shocks affect agents’ expectations, and thus demand

and output in the short run, and noise shocks are an important source of short-run volatility.

In our baseline specification, noise shocks account for more than half of the forecast error

variance at a yearly horizon, while permanent technology shocks account for less than one

third. This result is somewhat surprising when compared with variance decompositions from

structural VARs where transitory “demand shocks” often account for a smaller fraction of

aggregate volatility at the same horizons and permanent technology shock capture a bigger

share (e.g., Shapiro and Watson, 1989, and Gaĺı, 1992). Our methodological analysis helps

to explain the difference, showing why structural VARs may understate the contribution of

noise/demand shocks to short-run volatility and overstate that of permanent productivity

shocks.

Recent efforts to empirically estimate models of news-driven business cycles include Chris-

tiano, Ilut, Motto and Rostagno (2007) and Schmitt-Grohé and Uribe (2008). These papers

follow the approach of Jaimovich and Rebelo (2006), modeling news as advanced, perfect

information about shocks affecting future productivity. We share with those papers the em-

phasis on structural estimation. The main difference is that we model the private sector

information as coming from a signal extraction problem and focus our attention on disen-

tangling the separate effects of news and noise.

The problem with structural VARs emphasized in this paper is essentially an invertibil-

ity problem, also known as non-fundamentalness. There is a resurgence of interest in the

methodological and practical implications of invertibility problems, see, e.g., Sims and Zha

(2006) and Fernández-Villaverde, Rubio-Ramı́rez, Sargent and Watson (2007). Our paper

shows that non-invertibility problem are endemic to models where the agents’ uncertainty

is represented as a signal extraction problem. This idea has also recently surfaced in models

that try to identify the effects of fiscal policy when the private sector receives information

on future policy changes (see Leeper, Walker and Yang, 2009).

The paper is organized as follows. Sections 1 and 2 present and solve the model. Section

3 looks at the use of structural VARs. Section 4 presents the results of our structural

estimation. Section 5 explores a number of extensions and Section 6 concludes.
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1 The model

For most of the paper, we focus on the following model, which is both analytically convenient,

and, as we shall see, provides a good starting point for looking at postwar U.S. data.

We want to capture the notion that, behind productivity movements, there are two

types of shocks: shocks with permanent effects and shocks with only transitory effects. In

particular, we assume that the effects of the first type of shock gradually build up over time,

while the effects of the second gradually decay over time. One can think of the transitory

component as either true or reflecting measurement error. This does not matter for our

purposes.

We also want to capture the notion that spending decisions are based on agents’ expec-

tations of the future, here future productivity. We assume that agents observe productivity,

but not its individual components. To capture the idea that they have more information

than just current and past productivity, we allow them to observe an additional signal about

the permanent component of productivity. Having solved the signal extraction problem, and

based on their expectations, agents choose spending. Because of nominal rigidities, spending

determines output in the short run.

Thus, the dynamics of output are determined by three types of shocks, the two shocks

to productivity, and the noise in the additional signal. For short, we shall refer to them as

the “permanent shock”, the “transitory shock”, and the “noise shock”. Permanent shock is

a slight (and common) misnomer, as it refers to a shock whose effects build up gradually.

Now to the specific assumptions.

1.1 Productivity

Productivity (in logs) is given by the sum of two components:

at = xt + zt. (1)

The permanent component, xt, follows a unit root process given by

∆xt = ρx∆xt−1 + εt. (2)

The transitory component, zt, follows a stationary process given by

zt = ρzzt−1 + ηt. (3)
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The coefficients ρx and ρz are in [0, 1), and εt and ηt are i.i.d. normal shocks with variances

σ2
ε and σ2

η. Agents observe productivity, but not the two components separately.1

For most of the paper, we assume that the univariate representation of at is a random

walk

at = at−1 + ut, (4)

with the variance of ut equal to σ2
u, and restrict attention to the family of processes (1)-(3)

that are consistent with this assumption. We do this for two reasons. The first is analytical

convenience, as it makes our arguments more transparent. The second is that, as we shall

see, this assumption provides a surprisingly good starting point when looking at postwar

U.S. data. As will be clear, however, none of our central results depends on this assumption.

In general, a given univariate process is consistent with an infinity of decompositions

between a permanent and a transitory component with orthogonal innovations, as shown

in Quah (1990, 1991). In our setup, there is a one-parameter family of processes (1)-(3)

which deliver the univariate random walk (4). This is the family of processes that satisfy

the following conditions:

ρx = ρz = ρ,

σ2
ε = (1− ρ)2 σ2

u, σ2
η = ρσ2

u,

for some ρ ∈ [0, 1).2

Productivity may be the sum of a permanent process with small shocks that build up

slowly and a transitory process with large shocks that decay slowly (high ρ, small σ2
ε and

large σ2
η), or it may be the sum of a permanent process which is itself close to a random walk

and a transitory process close to white noise with small variance (low ρ, large σ2
ε and small

σ2
η). An econometrician who can only observe at cannot distinguish these cases. The sample

variance of ∆at gives an estimate of σ2
u, but the parameter ρ, and thus ρx, ρz, σ2

ε and σ2
η, are

not identified. As we shall see, when consumers have some additional source of information

1A similar process for technology, which combines level and growth rate shocks, has been recently used in
an open economy context by Aguiar and Gopinath (2007). Boz, Daude and Durdu (2008) explore the role
of different informational assumptions in that context.

2To prove this result, notice that, in general, (1)-(3) imply

V ar[∆at] =
1

1− ρ2
x

σ2
ε −

2
1 + ρz

σ2
η,

and
Cov[∆at, ∆at−j ] = ρj

x

1
1− ρ2

x

σ2
ε − ρj−1

z

1− ρz

1 + ρz
σ2

η for all j > 0.

Under the assumed parameter restrictions these yield V ar[∆at] = σ2
u and Cov[∆at, ∆at−j ] = 0 for all j > 0.
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on the permanent component xt and the econometrician has access to consumption data, he

will be able to identify ρ and the remaining parameters.

1.2 Consumption

We assume that consumption smoothing leads to the Euler equation

ct = E[ct+1|It], (5)

where It is the consumers’ information at date t, to be specified below. For a generic variable

Xt, we use, when convenient, Et [Xτ ] or Xτ |t as alternative notation for E [Xτ |It].

We drastically simplify the supply side, by considering an economy with no capital, in

which consumption is the only component of demand and output is fully determined by the

demand side. Output is given by yt = ct and the labor input adjusts to produce yt, given the

current level of productivity. We impose the restriction that output returns to its natural

level in the long run, namely that

lim
j→∞

Et[ct+j − at+j] = 0.

In Appendix A, we show that this model can be derived as the limit case of a standard New

Keynesian model with Calvo pricing when the frequency of price adjustment goes to zero.

Combining the last two equations gives

ct = lim
j→∞

Et[at+j]. (6)

Consumption, and by implication, output, depend on the consumers’ expectations of pro-

ductivity in the long run.

To close the model we only need to specify the consumers’ information set. Consumers

observe current and past productivity, at. In addition, they receive a signal regarding the

permanent component of the productivity process

st = xt + νt, (7)

where νt is i.i.d. normal with variance σ2
ν . Moreover, consumers know the structure of the

model, i.e., know ρ and the variances of the three shocks.

Finally, on the econometrician’s side, we will consider both the case where the signal st

is directly observable and the econometrician has access to time series for at, ct and st, and
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the case where only at and ct are observed (as it will be the case in our empirical exercise).

