Submitted to COAP on 27 Sep 2004

Newton-KKT' Interior-Point Methods for
Indefinite Quadratic Programming*

Pierre-Antoine Absil
School of Computational Science
Florida State University
Tallahassee, FL. 32306-4120
http://www.csit.fsu.edu/~absil /

André L. Tits!

Department of Electrical and Computer Engineering
and Institute for Systems Research
University of Maryland
College Park, MD 20742
andre@Qumd.edu

Abstract

Two interior-point algorithms are proposed and analyzed, for the
(local) solution of (possibly) indefinite quadratic programming prob-
lems. They are of the Newton-KKT variety in that (much like in the
case of primal-dual algorithms for linear programming) search direc-
tions for the “primal” variables and the Karush-Kuhn-Tucker (KKT)
multiplier estimates are components of the Newton (or quasi-Newton)

*The work of the first author was supported in part by the School of Computational
Science of the Florida State University through a postdoctoral fellowship. Part of this
work was done while this author was a Research Fellow with the Belgian National Fund
for Scientific Research (Aspirant du F.N.R.S.) at the University of Liege. The work of the
second author was supported in part by the National Science Foundation under Grants
DMI-9813057 and DMI-0422931.

fCorresponding author.

direction for the solution of the equalities in the first-order KKT
conditions of optimality or a perturbed version of these conditions.
Our algorithms are adapted from previously proposed algorithms for
convex quadratic programming and general nonlinear programming.
First, inspired by recent work by P. Tseng based on a “primal” affine-
scaling algorithm (& la Dikin) [J. of Global Optimization, to appear],
we consider a simple Newton-KKT affine-scaling algorithm. Then, a
“barrier” version of the same algorithm is considered, which reduces
to the affine-scaling version when the barrier parameter is set to zero
at every iteration, rather than to the prescribed value. Global and
local quadratic convergence are proved under mild assumptions for
both algorithms. Numerical results on randomly generated problems
suggest that the proposed algorithms hold promise, even when the
nondegeneracy assumptions are violated.

Key words. interior-point algorithms, primal-dual algorithms, indefinite
quadratic programming, Newton-KKT

1 Introduction

Consider the quadratic programming problem
1
(P) minimize §<x, Hz) + (c,x) st. Az <b, x€R",

with A € R™" b e R™, ¢ € R", and with H € R™" symmetric. In
the past two decades, much research activity has been devoted to developing
and analyzing interior-point methods for solving such problems in the convex
case, i.e., when H is positive semidefinite. In particular, a primal-dual al-
gorithm was first proposed and analyzed in [MAS89]. Interior-point methods
have also been proposed for the computation of local solutions to general,
nonlinear programming problems (e.g., [Yam98, ETTZ96, GOW98, FGI8,
BGNO00, VS99, PTH88, TWB*03]), and these of course can be used for tack-
ling (P). However, only limited attention has been devoted to exploiting
the quadratic programming structure of (P) in the nonconvex case. Notable
exceptions include the work of Ye and of Tseng ([Ye92, Tse04, TY02]) on
Dikin’s algorithm [Dik67], and that of Bonnans and Bouhtou [BB95] and of
Coleman and Liu [CL99], all of which consider trust-region-based algorithms.

In this paper, we propose and analyze two interior-point methods, one of
the affine scaling type, one of the barrier type, for the solution of problem (P).
Like the algorithms of [Ye92, T'se04, TY02, BB95, CL99], they both construct
feasible primal iterates (and require an initial feasible point). Strong global
and local convergence properties are established for both, and a numerical
comparison with the Dikin-type algorithm studied in [Ye92] and [T'se04] (and
tested in [T'se04]) is reported, that shows clear promise.

The proposed algorithms do not involve trust regions. Much like in the
case of primal-dual algorithms for linear programming, search directions for
the “primal” variables and the Karush-Kuhn-Tucker (KKT) multiplier es-
timates are components of the Newton (or quasi-Newton) direction for the
solution of the equalities in the first-order KKT conditions of optimality or
a perturbed version of these conditions. (KKT points and KKT multipliers
are formally defined in Section 2.) While in the nonlinear programming lit-
erature such algorithms are often referred to as primal-dual, mindful of the
stricter tradition in the linear/quadratic programming literature, we choose
to refer to the proposed schemes as Newton-KK'T.

Inspired by [Tse04], the present work first focuses on affine scaling. In
contrast with [T'se04] though, a Newton-KKT (rather than purely primal) al-
gorithm is considered. It is an enhanced, affine-scaling version of the barrier-
based general nonlinear programming algorithm of [PTH88] and [TWB*03],
refined to take advantage of the structure of (P). (A related affine-scaling
algorithm was considered in [TZ94] for the case of convex quadratic program-
ming.) Following [TWBT03], in early iterations, the Newton-KKT direction
is replaced by a quasi-Newton direction obtained by replacing H (or the
Hessian of the Lagrangian in the general case of [TWB7'03]) by a carefully
chosen matrix W = H + E, with E positive semidefinite. The reason for
doing this is that, in the absence of convexity, the Newton-KKT system may
be singular or, when it is not, may yield a primal direction that is a direction
of ascent rather than descent for the objective function. In the present con-
text however, the quadratic programming structure allows for a more efficient
computation of W and such computation can even often be skipped (and W
reused from the previous iteration). As another enhancement, applicable to
general nonlinear programming problems, a simpler update rule than the one
used in [PTH88] and [TWB*03] is adopted for the KKT multiplier estimates.
Global convergence as well as local quadratic convergence of the constructed
sequence to KKT points is proved under mild assumptions.

While affine scaling algorithms have the advantage of simplicity, it has

been observed in various contexts that comparatively faster convergence is
often achieved by certain barrier-based interior-point methods. The search
direction generated by such algorithms can be thought of as consisting of
an affine scaling component and a centering component. When the barrier
parameter is set to zero, the centering component vanishes, and the direction
reduces to the affine scaling direction. As a second contribution of this paper,
we propose a Newton-KKT barrier-based interior-point method for the solu-
tion of (P). The proposed algorithm is, again, strongly inspired from [PTHSS]
and [TWB*03] and indeed, reduces to Algorithm A1 if the rule assigning a
value to the barrier-parameter u* at each iteration is replaced by the rule
p* := 0. Apart from modifications to exploit the quadratic programming
structure of (P) and from the simplified KKT multiplier estimate update
rule mentioned above, the main difference between the proposed algorithm
and that of [TWB™03] is that the former uses a scalar barrier parameter, as
is done traditionally in interior-point methods, whereas the latter employs a
“vector” barrier parameter, i.e., a different barrier parameter value for each
constraints. Specifically, in [TWB*03] (and [PTHSS]), these values are se-
lected to be proportional to the corresponding components of the current
KKT multiplier vector estimate z > 0. The proof of superlinear convergence
given in [PTH88] (and invoked in [TWB*03]) relies on this selection, specifi-
cally in Proposition 4.5 of [PTHS88] where it is shown that, under appropriate
assumptions, close to KKT points, the full (quasi-)Newton step of one is al-
ways accepted by the line search. A secondary contribution of the present
paper is to establish local quadratic convergence (in particular, acceptability
of a stepsize asymptotically close to one) with a modified, scalar barrier pa-
rameter: it is proportional to the smallest among the components of z. Like
for the affine scaling algorithm, global convergence as well as local quadratic
convergence of the constructed sequence to KK'T points is proved under mild
assumptions.

The remainder of the paper is organized as follows. Section 2 includes a
full statement of the proposed affine scaling algorithm, and a discussion of
its main features. Section 3 is devoted to a careful analysis of the global and
local convergence properties of this algorithm. The proposed barrier-type
algorithm is stated, discussed and analyzed in Section 4. Implementation
issues are considered in Section 5 and numerical experiments are reported in
Section 6. Finally, Section 7 is devoted to concluding remarks. Our notation
is standard. In particular, || - || denotes the Euclidean norm, and A = B
indicates that matrix A — B is positive semidefinite.

2 Problem Definition and Algorithm State-
ment

Let I = {1,---,m}, where m is the number of rows of A, and, for i € I, let
a; be the transpose of the ith row of A, let b; be the ith entry of b, and let
gi(x) == (az,) —b;. Alsolet f(z) := L(xz, Hz) + (¢,), and let V f(z) denote
its gradient, Hx + ¢. Of course, for any Az,

Flo 4) = f(o) + (VF(x), Ar) + S(Ar, AR, (1)
The feasible set F is given by
F={zeR":¢9(x) <0 Viel},
and the strictly feasible F° set by
Foi={reR":gir) <0 Viel}

A point z* € F is said to be stationary for (P) if there exists an associated
multiplier (vector) z* € R™ such that

Vf(*)+ ATz =0 @)
zfgi(z*) =0 Viel.

