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Abstract. We study preconditioners for the iterative solution of the linear systems arising in
the implicit time integration of the compressible Navier-Stokes equations. The spatial discretization
is carried out using a Discontinuous Galerkin method with fourth order polynomial interpolations
on triangular elements. The time integration is based on backward difference formulas resulting
in a nonlinear system of equations which is solved at each timestep. This is accomplished using
Newton’s method. The resulting linear systems are solved using a preconditioned GMRES itera-
tive algorithm. We consider several existing preconditioners such as block-Jacobi and Gauss-Seidel
combined with multi-level schemes which have been developed and tested for specific applications.
While our results are consistent with the claims reported, we find that these preconditioners lack
robustness when used in more challenging situations involving low Mach numbers, stretched grids
or high Reynolds number turbulent flows. We propose a preconditioner based on a coarse scale
correction with post-smoothing based on a block incomplete LU factorization with zero fill-in (ILU0)
of the Jacobian matrix. The performance of the ILU0 smoother is found to depend critically on the
element numbering. We propose a numbering strategy based on minimizing the discarded fill-in in a
greedy fashion. The coarse scale correction scheme is found to be important for diffusion dominated
problems, whereas the ILU0 preconditioner with the proposed ordering is effective at handling the
convection dominated case. While little can be said in the way of theoretical results, the proposed
preconditioner is shown to perform remarkably well for a broad range of representative test problems.
These include compressible flows ranging from very low Reynolds numbers to fully turbulent flows
using the Reynolds Averaged Navier Stokes equations discretized on highly stretched grids. For low
Mach number flows, the proposed preconditioner is more than one order of magnitude more efficient
than the other preconditioners considered.
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1. Introduction. Discontinuous Galerkin (DG) methods using high order ap-
proximations have become an attractive alternative for the solution of systems of con-
servation laws [22, 9, 32]. The ability to obtain very accurate spatial discretizations
on arbitrary unstructured meshes makes them particularly suited for wave propaga-
tion problems in which low dispersion errors are a requirement. One of the attractive
features of DG methods is the very natural treatment of the convective operators
through the stabilizing inter-element jump terms. This avoids the need for cumber-
some interior stabilization terms. On the other hand, these advantages come at the
expense of an increased number of degrees of freedom. For explicit time integration
schemes, the penalty associated with the additional degrees of freedom is often not
significant and is offset by the added benefits of DG methods. Unfortunately, the
number of realistic problems which are amenable to explicit solution is very small.
In common situations, the large variations in element size required to resolve the
multiple spatial scales occurring in high Reynolds number flows, warrant the use of
explicit time integration techniques impractical. Also, systems of equations involving
multiple timescales, such as those resulting from low Mach number flows, necessitate
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the use of implicit integration methods.
For general nonlinear systems of equations, the implicit time discretization for-

mulas lead to nonlinear algebraic systems of equations which need to be solved at
each timestep. Clearly, the ability to solve these large systems is a critical step in ren-
dering the use of DG methods feasible. Furthermore, for large problems, particularly
in 3-D, it is too expensive to use direct solution techniques and therefore, iterative
methods must be employed. The development of iterative methods for convective-
diffusive systems has been a topic of considerable interest in the past. More recently,
some solution strategies have been proposed which are specific to DG methods. It
turns out that while some concepts are applicable independently of the discretization
method used, DG discretizations possess a certain block structure which sets them
apart from other alternative discretization methods.

In [17], the use of a block Gauss-Seidel (GS) smoother in combination with a
multigrid method is presented and shown to posses optimal behavior for linear ad-
vective diffuse systems resulting from DG discretizations. The performance of the
GS smoother is found to depend critically on the element ordering. For simple prob-
lems, obtaining good orderings using heuristic arguments is feasible, but the situation
is more complex for systems of equations such the Navier-Stokes equations. In [31]
linear and nonlinear multigrid methods for DG algorithms are presented using block
Jacobi and block GS smoothers. Good performance is demonstrated for the Euler
Equations on moderate subsonic Mach numbers and fairly isotropic meshes. In [14]
a multigrid approach for DG discretizations of the Euler and laminar Navier Stokes
equations is described. They show that by using a smoother based on the solution
of block tridiagonal systems significant performance improvements can be obtained
relative to simple block Jacobi smoother. Similar ideas were also used earlier in the
context of finite volume solvers in [29]. In general, these methods show promise and
put forward some of the ingredients which appear to be required for a scalable robust
DG solution method. In particular, the use of blocks rather than individual compo-
nents in the construction of the smoothers seems to be a requirement to eliminate high
p dependency [17] and is a natural choice in the DG context. For the pure convective
problem, there is little to be gained by using multilevel methods and in this limit,
the use of GS or line relaxation methods with suitable orderings are optimal. On the
other hand, multilevel strategies [6, 5] are necessary to attain efficiency for elliptic
type phenomena.

In this paper, we assess various preconditioning techniques from the point of view
of robustness and performance consistency over a broad range of realistic problems.
While our findings are largely consistent with the results published, we find that the
methods described above lack robustness and are not generally applicable to many
realistic engineering problems.

We consider implicit time discretization procedures, based on a backward differ-
ence approximation of the time derivative. The space discretization of the governing
equations is carried out using the a Discontinuous Galerkin method on triangular
meshes. Here, the viscous terms are discretized using the Compact Discontinuous
Galerkin (CDG) method [34], but we expect that the algorithms discussed would be
equally applicable to other types of viscous discretization schemes. The nonlinear
system of equations generated at each timestep is linearized exactly and solved using
Newton’s method. We are interested in high order spatial approximations and the
approach described here is general. However, for simplicity we present all our results
using a fourth order approximation of the solution unknowns. From our own experi-
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ence, this appears to be a good compromise between cost and accuracy for the class
of problems we consider.

The linear systems generated in the Newton process are solved by iteration. Here,
we consider a GMRES method and think of the multilevel solver as a preconditioner.
This is a rather common strategy for the solution of complex problems and is credited
with making the overall method more robust at a small additional expense [29, 17,
26, 25]. We consider several preconditioning options: block Jacobi, block GS and
block incomplete LU factorizations with zero fill-in (ILU0). For the GS and ILU0
methods, we propose inexpensive ordering algorithms which are based on minimizing
the magnitude of the discarded fill-in in a greedy fashion. Whilst incomplete LU
factorizations are commonly used as preconditioners for the GMRES algorithm [38, 25]
or smoothers for multigrid schemes [23, 41, 42], the use of block ILU0 as a smoother for
discontinuous Galerkin discretizations was only introduced in [35]. If the triangular
meshes considered are such that the neighbors of an element do not neighbor each
other, the U factor in the ILU0 factorization is identical to the upper triangular
part of the unfactored Jacobian matrix. This property extends to three dimensions
and justifies regarding the GS method as a particular ILU0 factorization in which
the lower factor L is taken to be zero. In the diffusive limit, we find it necessary
to introduce a coarse grid correction. In this case, the block Jacobi, block GS or
block ILU0 are used as post-smoothers after the coarse grid correction is calculated.
We restrict our attention to single coarse grid corrections obtained by using lower
order approximations on each element. In particular, we consider p = 0 (piecewise
constant) or p = 1 (piecewise linear) approximations. We have found little theoretical
and empirical justification for employing p−multigrid strategies [37, 14] in this context
given that, by retaining the block structure, the local elemental problems on the fine
mesh are solved exactly. For the problems considered here, the coarse grid correction
is solved exactly since it results in small problems, but for larger problems a scalable
multilevel solution of the coarse grid problem should be considered.