We will use Ie
t to denote the econometrician’s information set.

2 Solving the model

The solution to the model gives consumption and productivity as a function of current and

lagged values of the three shocks, εt, ηt, and νt. It is derived in two steps. First, we solve

for consumption as a function of productivity expectations. From equations (1)-(3) and (6)

above, we obtain

ct = xt|t +
ρ

1− ρ
(xt|t − xt−1|t). (8)

Recall that xt|t and xt−1|t denote the consumers’ expectations about the unobservable states

xt and xt−1 .

Second, we derive the dynamics of the expectations in (8) using the Kalman filter. Agents

enter the period with beliefs xt|t−1 and xt−1|t−1 about the current and lagged values of the

permanent component of productivity. They observe current productivity at = xt + zt and

the signal st = xt + νt, and update their beliefs applying the Kalman filter:




xt|t
xt−1|t
zt|t


 = A




xt−1|t−1

xt−2|t−1

zt−1|t−1


 + B


 at

st


 (9)

where the matrices A and B depend on the underlying parameters (see Appendix B).

Equations (8)-(9) together with equations (1)-(3) fully characterize the dynamic responses

of productivity and consumption to the different shocks. Except for two special cases to

which we shall come back below (the case of a fully informative and of a fully uninformative

signal), these must be solved numerically.

Figure 1 shows the impulse responses of consumption and productivity computed using

parameters in line with the estimates obtained later, in Section 4. The time unit is the

quarter. The parameter ρ is set to 0.89, implying slowly building permanent shocks and

slowly decaying transitory shocks. The standard deviation of productivity growth, σu, is

set to 0.67%. These values for ρ and σu yield standard deviations of the two technology

shocks, σε and ση, equal to 0.07% and 0.63%, respectively. The standard deviation of the

noise shock, σν , is set to 0.89%, implying a fairly noisy signal.

In response to a one standard deviation increase in εt, a permanent technology shock,

productivity builds up slowly over time—the implication of a high value for ρ. Consumption
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Figure 1: Impulse Responses to the Three Shocks
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also increases slowly. This reflects the fact that the standard deviations of the transitory

shock ηt and of the noise shock νt are both large relative to the standard deviation of εt.

Thus, it takes a long time for consumers to assess that this is really a permanent shock and

to fully adjust consumption.

For our parameter values, consumption (equivalently, output) initially increases more

than productivity, generating a transitory increase in employment. Smaller transitory shocks,

or a more informative signal would lead to a larger initial increase in consumption, and thus

a larger initial increase in employment. Larger transitory shocks, or a less informative signal,

might lead instead to an initial decrease in employment.

In response to a one standard deviation increase in ηt, the transitory shock, productivity

initially increases, and then slowly declines over time. As agents put some weight on it

being a permanent shock, they initially increase consumption. As they learn that this was a

transitory shock, consumption returns back to normal over time. For our parameter values,

consumption increases less than productivity, leading to an initial decrease in employment.

Again, for different parameters, the outcome may be an increase or a decrease in employment.

Finally, in response to a one standard deviation increase in νt, the noise shock, consump-

tion increases, and then returns to normal over time. The response of consumption need not

be monotonic; in the simulation presented here, the response turns briefly negative, before

returning to normal. By assumption, productivity does not change, so employment initially

increases, to return to normal over time.

2.1 Innovations representation

Our assumptions make it easy to derive the innovations representation of the processes for

consumption and productivity.3 In particular, rearranging (8), we obtain

(1− ρ)ct = xt|t − ρxt−1|t. (10)

Writing the corresponding expression for ct−1 and taking differences side by side, we obtain

ct = ct−1 + uc
t , (11)

with

uc
t =

1

1− ρ
(xt|t − xt−1|t−1)− ρ

1− ρ
(xt−1|t − xt−2|t−1).

3See Anderson, Hansen, McGrattan, and Sargent (1996) for general results on the existence of an inno-
vations representation.
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Turning to productivity, equations (1) and (3) imply

at − ρat−1 = xt + zt − ρ (xt−1 + zt−1)

= xt − ρxt−1 + ηt.

Using (10), lagged one period, we then obtain

at = ρat−1 + (1− ρ) ct−1 + ua
t , (12)

with

ua
t = xt − xt−1|t−1 − ρ(xt−1 − xt−2|t−1) + ηt.

To show that uc
t and ua

t in (11) and (12) are indeed innovations take expectations and

use (2) to obtain

Et−1[u
c
t ] =

1

1− ρ
Et−1[εt] = 0,

Et−1[u
a
t ] = Et−1[εt + ηt] = 0.

This shows that uc
t and ua

t are innovations with respect to the consumers’ information.

Turning to the econometrician, we can assume that the econometrician observes (ct, at, st)

or just (ct, at). In either case the econometrician has (weakly) less information than the

consumer and the law of iterated expectations implies E[uc
t |Ie

t ] = 0 and E[ua
t |Ie

t ] = 0.

Therefore, uc
t and ua

t represent innovations for consumption and productivity both in a

reduced form VAR in (ct, at, st) and in a reduced form VAR in (ct, at).

Note that, under our assumptions, the univariate representations of both productivity

and consumption are random walks. For productivity this follows from our assumptions

on the productivity process, for consumption it follows from the behavioral assumption (5).

When we move to multivariate representations including ct and at, past productivity does not

help predict consumption, but, as (12) shows, past consumption typically helps to predict

productivity as it captures the consumers’ information on the permanent component xt.
4

4The special case in which consumption does not help to predict productivity is ρ = 0. As we shall
see below, in this case at and ct are perfectly collinear, so, given at−1, ct−1 provides no extra information
on at. In this case, the innovations representation is not unique, as (12) can be replaced, for example, by
at = at−1 + ua

t .
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3 A structural VAR approach

The question we take up in this section is whether a structural VAR approach can recover

the underlying shocks and their impulse responses.

The answer to this question is, generally, no. The basic intuition is the following: if con-

sumption is a random walk given the consumers’ information sets, then an econometrician

with access to the same information, or less, cannot identify any shock that has a transitory

effect on consumption based on the reduced form VAR innovations at time t. If the econo-

metrician could, so would the agents. But then they would optimally choose a consumption

path that does not respond to these identified shocks.

In the rest of this section we flesh out this intuition and show how it leads to a non-

invertibility problem. We begin from two special cases, the case where the signal st is

perfectly informative, σν = 0, and the case where it is completely uninformative, σν = ∞.

In both cases, noise shocks do not affect the consumption and productivity dynamics, so we

can focus on the econometrician’s problem of recovering the two shocks εt and ηt from the

bivariate time series (ct, at).

3.1 A perfectly informative signal

If the signal is perfectly informative, consumers no longer face a signal extraction problem.

They know exactly the value of the permanent component of productivity, xt, and by impli-

cation, the value of the transitory component, zt = at − xt. In this case, equations (11) and

(12) simplify to:

ct = ct−1 +
1

1− ρ
εt,

at = ρat−1 + (1− ρ) ct−1 + εt + ηt.

Consumption responds only to the permanent shock, productivity to both. In this case,

a structural VAR approach does work. Imposing the long-run restriction that only one of

the shocks has a permanent effect on consumption and productivity, we can recover εt and

ηt, and their dynamic effects.