(In particular, all vertices of F are stationary.) If furthermore z* > 0, then
x*is a KKT point for (P). (z* is then an associated KKT multiplier (vector),
and (z*,2*) a KKT pair.) Given z € F, we let I(x) denote the index set of
active constraints at z, i.e.

I(z):={iel: g(z) =0}

Let (z,z) be an estimate of a KKT pair (z*, 2*) for (P) and substitute
for the left-hand side of (2) its first order expansion around (z, z) evaluated
at (v + Ar, z + Az), i.e., consider the linear system of equations in (Ax, Az)

Vf(z)+ HAM + AT (2 + A2) =0 3)

which we refer to as the Newton-KKT equations. It will be shown that,
under mild assumptions, and after possible adjustment of H, if x € F°
(strict primal feasibility) and z; > 0 for all i € I (strict “dual feasibility”),

5

then the solution Az of (3), if it is nonzero, is a feasible direction which
is also a direction of descent for f, a useful property when seeking global
convergence to KKT points. Note that a favorable effect of strict primal and
dual feasibility is that it implies that (a;, Ar) < 0 whenever z; + Az; < 0, so
that the iterate will tend to move away from stationary points that are not
solution points.

A pure Newton iteration for the solution of (2) amounts to selecting
rt =2+ Av and 2T = z + Az as next iterates, where (Ax, Az) solves (3).
Under appropriate nondegeneracy assumptions, such iteration yields a local
Q-quadratic rate of convergence in (x, z). However, even close to a solution of
(2), this iteration may not preserve primal and dual feasibility. Fortunately,
it is possible to define next iterates ™ and 2™ that are strictly feasible and
satisfy, for some C' > 0,

la* — (2 + Av)|| < O(f| Al| + [|A2]]) (4)
zh = max{z; + A, | A|)® + || A2)|*}, i€l

(2

The quadratic convergence of Newton’s method is then preserved because
each component of the next iterate is “close enough” either to the corre-
sponding component of the solution of the nonlinear system of equations
being solved, or to the corresponding component of the next iterate given by
the pure Newton iteration. Updates closely related to these are used in Algo-
rithm A1, which we now state. Note that the algorithm statement implicitly
requires that F° be nonempty.

Algorithm Al.

Parameters. § € (0,1),2>0,Z>2,0>0,v>1

Data. 2° € F°, 20 >0 Vi e I.

Step 0. Initialization. Set k := 0. Set I:=0. Setew;, :=0,i=1,...,m.
Set £ :=1.!

Step 1. Computation of modified Hessian. If H > ol, set E¥ = 0
and W* := H. Else, set W* := H + E¥ with E¥ = 0 “small” such that

k

Wk45" maia? > ol; specifically:

olfﬁgk)‘§@-f0rsomeiETor(E?éOandT:(z)) or (E # 0 and
% > ~2a; for some i € T) then

IThe initial values assigned to the components of @ and to E are immaterial as long
as £ # 0.

_ Too_ i 2) — .1z : T
Set [:= {i : |g¢(mk)|_2 1}; set @ = S e I; if H+
Zfaia,-aiT = ol, set £ := 0, else set £ > 0 “small” such that

H + 2761‘@1‘&? + E i O’I.

e Set E¥ .= F.

Step 2. Computation of a search direction. Let (Ark, ¢*) solve the linear
system in (Ax, ()
WEAL + ATC = —V f (%) (58)

2Mag, M) + g;(2")G =0 Viel (5b)
Set Aok = ¢k — 2%, If Ae® =0, stop.
Step 3. Updates.

(i) Set
. 00 if (a;, Ac¥)y <0 Viel,
P =9 min {% ag, A*) > 0,0 € [} otherwise.
Set
t* .= min {max{ﬂfk,fk—HAIkH}, 1}. (7)
Set zF ! = 2% 4+ tF A
(i) Set

27t = min {max {min{||Ac*||* + || A%, 2}, ¢}, 2}, Vie . (8)

(iii) Set k :=k + 1. Go to Step 1.
0

Remark. In Step 3(i), 7 is the maximum step preserving primal feasibility
(z* +i' Ak e F) and the term 37" ensures that t* is positive even when | Az®|
is large. It will be shown that, close to a solution of (P), t* is close enough
to 1 for quadratic convergence to take place. In Step 3(ii), Z is introduced
to ensure boundedness of {z*}. (This is used in the proof of Lemma 3.2; it
may not be important in practice.) Notice that, in contrast to usual practice,
zF*1 is not obtained by a step in the direction of Az¥. Update rule (8) is
inspired from [PTHS88|. Numerical experiments (see Section 6) suggest that,
in the context of indefinite quadratic programming, this update rule often
performs better than an update along Az*. Finally, it follows from Step 3

7

that any z* and 2* computed by Algorithm Al are primal and dual strictly
feasible, namely

gi(z*) <0, Vi eI, (9)
>0, Viel (10)
%
For later reference, let
4 AT
Mz, 2, W) := {diag(zi)A diag(gi(x))l (11)

denote the full Newton-KKT matrix, so that the linear system (5a)-(5b)
appearing in Step 2 of Algorithm Al reads

_ k
M2k, 25 W) {Aﬂ _ { V{;(“”)} | (12)
Below we will also make use of a “general” instance of this system, viz.,
M(x,z, W) Arl _ 1=V /(@) . (13)
¢ 0
Also define the condensed Newton-KKT matrix
SF =Wk~ i & a;a; (14)
‘ i=1 gi(zk)

which is the Schur complement of diag(g;(z*)) in M (z*, 2%, W*).

Remark. Step 1in Algorithm A1l ensures that S* = o1, as we now explain.
The case when H > ol is clear. Assume that H % ol. Then, after completion

of Step 1, the relation W* + Y ;@a;af = ol is satisfied, and % >
@; for all i € 1. Consequently, S¥ = W* + > -@a,af = oI, hence the
desired conclusion. Next, under appropriate assumptions, {E*} converges
to zero (see Lemma 3.10 below) and Newton-related superlinear convergence
can set in. Step 1 also ensures that {WW*} is bounded, for any reasonable
interpretation of “small” in Step 1 of Algorithm Al (see, e.g., (46) below).

Finally, an interesting feature of Step 1 is that F need not be updated at
k —
each step: update occurs in particular if one of the ratios m, 1 € 1, leaves

8

the interval (@;, v*@;) through its lower end, or if £ # 0 and one of these

ratios leave the corresponding interval through its upper end. &
It is readily checked that the unique solution of (5a)-(5b) is given by
At = —(S*)7IV f(ah) (15a)
2k
¢F = —diag (J) AN 15b
e (15b)

Expression (15a) shows that Algorithm A1 belongs to the affine scaling fam-
ily. Since S* = o1, it also follows from (15a) that

(Vf(a"), A*) < —o| Aa*|? (16)

which shows that Az* is a direction of descent for f at z*. Since 2¥/g;(z*) < 0
for all ¢ and k, it follows from (15b) that

(¢, Ade®) > 0 (17)

for all k.
Next we establish that Algorithm Al is well defined and only stops at
unconstrained KKT points.

Proposition 2.1 Algorithm Al constructs an infinite sequence {x*} unless
the stopping criterion in Step 2 (Ax* = 0) is satisfied at some iteration k.
In the latter case, V f(x*) =0, hence 2% is a KKT point.

Proof. The computations in Step 3(i) of Algorithm Al ensure that every
constructed z**! belongs to F°, so that diag(g;(z*)) is nonsingular for all
k such that Step 3 is executed at iteration k — 1 (as well as for k = 0).
Since its Schur complement S* also is nonsingular for all such k, it follows
that M (z", 2%, W*) is nonsingular for all such k, thus that (5) has a unique
solution whenever Step 2 of Algorithm A1 is attempted. Since it is clear that
all other operations performed are well defined, the entire algorithm is well
defined and can only terminate at the stopping criterion in Step 2, say at
Tr,- In such case, since g;(z*0) < 0, substitution of Azk = 0 in (5) yields
(M =0 and Vf(z%) =0, i.e., 2% is a KKT point (indeed, an unconstrained
KKT point). O

The next section is devoted to analyzing the sequences constructed by
Algorithm A1l in the case where the stopping criterion is never satisfied.
Before proceeding to this analysis, we conclude this section with three lemmas
which will be of repeated use. The first lemma further characterizes the
relationship between Ar vanishing and x being stationary.

9

Lemma 2.2 Let (Ax,() satisfy (13) for some x, z, and W. Then (i) if
x € F and Av = 0, then x is stationary for (P) and (is an associated
multiplier vector; and (i) if x € F is stationary for (P) and M(x,z, W) is
nonsingular, then Xx = 0 and (is the unique multiplier vector associated
with x.