The combined ILU0 preconditioner with either p = 0 or p = 1 coarse grid correc-
tion appears to outperform all the other options considered. It shows a remarkable
consistency and robustness over a range of test cases which include flows ranging
from very low Reynolds numbers to fully turbulent flows using the Reynolds Aver-
aged Navier Stokes equations discretized on highly stretched grids. We acknowledge
that in the general case there is very little that can be proven rigorously. Neverthe-
less, the approaches we propose seem to perform reliably over a very broad range of
problems and we believe they have a fairly general applicability. A distinctive feature
of the proposed preconditioner relative to the other alternatives is its behavior for
low Mach number flows. For ILU0 with p = 1 coarse grid correction we experience
convergence behavior which is essentially independent of the Mach number. In this
scenario, the proposed preconditioner is more than one order of magnitude more effi-
cient than the other approaches considered. Finally, for time accurate solutions, we
also consider the effect of the preconditioners as a function of the time step employed
in the time integration.

In this paper, we do not consider parallel implementation issues even though
it is clear that practical uses of DG methods will require parallel computing. We
recognize the fact that parallelizing LU factorizations is not trivial, but we expect
that our ordering algorithms can guide in the selection of efficient partitions. One
approach for parallelization of ILU is proposed in [20] and related work on domain
decomposition and approximate factorizations includes [13, 18, 39]. Iterative solvers
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of ILU and multigrid type are also used in many parallel solver libraries, such as
PETSc [1] and AztecOO [21].

2. Problem Formulation.

2.1. Equations and Discretization. We consider a time-dependent system of
conservation laws of the form,

∂u

∂t
+∇ · Fi(u)−∇ · Fv(u,∇u) = S(u,∇u) , (2.1)

in a domain Ω, with conserved state variables u, inviscid flux function Fi, viscous flux
function Fv, and source term S. We allow for the inviscid and viscous fluxes as well
as the source term to be nonlinear functions of their arguments. In order to develop a
DG discretization of this problem, we eliminate the second order spatial derivatives of
u by introducing additional variables q = ∇u. Thus, the original system of equations
(2.1) is now re-written as

∂u

∂t
+∇ · Fi(u)−∇ · Fv(u, q) = S(u, q) , (2.2)

q −∇u = 0 . (2.3)

Next, we consider a triangulation Th of the spatial domain Ω and introduce the
finite element spaces Vh and Σh as

Vh = {v ∈ [L2(Ω)]m | v|K ∈ [Pp(K)]m, ∀K ∈ Th} , (2.4)
Σh = {r ∈ [L2(Ω)]dm | r|K ∈ [Pp(K)]dm, ∀K ∈ Th} , (2.5)

where Pp(K) is the space of polynomial functions of degree at most p ≥ 0 on triangle
K, m is the dimension of u and d is the spatial dimension.

We now consider DG formulations of the form: find uh ∈ Vh and qh ∈ Σh such
that for all K ∈ Th, we have

∫
K

qh · r dx = −
∫

K

uh∇ · r dx+
∫

∂K

ûr · nds , ∀r ∈ [Pp(K)]dm, (2.6)∫
K

∂uh

∂t
v dx−

∫
K

[Fi(uh)− Fv(uh, qh)] · ∇v dx =∫
K

S(uh, qh)v dx−
∫

∂K

[F̂i − F̂v] · nv ds , ∀v ∈ [Pp(K)]m. (2.7)

Here, the numerical fluxes F̂i, F̂v and û are approximations to Fi, Fv and u respec-
tively, on the boundary ∂K of the element K. The DG formulation is complete once
these numerical fluxes are specified in terms of qh and uh and the boundary conditions.

In order to ensure conservation, the normal component of both the viscous and
inviscid numerical fluxes at the element boundaries is chosen to be continuous across
elements. Also û is continuous across elements in our implementation. In particular,
the inviscid flux is determined using Roe’s [36] scheme whereas the viscous flux is
calculated using the CDG method [34].

We note that if the numerical flux û is chosen to be a function of uh and not qh
then, the additional qh variables can be eliminated after discretization at element level;
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thus, resulting in a system involving only the degrees of freedom corresponding to the
conserved variables uh. The final result is a system of coupled ordinary differential
equations (ODEs) of the form,

Mu̇ = R(u) , (2.8)

where u(t) is a vector containing the degrees of freedom associated with uh, and u̇
denotes the time derivative of u(t). Here, M is the mass matrix and R is the residual
vector which is a nonlinear function of u. We use nodal basis expansions [22] to
represent uh inside each element.

Given an initial condition u(0) = u0, the system of ODEs (2.8) needs to be further
integrated in time. Explicit techniques such as the popular fourth-order Runga-Kutta
scheme have timestep size restrictions that are too severe for many applications of
interest and therefore, we consider implicit solution techniques.

The backward differentiation formula [40] of order k (BDF-k) approximates the
time derivative at time tn = n∆t in terms of u(tn) and the solution at k previous
timesteps: u̇ ≈ 1

∆t

∑k
i=0 αiun−i. Here, un denotes an approximation to u(tn) and ∆t

is the timestep. The system of equations that needs to be solved in order to compute
un at each time level then becomes,

M

k∑
i=0

αiun−i −∆tR(un) = 0 . (2.9)

We use a damped Newton’s method to solve these equations. An initial guess u
(0)
n is

formed by extrapolating from the k previous solutions, and iterates u
(j)
n are evaluated

by computing corrections according to the linearized equation,

J(u(j)
n )∆u(j)

n = RBDF(u(j)
n ) , (2.10)

where the BDF nonlinear residual is given by

RBDF(un) = M

k∑
i=0

αiun−i −∆tR(un) , (2.11)

and the Jacobian J is obtained by differentiation of the BDF residual. Thus, dropping
the iteration superscript, we have,

J(un) =
dRBDF

dun
= α0M −∆t

dR

dun
≡ α0M −∆tK. (2.12)

The new iterates are obtained as u
(j+1)
n = u

(j)
n + β∆u

(j)
n , where β is a damping

parameter which is determined by forcing the residual to decrease after each iteration
[33]. These iterations are continued until the residual is sufficiently small.
In this paper, we will focus on the solution of the linear system of equations (2.10)
using iterative methods and deliberately ignore other issues related to the convergence
of the Newton method, such as the termination criterion for the Newton iterations.
We will study several representative test problems in detail for a range of timesteps
∆t and other problem parameters. The constant α0 is assumed to be exactly one for
simplicity (which is the case for k = 1 and a good approximation for higher k).
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Fig. 2.1. Sparsity structure of the matrix A for 4 triangles with p = 2, and m = 1.