3.2 An uninformative signal

If, instead, the signal is uninformative, the consumers rely only on current and past produc-

tivity to forecast future productivity. Then, trivially, our random walk assumption for at
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leads to ct = at. In this case, the two innovations uc
t and ua

t coincide and are identical to

the innovation ut in the univariate representation of at. That is, the bivariate dynamics of

consumption and productivity are given by

ct = at−1 + ut,

at = at−1 + ut.

This characterization holds for any value of ρ. Thus, whatever the value of ρ and the

relative importance of permanent and transitory productivity shocks, a structural VAR with

long-run restrictions will attribute all movements in productivity and consumption to per-

manent shocks, and none to transitory shocks. The impulse responses of productivity and

consumption to εt will show a one-time permanent increase; the impulse responses of pro-

ductivity and consumption to ηt will be identically equal to zero.

However, in this case the decomposition between temporary and permanent shocks is

essentially irrelevant, given that no information is available to ever separate the two. We

might as well take the random walk representation of productivity as our primitive produc-

tivity process and just interpret ut as the single, permanent shock. With this interpretation,

one can safely adopt a structural VAR approach.

3.3 The general case

In the two special cases just considered, a structural VAR approach seems to work, albeit for

very different reasons: In the first, we can exploit the perfect information of the consumers

to separate permanent and transitory shocks. In the second, we can ignore the “true”

productivity process and just focus on the observable random walk for productivity.

Unfortunately, once we move away from these special cases and have a partially informa-

tive signal, a structural VAR approach fails. In the general case, unlike in the first case, the

consumers’ information at time t is not sufficient to exactly recover the shocks. At the same

time, unlike in the second case, consumption reflects some information on the transitory and

permanent components of productivity, so we cannot ignore their underlying dynamics.

Now the model features three shocks, εt, ηt and νt, so we consider the econometrician’s

problem of recovering these three shocks from the trivariate time series (ct, at, st). The econo-

metrician runs a reduced form VAR in (ct, at, st) and obtains the reduced form innovations

(uc
t , u

a
t , u

s
t). He then tries to use some identification restriction to map the reduced form

innovations into the economic shocks. An identified shock will correspond to a linear com-
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bination of reduced form innovations. The next proposition characterizes the shape of the

estimated responses of consumption to any identified shock.

Proposition 1 Suppose that the econometrician observes (ct, at, st). Then, the estimated

impulse response of ct to any identified shock from a structural VAR will be, asymptotically,

either permanent and flat or zero.

Comparing this result with the impulse responses obtained in Figure 1 immediately shows

that a structural VAR will be, in general, unable to recover the model’s responses to our

three shocks, given that none of them leads to a flat consumption response.

Why does the structural VAR fail? Suppose there was an identified structural shock that

could be mapped into the noise shock of the model. That means that there would be a

linear combination of reduced form innovations at time t that can be used to forecast the

transitory increase in consumption in panel (c) of Figure 1. The consumers have access to all

the data used by the econometrician to construct the innovations at time t: they know the

model’s parameters and they have observed all variable realizations up to time t. Therefore,

they must also be able to forecast this transitory fluctuation in consumption. But this would

violate consumption smoothing. Therefore, the consumption response to any identified shock

must be flat.

This is not a problem in the special case where consumers have a perfectly informative

signal, because in that case the impulse responses in the model coincide with the ones in

Proposition 1: permanent and flat response to εt and zero response to ηt. The same is true

in the special case of an uninformative signal, if we limit ourselves to recovering responses

to the shock ut. In the general case, however, the impulse responses are richer than those in

Proposition 1. Moreover, as we shall see in Section 4, the data contain enough information

to estimate these responses. The problem is that a structural VAR approach tries to get

there by exactly recovering the shocks at time t from the observables up to that period, and

this is not feasible in the general case.

Notice that our specific assumptions on the productivity process and on the informational

structure are not crucial for Proposition 1. In fact, the result can be extended to any process

for at and any signal process, as long as the consumption process is well defined and satisfies

ct = limj→∞ E [at+j|It].

One could enrich the model, e.g., adding preference shocks and allowing for changes in the

real interest rate, so as to relax the random walk hypothesis for consumption. However, the

essence of the argument remains: noise shocks that lead to transient “mistakes” by consumers
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cannot be detected using information available to consumers at date t. A structural VAR

identification scheme can only use that information and is bound to fail.

Proposition 1 clearly extends to the case where the econometrician only observes the

bivariate series (ct, at). Given that this will be the information set used in our empirical

exercise in Section 4, it is useful to analyze this case in more detail. In particular, we can use

a numerical example to further investigate the direction of the bias in the estimated impulse

responses.

Figure 2 shows the estimated impulse responses to the shocks with permanent and tran-

sitory effects obtained from structural VAR estimation, together with the true impulse re-

sponses to the three underlying shocks. The underlying parameters are the same as for

Figure 1. The estimated impulse responses are obtained by generating a 10,000-period time

series for consumption and productivity using the true model and running a structural VAR

on it. The structural VAR is identified by imposing a long-run restriction which distinguishes

two orthogonal shocks: one with permanent effects on output and one with only transitory

effects.

Look first at the true and estimated responses of productivity to a shock with permanent

effects. The solid line in the top left quadrant plots the true response to a permanent

technology shock, which replicates that in Figure 1, namely a small initial effect, followed by

a steady buildup over time. The dashed line gives the estimated response from the structural

VAR estimation: The initial effect is much larger, the later buildup much smaller. Indeed,

simulations show that the less informative the signal, the larger the estimated initial effect,

the smaller the later build up. (Remember that, when the signal is fully uninformative, the

estimated response shows a one-time increase, with no further build up over time).

Turn to the true and estimated responses of consumption to a permanent shock in the

bottom left quadrant. The solid line again replicates the corresponding response in Figure

1, showing a slow build-up of consumption over time. The dashed line shows the estimated

response, namely a one-time response of consumption with no further build up over time.

The right quadrants show the true and estimated responses to shocks with transitory

effects on output. The solid lines show the true responses to a transitory technology shock

(thick line) and to a noise shock (thin line). The dashed lines give the estimated response to

the single transitory shock from the structural VAR. They show that the estimated response

of productivity to a transitory shock is close to the true response to a transitory technology

shock, but the estimated response of consumption is equal to zero.

In short, the responses from the structural VAR overstate the initial response of produc-

tivity and consumption to permanent shocks, and thus give too much weight to these shocks
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Figure 2: True and SVAR-based estimated impulse responses

15



in accounting for fluctuations. For productivity, the less informative the signal, the larger the

overstatement. For consumption, the overstatement is independent of the informativeness

of the signal.

3.4 What if the econometrician has more information than the

agents?

The result above suggests two potential ways out, both based on the possibility that the

econometrician may have access to more information than the agents, either at time t or

later.

First, if we think of the transitory component as reflecting in part measurement error,

and if the series for productivity is revised over time, the econometrician, who has access to

the revised series, may be better able than the consumers to separate the permanent and

the transitory components. To take an extreme case, if the transitory component reflects

only measurement error, and if the revised series remove the measurement error, then the

econometrician has access to the time series for the permanent component directly, and can

therefore separate the two components. While this is extreme, it suggests that the bias from

SVAR estimation may be reduced when using revised series rather than originally published

series.5 The dispersed information model in Lorenzoni (2009) goes in this direction, by

assuming that consumers do not have access to real time information on aggregate output,

but only to noisy local information. Under that assumption it is possible to map the noise

shock in that model to the transitory shock from an identified VAR. However, also in models

with dispersed information, once we enrich the consumers’ information set, the problem

raised here is bound to reappear.