Proof. To prove the first claim, simply substitute Az = 0 into (13). Concern-
ing the second claim, let 17 be a multiplier vector associated with stationary
point z. It is readily verified that (0,7) satisfies (13). The claim then follows
from nonsingularity of M (x, z, W). O

Conditions guaranteeing the nonsingularity required in (ii) above are es-
tablished in the next lemma, borrowed from [TWB*03, Lemma PTH-3.1*].

Lemma 2.3 ? Let x € F be such that {a; : i € I(x)} is a linearly indepen-
dent set and let z > 0, with z; > 0 for alli € I(x). Suppose W satisfies

<v, W — Z & a;a; v> >0 Vv e T(x)\{0},
i1 (x) 9i()

where
T(x) =A{v:{a;v)y=0Viel(x)}.
Then M (x,z, W) is nonsingular.

The final lemma builds on Lemma 2.3 to show that M (z,z, W) is non-
singular at all accumulation points of certain sequences. It is a simplified
version of the first portion of Lemma PTH-3.5* in [TWB*03], and is repro-
duced here with proof for ease of reference. It relies on a linear independence
assumption.

Assumption 1 (linear independence constraint qualification) For all
rxeF, {ai:iel(x)} is alinearly independent set.

Lemma 2.4 3 Suppose Assumption 1 holds. Let {z*}, {z*}, and {W*} be
arbitrary infinite sequences such that {x*} converges to z*, {2*} to 2*, and
{WkY to W*, for some x*, z*, and W*. Suppose that g(z*) < 0 for all k,
that 2% > 0 for all k, that S* defined by (14) satisfies S* = ol for all k and
that z; >0 for all j € I(z*). Then M(x*,2*,W*) is nonsingular.

2Tt is readily checked that the result still holds if z > 0 is omitted and z; > 0 is replaced
by z; # 0 in the statement. Only the case z; > 0 is needed in this paper, though.

3Much as Lemma 2.3, Lemma 2.4 holds under weaker hypotheses, but the stated version
is adequate for the purpose of this paper.

10

Proof. 1t suffices to show that (x*,2*, W*) satisfies the assumptions of
Lemma 2.3. Thus let v # 0 be such that

(a;,v) =0 VieI(x"). (18)

It then follows from (14) and positive semidefiniteness of S* — o1, by adding
terms that vanish in view of (18), that for all &

k
<v, Wh 3T s > > ol
igl(z*) 7"

Letting kK — oo, k € K shows that

*
<v, wr — Z Z—’aiaiT v> > ol|v||* > 0.

i@I(@*) gi(z*)

The proof is complete.

3 Convergence Analysis

3.1 Global Convergence

We first show (Proposition 3.5) that, under Assumption 1, the accumulation
points of {z¥} are stationary for (P). Then, under the additional assump-
tion that stationary points are isolated, we show (Theorem 3.7) that these
accumulation points are KKT for (P).

First of all, at every iteration, the values of the objective function and of
all constraint functions with negative multiplier estimates decrease. This is
established in our first proposition.

Proposition 3.1 Let {z*}, {Ac*}, and {z*} be as constructed by Algo-
rithm A1, If Nx® 0, then, for all t € (0,2),

flaP+taa®) < fak) —t(1—t/2)(A* H k) —t(CF) AN®) < f(2%) (19)
and, for allt > 0,

gi(a® +tAF) = g (2™) + t{ag, A*) < gi(2*) Vi s.t. ¢F <0, (20)

11

Proof. First, in view of (1), it follows from (5a) that, for any ¢ > 0,

Fa® +1ah) = f(xk)+t(Vf(xk),Axk)+%t2<mk,HArk> (21)

=) — 1 (A IRAC) (A ATC) (At HAK)

= f(a") —t ((&®, HAF) + (¢F, AN™)) + %tQ(Ark, H Ak

—t(&a®, (WP — H) ")
< fla®) = (1 - t/2)(&t, HA) — #(CF, ANaF),

where we have used the fact that, by construction, W*— H is positive semidef-
inite for all k. The last inequality yields the first inequality in (19). Next, if
(Ac®, HAG®) > 0, it follows from (17) that, for any ¢ € (0,2),

Fa) = t(1 = t/2) (A, HAR) — t(¢F, Aa®) < f(a"),

and the second inequality in (19) then follows. On the other hand, if (Ac*, HAc®) <
0, then, in view of (15a) and positive definiteness of S*, it follows from (21)

that f(z* + tAc®) < f(2*), for all ¢ > 0, and the second inequality in (19)
follows in that case as well. Finally, since g is linear,

Since zF > 0 and g;(z*) < 0 for all i € I, it follows from (5b) that (a;, Ac¥) <
0 whenever ¢F < 0, proving (20). O

With these results in hand, we now proceed to show that the accumulation
points of {z*} are stationary points of (P). The argument is a simplified
version of that used in [PTHS8S8|. It is given here for ease of reference. The
rationale is as follows: Given an infinite index set K such that {zy}rex —
z* for some 2*, one has either (i) {Ar*}rex — 0, or (ii) there exists an
infinite index set K’ C K such that {Av* '}rexr — 0 (Lemma 3.2). In
case (i), it follows from Lemma 3.3 below that x* is stationary. In case (ii),
{a" e — x* (Lemma 3.4) and it again follows from Lemma 3.3 that x*
is stationary. Based on these results, stationarity of x* is then established in
Proposition 3.5. The lemmas prove somewhat more than is needed here, to
be used in the local convergence analysis of the next subsection.

Lemma 3.2 Let {z*}, {Ax*}, and {A2F} be as constructed by Algorithm Al.
Suppose Assumption 1 holds. Let K be an infinite index set such that {x*}rex —
x* for some x* and

inf{||Ac™)% + [|AF7H2: ke K) > 0. (22)

12

Then Ac* — 0 as k — oo, k € K.

Proof. Proceeding by contradiction, assume that {z%}rcx — x*, that (22)
holds, and that, for some infinite index set K’ C K, kin[f(’ |Ac®|| > 0. Since
e !

{2*} and {W*} are bounded, we may assume, without loss of generality,
that for some z* and W*,

{*} — 2% as k—oo, k€K,
{(WFYy = W* as k—o0, kekK'

In view of (22) and (8), it follows that z* > 0. Since in view of Lemma 2.4
M (z*, z*,W*) is nonsingular, it follows that, for some Azr* and z*, with

Ac* # 0 (since inf ||AcF|| > 0),
kEK'

(A"} — Ar* as k— o0, ke K/,
{¢"} = 2" as k—o0, k€K'

On the other hand, it follows from (5b) and (6) that

w_ [oo if k<0 Viel,
| min{(zF/¢F) : ¢F >0, i € I} otherwise.

Since, on K’, {¢¥} is bounded (because it converges) and, for each i € I,
{2F} is bounded away from zero, it follows that {l_fk} is bounded away from
zero on K', and that so is {t*} (Step 3 (i) in Algorithm A1); say, t* > t for
all k € K', with ¢t > 0.

To complete the proof by contradiction, we show that the above implies
that f(z*) — —oo as k — oo, contradicting convergence of {z¥},cx. Since
{f(z*)} is nonincreasing (Proposition 3.1) it suffices to show that for some
0 >0,

fl@h) < fah) —d (23)
infinitely many times. We show that it holds for all £ € K’. We consider
two cases. First, if (Ac*, HAx*) > 0, then since t* € (¢, 1] for all k, it follows
from Proposition 3.1 that, for k € K’, k large enough,

fla® +th) < f(a®) — (t - %ﬁ(m’“, HAFY —t7(¢CF, AN, (24)

The claim then directly follows from (17). Suppose now that (Az*, HAz™) <
0. Then (Ac*, HA®) < Lto||Ax*||? for k € K', k large enough. Also, in
view of (16), (Vf(z*), Ac*) < —1o||Ac*|? for k € K', k large enough. Since
tr € (t,1] for k € K, it follows from (1) that (23) again holds on K. O

13

Lemma 3.3 Let {z*}, {Ax*}, and {C*} be as constructed by Algorithm Al.
Suppose Assumption 1 holds. Let x* be such that, for some infinite index set
K, {2*} converges to x* on K. If {Ax*} converges to zero on K, then x* is
stationary and {C*} converges to z* on K, where z* is the unique multiplier
vector associated with T*.