2.2. Jacobian Sparsity Pattern and Representation. The system matrix
A = M −∆tK is sparse and its structure depends on the ordering of the unknowns
within the vector u. Since in the discontinuous Galerkin setting each unknown can be
unambiguously associated to an element, it seems natural to order the components of
u in such a way that all the unknowns associated to an element appear contiguously.
Furthermore, it is computationally efficient to number all the unknowns correspond-
ing to each of the m components of u consecutively within each element. This allows
common operations required for the residual and Jacobian evaluation, such as inter-
polating the unknowns at the integration points, to be carried out while maximizing
contiguous memory access. With this ordering, the matrix A has a block structure.
In particular, M is block-diagonal as it involves no dependencies between elements or
solution components. The size of each block is given by the number of nodes within
each element and the total number of blocks is equal to the number of elements times
m. On the other hand, the matrix K has a non-trivial block structure which is de-
termined by the element connectivity. The size of each block is equal to the number
of nodes within each element times m. We note that all the non-zero entries in M
are also non-zero entries in K and therefore the sparsity pattern of A is determined
by K.
In principle, the matrix A could be represented in a general sparse matrix format, such
as the compressed column format [2], but that would make it harder to take advantage
of the large dense blocks. Instead, we use a dense block format. Furthermore, when
using triangles in 2D and tetrahedra in 3D the number of non-zero blocks in each row,
except for boundary elements, is known a priori (4 in 2D and 5 in 3D). For illustration
purposes, Figure 2.1 shows the sparsity pattern of the A matrix for a sample mesh
consisting of 4 triangular elements and m = 1. We note that this pattern is common
to many discontinuous Galerkin methods for elliptic operators such as the Interior
Point Method [11] the scheme of Bassi and Rebay [3] or the CDG scheme used here
[34]. However, schemes such as the Local Discontinuous Galerkin [8] are known to be
non-compact and therefore have a larger number of non-zero blocks.

To illustrate the high cost associated with storing matrices for high order DG
discretizations, we consider a typical compressible Navier-Stokes problem in 3-D with
a one-equation turbulence model. If the tetrahedral mesh has 10,000 elements and the
polynomial order is p = 4 (a fairly coarse discretization), storing the residual vector
requires 16.8MB whereas storing the non-zero blocks in the A matrix requires 17.6GB
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assuming double precision. While these memory requirements appear to be very high
for a problem with only about 2 million degrees of freedom, it should be noted that
the calculations required for computing the matrix elements are very costly and scale
very unfavorably with large p so a matrix-free solver would likely be prohibitively
slow. In either case, it is clear that for practical applications a parallel computer is
required even for solving problems that would be considered relatively small for a low
order method.

We should also point out that for some methods the off-diagonal blocks are not
full and therefore some savings can be obtained by exploiting the sub-block structure.
In particular, the A matrix corresponding to the CDG method used here can be
implemented with less than half of the storage required if we assume that the off
diagonal blocks are full. For this paper however, we will not exploit this fact and
assume that the non-zero off diagonal blocks are full.

3. Krylov Solvers. We use Krylov subspace methods to solve the linear system
Au = b. In general, Krylov methods must be preconditioned to perform well. This
amounts to finding an approximate solver for Au = b, which is relatively inexpensive
to apply. From an implementation perspective these methods do not require the
explicit form of the system matrix A but only its effect on a given vector p, that is Ap.
Similarly, the effect of a left preconditioner only requires the ability to approximately
calculate A−1p.

Our plan is to use a stand alone multi-level solver as a preconditioner for the
Krylov method. This strategy is commonly used [29, 17, 26, 25] and is found to add
robustness over a multi-level iterative method at an affordable cost.

We consider several unsymmetric Krylov subspace methods: the Quasi-Minimal
Residual method (QMR), the Conjugate Gradient Squared method (CGS), the Gener-
alized Minimal RESidual method (GMRES), and restarted GMRES with restart value
r, GMRES(r). Among these, GMRES is, in general, the fastest and most reliable since
it based on the minimization of the true residual, but its storage and computational
cost increases with the number of iterations. GMRES with restarts is an attempt to
resolve this, however it is well known that its convergence may occasionally stagnate.
The two methods CGS and QMR are variants of the bi-orthogonalization method
BiCG, and require a lower amount of storage and computation than GMRES. More
details on these methods can be found in [2, 38].

4. ILU0 Preconditioning. Incomplete matrix factorizations are commonly used
as general purpose preconditioners for Krylov solvers. In this section, we describe two
preconditioners, the block Jacobi and the block Gauss-Seidel (GS) methods which are
obtained by setting to zero certain entries in the original matrix, as well as the incom-
plete LU factorization with zero fill, ILU0. We shall see that the ILU0 method is an
attractive option for DG preconditioning, because it offers a superior performance at
a comparable cost to the other simpler methods. In addition, by making very weak
assumptions on the quality of the meshes, one can make simplifications to the basic
ILU0 algorithm to further reduce the cost performance and storage requirements.

For a DG mesh consisting of ne elements, we think of the matrix A as consisting
of ne-by-ne blocks. Further, we let Aij denote the block with indices i, j. The goal is
to compute a matrix Ã which approximates A and which allows for the computation
of Ã−1p, for an arbitrary vector p, in an inexpensive manner.
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4.1. The Block-Diagonal Preconditioner. A simple preconditioner is ob-
tained by setting all blocks except the ones on the diagonal to zero:

ÃJ
ij =

{
Aij if i = j,

0 if i 6= j.
(4.1)

This block-diagonal preconditioner, or block Jacobi, is very easy to compute and the
effect of its inverse on an arbitrary vector is relatively cheap to compute since all
the diagonal blocks are decoupled and can be processed separately. It can have an
acceptable performance for some particular problems and parameter choices, but as
we will show it can also perform very poorly for more general problems.

If we keep the diagonal blocks plus all the blocks above (or below) the diagonal,
we obtain the block Gauss Seidel (GS) preconditioner:

ÃGS
ij =

{
Aij if i ≤ j,
0 if i > j.

(4.2)

This matrix is also trivial to obtain from A, and although the actual inverse is non-
trivial, the effect of its inverse on a vector can be easily calculated by a block back
solve. For some specific problems such as pure convection with an appropriate element
numbering, the GS method can perform significantly better than Jacobi. For general
problems however, it can only be expected to give small factors of improvement.

Note that unlike the scalar Jacobi and GS methods, the blocked versions re-
quire pre-processing of A for computing the inverses (or the LU factorizations) of
the diagonal blocks Aij . For the large block sizes obtained when p and m are large,
this can become a substantial part of the total preconditioning cost, see Section 4.4
for more details. To some extent, this justifies the use of more sophisticated block
preconditioners which incur small additional expense.