The need for superior information on the econometrician’s side, suggests a second way

out. In the end, the econometrician always has access to superior information, as he can

observe future realizations of variables that the consumer did not observe at time t. Then one

may hope that a combination of past and future data may be used to identify current shocks.

More formally, the traditional invertibility problem is that the map from the economic shocks

to the shocks in the VAR may not have an inverse that is one-sided in nonnegative powers of

the lag operator. Maybe adding a sufficient number of lead terms an inverse can be found?

Unfortunately, the answer is no. As we will show numerically in Section 4.5, even having

5A related article here is Rodriguez Mora and Schulstad (2007). They show that growth in period t is
correlated with preliminary estimates of past growth available in period t, not with final estimates, available
later. One potential interpretation of these results is that agents choose spending in response to these
preliminary estimates, and their spending in turn determines current output.
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access to an infinite sequence of past and future data the econometrician is never able to

exactly recover the values of the shocks.

3.5 What does the structural VAR deliver?

A different way of looking at the problem is to understand what is the correct interpretation

of the identified shocks that the structural VAR delivers. It turns out that the structural

VAR allows us to recover the process for at in its innovations representation. Namely, the

process for at can be equivalently represented by the state-space system:

x̂t = x̂t−1 + v1
t (13)

at = ρat−1 + (1− ρ)x̂t−1 + v2
t . (14)

To prove the equivalence it is sufficient to define x̂t ≡ ct, and use the results in Section 2.1,

substituting v1
t for uc

t and v2
t for ua

t .

But then why not start directly from (13)-(14) as our model for productivity dynam-

ics and give consumers full information on the state x̂t? One reason why (13)-(14) is not

particularly appealing as a primitive model is that the disturbances v1
t and v2

t in the inno-

vation representation above are not mutually independent, and thus are hard to interpret

as primitive shocks. In particular, our signal extraction model implies that v1
t and v2

t are

positively correlated and their correlation is higher the higher the underlying value of σν .

As we shall see in the next section, this positive correlation is indeed observed in the data.

Our informational assumptions provide a rationale for it.

Going back to structural VARs, a long-run identifying restriction will lead us to identify

v1
t as the permanent technology shock and will give a linear combination of v1

t and v2
t as the

temporary shock. For some purposes, this representation may be all we are interested in.

Clearly, that is not the case if we are trying to analyze the role of noise shocks in fluctuations.

4 Structural estimation

We now turn to structural estimation, proceeding in two steps. For our benchmark model

structural estimation is particularly easy, and all parameters can be obtained matching a

few moments of the model to the data; thus we start with it. For more general processes

however, one must use maximum likelihood. We show how it can be done, show estimation

results for our benchmark model and compare them to those obtained by matching moments.
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4.1 Matching moments

In general, structural estimation allows us to exploit the cross-equation restrictions implied

by the model to achieve identification. Equation (12), our reduced form equation for pro-

ductivity, provides a good example of this principle: estimating this equation by OLS, allows

us immediately to recover the parameter ρ. Moreover, σ2
u can be estimated by the sample

variance of ∆at. Having estimates for ρ and σ2
u, we immediately get estimates for σ2

ε and σ2
η.

Although identification is particularly simple here, the point holds more generally. In

the class of models considered here, identification can be achieved exploiting two crucial as-

sumptions: some behavioral assumption which links consumption (or some other endogenous

variables) to the agents’ expectations about the future, here equation (6), and an assumption

of rational expectations.6

How well does our reduced form benchmark model (11)-(12) fits the time series facts for

productivity and consumption? The answer is: fairly well. Although it clearly misses some

of the dynamics in the data, it provides a good starting point.

Throughout this section, we only use time series for at and ct. We construct the produc-

tivity variable as the logarithm of the ratio of GDP to employment and the consumption

variable as the logarithm of the ratio of NIPA consumption to population. We use quar-

terly data, from 1970:1 to 2008:1. An issue we have to confront is that, in contradiction to

our model, and indeed to any balanced growth model, productivity and consumption have

different growth rates over the sample (0.34% per quarter for productivity, versus 0.46% for

consumption). This difference reflects factors we have left out of the model, from changes in

participation, to changes in the saving rate, to changes in the capital-output ratio. For this

reason, in what follows, we allow for a secular drift in the consumption-to-productivity ratio

(equal to 0.46%-0.34%) and remove it from the consumption series.7

The basic characteristics of the time series for productivity and consumption are pre-

sented in Table 1. Lines 1 and 2 show the results of estimated AR(1) for the first differences

of the two variables. Recall that our model implies that both productivity and consumption

6The use of behavioral assumptions as identification assumptions to estimate an underlying exogenous
process, connects our paper to a large body of work on household income dynamics. See, for example,
Blundell and Preston (1998), who use the permanent income hypothesis as an identification assumption to
decompose the household income process into transitory and permanent components.

7We are aware that, in the context of our approach, where we are trying to isolate potentially low frequency
movements in productivity, this is a rough and dangerous approximation. But, given our purposes, it seems
to be a reasonable first pass assumption. The reason why we concentrate on the sample 1970:1 to 2008:1
is precisely because, with longer samples, we are less confident that this approach does a satisfactory job
at accounting for low frequency changes in the consumption-to-productivity ratio. When we turn to the
variance decomposition, we will show that our results are robust to extending the sample.
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should follow random walks, so the AR(1) term should be equal to zero. In both cases, the

AR(1) term is indeed small, insignificant in the case of productivity, significant in the case

of consumption.

Our model further implies a simple dynamic relation between productivity and consump-

tion, equation (12), which can be rewritten as the cointegrating regression:

∆at = (1− ρ)(ct−1 − at−1) + ua
t

Line 3 shows the results of estimating this equation. Line 4 allows for lagged rates of change

of consumption and productivity, and shows the presence of richer dynamics than implied by

our specification, with significant coefficients on the lagged rates of change of both variables.

Line Dependent ∆a(−1) ∆c(−1) (c− a)(−1)
variable:

1 ∆a -0.06 (0.09)
2 ∆c 0.24 (0.08)
3 ∆a 0.05 (0.03)
4 ∆a -0.21 (0.10) 0.32 (0.12) 0.03 (0.02)
5 ∆(8)a 0.03 (0.15)
6 ∆(20)a 0.31 (0.30)
7 ∆(40)a 0.98 (0.43)

Table 1: Consumption and Productivity Regressions.
Note: Sample: 1970:1 to 2008:1. ∆(j)a ≡ a(+j − 1) − a(−1). In parenthesis: robust standard
errors computed using the Newey-West window and 10 lags.