Proof. Suppose At* — 0 as k — oo, k € K. Since {z*} is bounded, it
follows from (5b) that (¥ — 0 as k — oo, k € K, for all i ¢ I(z*). Since in
view of (5a), { AT¢*} converges on K, it follows from Assumption 1 that {¢*}
converges on K, say to z*. Taking limits in (5a)—(5b) as k — oo, k € K, and
using the fact that {2*} is bounded on K yields

Vi) + ATz =0
2igi(z*)=0,i=1,...,m,

implying that x* is stationary, with multiplier vector z*. The multiplier is
unique because of Assumption 1. O

The next lemma is a direct consequence of the fact that, by construction,
P = ok 4tk Aak | with t* € (0, 1].

Lemma 3.4 Let {z*} and {Ax*} be as constructed by Algorithm Al. Let K
be an infinite index set such that {x*}rcx — x* for some x*. If{mk_l}keK —
0 then {z* e — 2%,

In view of the rationale given above, the following holds.

Proposition 3.5 Under Assumption 1, every accumulation point of {x*}
constructed by Algorithm Al is a stationary point for (P).

In the remainder of this section we show that, if the stationary points are
isolated, then the accumulation points of {z*} are KKT points for (P).

Lemma 3.6 Let {2}, {Aa*}, and {A2*} be as constructed by Algorithm Al.
Suppose Assumption 1 holds. Suppose that K, an infinite index set, is such
that, for some x*, {xF}rer tends to x*, and {A" " }rex and {AF ek
tend to zero. Then x* is a KKT point.

Proof. In view of Lemma 3.4, {z*"1},cx — 2%, and, in view of Lemma 3.3,
{¢* 1} ke converges to z*, the multiplier vector associated with stationary
point z*. Since {Az*71},ck tends to zero and 27! > 0 for all k, it follows
that z* > 0, thus that x* is a KKT point. O

14

Assumption 2 All stationary points are isolated.

Theorem 3.7 Under Assumptions 1 and 2, every accumulation point of
{a*} constructed by Algorithm Al is a KKT point.*

The proof is identical to the proof of Theorem 3.11 in [PTHSS8], with ref-
erences to Lemmas 3.7, 3.8 and 3.9 replaced by references to Lemmas 3.3, 3.6
and 3.2 above, references to Assumptions A5 and A7 in [PTHS88| replaced by
references to Assumptions 1 and 2 above, and Axy, set to zero (and subscripts
k are changed to superscripts). Also, at the end of the proof, “iy € J;” should
be replaced by “¢f < 07, and the reference to Equation (2.11) of [PTHSS]
should be replaced by one to (20).

3.2 Local Rate of Convergence

We will now assume that some accumulation point of {z*} enjoys certain
additional properties. First we will assume that strict complementarity holds
at one such point, which will imply that the entire sequence {z*} converges to
that point and that sequences {Ax*}, {¢*}, and {z*} converge appropriately
as well. Then we will show that if, in addition, the second order sufficiency
condition of optimality holds at that point, then convergence is Q-quadratic.

Assumption 3 (strict complementarity) The sequence {z*} generated
by Algorithm Al has an accumulation point x* with associated multiplier
vector z* satisfying z{ > 0 for all i € I(x*).

We first show that the entire sequence {z*} converges to z*. The proof
makes use of the following lemma, adapted from [PTH88, Lemma 4.1] and [BT03,
Lemma 9.

Lemma 3.8 Let {z*} and {Ax*} be as constructed by Algorithm Al. Sup-
pose Assumptions 1 and 8 hold. Let K be an infinite index set such that
{aF} per — x*. Then {Aac*}pere — 0.

Proof. Proceeding by contradiction, suppose that, for some infinite index
set K' C K, infyepr||Ac®|| > 0. Then, in view of Lemma 3.2, there exists an
infinite index set K” C K’ such that {Ac*'},cxr and {AZF 1Y icxr go to

4Strictly speaking, for the purpose of this theorem, Assumption 2 can be replaced by
the milder assumption that non-KKT stationary points are isolated.

15

zero. It follows from Lemma 3.4 that {2* " },c v — 2*. In view of Lemma 3.3
it follows that {¢*'}rern — 2* where 2* is the multiplier vector associated
to z*. It then follows from (8) that, for all j, {zF}rexn — 2; := min{z},z}
which, in view of Assumption 3 is positive for all j € I(z*). Also, since
{W*} is bounded there is no loss of generality in assuming that, for some
W+, {W*,}cxn converges to W*. In view of Lemma 2.4 it then follows that
M (z*, 2, W*) is nonsingular. Since z* is stationary (indeed, KKT) it follows
from Lemma 2.2 that {Ac*}cxn goes to zero. a contradiction. U

Convergence of the entire sequence {z*} to z* can now be proved. The
following proposition is adapted from [PTHS8S, Proposition 4.2].

Proposition 3.9 Let {z*}, {Ac*}, {2%}, and {C*} be as constructed by Al-
gorithm Al. Suppose Assumptions 1, 2 and 3 hold. Then the entire sequence
{2*} converges to x*. Moreover, (i) {Xc*}y — 0, (ii) {¢*} — 2*, and (iii)
{2}} — min{z},Z} for all j.

Proof. Consider a closed ball of radius € > 0 about x* where there is no
KKT point other than z* (in view of Assumption 2 such € exists). Proceeding
by contradiction to prove the first claim, suppose without loss of generality
that the sequence {2*} leaves the ball infinitely many times. Consider the
infinite subsequence {x*},cx of points such that % is in the ball and z**!
is out of the ball. Then {z*},cx — *, otherwise the closed e-ball would
contain an accumulation point other than z* and this point would be a KKT
point by Theorem 3.7. In particular, ||z* — z*|| < €/4 for all k € K large
enough. On the other hand, it follows from Lemma 3.8 that ||Ac¥|| < ¢/4 for
all k € K large enough. Consequently, for all £ € K large enough, we have

1 = @) < fla*4 = o]+ [l = 2] <] + o a7 < /2

That is, 25! is in the e-ball for k € K large enough, a contradiction. Thus,
the first claim holds. Claim (i) then follows from Lemma 3.8 and claim (ii)
follows from Lemma 3.3. Finally claim (iii) follows from a careful inspection
of (8). O]

In order for quadratic convergence to set in, it is desirable that {WW*}
converge to H, at least in the tangent plane of the active constraints at x*.
For this to be possible with M (x*, 2% W*) still remaining bounded away from
singularity, we must assume that z* is in fact a minimizer.

Assumption 4 z* is a local (or global) minimizer.

16

Since f(z¥) is reduced at each iteration, this assumption is rather mild:
points z* that are not local minimizers are unstable under perturbations.

Assumptions 2 and 4 imply that a second order sufficiency condition of
optimality holds, specifically (under Assumption 3) that

(Av, HAx) > 0 for all Az such that (a;, Av) =0Vie I(z*). (25)
In turn, under Assumption 3, (25) implies Assumption 4.

Lemma 3.10 Let {W*} be as constructed by Algorithm Al. Under As-
sumptions 1-4, if o in Algorithm A1 is such that o < min{{v, Hv) : (a;,v) =
0Vie I(x*), ||v]| =1}, then Wk = H for all k sufficiently large.

Proof. 1t follows from Assumption 3 and Proposition 3.9(iii) that {=¥/|g; (z*)|}
goes to oo for all j € I(z*). It then follows from (25) and Step 1 in Algo-
rithm A1l that E¥ = 0 for all k large enough. U

To prove Q-quadratic convergence of {(x*, 2*)}, the following property of
Newton’s method, taken from [TZ94], will be used. Here and in the proof of
Theorem 3.12, given r > 0 and s* in some Euclidean space, B(s*,r) denotes
the closed ball {s: ||s — s*|| < r}.

Proposition 3.11 Let F' : R™ — R" be twice continuously differentiable
and let w* € R"™ and p > 0 be such that F(w*) =0 and 5= (w) is invertible
whenever w € B(w*, p). Let 6N : B(w*,p) — R™ be the Newton increment

N(w) = — (g—i(w))_l F(w). Then given any ¢y > 0 there exists co > 0 such
that the following statement holds:

For everyw € B(w*, p) and everywt € R™ for which, for eachi € {1,..., n},
either

(i) Jw —wi| < e |0¥(w)|* Yw € B(w*, p)
or
(i) |wi — (w; + 0} (w))| < e ¥ (w) | Vw € B(w*, p),
it holds that
lw® —w*|| < exflw —w|* VYw € B(w”, p). (26)

Q-quadratic convergence of the sequence {(z*, 2*)} follows. The proof is
essentially identical to that of [TZ94, Theorem 3.11] and is reproduced here
for ease of reference.

17

Theorem 3.12 Let {z*} and {z*} be as constructed by Algorithm Al. Sup-
pose Assumptions 1-4 hold. Then, if zf < Z Vi € I and 0 < min{(v, Hv) :
{a;,v) =0Vi € I(x*), ||v]] = 1}, {(z*, 2%)} converges to (x*, 2*) Q-quadratically.