4.2. LU Factorizations. We start by considering a full block LU factorization
A = LU which can be computed by Gaussian elimination. A dense version without
pivoting that does not take sparsity into account is shown below.

U ← A,L← I
for j = 1 to n− 1

for i = j + 1 to n
Lij = UijU

−1
jj

for k = j + 1 to n
Uik = Uik −LijUjk

end for
end for

end for

Using this full factorization would solve the problem exactly in one iteration, at least
in the absence of rounding errors. Unfortunately, this factorization typically requires
a large amount of storage for the fill-in and is computationally prohibitive. Here the
fill-in refers to the matrix entries that are zero in A but non-zero in either U or L).

A compromise is to compute an approximate factorization ÃILU = L̃Ũ ≈ A,
such as the incomplete LU factorization [30]. In the so-called ILU0 method, no matrix
entries outside the sparsity pattern of A are allowed into the factorization L̃, Ũ , and
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any such entries are ignored during the factorization. This factorization is cheap to
compute and requires about the same memory storage as A itself. Although the
performance of the method is hard to analyze, the resulting matrix ÃILU is often
an efficient preconditioner. More expensive alternatives that perform better typically
discard most of the fill-in but not all. For example, some methods keep the fill-in
based on a prescribed pattern whereas some other approaches discard matrix entries
which are smaller than a prescribed threshold [38].

In the block matrices that arise from our DG discretizations, the sparsity pattern
of A is given directly by the connectivity between the mesh elements. That is, Aij 6= 0
only if i = j or elements i, j are neighbors. The ILU0 algorithm can then be written
as follows,

Ũ ← A, L̃← I
for j = 1 to n− 1

for neighbors i > j of element j
L̃ij = ŨijŨ

−1
jj

Ũii ← Ũii − L̃ikŨki

for neighbors k > j of elements j and i
Ũik = Ũik − L̃ijŨjk

end for
end for

end for

We can simplify this ILU0 algorithm by noting that for our meshes, it is uncommon
that an element k is a neighbor of both element j and i when j is a neighbor of
i. For a two dimensional triangular mesh, this would imply that the three triangles
i, j, k are fully connected, which means that the mesh is of rather poor quality. When
calculating the ILU0 preconditioner, we assume that this situation never occurs. If
it does, we just ignore the connection between i and k since after all we are just
computing an approximate factorization. Our final ILU0 algorithm then gets the
simple form,

Ũ ← A, L̃← I
for j = 1 to n− 1

for neighbors i > j of j
L̃ij = ŨijŨ

−1
jj

Ũii ← Ũii − L̃ikŨki

end for
end for

We note that this simplification gave our factorization another attractive property,
namely that Ũij = Aij when j > i. In words, Ũ only differs from A in the diago-
nal blocks, which means we do not have to store the upper triangular blocks of Ũ .
Another possibility to reduce storage costs is to utilize the fact that for a true ILU0
factorization, Aij = ÃILU

ij = (L̃Ũ)ij when Aij is non-zero [38]. That is, ÃILU only
differs from A outside the sparsity pattern of A. Therefore, the matrix A can be
overwritten by L̃ and Ũ and any operations involving A can be performed using L̃
and Ũ . For efficiency reasons one would likely also precompute and store the LU
factors of the diagonal blocks of Ũ . We observe that, while this approach reduces
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the total storage requirements, the matrix A is not stored explicitly and therefore,
its application to an arbitrary vector incurs a small computational penalty. In our
implementation we take advantage of the first property, namely, we store A, the lower
triangular blocks of L̃ but only the diagonal blocks of Ũ .

4.3. Minimum Discarded Fill Ordering. The performance of an incomplete
LU factorization when used as a preconditioner might be highly dependent on the
order in which the elimination is performed (or, equivalently, the ordering of the un-
knowns assuming the elimination is done from top to bottom). The issue of ordering
for incomplete LU factorizations has been studied before mostly for diffusion domi-
nated flows. To our knowledge however, this has not been done in the context of DG
discretizations.

It has been reported that a Reverse Cuthill-McKee ordering [15] performs sys-
tematically well for certain classes of problems [4]. Generally however, this is not the
case for more complex problems involving high convection and anisotropic elements.
Various physically inspired orderings have been suggested. For example in [24], it is
shown that by ordering the elements along each of the streamlines of the convective
operator good performance is obtained for the GS method. However, these approaches
do not generalize well to arbitrary problems and do not provide intuition on how to
treat mesh anisotropy and non-convective terms.

A more general approach is the Minimum Discarded Fill (MDF) method [10],
where the element that produces the least discarded fill-in is eliminated first, and
this process is repeated in a greedy way. The algorithm is similar to the Minimum
Degree Algorithm for fill-reduction in exact factorizations [16], but it tries to minimize
the value of the ignored fill rather than the size of the fill-in. The MDF method
was reported to give good results, mostly for scalar elliptic problems, although the
procedure for computing it was expensive. An alternative ordering method which is
cheaper to evaluate but provides comparable performance was recently proposed in
[28].

For our systems, it is clear that we would like to retain the block-format of the
linear system, and will therefore consider the ordering of the elements and not the
individual unknowns. Our algorithm is similar to the MDF method, however adapted
to our block matrices and with appropriate simplifications to reduce its cost.

Consider step j of the ILU algorithm, when j − 1 elements have already been
eliminated. The original algorithm would proceed by using element j as the pivot
element. Here, we instead compute the fill ∆Ũ (j) that would be generated if element
j′ was chosen as the pivot element,

∆Ũ
(j,j′)
ik = −Ũij′Ũ−1

j′j′Ũj′k, for neighbors i ≥ j, k ≥ j of element j′, (4.3)

for all potential pivots j′ ≥ j. The matrices ∆Ũ (j,j′) are the errors that we introduce
at step j of the incomplete LU algorithm compared to an exact LU step. To measure
the size of Ũ (j,j′) we take the Frobenius matrix norm and assign the weight

w(j,j′) = ‖∆Ũ (j,j′)‖F. (4.4)

Clearly, a greedy way for choosing a good pivot element at step j is to pick the one
that minimizes w(j,j′). One can then proceed by switching rows j and j′, performing
the ILU elimination step, and continuing to step j+1 where the procedure is repeated.
This is the basis of our algorithm.
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In order to make the algorithm faster and easier to implement, we will make some
simplifications that do not appear to destroy the nice properties of the ordering. To
begin with, it seems unnecessary to compute the full product in (4.3) since we are
only concerned about its matrix norm. Inspired by the fact that

‖∆Ũ
(j,j′)
ik ‖F = ‖ − Ũij′Ũ−1

j′j′Ũj′k‖F ≤ ‖Ũij′‖F‖Ũ−1
j′j′Ũj′k‖F, (4.5)

we pre-multiply the matrix by its block diagonal inverse, and reduce each block
A−1

ii Aij to the scalar number ‖A−1
ii Aij‖F. This implies a considerable reduction

in size and computational requirements since only the scalar fill-in weights, rather
than the full blocks, are needed in the ordering algorithm.