Our model’s dynamic implications on the relation between consumption and productivity

can be extended to longer horizons. Specifically, (12) can be extended to obtain the following

cointegrating regression, which holds for all j ≥ 0,8

at+j − at = (1− ρj)(ct−1 − at−1) + ua,j
t ,

8This is obtained by induction. Suppose it is true for j, that is, Et [at+j ] =
(
1− ρj

)
ct + ρjat. Taking

expectations at time t− 1 on both sides yields

Et−1 [at+j ] =
(
1− ρj

)
Et−1[ct] + ρjEt−1[at]

=
(
1− ρj

)
ct−1 + ρj ((1− ρ) ct−1 + ρat−1)

=
(
1− ρj+1

)
ct−1 + ρj+1at−1,

the second equality follows from (5) and (12), the third from rearranging.
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where ua,j
t is a disturbance uncorrelated to the econometrician’s information at date t. Thus,

according to the model, a larger consumption-productivity ratio should forecast higher future

productivity growth at all horizons and the coefficient in this regression should increase

with the horizon. Lines 5 to 7 explore this implication. We correct for the presence of

autocorrelation due to overlapping intervals by using Newey-West standard errors. These

results are roughly consistent with the model predictions, and all point to relatively high

values for ρ: the point estimates implicit in lines 3, 5, 6 and 7 are, respectively, 0.95, 0.996,

0.98 and 0.91. The maximum likelihood approach below will use all the model restrictions

to produce a single estimate of ρ, for now we just take the estimate from line 3, ρ = 0.95.

The standard deviation σu can be estimated directly from the univariate representation

of at as the sample mean squared deviation of ∆at, giving a point estimate σu = 0.67%.

Together with ρ = 0.95, this implies σε = 0.03% and ση = 0.65%. In words, these results

imply a very smooth permanent component, in which small shocks steadily build up over

time, and a large transitory component, which decays slowly over time.

Recovering the variance of the noise shock is less straightforward, but it can be done

matching another moment: the correlation coefficient between the reduced form innovations

uc
t and ua

t . In particular, numerical results show that, given the remaining parameters, this

moment is an increasing function of σν . Therefore, we recover this parameter by matching

the correlation in the data. The coefficient of correlation between ∆c and the residual of

the regression on line 3 (corresponding, respectively to uc
t and ua

t ) is equal to 0.52. If the

signal was perfectly informative this correlation would be equal to 0.05, while if the signal

had infinite variance it would be 1.9 Therefore, the observed correlation is consistent with

the model and yields a fairly large standard deviation of the noise shock, σν = 2.1%.

The fact that we are able in our benchmark model to recover all the model parameters by

matching a few moments from the data, is clearly a special case. It is thus useful to develop a

general approach, which can be applied to any specification of productivity or consumption

behavior. We now discuss this approach, and then return to the data.

4.2 Maximum Likelihood

To estimate a model where consumers face a non trivial signal extraction problem, one can,

generally, proceed in two steps.10

9These bounds can be derived from the analysis in Sections 3.1 and 3.2. To obtain the first, some algebra
shows that under full information Cov[uc

t , u
a
t ]/

√
V ar[uc

t ]V ar[ua
t ] = (1−ρ)/

√
(1− ρ)2 + ρ. The second bound

is immediate.
10More detailed derivations are provided in Appendices B and D.
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• Take the point of view of the consumers. Write down the dynamics of the unobserved

states in state space representation and solve the consumers’ filtering problem. In our

case, the relevant state for the consumer is given by ξt ≡ (xt, xt−1, zt), its dynamics are

given by (2) and (3), the observation equations are (1) and (7), and Kalman filtering

gives us the updating equation (9).

• Next, take the point of view of the econometrician, write down the model dynamics

in state space representation and write the appropriate observation equations (which

depend on the data available). In our case, the relevant state for the econometrician

is given by ξE
t ≡ (xt, xt−1, zt, xt|t, xt−1|t, zt|t). Notice that the consumers’ expectations

become part of the unobservable state and the consumers’ updating equation (9) be-

comes part of the description of the state’s dynamics. The observation equations for the

econometrician are now (1) and (10), where the second links consumption (observed by

the econometrician), to consumers’ expectations. The econometrician’s Kalman filter

is then used to construct the likelihood function and estimate the model’s parameters.

Table 2 shows the results of estimation of the benchmark model presented as a grid

over values of ρ from 0 to 0.99.11 For each value of ρ, we find the values of the remaining

parameters that maximize the likelihood function and in the last column we report the

corresponding likelihood value. The table shows that the likelihood function has a well-

behaved maximum at ρ = 0.89, on line 6. The corresponding values of σε and ση are 0.07%

and 0.63%, respectively. The standard deviation of the noise shock σν is 0.89%.

Relative to the moment matching approach in Section 4.1, the Maximum Likelihood

approach uses all the implicit restrictions imposed by the model on the data generating

process. This explains the difference between the estimates on line 6 of Table 2 and those

obtained in Section 4.1. In particular, the Maximum Likelihood approach favors smaller

values of ρ and σν . However, if we look at line 8 of Table 2, we see parameters much closer

to those in Section 4.1 and the likelihood gain from line 8 to line 6 is not too large. In other

words, the data are consistent with a range of different combinations of ρ and σν . When

we look at the model’s implications in terms of variance decomposition, we will consider

different values in this range.

A simple exercise, using this approach, is to relax the random walk assumption for

productivity, allowing ρx to differ from ρz, and allowing the variances of the shocks to be

11For all our Maximum Likelihood estimates we used Dynare (v.3), which allows for the use of matrices in
the model section of the code. Our observables are first differences of labor productivity and consumption,
so we use a diffuse Kalman Filter to initialize the variance covariance matrix of the estimator (a variance-
covariance matrix with a diagonal of 10).
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Line ρ σu σε ση σν ML
1 0.00 0.0067 0.0067 0.0000 0.0089 −3 ∗ 1012

2 0.25 0.0183 0.0137 0.0092 0.0000 859.2
3 0.50 0.0102 0.0051 0.0072 0.0000 980.5
4 0.70 0.0077 0.0023 0.0065 0.0026 1042.6
5 0.80 0.0071 0.0014 0.0064 0.0056 1064.5
6 0.89 0.0067 0.0007 0.0063 0.0089 1073.2
7 0.90 0.0067 0.0007 0.0064 0.0099 1073.1
8 0.95 0.0068 0.0003 0.0066 0.0234 1072.2
9 0.99 0.0063 0.0001 0.0063 0.0753 1068.5

Table 2: Maximum Likelihood Estimation: Benchmark Model

freely estimated. The estimation results are reported in Table 3 and are quite close to those

obtained under the random walk assumption.

Estimate Standard error
ρx 0.8879 0.0478
ρz 0.8878 0.0474
ση 0.0065 0.0004
σε 0.0007 0.0003
σν 0.0090 0.0052
ML 1073.3

Table 3: Maximum Likelihood Estimation: Unconstrained Model

4.3 Variance decomposition

What do our results imply in terms of the dynamic effects of the shocks and of variance

decomposition? If we use the estimated parameters from the benchmark model (line 6

in Table 2), the dynamic effects of each shock are given in Figure 1 and were discussed in

Section 2: A slow and steady build up of permanent shocks on productivity and consumption;

a slowly decreasing effect of transitory shocks on productivity and consumption; and a slowly

decreasing effect of noise shocks on consumption.

Figure 3 presents the variance decomposition, plotting the contribution of the three

shocks to forecast error variance, from 1 to 20 quarters ahead. The main result is that noise

shocks are an important source of short run volatility, accounting for more than 70% of

consumption volatility at a 1-quarter horizon and more than 50% at a 4-quarter horizon,
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Figure 3: Variance Decomposition: Benchmark Model

while permanent technology shocks play a smaller role, having almost no effect on quarterly

volatility and explaining less than 30% at a 4-quarter horizon. It is interesting to compare

this result to traditional SVAR exercises, such as Shapiro and Watson (1989) and Gali

(1992), where demand shocks typically explain a smaller fraction of aggregate volatility and

permanent technology shocks play a bigger role. The analysis in Section 3 helps to explain

these differences, by showing that, asymptotically, a SVAR is biased towards assigning 100%

of the volatility to the permanent shock.