Proof. We establish that the conditions in Proposition 3.11 hold with
F:R"x R™— R"™x R™ given by

Vf(x)+ ATz

F(x,z):= zlg%(m)

Clearly, the Jacobian of F at (z, z) is M(x, z, H) and (Az, Az), with (Az, z+
Az) solution of (13), is the Newton direction for the solution of F'(z,z) = 0.
With reference to Proposition 3.11, let p > 0 be such that M(z,z, H) is
nonsingular for all (z,z) € B((z*,2*),p). (In view of (25), Assumption 3,
and Lemma 2.3, such p exists.) Since, in view of the stated assumption on z*
and of Proposition 3.9, {(z¥, 2%)} — (z*, 2*), it follows from Lemma 3.10 that
there exists ko such that, for all k > ko, (2%, 2%) € B((2*,2%),p) and W* =
H. Now, with the aim of verifying conditions (i)/(ii) of Proposition 3.11
along {(z*, 2¥)} with F as specified above, let us first consider {z*}, updated
in Step 3(ii) of Step 1 of Algorithm Al. Since 2z < Z, if follows that,
for i € I(z*) (so z¥ > 0), zF*! is equal to ¢F for k large enough, so that
condition (ii) in Proposition 3.11 holds (with any ¢; > 0) for k large enough.
For i & I(x*) (so z; = 0), for each k large enough either again 2™ = ¢¥ or
2FL — || A®||2 + || A2%||2. In the latter case, since z = 0, condition (i) in
Proposition 3.11 holds with any ¢; > 1. Next, consider {x*}. For i & I(z*),
in view of Proposition 3.9, we have

k
M—mp as k — oo.

|(ai, Ax*)]
Thus, if I(z*) = 0, then, in view of Step 3 (i) in Algorithm A1, t* =1 for k&
large enough and otherwise, since in view of (5b) sign({a;, Az*)) = sign(¢F) =
1, for all k large enough and i € I(z*),
k
7= min{% L i€ [(:c*)}
and

¢ = min { 1,2 — || a0k (27)

i

18

for k large enough, for some i;, € I(z*). (In particular, {t*} converges to 1.)
Thus, for k large enough and some iy, € I(x*)

Iz = (2% + Aab)|| = [|l2* + " At — (a* + At |

= [t* — 1] A"
Bk
< || + ==t | [l A

k
ik

< (Al + (G A1) flaa™].

Since z; > 0 for all i € I(x*), it follows that for some C' > 0 and all k large
enough

2" = (2* + Ax®)| (1Az*]| + Cll A || A

<
< (L O)(At + (1AM

Thus condition (ii) of Proposition 3.11 holds (with ¢; = 1 + C'). The claim
then follows from Lemma 3.9 and Proposition 3.11. 0

4 Refinement: A Barrier-Based Algorithm

While the affine scaling algorithm we have considered so far has the advantage
of simplicity, it has been observed in various contexts that improved behavior
is likely achieved if instead of linearizing the KK'T equations (2) (yielding (3))
one linearizes a perturbed version of (2), with the right-hand side in the
second equation set to be a certain positive number p rather than 0. It is
well known that the resulting iteration can be viewed as a “primal-dual”
barrier iteration. Typically, u is progressively reduced and made to tend
to 0 as a solution of the problem is approached. Variants of such methods
have been proved to be very effective in the solution of linear programming,
and more generally convex programming problems. Various extensions have
been proposed for general nonlinear programming (e.g., [Yam98, ETTZ96,
GOW9S8, FG98, BGN00, VS99, PTHS88, TWB'03]).

In this section, we propose and analyze a “barrier-based” algorithm which
is specially tailored to quadratic programming, and is closely related to the
affine scaling algorithm of Section 2 (Algorithm Al). Like Algorithm A1,
it is strongly inspired from the algorithm of [PTH88, TWBT03], as well
as from the related algorithm of [TZ94] for linear programming and convex
quadratic programming. At iteration k, the value u* of the barrier parameter

19

is determined via computation of the affine scaling direction Az* (used in
Algorithm A1), in such a way that (i) the resulting Az** is still a good descent
direction for f at 2*; and (ii) ;* goes to zero fast enough, as Az* goes to zero,
that quadratic convergence can be maintained. Specifically ;¥ is assigned the

value oF||Ac¥||V2F, ., where v > 2 is prescribed, zf, > 0 := min; 2, and ¢”
is the largest scalar in (0, %], > 0 prescribed, such that
(A, T f(a")) < 0(Aa, V f(ah))
where 6 € (0,1) is prescribed; it then follows from (16) that
(A, Y f(2%)) < —fo | At (28)
As noted in [BT03], such ©* can be expressed as
. ¢k
%] it > ;%<0
k
o = 29
min (179)l<mk’vf(xk)>|,¢ otherwise. (29)

ck
1Ak 2f, 3 5 j
With p* thus computed, a second linear system is solved, with the same co-
efficient matrix and modified right-hand side. The solutions Az** and ¢*F
of this modified system are then substituted for Az* and ¢* in the remainder
of the iteration. The only other difference between Algorithm A1l and Al-
gorithm A2 is linked to the fact that, while with the affine-scaling direction
f(xP + tAc%) < f(2*) for all t € (0,2), this is no longer guaranteed with
the modified direction Ac** when (Ac** HAx**) > 0. Tt is readily verified
however that in that case it holds that, for any descent direction Ax,

fla® +tAx) < f(a®) vt e (o,z“?ﬁj}fzgﬂ) .

Step 3(i) of the algorithm is modified accordingly.
The proposed algorithm is as follows. Note that, again, the algorithm
statement implicitly assumes that F° is nonempty.

Algorithm A2.

Parameters. 3 € (0,1),z€ (0,1),Z2>2z,0>0,v>1,0€ (0,1), g > 0,
v>2 9e(l2).

20

Data. 2° € F°, 2) >0Vie L. B
Step 0. Initialization. Set k :=0. Set [:== 0. Set @; :=0,i=1,...,m
Set £ :=1°

Step 1. Computation of modified Hessian. If H = ol, set EF = 0
and W* := H. Else, set W* := H + E¥ with E¥ = 0 “small” such that
k
W+ 370 imaia; = ol specifically:

If—| '(Zf)‘ < @ forsomei € Tor (E#0and I =0)or (E # 0 and

r (xk)| > ~v2%a; for some i € [) then

k
i

: ~ ._ 1_2f Lo T
me 1}; set @; = ST b€ I; if H+

>
Ml _= _
Y@ alala = ol, set £ := 0, else set £ > 0 “small” such that
H + Y ;oaaf + E = ol;

— Set [:== {i : — |

e Set E¥ .= F.

Step 2. Computation of a search direction.

(i) Let (Ax®, ¢*) solve the linear system in (Ax, ¢)
WA + AT¢ = =V f(2F) (30a)

2Mag, Ay + g;(2") G =0 Viel (30D)
Set Ak = Ck 2k If Axk = 0, stop.

(ii) Set p* := ¢ HAxk\ Zk. where 2F. = min,; zF and ¢* is given by
%) if >, J <0
k
¢ = (31)
min { =OlAE, Vf(x<)>|,gp otherwise.

Ak |2k, > ik
Let (Azt*, ¢#*) solve the linear system in (Az”, C*)
WhAeH + ATCH = —V f(2F) (32a)

2K ag, Aoty + (2™ = —pb Viel (32b)

5Aga£1, the initial values assigned to the components of @ and to E are immaterial, as
long as E # 0.

21

Set Agik .= (mk — ok
Step 3. Updates.

(i) Set
i 00 if (a;, ActF)y <0 Viel,
b= min{% {ag, ARy >0, € I} otherwise.
(33)
Set
. -k —k k . k k
) min { max {57, 7| A, 1} it (A HAR) <0,
th = M,
min {max{sF, 7| A, wW} otherwise.
(34)
Set bl .= ok 4tk Atk
(i) Set

zf“ = min{max{min{HA%“’kHZ + \|Az“’k]|2,§}, ka}, zZ}, Viel. (35)

(iii) Set k :=k + 1. Go to Step 1.
O

We now proceed to establish global and local convergence properties for Al-
gorithm A2. The results are the same as for Algorithm Al, with the same
assumptions. Many of the steps in the analysis are analogous to those of
Section 3. The numbering of the first 10 lemmas, propositions and theorems
is parallel to that used in Section 3. We start with a modified (and refined)
version of Proposition 3.1.

