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N E W T O N FLOWS FOR REAL EQUATIONS 

HEINZ-OTTO PEITGEN, MICHAEL PRÜFER 
AND KLAUS SCHMITT 

1. Introduction. Let G : Rn —• Rn be a smooth mapping with 
Jacobian matrix DG(x). In this paper we shall discuss the dynamical 
system 

(1) N{x) = x-DG(x)-1G(x) 

provided by Newton's method for the system of equations 

(2) G(x) = 0. 

If n = 2 and G is a rational mapping R of the complex plane C, then 
the dynamics of (1), though possibly very complicated and delicate, is 
understood in terms of the classical and recent theory of Julia sets [3, 
4, 1]. In particular, since oo is typically a repelling fixed point of N 
one has that 

(3) JN = closure {x eC : Nk(x) = oo, for some k G N} 

is the Julia set of N(x) = x — R{x)/R'(x) (here C = C U {oo} and 
Nk = N o - • • o N fc-times). Moreover, if x G C is a simple zero of R, 
i.e., R'(x) ^ 0, then x is an attractive fixed point of TV; if 

(4) A(x) = {x G C : Nk{x) -+ x as k - • oo}, 

is its basin of attraction, then 

(5) dA(x) = JN. 

Since (5) is true for any attractive fixed point of N (or even cycles), JN 
is typically a fractal set which in addition has the interesting property 
that Newton's method clearly will diverge for initial values in J^. On 
the other hand, if n is not restricted to be 1 or 2 and G is simply 
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smooth, the dynamics of (2) is much more delicate and far from being 
understood. For example: 

(a) N may allow strange attractors (see [5]) which is not possible in 
the complex case. 

(b) What is the appropriate analogue to a Julia set? Is there a result 
similar to (5)? 

Associated with the dynamical system (1) there is the system of 
ordinary differential equations 

(6) x{t) = -DGixit^Gixit)). 

Knowledge of the flow defined by this system contributes much to the 
understanding of the orbit structure of (1). We observe that (1) is 
simply a particular case (h = 1) of an Euler method 

(7) Nh(x) = x- hDG(x)-lG{x) 

for (6). 

The boundary of the domain of definition of (6) is the singular set 

(8) S = {xeRn : det DG(x) = 0} 

(typically (i.e., if 0 is a regular value of det DG : R n —• R) a collection 
of smooth n — 1 manifolds); this set plays an important role in relating 
the systems (6) and (7) (see [5] for details). 

Our objective here is to give some evidence for an interesting conjec­
ture (which is true for Newton's method for rational mappings of C) 
for the mapping N. 

Define the Julia-like set of N by 

(9) JN = closure {x € R n : Nk(x) € 5, some k € N U {0}}, 

generated by the preimages of S. Define the exploding set of N by 

(10) EN = closure {x G R n : ||JV*(z)|| - • oo as k - • oo}, 

(where || • || is some norm for R n ) . While it is apparent that JN ^ 0, 
it is by no means clear or obvious that £"# ^ 0. We then have the 
following conjecture. 
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M= 2.1 M s 3 . 2 

Figure l. Bifurcation diagrams for (11) and (12). 

CONJECTURE. JN = EN. 

(Observe that in the complex case oo typically has a dense inverse 
orbit in JN (see (3)).) 

2. A special case. In this section we shall discuss the above con­
jecture for a particular model problem in R2. 
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Figure 2(a). Phase Portrait of (6) with G as in (11), fi = 2.1, two sinks. 

( i i ) G(x) = Ax- ßF(x), 
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where 

* > - ( & ! ) 

and 

/ ( s ) = 3 - s2. 

Figure 2(b). Phase Portrait of (6) with G as in (11), /z = 3.2, four sinks. 
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We note that (11) is a standard two point difference approximation 
for the boundary value problem 

ri2i fti" + A/(ti) = 0 
[lZ) \ t i ( 0 ) = 0 = tl(7T), 

where fi = X62 and 6 = 7r/3. The bifurcation diagrams for (11) and 
(12) are given by Figure 1, and Figure 2 shows the continuous time 
flow of (6) for two choices of \x and G as in (11). 