In Table 4, we report the results of some robustness checks. On each line, we report the

fraction of consumption variance due to the noise shock at a 1, 4 and 8-quarter horizon, for

different parameter values. Line 1 corresponds to our benchmark estimation. Line 2 reports

the results obtained by setting ρ at a higher level and choosing the remaining parameters by

maximum likelihood (line 8 of Table 2). The variance decomposition at short horizons is not

very different, but noise shocks turn out to be more persistent under this parametrization

and explain a much bigger fraction of variance at a 8-quarter horizon. On line 3 we report
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the parameters obtained when estimating our model on a longer sample, 1948:1 to 2008:1.

With this data set the estimate of ρ is larger and we obtain results analogous to the ones on

line 2.

Finally, in lines 4 and 5 we experiment with changing only the volatility of noise shocks,

keeping the other parameters fixed. In particular, relative to the benchmark, we first decrease

and then increase σν by one standard deviation (which is 0.0034 in our maximum likelihood

estimate). Interestingly, it is the lower value of σν that leads to the largest amount of noise-

driven volatility. A lower σν makes the signal st more precise, so consumers rely on it more.

In our range of parameters, this leads to greater short-run volatility.

Line Parameters Noise-driven variance (fraction)
ρ σu σν 1 Quarter 4 Quarter 8 Quarter

1 benchmark 0.89 0.0067 0.0089 0.75 0.53 0.23
2 high ρ 0.95 0.0068 0.0234 0.71 0.68 0.58
3 sample 1948:1-2008:1 0.96 0.0099 0.0382 0.73 0.71 0.64
5 low σν 0.89 0.0067 0.0055 0.82 0.46 0.17
4 high σν 0.89 0.0067 0.0123 0.68 0.53 0.26

Table 4: Variance Decomposition: Robustness Checks

4.4 Recovering the states: retrospective history

So far we have focused on using structural estimation to estimate the model’s parameters.

Now we turn to the question: what information on the unobservable states and on the shocks

can be recovered from structural estimation? We begin with the states.

Using the Kalman smoother it is possible to form Bayesian estimates of the state vector

ξE
t using the full time series available and obtain a retrospective history of the U.S. business

cycle. The top panel of Figure 4 plots estimates for the permanent component of productivity

xt obtained from our benchmark model. The solid line correspond to xt, the dashed line

to the consumers’ real time estimate of the same variable xt|t. Notice that both xt and xt|t
are unobservable states for the econometrician, so the two lines correspond to the Bayesian

estimates of the respective state (see Appendix D).

Looking first at medium-run movements, the model identifies a gradual adjustment of

consumers’ expectations to the productivity slowdown in the 70s and a symmetric gradual

adjustment in the opposite direction during the faster productivity growth after the mid

90s. Around these medium-run trends, temporary fluctuations in consumers’ expectations
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Figure 4: Smoothed estimates of the permanent component of productivity, of long-run
productivity, and of consumers’ real time expectations
Top panel: smoothed estimate of xt (solid line) and of xt|t (dashed line)
Bottom panel: smoothed estimate of xt+∞ (solid line) and of xt+∞|t (dashed line)

produce short-run volatility.

To gauge the short-run effects of expectational errors, however, the consumers’ expec-

tations of xt are not sufficient, given that consumers project future growth based on their

expectations of both xt and xt−1. For this reason, in the bottom panel of Figure 4, we plot

the smoothed series for the consumers’ real time expectations regarding long-run produc-

tivity, xt+∞|t = (xt|t − ρxt−1|t)/(1 − ρ), and compare it to the smoothed series for xt+∞.

The model generates large short-run consumption volatility out of temporary changes in

consumers’ expectations of future productivity. Sometimes these changes occur when con-

sumers’ overstate current xt (e.g., at the end of the 80s), other times when consumers slowly

catch up to an underlying productivity acceleration and understate xt−1 (e.g., at the end

of the 90s). Obviously, the model is too stylized to give a credible account of all cyclical

episodes. For example, given the absence of monetary policy shocks the recession of 1981-82

is fully attributed to animal spirits.

The Kalman smoother also tells us how much information on the unobservable states is
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Figure 5: RMSE of the estimated states at time t using data up to t + j

contained in past and future data. In particular, in Figure 5 we plot the root mean squared

errors (RMSE) of the smoothed estimates of xt and zt, when data up to t+j are available, for

j = 0, 1, 2, .... Formally, these RMSE correspond to the square root of Et+j[(xt−Et+j[xt])
2],

and can be computed using two different information sets: the econometrician’s, which only

includes observations of ct and at, and the consumer’s, which also includes st. For simplicity,

we compute RMSE at the steady state of the Kalman filter, that is, assuming the forecaster

has access to an infinite series of data, from −∞ to t + j. In this case, the econometrician’s

information set coincides with the consumer’s, that is, the econometrician can back up the

current value of st perfectly from current and past observations of ct and at. Although we

have not established this result analytically, it holds numerically in all our examples: the

computed RMSE of the econometrician’s estimate of st goes immediately to zero at j = 0.

This implies that, in our model, with a sufficiently long data set, the direct observation of

st does not add much to the econometrician’s ability to recover the unobservable states (or

the shocks).

Figure 5 shows that the contemporaneous estimate of the current state xt has a standard

deviation of 0.44%. By using future data, this standard deviation almost halves, to 0.28%.

However, most of the relevant information arrives in the first six quarters, after that, there

are minimal gains in the precision of the estimate.
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Figure 6: Smoothed estimates of the shocks

4.5 Recovering the shocks: more on invertibility

Turning to the shocks, we know from our discussion of structural VARs that the information

in current and past values of ct and at is not sufficient to derive the values of the current

shocks. However, this does not mean that the data contain no information on the shocks.

In particular, using the Kalman smoother the econometrician can form Bayesian estimates

on εt, ηt, and νt using the entire time series available. Figure 6 plots these estimates for

our benchmark model. As for the states, in Figure 7 we report the RMSE of the estimated

shocks as a function of the number of leads available. To help the interpretation, each RMSE

is normalized dividing it by the ex ante standard deviation of the respective shock (σε, ση,

and σν).

Notice that if the model was invertible, the RMSE would be zero at j = 0. The fact

that all RMSE remain bounded from zero at all horizons shows that even an infinite data

set would not allow us to recover the shocks exactly.

The transitory shock ηt is estimated with considerable precision already on impact and

the precision of its estimate almost doubles in the long run. The noise shock νt is less

precisely estimated, but the data still tell us a lot about it, giving us an RMSE which is
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Figure 7: Normalized RMSE of the estimated shocks at time t using data up to t + j
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about 1/3 of the prior uncertainty in the long run. The shock that is least precisely estimated

is the permanent shock εt. Even with an infinite series of future data, the residual variance

is about 94% of the prior uncertainty on the shock.

How do we reconcile the imprecision of the estimate of εt with the fact that we have

relatively precise estimates of the state xt, as seen in Figure 5? The explanation is that

the econometrician can estimate the cumulated effect of permanent productivity changes by

looking at productivity growth over longer horizons, but cannot pinpoint the precise quarter

in which the change occurred. Therefore, it is possible to have imprecise estimates of past

εt’s, while having a relatively precise estimate of their cumulated effect on xt. This also helps

to explain the high degree of autocorrelation of the estimated permanent shocks in Figure

6. The smoothed estimates of εt in consecutive quarters tend to be highly correlated, as the

econometrician does not know to which quarter to attribute an observed permanent change

in productivity. Notice that the autocorrelation of the estimated shocks is not a rejection of

the assumption of i.i.d. shocks, but purely a reflection of the econometrician’s information.