Proposition 4.1 Let {z*}, {Ac®}, {&x#*}, and {¢*F} be as constructed by
Algorithm A2. Suppose Nc* # 0. Then, (i) if (Mt HAx*F) <0, then

fa® +taa*) < f(a*) vt >0, (36)

and otherwise

.k
flah +tdat®) < f(ab) iff te (0’2’@;’;?;(;25’) ;o (37)

and (ii)

Gi(aP A FY = gi(a®) +tlas, APy < gi(2F) Wt > 0,Vi st ¢F < 0. (38)

22

Proof. Claim (i) follows from (28) via routine manipulations on the
quadratic function

1
f(@® 4+t) = f(aF) + t(V f(2F), Ay + 5#(&%’“,1{&%’3. (39)
Further, since g is linear,
giz" +1°) = gi(aF) + 1", A h) i =1, m

Since zF > 0 for all i € I, it follows from (32b) that (a;, Az"*) < 0 whenever
¢"* <0, proving claim (ii). O
The following is the critical step in the global convergence analysis.

Lemma 4.2 Let {2*}, {Ac#*}, and {Az*F} be as constructed by Algo-
rithm A2. Suppose Assumption 1 holds. Let K be an infinite index set
such that {x*}rex — x* for some x* and

inf{|| Ac 1|2 4 || AR ke K} > 0. (40)
Then {Afu’k}kel(— 0.

Proof. As in the proof of Lemma 3.2, proceed by contradiction by as-
suming that, for some infinite index set K’ C K, kinlg [|Ac*¥|| > 0. The
6 !

same argument that was used in that proof shows that, on K’, the compo-
nents of {2*} are bounded away from zero and, without loss of generality,
{2*}rerr — 2% for some 2* > 0, {W*}pcxer — W* for some W*, M (z*, z*, W*)
is nonsingular, and {Ar*};cxs is bounded. Then it follows from Step 2(ii)
of Algorithm A2 that {4*}rcx is bounded. It follows that {Az#*} ek and
{¢"*}rex are bounded. On the other hand, it follows from (32b) that, for
all i such that (a;, Ax™*) # 0,

k k
_ gz<l’)k C%u,k:ZZ(c_F 1% —.
<ai’ At > <ai’ At >
For all i, the right-hand side is positive whenever (a;, Az**) > 0 and is
bounded away from zero on K’ since {zF} is. Since ¢** is bounded on K, it
follows that {—g;(2*)/(a;, Ax"*)} is (positive and) bounded away from zero
on K’ when (a;, Ax***) > 0. In view of Step 3(i) of Algorithm A2, it follows

that {fk} is bounded away from zero on K.

23

To proceed with the proof, we show that ¢* is bounded away from zero
on some infinite index set K” C K'. If (Av** HAx**) < 0 holds infinitely
often on K’ then in view of (34), the case is clear. Otherwise, there exists
an infinite index set K” C K’ such that (Ac** HAx**) > 0 for all k € K”.
In view of (28), for all such £,

(At VD] (At VD], ol At
(AcF HAR) T (A F H AR T (AR H A

It remains to show that {||Az"||}xex~ is bounded away from zero to conclude
from (34) that {t*}rcxr is bounded away from zero. To this end, proceeding
by contradiction, suppose that infrexr [|Az®|| = 0, ie., {Ax*}pegm — 0 for
some K" C K”". Since {zF}rex is bounded, it follows from Step 2(ii) of
Algorithm A2 that {4*} e — 0. Also, from (30) and (32), we have
Ak — Agok 0
280

Nonsingularity of M (z*, 2%, W*) then implies that {Az* — Av*k}pcpm — 0,
and therefore {Av#*},cm — 0, a contradiction since K” C K’. We thus
have shown that {t*},cx~ is bounded away from zero.

As in the proof of Lemma 3.2, in view of Proposition 4.1, to complete the
proof, it then suffices to show that for some § > 0,

fEM) < fla) =6 (41)
infinitely many times. We show that it holds for all k¥ € K”. For the case
where (Ax*, HAxr™) < 0, essentially the same argument as that used in the
proof of Lemma 3.2 applies, with the reference to (16) replaced by a reference

to (28). Suppose then that (Ac*, HAx*™) > 0. Then, for k € K", k large
enough, (Ac**, HAx**) > 0. To conclude the proof, observe that

M (z%, 2% WF) [

f(karl) — f(xk> =tk ((Vf<xk)7 Mu7k> + §<A7:Mku H&M7k>> : <42)

The first factor (¢) is positive and bounded away from zero on K”. In view of
the update rule for ¢* in Step 3 of Algorithm A2, the second factor is smaller
than (Vf(zF), M) + L|(V f (%), Aa?)| for k € K", k large enough. In
view of (28) and since ||Az**|| is bounded away from zero on K", it follows
that (Vf(z*), Ax**) is negative and bounded away from zero on K”. Since
moreover ¢ < 2, it follows that the second factor in (42) is negative and
bounded away from zero on K”. Hence (41) holds on K” and the proof is
complete. O

24

Lemma 4.3 Let {z*}, {&etF}, {CF}, and {¢*F} be as constructed by Algo-
rithm A2. Suppose Assumption 1 holds. Let x* be such that, for some infinite
index set K, {x*}rer converges to x*. If {Avt*} ek converges to zero, then

x* is stationary and {(*}rex and {¢*F}rex both converge to z*, where z* is
the unique multiplier vector associated with x*.

Proof. First, since { Av**} e — 0, it follows from (28) that {Av*}rex —
0. The claims are then proved using the same argument as in the proof of
Lemma 3.3, first starting from (30a)—(30b) to show that {¢*}rex converges
to z*, then starting from (32a)-(32b) and using the fact that, due to the
boundedness of {z¥}, {Av*}cx — 0 implies that {4/*}iex — 0, to show
that {¢**}rex converges to z*. O

The proofs of the next six results are direct extensions of those of the
corresponding results in Section 3 and are omitted.

Lemma 4.4 Let {z*} and {Xx**} be as constructed by Algorithm A2. Let K
be an infinite index set such that {x*}rcx — x* for some x*. If{Ar“’kil}keK —
0 then {z* '}ex — 2*.

Proposition 4.5 Under Assumption 1, every accumulation point of {x*}
constructed by Algorithm A2 is a stationary point for (P).

Lemma 4.6 Let {z*}, {Ac#*}, and {Az*F} be as constructed by Algo-
rithm A2. Suppose Assumption 1 holds. Suppose that K, an infinite index
set, is such that, for some x*, {x*}icx tends to x*, and {Ac"* 'V ick and
{Azth=1Y, ke tend to zero. Then x* is a KKT point.

Theorem 4.7 Under Assumptions 1 and 2, every accumulation point of
{a*} constructed by Algorithm A2 is a KKT point.

Lemma 4.8 Let {z*} and {&x*k} be as constructed by Algorithm A2. Sup-
pose Assumptions 1 and 3 hold. Let K be an infinite index set such that
{2*}rex — x*. Then {Av** e — 0.

Proposition 4.9 Let {z*}, {Ac#*}, {2*}, and {C*F} be as constructed by
Algorithm A2. Suppose Assumptions 1, 2 and 3 hold. Then the entire se-
quence {x*} converges to x*. Moreover, (i) {Ax**} — 0, (i) {¢(*F} — 2,
and (ii1) {z}} — min{z},Z} for all j.

25

Lemma 4.10 Let {W*} be as constructed by Algorithm A2. Under As-
sumptions 1-4, if o in Algorithm A2 is such that o < min{(v, Hv) : (a;,v) =
0Vie I(z"), ||v|| =1}, then W* = H for all k sufficiently large.

The remainder of the analysis departs somewhat from that of Section 3.
We use the following additional lemma, which hinges on p* going to zero at
least as fast as the smallest component of z*.

Lemma 4.11 Let {Ac*}, {AarF), {AF}, {A#FY) and {¢**} be as con-
structed by Algorithm A2. Suppose Assumptions 1-4 hold. For k large
enough,

A — AP 4 [AF — AP = O). (43)

Furthermore,
max{0, —(¢**, ADu*)} = of || A" |%).

Proof. The first claim is a direct consequence of nonsingularity of M (z*, z*, H)
(which, like in the proof of Theorem 3.12, follows from Lemma 2.3) and
boundedness of {z*}. Next, since g;(z*) < 0 for all i and all k, (32b) implies
that, for all 7 € I,

kN2 ki.k k i,k
it —(¢"") e e
R e R .

Z Z Z

The second claim then follows from positiveness of 2¥, boundedness of {¢*}
(since it converges) and the definition of u* in Step 2(ii) of Algorithm A2. OJ

Theorem 4.12 Let {zF}, {2*} be as constructed by Algorithm A2. Sup-
pose Assumptions 1-4 hold. Then, if zf < Z Vi € I and o < min{(v, Hv) :
{a;,v) =0Vi € I(x*), ||v]] = 1}, {(z*, 2%)} converges to (x*, z*) Q-quadratically.