We summarize our ILU0 ordering algorithm as follows. The input to the algorithm
is the matrix A and the output is the computed ordering (permutation) pi.

B ← (ÃJ)−1A Pre-multiply by block diagonal
Cij ← ‖Bij‖F Reduce each block to scalar
for k = 1, . . . , n Compute all weights

∆C ← 0
for neighbors i, j of element k, i 6= j

∆Cij ← CikCkj Discarded fill matrix
end for
wk ← ‖∆C‖F Fill weight

end for
for i = 1, . . . , n Main loop

pi ← argminjwj Pivot with smallest fill-in
wpi
←∞ Do not choose pi again

for neighbors k of pi not yet numbered Update weights
Recompute wk, only considering
neighbors not yet numbered

end for
end for

The weights wj are stored in a min-heap data structure to obtain a total running
time of O(n log n) for the algorithm. The majority of the computational cost is typ-
ically the initial multiplication by the block-diagonal inverse matrix, except possibly
for very low p. We have experimented with cheaper versions of the algorithm, such as
projecting all blocks to p = 0 before multiplying by the block-diagonal. This produced
good results considering the simplicity, however in our implementation we work with
the full block-diagonal as in the algorithm above.

The orderings produced by the above algorithm are usually not appropriate for
the simpler GS method. However, we can make a small modification to find good
ordering for certain problems (in particular purely convective problems). At each
step, we choose the element that gives the smallest error between the true matrix
and the block upper-triangular GS matrix ÃGS. This is accomplished by using the
above ILU0 ordering algorithm but modifying the computation of the weights ∆Cij

according to,
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. . .
∆C ← 0
for neighbors i of element k

∆Cij ← Cik Discarded lower triangular blocks
end for
. . .

The algorithm will then try to find a permutation such that the matrix becomes up-
per triangular, in which case the GS approximation is exact (as well as the ILU0
approximation).

We note that for a pure upwinded convective problem, the MDF ordering is
optimal since at each step it picks an element that either does not affect any other
elements (downwind) or does not depend on any other element (upwind), resulting in
a perfect factorization. But the algorithm works well for other problems too, including
convection-diffusion and multi-variate problems, since it tries to minimize the error
between the exact and the computed LU factorization. It also takes into account
the effect of the discretization (e.g. highly anisotropic elements) on the ordering,
something that is harder to do with ad-hoc methods based on physical observations.

4.4. Computational Cost. To quantify the relative computational cost of the
three preconditioners, we calculate the leading terms in the operation count for each
algorithm. Consider a discretization with block size N , dimension D, and number of
elements ne. All block operations are then performed on dense N -by-N matrices and
N -by-1 vectors, and each block row of the matrix A consists of a diagonal block plus
D + 1 off-diagonal blocks. The number of floating point operations (flops) for basic
dense linear algebra operations are:

• N2 flops for a triangular back-solve
• 2N2 flops for a matrix-vector product
• 2N3 flops for a matrix-matrix product
• (2/3)N3 flops for an LU-factorization

Using this we obtain the following costs for the pre-calculation, that is, operations
performed only once for each matrix A:

Operation Flop count
Jacobi Factorization ÃJ (2/3)N3ne

Gauss Seidel Factorization ÃGS (2/3)N3ne

ILU(0) Factorization ÃILU (2D + 8/3)N3ne

Note that the pre-calculation also includes the computation of the actual matrix A.
The cost of this is application and implementation dependent, but for our nonlinear
problems it scales as O(N3ne) with a relatively large constant. This means that even
though the pre-calculation step for ILU(0) is about a magnitude more expensive than
for Jacobi or Gauss Seidel, the ratio of the total cost is typically much smaller. We
also point out that for simplicity we only consider full N -by-N blocks, but if the
off-diagonal blocks are sparser than the diagonal blocks, such as in the CDG scheme
that we are using [34], the cost of an ILU(0) factorization drops significantly.

For the operations performed during the GMRES iterations we obtain the follow-
ing costs per iteration:
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Operation Flop count
Jacobi solve (ÃJ)−1p (2)N2ne

Gauss Seidel solve (ÃGS)−1p (D + 3)N2ne

ILU(0) solve (ÃILU )−1p (2D + 4)N2ne
Matrix-vector product Ax (2D + 4)N2ne

The cost of a matrix-vector product is the same as a solve with the ILU(0) precon-
ditioner. Therefore, since every iteration includes one matrix-vector product and one
preconditioner solve, the difference per iteration between Jacobi and ILU(0) is always
less than a factor of two.

For the MDF element ordering algorithm, the cost is dominated by the first
line (block scaling) which has the same cost as computing an ILU(0) factorization.
However, in practice we do not perform this operation once for every linear solve, but
typically only once per timestep or even once per problem. Therefore, the ordering
does not contribute significantly to the total computational cost.

5. Coarse Scale Corrections. Multi-level methods, such as multigrid [19] solve
the system Au = b by introducing coarser level discretizations. This coarser dis-
cretization can be obtained either by using a coarser mesh (h-multigrid) or, for high-
order methods, by reducing the polynomial degree p (p-multigrid [37, 14]). The resid-
ual is restricted to the coarse scale where an approximate error is computed, which is
then applied as a correction to the fine scale solution. A few iterations of a smoother
(such as Jacobi’s method) are applied after and possibly before the correction to
reduce the high-frequency errors.

In the multigrid method a hierarchy of levels is used which are traversed in a
recursive way with a few smoothing iterations performed at each level. At the coarsest
scale, the problem is usually solved exactly, either by a different technique (such as
a direct solver) or by iteration. The multigrid method can be shown theoretically to
achieve optimal asymptotic computational cost, at least for elliptic problems.

For our DG discretizations, it is natural and practical to consider coarser scales
obtained by reducing the polynomial order p. The problem size is highly reduced by
decreasing the polynomial order to p = 0 or p = 1, even from moderately high orders
such as p = 4. For very large problems it may be necessary to consider h-multigrid
approaches to solve the coarse grid problem. However, this is not considered in this
paper.

Furthermore, we have observed that we often get overall better performance by
using a simple two-level scheme where the fine level corresponds to p = 4 and the
coarse level is either p = 1 or p = 0 rather than a hierarchy of levels. This can be
explained partly by the following arguments: i) the block Jacobi smoother already
solves the problem exactly within each block, in addition, the block ILU0 accounts for
some of the inter-element connectivities. The main role of the coarse scale correction
is therefore to account for the connectivities between the elements not handled by
the smoother. ii) the cost of computing the intermediate levels and the corresponding
smoothers using the DG method is high, already for degrees as low as p = 2. Therefore,
we appear to be better off making a cheap single coarse scale correction and spending
more of the time in the fine scale smoother and the GMRES iterations.