In fact, performing the same estimation exercise on simulated data delivers a similar degree

of autocorrelation as the one obtained from actual data.

5 Extensions

We have shown how models where agents face signal extraction problems cannot be estimated

through SVARs, but can be estimated through structural estimation. Structural estimation

however requires a full specification of the model, including the productivity process, the

information structure, and the behavior of consumers. To explore how sensitive are the

estimated parameters to the specific assumptions, we consider two extensions.

The first is motivated by the data. As we saw from Table 1, the dynamics of consump-

tion and the dynamic relation between productivity and consumption are richer than those

implied by the benchmark. These require at least a modification of our assumptions about

consumption behavior. Our assumption about consumption implies that consumption fol-

lows an exact random walk for any productivity process and any standard deviation of the

noise in the signal. As we have seen however, the univariate process for consumption, on

line 2 of Table 1, shows evidence of richer dynamics.

Here we try two approaches. The first is to allow for some time variation in the real

interest rate by turning to a standard New Keynesian model with Calvo pricing. Such a

model is described in Appendix A and leads to a process for consumption (and output) of
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the form

ct = d1at + d2xt|t + d3xt|t−1 + d4zt|t (15)

where the coefficients d are non-linear functions of the following parameters: the discount

factor β, a parameter φ, reflecting the response of the nominal interest rate to inflation in the

monetary policy rule, and a parameter κ, capturing the degree of nominal and real rigidities

in price setting. We set β at 0.99 and estimate the remaining parameters by Maximum

Likelihood, following the same steps laid out in 4.2. The results are reported in Table 5.

Estimate Standard error
κ 0.0011 0.0004
φ 1.4436 0.1403
ρ 0.8780 0.0225
σu 0.0067 0.0004
σν 0.0065 0.0019
ML 1073.8

Table 5: Maximum Likelihood Estimation: standard New Keynesian model

Notice that the data prefer a very low value for κ, so the implications of the New Keyne-

sian model are very close to those of the benchmark model. In particular, the implied values

of the coefficients in (15) are

d1 = 0.0016, d2 = 7.9250, d3 = −6.9266, d4 = 0.0359,

while, in our benchmark model, given the same ρ = 0.878, the corresponding values would

be d2 = 1/(1−ρ) = 8.1967, d3 = −ρ/(1−ρ) = −7.1967 and zeros for d1 and d4. The implied

impulse responses are thus close to the ones in Section 2.

To capture slow consumption adjustment, we then try an alternative specification of

consumption behavior, which incorporates a simple backward looking element (a stylized

form of habit):

ct = δct−1 + (1− δ) lim
j→∞

Et[at+j].

In Table 6 we report the results from estimating this variant of the model, presented as a grid

search over the value of the adjustment parameter δ. The data seem to prefer a small but

positive value of δ, which helps to account for the positive autocorrelation in the univariate

process for consumption growth (see Table 1, line 2).

Our second extension is motivated by the discussion of labor hoarding and pro-cyclical
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δ ρ σu σε ση σν ML
0 0.8785 0.0068 0.0008 0.0063 0.0086 1073.3

0.1 0.8700 0.0071 0.0009 0.0066 0.0080 1075.9
0.2 0.8591 0.0075 0.0011 0.0070 0.0072 1074.8
0.3 0.8412 0.0082 0.0013 0.0075 0.0062 1068.8
0.4 0.7823 0.0092 0.0020 0.0081 0.0035 1057.0
0.5 0.6915 0.0107 0.0033 0.0089 0.0002 1044.4
0.6 0.7126 0.0130 0.0037 0.0110 0.0003 1018.2
0.7 0.6524 0.0177 0.0061 0.0143 0.0006 976.7
0.8 0.6371 0.0272 0.0099 0.0217 0.0012 910.9
0.9 0.6480 0.0567 0.0200 0.0456 0.0033 796.0

Table 6: Maximum Likelihood Estimation: Slow Consumption Adjustment

α ρ σu σε ση σν ML
0 0.8910 0.0067 0.0007 0.0063 0.0089 1073.2

0.1 0.8989 0.0069 0.0007 0.0065 0.0067 1072.9
0.2 0.9110 0.0072 0.0006 0.0069 0.0052 1071.6
0.3 0.9249 0.0077 0.0006 0.0074 0.0039 1068.2
0.4 0.8948 0.0085 0.0009 0.0080 0.0 1064.6
0.6 0.9434 0.0114 0.0006 0.0111 0.0 1034.1
0.8 0.9645 0.0229 0.0008 0.0225 0.0 937.6
1 0.0070 0.0067 0.0067 0.0006 0.0857 391.1

Table 7: Maximum Likelihood Estimation: Labor hoarding

productivity in the research on the relation between output and employment. Our bench-

mark model has assumed that labor productivity is exogenous; there is however substantial

evidence that some of the movements in productivity are in fact endogenous. Thus, in con-

trast to our assumption, a positive realization of the noise shock may lead consumers to

spend more, and lead in turn to an increase in productivity.

To capture endogenous responses of productivity, we extend the model by assuming that

the process at captures the exogenous component of productivity, while actual productivity,

denoted by ãt, responds to increases in employment according to the relation:

ãt = at + α(ct − at).

Table 7 displays the Maximum Likelihood estimation for this case, as a grid over values for

α. In this case, the model fits the data better with no endogenous productivity responses,
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i.e., with α = 0. However, the likelihood is relatively flat for low levels of α. Notice that, in

that region, the model compensates for higher values of α by choosing lower estimates for σν .

To interpret this result, remember from Section 4.1 that higher values of σν are associated to

a higher coefficient of correlation between the innovations of consumption and productivity

uc
t and ua

t . Allowing for endogenous productivity, gives us an alternative channel to explain

this correlation. The results in Table 7 show that, having only data on consumption and

observed productivity, it is hard to distinguish the role of these two channels.

6 Conclusions

On the methodological side, we have explored the problem of estimating models with news

and noise—which we think provide an appealing description of the cycle. We have shown the

limits of SVAR estimation, and shown how these models can be estimated with structural

methods. This implies that to identify the role of news and noise in fluctuations one must

rely more heavily on the model’s structure. In this paper, a central role for identification

was played by the consumer’s Euler equation, that is, by the assumption that current move-

ments in consumption are primarily driven by changes in the consumers’ expectations on

the economy’s lung run potential.

On the empirical side, the data appear quite consistent with a view of fluctuations where

the pattern of technological change is smooth, subject to random shocks which only build

up slowly, while most of the short-run action in consumption and output comes from noisy

information on these long-run trends. Clearly, we need to extend the model in many dimen-

sions before having confidence in these conclusions. In particular, adding investment seems

an essential step in building models of the business cycle driven by anticipations.

Another natural extension is to add variables to the empirical exercise, to better capture

consumers’ expectations about the future. For example, one could include financial market

prices, following Beaudry and Portier (2006), or survey measures of consumer confidence,

as Barsky and Sims (2008). However, the analysis in Section 3, where we allowed the

econometrician to directly observe all the signals observed by the consumers, shows that

adding variables is not sufficient, in general, to solve the identification problems of SVARs.

