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NEWTON FLOWS FOR REAL EQUATIONS

HEINZ-OTTO PEITGEN, MICHAEL PRUFER
AND KLAUS SCHMITT

1. Introduction. Let G : R® — R" be a smooth mapping with
Jacobian matrix DG(z). In this paper we shall discuss the dynamical
system

(1) N(z) =z — DG(z)"'G(x)
provided by Newton’s method for the system of equations

(2 G(z) =0.

If n =2 and G is a rational mapping R of the complex plane C, then
the dynamics of (1), though possibly very complicated and delicate, is
understood in terms of the classical and recent theory of Julia sets [3,
4, 1]. In particular, since oo is typically a repelling fixed point of N
one has that

3) Jn = closure {z € C : N¥(z) = 0o, for some k € N}

is the Julia set of N(z) = =z — R(z)/R'(z) (here C = C U {oo} and
Nk = No...oN k-times). Moreover, if Z € C is a simple zero of R,
i.e., R'(Z) # 0, then Z is an attractive fixed point of N; if

(4) A(Z) ={z € C: N*(z) — T as k — oo},

is its basin of attraction, then

(5) 8A(?z:‘) = Jn.

Since (5) is true for any attractive fixed point of N (or even cycles), Jn
is typically a fractal set which in addition has the interesting property
that Newton’s method clearly will diverge for initial values in Jy. On
the other hand, if n is not restricted to be 1 or 2 and G is simply
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smooth, the dynamics of (2) is much more delicate and far from being
understood. For example:

(a) N may allow strange attractors (see [5]) which is not possible in
the complex case.

(b) What is the appropriate analogue to a Julia set? Is there a result
similar to (5)7?

Associated with the dynamical system (1) there is the system of
ordinary differential equations

(6) i(t) = —DG(x(t)) "' G(x(t)).

Knowledge of the flow defined by this system contributes much to the
understanding of the orbit structure of (1). We observe that (1) is
simply a particular case (h = 1) of an Euler method

(7 Ni(z) = = — hDG(z)"'G(z)
for (6).

The boundary of the domain of definition of (6) is the singular set
(8) S ={z € R" : det DG(z) = 0}

(typically (i.e., if 0 is a regular value of det DG : R™ — R) a collection
of smooth n — 1 manifolds); this set plays an important role in relating
the systems (6) and (7) (see [5] for details).

Our objective here is to give some evidence for an interesting conjec-
ture (which is true for Newton’s method for rational mappings of C)
for the mapping N.

Define the Julia-like set of N by
(9) Jn = closure {x € R": N¥(z) € S, some k € N U {0}},
generated by the preimages of S. Define the ezploding set of N by
(10) En = closure {z € R" : || N*(z)|| = oo as k — o0},

(where || - || is some norm for R™). While it is apparent that Jy # 0,
it is by no means clear or obvious that Ex # 0. We then have the
following conjecture.
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Figure 1. Bifurcation diagrams for (11) and (12).

CONJECTURE. Jy = En.

(Observe that in the complex case co typically has a dense inverse
orbit in Jy (see (3)).)

2. A special case. In this section we shall discuss the above con-
jecture for a particular model problem in R
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Figure 2(a). Phase Portrait of (6) with G as in (11), u = 2.1, two sinks.

Let

(11) G(z) = Az — uF(2),
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where
A= (—1 _21)
re= (7))
and
f(s) =54’
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Figure 2(b). Phase Portrait of (6) with G as in (11), u = 3.2, four sinks.
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We note that (11) is a standard two point difference approximation
for the boundary value problem

"+ Af(u)=0
(12 L 202 ),

where 4 = A6 and § = n/3. The bifurcation diagrams for (11) and
(12) are given by Figure 1, and Figure 2 shows the continuous time
flow of (6) for two choices of y and G as in (11).

In this example the singular set S is given by a pair of hyperbolas S+
and S~. One can easily show that St behaves like a global repeller
in both cases and S~ like a global attractor for u < 3. For u > 3,
however, S~ has passed through a bifurcation state (at u = 3) and as
a result decomposes into repelling and attracting components.

Figure 3 and 4 show plots of delicate computer experiments displaying
Jn for various choices of h and 4 = 2.1 and p = 3.2.

Apparent from these experiments is the crucial role of the singular
set S which generates Cantor sets of curves. In addition, Figure 3
demonstrates the importance of the straight line
(13) G,={r=(21,22) : 21 + 22+ (3 — pu)/n=0}.

One of the results from [5] is the following theorem.

THEOREM. Let 0 < u <3 and0 < h < 2.

(a) Gy C Jn and

Jn = closure {z € R? : N¥(z) = P,, some k € N}

where

{P.}=85"NnG,.
(b) N|g, is equivalent to a Newton method on the real line
r(s) = s — kk(s)/K'(s),

where k(s) = ps® — (u+1)(u — 3)/4u.
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h=1.85 h=1,95
Figure 3. The Julia like set Jy for (7), G as in (11) and p = 2.1.

(¢c) N|g, is chaotic, i.e., N restricted to G, is equivalent to z — 2°
on the unit circle.

With these observations we are now in a position to discuss the main
point of this paper.

3. Theorem and conjecture. Let G be as in (11) and 0 < u <
3, 0<h<2

(a) There is a dense set H, C G, such that each Q € H,, is a periodic
repeller of N (see (7)).

(b) Each Q € H,, distinguishes a smooth 1—manifold Mg which is

e diffeomorphic to [0, 00)

e tnvariant under NP, where QQ has period p.

(c) For each z € Mg — {Q}, ||N*?(z)|| — 0o as k — oo.

REMARK.

(i) Note that (c) means that Ex is not empty. Computer experi-
ments based on (c) have provided strong evidence that, in the above
case, indeed

Jnv =En.
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Figure 4. The Julia like set Jy for (7), G as in (11), u = 3.2.

(ii) The 1-manifolds above are similar to the “hairs” as discussed in
[2] on Julia sets for the exponential family

Ejx(z) = Aexpz

in C.

(iii) It is not difficult to show that the continuous time flow (6) re-
mains bounded for all time. In that regard Euler’s method is surpris-
ingly different for all & > 0 (see [5])!

We shall now give a sketch of a proof of our main result:

Step 1. On shows that the dynamics of N restricted to G, is
equivalent to the dynamics

a — 2a(mod 1)
a€[0,1)].
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Figure 5.

In this equivalence the point {P,} = S~ NG, corresponds to 1/2. As
a consequence one obtains the dense subset H, C G, as asserted in

(a).

Step 2. Let Q € H,, be a point of period p. Using binary operations
from step 1, one can find sequences {Q,}32; and {Q"}2, in G, such
that

olim@, = Q =1limQ"
oN?(Qn) = Qn-1, NP(Q™) = Q™!

*{Q.},{Q"} C {z: N¥(z) = P,, some k € N}.

Step 3. Each of the points Q,, and Q" is a touch point of a component
of the iterated inverse images of S—. The latter is the set

UkzoN_k(S—),
where N7%(X) = {z : N*¥(z) € X}. Using these components one
may construct sets My, as given in Figure 5, and show that N?(M,,) C
M,,_;. Now one defines

Mg = Np>1 My,

so that N?(Mq) C Mg will follow by construction.
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Step 4. On finally must show that
[|N*?(z)|| — oo as k — oo,

whenever z € Mg. This part of the proof is supported by experimental
evidence, except for special choices of h and u, e.g., this step is not too
difficult to establish in case y =2,h=1and p = 2.
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