Based on these observations, our preconditioning algorithm becomes very simple
as it only considers two levels. It solves the linear system Au = b approximately
using a single coarse scale correction,
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0. A(0) = P T AP Precompute coarse operator, block wise
1. b(0) = P T b Restrict residual element/component wise
2. A(0)u(0) = b(0) Solve coarse scale problem
3. u = Pu(0) Prolongate solution element/component wise
4. u = u + αÃ−1(b−Au) Apply smoother Ã with damping α

Commonly used smoothers Ã include block Jacobi ÃJ or GS ÃGS, but as we describe
below, we are getting large performance gains by using the ILU0 factorization ÃILU.
The restriction/prolongation operator P is block diagonal matrix with all the blocks
being identical. The prolongation operator has the effect of transforming the solution
from nodal basis to a hierarchical orthogonal basis function based on Koornwinder
polynomials [27] and setting the coefficients corresponding to the higher modes equal
to zero. The transpose of this operator is used for the restriction of the weighted resid-
ual and for the projection of the matrix blocks. For more details on these operators
we refer to [7].

We use a smoothing factor α = 2/3 when the block diagonal smoother is used to
ensure that it has good smoothing properties (reduces the error in the high frequen-
cies), while α = 1 is used for the GS and ILU0 smoothers. We use a direct sparse
solve for the linear system in step 2, and we note that A(0) is usually magnitudes
smaller than A.

5.1. The ILU0/Coarse Scale Preconditioner. It is well known that an ILU0
factorization can be used as a smoother for multigrid methods [41, 42], and it has
been reported that it performs well for the Navier-Stokes equations, at least in the
incompressible case using low-order discretizations [12]. Inspired by this, we use the
block ILU0 factorization ÃILU as a post-smoother for a two-level scheme.

Our numerical experiments indicate that the block ILU0 preconditioner and the
low-degree correction preconditioner complement each other. With our MDF element
ordering algorithm, the ILU0 performs almost optimally for highly convective prob-
lems, while the coarse scale correction with either block diagonal, block GS, or block
ILU0 post-smoothing, performs very well in the diffusive diffusive limit.

6. Results.

6.1. Test Procedure. To study the performance of the iterative solvers, we
consider two equations, the linear scalar convection-diffusion equation and the com-
pressible Navier-Stokes equations. For the Navier-Stokes equations, the linear problem
is obtained by linearizing the governing equations about a steady-state solution. We
note that in a practical nonlinear solver, this linearized problem is different in each
Newton step and in each new timestep. However, in order to make a systematic study
possible we choose the representative steady-state solution for all our linearizations.
This leads to a problem of the form Au = b with A = M −∆tK, where the right-
hand side b is a random vector, which is taken to be the same for all cases considered.
To investigate the solution behavior for very large timesteps (i.e. steady state), we
set ∆t =∞, we take A = K.

Our initial solution vector is always the zero vector, and during the iterative
process, we monitor the norm of the true error e = u −A−1b relative to the initial
error (which is minus the true solution). We iterate until a relative error of 10−3 is
obtained, and study the number of iterations required by the various methods. Note
that the residual in the iterative solver depends on the preconditioner and therefore,
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Preconditioner Description
BJ Block Jacobi ÃJ

BGS Block Gauss Seidel ÃGS

BILU0 Block ILU(0) factorization ÃILU

BJ-p# p = # correction, smoother ÃJ, α = 2/3
BGS-p# p = # correction, smoother ÃGS, α = 1
BILU0-p# p = # correction, smoother ÃILU, α = 1

Table 6.1
The preconditioners that we consider for our test problems.

(a) Mesh (b) Solution (ε = 10−2)

Fig. 6.1. The convection-diffusion model problem.

its magnitude is not an appropriate convergence criterion.
The preconditioners that we consider are listed in Table 6.1. We do not consider

the actual computational time for these cases, but only the number of iterations
required for convergence. The operations counts in Section 4.4 give good estimates
of the relative cost between the preconditioners, as well as the pre-calculation steps
such as the MDF ordering and the ILU factorizations.

6.2. Scalar Convection-Diffusion. Our first test case is a scalar convection-
diffusion problem in two dimensions of the form

∂u

∂t
+∇ ·

[
αu
βu

]
−∇ ·

[
εux

εuy

]
= 0 (6.1)

with the space-dependent divergence-free convection field (α, β) = (1, 2x), and diffu-
sion ε ≥ 0. We solve on the unit square with boundary conditions u = x − 1 at the
bottom edge, u = 1 − y at the left edge, and free boundary conditions on the upper
and right edges.

We use a highly graded isotropic triangular mesh, see Figure 6.1 (a), with 1961
elements and fourth order polynomials within each element (p = 4). A typical solution
u(x, y) for parameter value ε = 10−2 is shown in Figure 6.1 (b).

6.2.1. Iterative Solvers. First, we solve our test problem with the block Jacobi
method as well as four different Krylov subspace solvers: QMR, CGS, GMRES(20),
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GMRES(20)
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Fig. 6.2. Convergence of various iterative solvers for the convection-diffusion problem with
ε = 0.01 and timestep ∆t = 10−4, CFL=3,000 (left) and ∆t = 10−2, CFL=300,000 (right).

and GMRES, all preconditioned using the block-diagonal preconditioner. The results
are shown in figure 6.2 for ε = 0.01 and ∆t = 10−4 and 10−2, corresponding to
CFL numbers of about 3, 000 and 300, 000, respectively. We note that for the smaller
timestep, all solvers show uniform convergence, with CGS requiring about twice as
many matrix-vector products than GMRES and block Jacobi and QMR about three
times as many. The situation is similar for the larger timestep, however CGS and
QMR are more erratic than GMRES and block Jacobi performs relatively worse.
This becomes more extreme for larger timesteps or for more complex problems, where
Jacobi in general does not converge at all. The plots also show that the restarted
GMRES gives only a slightly slower convergence than the more expensive full GMRES
for this problem.

The full GMRES has the disadvantage that the cost of storage and computation
increases with the number of iterations. We have not observed any stagnation of the
restarted GMRES(20) for our problems, and its slightly slower convergence is well
compensated by the lower cost of the method. The solvers QMR and CGS could be
good alternatives since they are inexpensive and converge relatively fast. Based on
these observations, and the fact that similar results are obtained for other problem
types, we focus on the GMRES(20) solver in the remainder of the paper.

6.2.2. Element Orderings for ILU0 and GS. Next we consider the steady-
state solution ∆t = ∞ for varying ε, and solve using the GMRES(20) solver with
ILU0 and GS preconditioning. The elements are ordered using two different methods:
i) Reverse Cuthill-McKee (RCM), which orders the elements in a breadth-first fashion
attempting to minimize the bandwidth of the factorized matrix. It has been suggested
as a good ordering for incomplete LU factorizations [4], and ii) Minimum Discarded
Fill (MDF) with our simplifications as described in Section 4 for ILU0 and for GS.