Finally, it is useful to notice that the applicability of SVAR methods depends crucially

on the way in which one models the information structure. In models where the consumer

exactly observes shocks which will affect productivity in the future, invertibility problems

may be less damning (see our comments in Section 3.5 and the analysis in Sims (2009)).

However, we think that, in many instances, signal extraction models provide a more realistic
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and flexible description of the informational environment. When dealing with these models,

the researcher can choose, depending on the question at hand, either to limit attention to

the innovation representation of the consumers’ forecasting problem or to take the structural

approach developed here.
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Appendix A. Relation of the model with the standard New Key-

nesian model

Consider a standard New Keynesian model, as laid out, e.g., in Gali (2008). Preferences are

given by

E
∞∑

t=0

βtU (Ct, Nt) ,

with

U (Ct, Nt) = log Ct − 1

1 + ζ
N1+ζ

t ,

where Nt are hours worked and Ct is a composite consumption good given by

Ct =
(∫ 1

0
C

γ−1
γ

j,t dj
) γ

γ−1

,

Cj,t is the consumption of good j in period t, and γ > 1 is the elasticity of substitution

among goods. Each good j ∈ [0, 1] is produced by a single monopolistic firm with access to

the linear production function

Yj,t = AtNj,t. (16)

Productivity is given by At = exp at and at follows the process (1)-(3). Firms are allowed to

reset prices only at random time intervals. Each period, a firm is allowed to reset its price

with probability 1 − θ and must keep the price unchanged with probability θ. Firms hire

labor on a competitive labor market at the wage Wt, which is fully flexible.

Consumers have access to a nominal one-period bond which trades at the price Qt. The

consumer’s budget constraint is

QtBt+1 +
∫ 1

0
Pj,tCj,tdj = Bt + WtNt +

∫ 1

0
Πj,tdj, (17)

where Bt are nominal bonds’ holdings, Pj,t is the price of good j, Wt is the nominal wage

rate, and Πj,t are the profits of firm j. In equilibrium consumers choose consumption, hours

worked, and bond holdings, so as to maximize their expected utility subject to (17) and a

standard no-Ponzi-game condition. Nominal bonds are in zero net supply, so market clearing

in the bonds market requires Bt = 0. The central bank sets the short-term nominal interest

rate, that is, the price of the one-period nominal bond, Qt. Letting it = − log Qt, monetary

policy follows the simple rule

it = i∗ + φπt, (18)
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where i∗ = − log β and φ is a constant coefficient greater than 1.

Following standard steps, consumers’ and firms’ optimality conditions and market clear-

ing can be log-linearized and transformed so as to obtain two stochastic difference equations

which characterize the joint behavior of output and inflation in equilibrium. After substi-

tuting the policy rule we obtain:

yt = Et [yt+1]− φπt + Et [πt+1] ,

πt = κ (yt − at) + βEt [πt+1] ,

where κ ≡ (1 + ζ) (1− θ) (1− βθ) /θ and where constant terms are omitted. As long as

φ > 1 this system has a unique locally stable solution where yt and πt are linear functions

of the four exogenous state variables at, xt|t, xt−1|t, zt|t,


 yt

πt


 = Dκ




at

xt|t
xt−1|t
zt|t




.

The matrix Dκ can be found using the method of undetermined coefficient as the solution

to


 1 φ

−κ 1


 Dκ =


 0 0 0 0

−κ 0 0 0


 +


 1 1

0 β


 Dκ




0 1 + ρ −ρ ρ

0 1 + ρ −ρ 0

0 1 0 0

0 0 0 ρ




.

The elements of Dκ are a continuous non-linear function of κ and some lengthy algebra

(available on request) shows that

lim
κ→0

Dκ =
1

1− ρ


 0 1 −ρ 0

0 0 0 0


 .

Since κ → 0 when θ → 1, this completes the argument.
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Appendix B. Consumers’ Kalman filter

Define the matrices

C ≡




1 + ρx −ρx 0

1 0 0

0 0 ρz


 , D ≡


 1 0 1

1 0 0


 ,

and

Σ1 ≡




σ2
ε 0 0

0 0 0

0 0 σ2
η


 , Σ2 ≡


 0 0

0 σ2
ν


 .

Then the process for ξt ≡ (xt, xt−1, zt) is described compactly as

ξt = Cξt−1 + (εt, 0, ηt)
′ ,

and the observation equation for the consumers is

(at, st)
′ = Dξt + (0, νt)

′ .

Let P ≡ V art−1 [ξt]. The value of P is found solving the equation

P = C
[
P − PD′ (DPD′ + Σ2)

−1
DP

]
C ′ + Σ1.

The matrixes A and B in the text are then given by:

A = (I −BD) C,

B = PD′ (DPD′ + Σ2)
−1

.

Appendix C. Proof of Proposition 1

Let wt be an identified shock, corresponding to a linear combination of current and past

observables. Applying the law of iterated expectations we get

E
[
ct+k|wt, Ie

t−1

]
= E[ lim

j→∞
E [at+k+j|It+k] |wt, Ie

t−1] = lim
j→∞

E
[
at+j|wt, Ie

t−1

]
,
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for all k ≥ 0 and, similarly,

E
[
ct+k|Ie

t−1

]
= lim

j→∞
E

[
at+j|Ie

t−1

]
.

It follows that the response of consumption to wt is constant and equal to

E
[
ct+k|wt, Ie

t−1

]
− E

[
ct|Ie

t−1

]
= lim

j→∞
E

[
at+j|wt, Ie

t−1

]
− lim

j→∞
E

[
at+j|Ie

t−1

]
,

for all k ≥ 0.

Appendix D. Econometrician’s Kalman Filter

The econometrician’s state vector is given by

ξE
t ≡

(
xt, xt−1, zt, xt|t, xt−1|t, zt|t

)′
.

Rewrite the dynamics of the vector of consumer expectations (xt|t, xt−1|t, zt|t), from (9), as

follows:




xt|t
xt−1|t
zt|t


 = A




xt−1|t−1

xt−2|t−1

zt−1|t−1


 + B


 1 + ρx −ρx ρz

1 + ρx −ρx 0







xt−1

xt−2

zt−1


 +

+B


 1

1


 εt + B


 1

0


 ηt + B


 0

1


 νt.

Then the state ξE
t evolves according to:

ξE
t = QξE

t−1 + R (εt, ηt, νt)
′ . (19)

where the matrices Q and R are given by

Q =




1 + ρx −ρx 0

1 0 0

0 0 ρz

0

B


 1 + ρx −ρx ρz

1 + ρx −ρx 0


 A




,
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R =




1 0 0

0 0 0

0 1 0

B


 1 0 0

1 0 0


 + B


 0 1 0

0 0 0


 + B


 0 0 0

0 0 1







.

When the econometrician can observe (at, ct), the observation equation is, in matrix form,

(at, ct)
′ = TXt, (20)

where

T =


 1 0 1 0 0 0

0 0 0 1 + ρx

1−ρx
− ρx

1−ρx
0


 .

The econometrician’s filtering problem can then be solved from (19)-(20). The case in which

the econometrician can also observe st is treated in a similar way. This filter can be used

both to compute recursively the likelihood function and to derive smoothed estimates of the

unobservable states in ξE
t , as in Section 4.4. Expanding the state space to include the shocks

(εt, ηt, νt), it is easy to compute their smoothed estimates, as in Section 4.5.
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