In this example the singular set S is given by a pair of hyperbolas S4" 
and S~. One can easily show that S + behaves like a global repeller 
in both cases and S~ like a global attractor for ß < 3. For /i > 3, 
however, S~ has passed through a bifurcation state (at /i = 3) and as 
a result decomposes into repelling and attracting components. 

Figure 3 and 4 show plots of delicate computer experiments displaying 
JN for various choices of h and /i = 2.1 and /i = 3.2. 

Apparent from these experiments is the crucial role of the singular 
set S which generates Cantor sets of curves. In addition, Figure 3 
demonstrates the importance of the straight line 

(13) GM = {x = {xlix2) : x1 + x2 + (3 - ß)/ß = 0}. 

One of the results from [5] is the following theorem. 

THEOREM. Let 0 < /i < 3 and 0<h<2. 

(a) GM C JN and 

JN = closure {x eR2 : Nk(x) = PM, some k G N} 

where 

{pM} = 5 - n G M . 

(b) ÌV|GM is equivalent to a Newton method on the real line 

r{s) = s-hk(s)/k'(s), 

where k(s) = /AS2 — (// + l)(/z — 3)/4/x. 
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h = 1.85 h = 1.95 

Figure 3. The Julia like set JN for (7), G as in (11) and /x = 2.1. 

(c) ÌV|G^ is chaotic, i.e., N restricted to GM is equivalent to z —» z2 

on the unit circle. 

With these observations we are now in a position to discuss the main 
point of this paper. 

3. Theorem and conjecture. Let G be as in (11) and 0 < JJL < 
3, 0 < h < 2. 

(a) There is a dense set HM C GM such that each Q G HM is a periodic 
repeller of N (see (7)). 

(b) Each Q € H^ distinguishes a smooth 1—manifold MQ which is 

• diffeomorphic to [0, oo) 

• invariant under Np, where Q has period p. 

(c) For each x G MQ - {Q}, ||iV**p(x)|| - • oo as k - • oo. 

REMARK. 

(i) Note that (c) means that EN is not empty. Computer experi­
ments based on (c) have provided strong evidence that, in the above 
case, indeed 

JN = EN> 
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= 0.3 h = 1.0 
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Figure 4. The Julia like set JN for (7), G as in (11), /x = 3.2. 

(ii) The 1-manifolds above are similar to the "hairs" as discussed in 
[2] on Julia sets for the exponential family 

E\ (x) = À exp x 

i n C . 

(iii) It is not difficult to show that the continuous time flow (6) re­
mains bounded for all time. In that regard Euler's method is surpris­
ingly different for all h > 0 (see [5])! 

We shall now give a sketch of a proof of our main result: 

Step 1. On shows that the dynamics of N restricted to GM is 
equivalent to the dynamics 

a —• 2a(mod 1) 

a G [0,1]. 
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Figure 5. 

In this equivalence the point {Pß} = S~ nGß corresponds to 1/2. As 
a consequence one obtains the dense subset EL c G» as asserted in 
(a). 

Step 2. Let Q G HM be a point of period p. Using binary operations 
from step 1, one can find sequences {Qn}£Li and {Q71}^ in GM such 
that 

• HmQn = Q = limQn 

•N*>(Qn) = Qn-uN*>(Qn) = Q " - 1 

•{Qn}, {Qn} C {x ; Nk(x) = PM, some ib € iV}. 

Step 3. Each of the points Qn and Qn is a touch point of a component 
of the iterated inverse images of S~. The latter is the set 

twv-*(s-), 

where N~k(X) = {a: : Nk{x) G X} . Using these components one 
may construct sets Mn as given in Figure 5, and show that Np(Mn) C 
M n _ i . Now one defines 

MQ = n n > i M n , 

so that NP(MQ) C M Q will follow by construction. 
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Step 4. On finally must show that 

| | iV*p(x)| |-+ooasÄ;-+oo, 

whenever x G MQ. This part of the proof is supported by experimental 
evidence, except for special choices of h and /i, e.g., this step is not too 
difficult to establish in case \i = 2, h = 1 and p = 2. 
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