The number of GMRES iterations required for convergence is shown in Figure 6.3
as a function of ε. We note that for diffusion dominated problems (large ε) the results
are relatively independent of the ordering, while for convection dominated problems
(small ε) the ordering has a very large impact. In particular, ILU0 with the MDF
ordering is two orders of magnitude more efficient than RCM for low ε, and converges
in an almost optimal way with only 2 iterations for ε = 10−6. This is because the
algorithm will number the elements such that very little fill is produced, giving an
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Element Ordering for the Block-ILU Preconditioner (Convection-Diffusion)
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Fig. 6.3. The effect of element ordering on the block ILU0 and the GS preconditioners for
the convection-diffusion problem. Our MDF method is almost perfect for convection dominated
problems, but for higher diffusion the effect of element ordering is smaller.

ILU0 factorization that is close to the true LU factorization.
The GS preconditioner also performs almost optimally for the highly convective

problem, again because the elements can be ordered so that the system is almost
upper-triangular making the GS approximation exact. However, already for very
small amounts of diffusion added to the system this convergence is destroyed, and the
number of iterations increases faster than for ILU0.

Based on these results, we will use the MDF ordering for all remaining tests.

6.2.3. Comparison of Preconditioners. Next we study the performance of
the different preconditioners as a function of ε, again for the steady-state case ∆t =∞.
In Figure 6.4 we plot the number of iterations required, and we can draw the following
conclusions:

• The BJ preconditioner performs very poorly in all problems regimes
• The BILU0 preconditioner performs almost perfectly for convection domi-

nated problems, but poorly for diffusion dominated
• The BJ-p1 preconditioner is approximately the complement of ILU, since it

performs very well for the diffusive problems but poorly for convective
• The BILU0-p1 preconditioner combines the best of the BILU0 and the BJ-1

preconditioners and is consistently better than any of the two for all combi-
nations of convection and diffusion

• The BGS-p1 preconditioner performs similarly to BILU0-p1 for this example.
This is consistent with the results reported in [24]. However, as our next
examples show this is no longer the case for more complex problems.

The above results suggest the BILU0-p1 preconditioner, namely trying to combine the
strengths of the BILU0 preconditioner and the p = 1 correction in a general purpose
method. Furthermore, as we will show in the next section it has an excellent behavior
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Preconditioners for the Convection-Diffusion Problems
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Fig. 6.4. The number of iterations required for convergence using five preconditioners as a
function of ε. The BILU0 and BJ-p1 preconditioners performs well in different problem regimes,
and the BILU0-p1 preconditioner combines the two into an efficient general purpose method. For
this simple case the BGS-p1 also performs close to optimally.

for the Navier-Stokes equations.

6.2.4. Timestep Dependence. To study the convergence for the convection-
diffusion problem as a function of the timestep ∆t, we consider the two limiting
regimes regimes – pure convection (ε = 0) and pure diffusion (ε =∞, which reduces
to Poisson’s equation). We plot the number of iterations required for convergence as
a function of ∆t using four preconditioners. The dashed lines in the plots correspond
to the explicit limit, that is, the number of timesteps an explicit solver would need
to reach the corresponding time ∆t. An implicit solver should be significantly below
these lines in order to be efficient. Note that this comparison is not very precise,
since the overall expense depends on the relative cost between residual evaluation
and matrix-vector products/preconditioning. Nevertheless, it provides some useful
intuition.

The results are shown in Figure 6.5. As before, the ILU0-based preconditioners
are essentially perfect for the pure convection problem (convergence in one or two
iterations) independently of the timestep. The BJ and the BJ-p0 preconditioners
have about the same convergence, which means that the coarse scale correction does
not improve the convergence at all, which is expected for purely convective problems.

For the diffusive problem the BJ-p0 preconditioner is almost as good as the
BILU0-p0 preconditioner for large ∆t. For smaller timesteps the ILU0 is somewhat
better than the BJ-p0, and as before, the BILU0-p0 is always as good or better than
any other preconditioner.

6.2.5. Scaling with h and p. Our final test for the convection-diffusion problem
is to study the scaling of the convergence rate as the mesh is refined, both by refining
the elements (h-refinement) and by increasing the polynomial order (p-refinement).
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Preconditioners Convection/Diffusion, Timestep Dependency
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Fig. 6.5. The convergence of four preconditioners for the pure convection and the pure diffusion
problems, as a function of the timestep ∆t. The explicit limit line indicates which CFL number each
∆t corresponds to.

We consider the same convection-diffusion problem (6.1) as before, but using a regular
grid of n-by-n squares with edge lengths h = 1/n, split into a total of 2n2 triangles.
The problem is solved using the two preconditioners BILU0-p0 and BILU0-p1, the
steady-state timestep ∆t = ∞, and the three diffusion values ε = 0, ε = 10−3, and
ε =∞.

The resulting numbers of iterations are shown in Table 6.2. We note that for ε = 0
(pure convection), both preconditioners are perfect for any values of h and p due to
the MDF element ordering. For the low diffusion ε = 10−3, there is essentially no
p-dependency but a slight h-dependence in both preconditions (very weak for BILU0-
p1). Finally, for the Poisson problem ε =∞, the convergence with BILU0-p1 appears
to be independent on both h and p, but with BILU0-p0 the number of iterations grows
with decreasing h or increasing p.

We note that even though the number of iterations is independent of the mesh
size h (such as for Poisson with BILU0-p1), this does not necessarily mean that the
actual algorithm has optimal convergence, since the size of the coarse scale problem
varies. This could of course be remedied by combining the preconditioner with an
h-multigrid step, assuming a hierarchy of unstructured grids is available. However, in
all our experiments with p = 4, the coarse scale problems are so much smaller that the
computations spent on the coarse scale are negligible. This means that we in practice
observe the optimal linear dependence on the number of degrees of freedom when the
number of iterations is constant.

6.3. Compressible Navier-Stokes. Next, we study a more complex and re-
alistic problem, the solution of compressible Navier-Stokes equations. We will con-
sider a wide range of regimes, including inviscid flow (Euler equations), laminar flow
at moderate Reynolds numbers, and high-speed flows using the Reynolds Averaged
Navier-Stokes (RANS) equations with the one-equation Spalart-Allmaras turbulence
model. Our test problem is the flow around an HT13 airfoil at an angle of attack of
3 degrees. A sample solution for the RANS equations and a highly graded structured
C-type mesh of 1024 elements and polynomial order p = 4 is shown in Fig. 6.6. For
all the other computations a coarse mesh consisting of 672 elements and polynomial
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Preconditioner/Iterations
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ε = 0 p = 2 1 1 1 1 1 1 1 1 1 1
p = 3 1 1 1 1 1 1 1 1 1 1
p = 4 1 1 1 1 1 1 1 1 1 1
p = 5 1 1 1 1 1 1 1 1 1 1

ε = 10−3 p = 2 2 3 4 5 8 2 3 4 4 4
p = 3 2 3 4 5 9 2 3 3 4 4
p = 4 2 3 4 6 9 2 3 4 4 5
p = 5 2 3 4 6 9 2 3 4 4 5

ε =∞ p = 2 4 7 10 12 13 2 3 3 3 3
p = 3 4 8 11 15 17 3 3 3 3 3
p = 4 4 8 15 18 18 3 4 4 3 2
p = 5 4 10 17 24 21 3 4 4 4 2

Table 6.2
Scaling of the convergence for the convection-diffusion problem, as function of mesh size h and

polynomial order p.

order p = 4 within each element is used.