Proof. (Only the differences with the proof of Theorem 3.12 are pointed
out.) First consider {z*}. For i € I(z*), 2#*! = ¢"* for k large enough.
In view of Lemma 4.11 and since v > 2, it follows that condition (ii) in
Proposition 3.11 holds for k large enough. For i & I(x*), for k large enough,
either again 2/ = ¢F or 2F™ = || Ac”"||2 + [|AzF|%. In the latter case,
again using Lemma 4.11 and the fact that v > 2, we conclude that condition
(i) in Proposition 3.11 holds.

To conclude the proof, we first show that, when (Ac** HAx**) > 0,

(At f (24))]
(A" H A

Y > 1 (44)

26

for k large enough, implying that, for all & large enough, t* is given by (see
Step 3(i) of Algorithm A2)

#* = min {max{fk—HAr“’kH, 5, 1} . (45)

Taking the inner product of both sides of equation (32a) by Ar** and using
the fact that W* = H for all k large enough (Lemma 4.10), we get

(VI ("), Aai®) = —(Aa*, HAemR) — ((4F, Al

Now let 7 = 2/¢. Then 7 € (1,2). Since f is quadratic, it follows that

P+ AR = f(ab) + (9 (0, A + T (A AT

,7_2

= F) (= TV A — (o AD),
< flab) =71 = D)ol XK + of| At H?).

where we have used Lemma 4.11 and equation (28). It follows that f(z* +
") < f(2*) for k large enough, and Proposition 4.1 (“only if” portion
of (37)) then implies that for k large enough,

(At Y f (24))]
(Ac*, H AR

i.e., (44) holds for k large enough. Hence (45) holds for all k large enough.
For ¢ ¢ I(x*),
lg(x)]

(@i, Awtt)|

Thus, if I(z*) = (), then, in view of Step 3(i) in Algorithm A2, t* =1 for k
large enough. Further, since, whenever (a;, Ax**) > 0 and ¢ k>0,

2k |g:(2)] pb it 1g:(2")]

= — <
GF T T A8 g AeE) = Qai, AreA]

T <2

— oo as k — oo.

it follows that, when I(x*) is not empty, then
k
7> min{% NS I(x*)}

The remainder of the proof is as in the proof of Theorem 3.12. 0

27

5 Implementation issues

We still have to define explicitly a way of choosing E =0 “small” such that
S+ E = ol, where S := H + Y"1 @a;a (Step 1 of Algorithms Al and A2).
We use the following method, borrowed from [TWB*03, p. 192]: E = hl,
with

0 if >\min >0,
h=1< —Amin+ 0 if [Auin| < o, (46)
2| Amin| otherwise,

where Amin denotes the leftmost eigenvalue of S.°

Another implementation issue concerns the feasibility of the iterates. It
may happen in the course of the iterations that some |g;(z*)| becomes close
to the machine relative accuracy u,” whereas the chosen stopping criterion is
not yet satisfied. For example, this is especially likely to happen with Algo-
rithm Al when the Hessian H is ill-conditioned and a constraint boundary
is almost parallel to a level curve of the cost function f over a long distance.
Then, two phenomena may concur to produce undesirable consequences: (i)
due to numerical errors, g;(z* + Az*) may be positive and close to u; (ii) the
evaluation of g;(z*) itself has a relative error of order 1, which may result in
a large relative error on ¢ . Consequently, an unnecessarily small step may
be taken and, in spite of this, g(z**1) may well be evaluated to be positive
(infeasible point).

To circumvent this difficulty, we allow the constraints to recede slightly.
At each iteration, before Step 1, we define gF¥ = min{g;(z*), —¢}, where
€ is a small positive multiple of u, and we replace g;(z*) by gF through-
out the iteration. If, as a result, some g;(z¥) eventually becomes too pos-
itive, then it is possible to apply a small perturbation to the current it-
erate along the corresponding a;’s in order to make it numerically feasible
again. In our numerical experiments, we never had to apply this latter proce-
dure since the g;(z*)’s always remained below 10%u, which should be typical
under our linear independence assumption (Assumption 1): indeed, since

(Wh—=5", ﬁik)aia?)&k = V f(2¥) in view of (15a), it then follows that

6Since S = H, this guarantees that {W*} is bounded (in particular, W* < H +
2max{o, —A}I, where A is the leftmost eigenvalue of H), which was taken for granted in
the analysis.

"The floating point relative accuracy is the distance from 1.0 to the next (larger) floating
point number.

28

when g;(z*) is close to zero and |V f(z*)|| is not very large, the component
of Az* along a; is very small.

The major computational tasks in Algorithms A1l and A2 are the follow-
ing. First, in Step 1 (when the @;’s are recomputed), compute a sufficiently
good approximation Ay of the leftmost eigenvalue of S, to be used in (46):;
many possibilities are available for computing A, see e.g. [BDDT00], [ABGO04]
and references therein. Second, in Step 2, solve system (5)—in Algorithm Al—
or systems (30) and (32)—in Algorithm A2. The other operations require
minimal computation (note that AAz* computed in (5b) can be reused in
the computation of #¥).

Structured linear systems like (5), or (30) and (32), are ubiquitous in
primal-dual interior-point methods; see e.g. [Wri98] or [FG98|. Since these
three systems have the same matrix M (z*, 2¥, W*), we focus on one of them,
say (5). One option is to solve (5) explicitly using a classical technique.
However, if the number m of constraints is very large, then the cost of a
“black-box” method may be prohibitive. An alternative is to eliminate (
from the second line (5b) and substitute into the first line (5a), leading to
the condensed primal-dual system (15a). This expresses A" as the solution
of an m x n linear system. The multiplier estimate (is then obtained at low
cost from (15b). When the matrices are dense, solving a linear system of
the form (5) via the Schur complement (15) costs O(mn?) flops to form S*,
O(n?) to solve (15a) and O(mn) to solve (15b).

Solving the condensed primal-dual system (15a) for the update Az may
seem inappropriate because the condition number of the condensed primal-
dual matrix S grows unbounded if some constraints are active at x*. However,
as shown by M. Wright [Wri98], this ill-conditioning is benign: the singular
values of S split into two well-behaved groups, one very large and the other
of order 1 (this is responsible for the large condition number of S), and the
expected inaccuracies preserve this structure. It follows that the absolute
error on Ar® computed with a backward-stable method is comparable to u,
and so is the error on the multipliers computed via (15b). Moreover, the
absolute error in the computed solution of the full, well-conditioned primal-
dual system (5) by any backward-stable method is also comparable to u.
We refer to [Wri98] for details. In our implementations (see Section 6), we
solve (5), (30) and (32) via the condensed approach.

Finally, we point out that Algorithms Al and A2 can be adapted to deal
with equality constraints by means of elimination techniques; see e.g. [NW99,
Section 15.2] for details.

29

6 Numerical experiments and comparisons

To our knowledge, Algorithms Al and A2 are the first to be tailored and
analyzed specifically for the optimization of an indefinite quadratic function
under general linear inequality constraints. Indefinite quadratic programs
with constraints of the form Az = b, x > 0, have received more attention in
the literature. In particular, an affine-scaling algorithm, related to Dikin’s
algorithm [Dik67], was proposed by Ye [Ye92], which alternatively may be
viewed as an interior trust-region method in which the Dikin ellipsoid is used
as the trust region [CGT00, Section 13.11]. Variants of Ye’s algorithm have
been proposed and analyzed by Bonnans and Bouhtou [BB95], Tseng and
Ye [TY02], and Tseng [Tse04].