6.3.1. Convergence Results. The convergence results for the Navier-Stokes
model for a range of Reynolds numbers, Mach numbers, timesteps ∆t, and precon-
ditioners is presented in Table 6.3. Apart from the inviscid problem with M = 0.2
and ∆t = 10−3, all problems have CFL numbers higher than 100,000 which makes an
explicit solution procedure impractical.

In general, we see similar trends as for the convection-diffusion system, but we
make the following observations,

• The block Jacobi preconditioner performs very poorly in general, only show-
ing decent performance for small timesteps and large Mach numbers. This
does not improve significantly when used with a coarse grid correction, with
the exception of the inviscid problem for M = 0.2. This result is consistent
with the the findings reported in [31].

• The block GS preconditioner behaves similarly to the block Jacobi precondi-
tioner, only with about a factor of 2 faster convergence. This shows that the
optimal convergence for the pure convection example before was an exception,
and that GS is highly unreliable for more complex problems.

• The ILU0 preconditioner shows very good performance for almost all of the
test cases, except for large time steps and small Mach numbers. In these
cases, the coarse grid corrections result is dramatic improvements.

6.3.2. ILU0 Ordering Dependencies. It turns out that our MDF ordering
algorithm is also essential for Navier-Stokes problems, as shown in Table 6.4. Here, we
set M = 0.2 and ∆t = 1.0, and solve the four problems with the BILU0-p0 solver for
three element orderings: random, reverse Cuthill-McKee, and the MDF algorithm.
We see similar differences as we did for the pure convection problems, with up to
a magnitude fewer iterations with MDF than with a random ordering. The Euler
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(a) Solution (Mach number)

(b) Zoom-in, Solution (Mach number) (c) Zoom-in, Mesh

Fig. 6.6. The compressible Navier-Stokes model problem, with RANS turbulence modeling for
Re = 106 and M = 0.2.

problem is the least sensitive to ordering, where the simpler RCM algorithm gives
about twice as slow convergence as MDF.

6.3.3. Mach Number Dependence. To investigate how the convergence de-
pends on the Mach number in more detail, we solve the inviscid problem with ∆t = 0.1
for a wide range of Mach numbers. The plot in figure 6.7 shows again that for all
the methods, the performance worsens as the Mach number decreases, except for the
BILU0-p1 preconditioner and to some extent for the BILU0-p0. With BILU0-p1, the
number of GMRES iterations is almost independent of the Mach number, which is
remarkable. This is clearly due to the fact that block ILU0 is an efficient smoother,
that is, it reduces the high frequency errors both within and between the elements.
Combined with a coarse scale correction, which reduces the low frequency errors, this
results in a highly efficient approximate solver. However, the ILU0 solver by itself or
the coarse scale correction with GS do not perform as well since they only reduce the
error in some of the modes. This provides some intuition as to why the BILU0-p1
preconditioner performs well, but a more quantitative understanding of its properties
will require further analysis.

7. Conclusions. We have presented a study of preconditioners for DG dis-
cretizations of the compressible Navier-Stokes equations. We have found that many
of the commonly used preconditioners, such as block Jacobi, block Gauss Seidel, and
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Problem Parameters Preconditioner/Iterations
Block Jacobi Block G-S Block ILU0

∆t M B
J

B
J-

p0

B
J-

p1

B
G

S

B
G

S-
p0

B
G

S-
p1

B
IL

U
0

B
IL

U
0-

p0

B
IL

U
0-

p1

Inviscid 10−3 0.2 24 23 19 14 13 11 5 5 4
10−1 0.2 187 125 85 73 55 49 12 9 6
∞ 0.2 840 180 142 456 94 72 40 13 9

10−3 0.01 200 138 112 111 78 67 15 9 6
10−1 0.01 × × × × × 532 94 26 10
∞ 0.01 × × × × × × 374 50 16

Laminar 10−3 0.2 50 43 34 25 23 19 4 4 4
Re=1,000 10−1 0.2 × 867 597 477 378 225 11 8 5

∞ 0.2 × × × × × × 37 19 7
10−3 0.01 98 78 66 51 38 33 8 7 5
10−1 0.01 × 800 619 × 327 207 27 15 9
∞ 0.01 × × × × × 748 135 48 12

Laminar 10−3 0.2 26 25 19 14 13 11 4 4 4
Re=20,000 10−1 0.2 456 326 220 219 168 113 16 14 8

∞ 0.2 × × × × × × 236 55 20
10−3 0.01 160 117 90 61 49 38 12 8 6
10−1 0.01 × × × × × 735 80 38 16
∞ 0.01 × × × × × × × 219 35

RANS 10−3 0.2 76 70 56 33 30 28 8 9 7
Re=106 10−1 0.2 × × × × 963 × 35 30 25

∞ 0.2 × × × × × × 70 40 18
10−3 0.01 411 311 231 174 131 110 14 11 9
10−1 0.01 × × × × × × 46 28 16
∞ 0.01 × × × × × × 132 45 28

Table 6.3
Convergence of the compressible Navier-Stokes test problem using the four preconditioners and

varying Reynolds number, Mach number, and timesteps. A cross in the GMRES iterations column
indicates that the method did not converge to a relative error norm of 10−3 in less than 1000
iterations.

Problem Element Ordering

R
an

do
m

R
C

M

M
D

F

Inviscid 51 27 12
Laminar, Re=1,000 200 135 12
Laminar, Re=20,000 197 139 27
RANS, Re=106 98 99 18

Table 6.4
The convergence of the BILU0-p0 preconditioner for the Navier-Stokes problem with varying

Reynolds numbers, with M = 0.2 and ∆t = 1.0. In all problem regimes our MDF gives very large
improvements.
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Fig. 6.7. Convergence of GMRES(20) for the Navier-Stokes problems, as a function of the
Mach number. The convergence deteriorates with decreasing Mach number for all methods except
for BILU-p1, which is very insensitive to Mach number changes.

multilevel schemes, do not perform well in most flow regimes. Therefore we propose
a preconditioner based on a coarse scale correction with an incomplete LU factoriza-
tion with zero fill-in as a smoother. The element ordering is critical for incomplete
factorizations, and we propose a greedy-type heuristic algorithm that can improve
the convergence by orders of magnitude. Our preconditioner performs consistently
very well for a large range of Reynolds numbers, Mach numbers, and timesteps, for
isotropic and highly anisotropic meshes, and for other equations such as RANS with
turbulence modeling. A remarkable fact about the proposed preconditioner is that
the convergence is largely independent of the Mach number, for values almost as low
as M = 10−3. For this situation, the other preconditioners considered are usually
magnitudes slower.
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