In order to assess the practical value of Algorithms Al and A2, we per-
formed preliminary comparative tests using Matlab implementations of Algo-
rithm A1 (affine scaling, u = 0), Algorithm A2 (barrier function, p > 0) and
the interior trust-region (TR) algorithm analyzed and tested by Tseng [T'se04].
We considered indefinite quadratic programs of the form

1
minimize §<x,Hx> +(c,x) st. Cx<d, x>0, z€R",

because they fit within the framework of (P) and the constraints are readily
transformed into the form Az = b, x > 0, using slack variables. We chose
the entries of C' independently from a uniform distribution on the interval
(107%,1 + 107%). This ensures that the feasible set {Cz < d,z > 0} has a
nonempty interior and does not feature exceedingly acute angles that would
compromise the use of a strictly feasible method. The number m — n of
rows in C' was itself chosen randomly in [1,2n] with uniform distribution.
The algorithms were initialized with z° chosen from a uniform distribution
in (0,1)". The vector d was selected as d = Cz" + y where y was chosen
from a uniform distribution in (0,1)” ™. The matrix H, with condition
number® 107°"¢ and number of negative eigenvalues approximately negeig,
was generated as described by Moré and Toraldo [MT89, p. 392]. Finally, the
vector ¢ was defined as ¢ = —Hz™* (so V f(z*) = 0) where z* was chosen from
the normal distribution A(0,1). The algorithms were tested on a common
set of sample problems, with n = 100 and varying values of ncond® and
negeig. Ten problems were generated in each category, for a total of 200 test

8Note that in the results reported in [Tse04], ncond is the natural logarithm of the
condition number. (This was confirmed to us by P. Tseng.)
9Tests on symmetric 100 x 100 matrices with elements chosen from a uniform distri-

30

problems, and the algorithms were compared on these problems with regard
to the number of iterations, the number of times the leftmost eigenvalue of
a large (n x n) matrix has to be computed, the number of times a large
(n x n) linear system has to be solved, and the final value obtained for the
cost function. In order to assess the usefulness of the procedure defined in
Step 1, we also tested a simpler version of Algorithms A1l and A2 where the

k
leftmost eigenvalue of H — > 1", ﬁaiag is evaluated at every iteration in

order to compute E* according to (46).

Our implementation of the TR algorithm is based on a Matlab script for
box constrained problems that was communicated to us by P. Tseng. We
modified the script in accordance with [Tse04, Section 2| to include equal-
ity constraints. The inclusion of equality constraints led us to discard the
stopping criterion specified in [Tse04, Section 5] and to utilize instead the
stopping criterion [|z* — 2%71||.. < 1077. For Algorithms A1l and A2, the
following parameter values were used: 3 =.9, z = 107%, 2 = 10%, 0 = 1075,
v=10% 60 = 8, p = 10% v = 3, ¢ = 1.5, ¢ = 107 (e appears in the
definition of g, see Section 5). The multiplier estimates are assigned the ini-
tial value 20 = max{.1, 2} where 2" = —(AT)'V f(2°) (with reference to
formulation (P)) and the superscript T denotes the Moore-Penrose pseudo-
inverse. Algorithms A1l and A2 are terminated at the first iteration k£ at which
max{||V f(z*)+ AT Y| oo, [|G(2F)CF |} <1077 and ¢F > 1072, i € 1.
All tests were run on a PC with Intel Pentium 4 CPU 2.60 GHz with 512 KB
cache, running Linux kernel 2.6.1 and Matlab 6.5 (R13). The floating point
relative accuracy (see definition in footnote 7) is approximately 2.2 - 10716,

The numerical results are presented on Tables 1 to 3 and Figures 1 to 3.
They show that Algorithms A1 and A2 clearly outperform the TR algorithm
regarding the number of iterations, number of eigensolves and number of
system solves. The performance gap between the TR algorithm and the
Newton-KKT algorithms is particularly large in terms of system solves. The
reason the TR method requires so many system solves is that, as suggested
in [Tse04, Section 5], the trust-region subproblems are solved with high accu-
racy using the Moré-Sorensen method [CGTO00, Section 7.3]. It is reasonable
to expect that an approximate solver, such as a truncated conjugate-gradient
method, would yield better practical performances;!® however, the analysis

bution on (—1,1) suggest that the condition number of such matrices typically ranges
between 50 and 5000.

10Also, the number of system solves might decrease if an “industrial-strength” imple-
mentation of the Moré and Sorensen algorithm is used instead.

31

in [Tse04] assumes that an exact solution of the trust-region subproblems is
computed. This question is left for future research.

Barrier-based Algorithm A2 tends to outperform affine-scaling Algorithm A1l
in terms of number of iterations and eigensolves for nonconvex problems
(negeig > 0). When the problem is convex, Algorithm A1l has the edge in
terms of number of iterations, and both algorithms only require one eigen-
solve per problem (enough to notice that the problem is convex). The situ-
ation is less clear for the number of system solves. In Table 3, two system
solves—(30) and (32)—are counted per iteration for the barrier-based algo-
rithm A2, which possibly does a disservice to that algorithm: since the two
systems have the same matrix, decomposition-based solvers will be able to
reuse information to dramatically speed-up the second solve.

Notice that for ill-conditioned problems, Algorithm A2 performs better
on indefinite problems than on positive-definite problems. We observed that
this tendency disappears if in Step 2(ii) of that algorithm we modify the
expression for ¥ to ¥ := F min{||Ac¥||¥, 1} 2%, but with such modification
the performance on indefinite problems slightly deteriorates.

The advantage of using Step 1—instead of computing the smallest eigen-
value of the Schur complement S* at each iteration—is clearly seen in the
numerical results (“simplified Step 1”7 versus original algorithms): the num-
ber of eigensolves is significantly reduced whereas the number of iterations
(and, thus, of system solves) is hardly affected. Note however that, every
time the @;’s are recomputed (via eigenvalue decomposition) in Step 1, a
dedicated Schur complement H + Y 7@;a;a] has to be constructed. Fortu-
nately, if A is sparse (which is the case in many applications), the cost of
constructing the Schur complement is comparatively low. Moreover, if an
inverse-free eigensolver is used, it may even not be profitable to form the
Schur complement.

Since none of the tested algorithms is a global method, it is natural that
they sometimes converge to different local minima. The purpose of Figures 1
to 3 is to compare the methods in terms of quality of the solutions.!! In
each figure, the top histogram shows on a log scale the distribution of the
differences unfavorable to Algorithm A2, and the bottom histogram shows
the distribution of the differences favorable to that algorithm. It appears
that our Newton-KKT algorithms tend to produce better solutions than the

' The apparent explanation for the presence of two modes on each histogram is that
the left mode corresponds to convergence to the same point (with differences in accuracy)
and the right one to convergence to different points.

32

| Mean number of iterations

Algorithm A1l with simplified Step 1

negeig
ncond 0 10 50 90 100
0 23.1 65.9 89.4 | 90.8 96.5
1 24.1 61.4 76.6 78.1 82.7
3 26.9 75.3 82.5 86.0 86.4
5 32.0 92.2 94.0 98.8 | 100.8

Algorithm A2 with simplified Step 1

negeig
ncond 0 10 50 90 100
0 246 | 332 | 39.3 | 425 | 375
1 32.6 | 346 | 29.2 | 30.0 | 30.6
3 79.2 | 29.0 | 240 | 278 | 28.0
5 53.5 | 26.2 | 259 | 255 | 26.5

Interior trust-region [Tse04]

negeig
ncond 0 10 50 90 100
0 99.8 | 193.6 | 219.6 | 274.6 | 267.5
1 110.0 | 203.8 | 209.6 | 222.0 | 227.5
3 133.5 | 194.8 | 220.0 | 244.2 | 222.8
5 163.2 | 194.8 | 196.0 | 210.5 | 208.0

Algorithm A1

negeig
ncond 0 10 50 90 100
0 231 | 672 | 922 | 942 | 925
1 241 | 749 | 80.5 | 81.2 | 828
3 26.9 | 935 | 91.1 | 91.6 | 92.6
5 32.0 | 111.9 | 106.8 | 111.6 | 112.6

Algorithm A2

negeig
ncond 0 10 50 90 100
0 24.6 | 36.0 | 358 | 382 | 40.8
1 32.6 33.4 34.8 32.0 32.2
3 79.2 | 404 | 278 | 298 | 30.8
5 53.5 | 30.3 | 270 | 29.1 | 29.7

Table 1: Comparison of the various algorithms in terms of the mean number
of iterations over 10 problems randomly selected as explained in the text.

33

| Number of eigensolves per problem |

Algorithm A1l with simplified Step 1
negeig
ncond 0 10 50 90 100
0 1.0 66.9 | 90.4 | 91.8 | 97.5
1 1.0 624 | 77.6 | 79.1 | 83.7
3 1.0 76.3 | 83.5 | 87.0 | 874
5 1.0 93.2 | 95.0 | 99.8 | 101.8
Algorithm A2 with simplified Step 1
negeig
ncond 0 10 50 90 100
0 1.0 34.2 | 40.3 | 43.5 | 385
1 1.0 35.6 | 30.2 | 31.0 | 31.6
3 1.0 30.0 | 25.0 | 28.8 | 29.0
5 1.0 27.2 26.9 26.5 27.5
Interior trust-region [Tse04]
negeig
ncond 0 10 50 90 100
0 99.8 | 193.6 | 219.6 | 274.6 | 267.5
1 110.0 | 203.8 | 209.6 | 222.0 | 227.5
3 133.5 | 194.8 | 220.0 | 244.2 | 222.8
5 163.2 | 194.8 | 196.0 | 210.5 | 208.0
Algorithm A1
negeig
ncond 0 10 50 90 100
0 1.0 193 | 294 | 33.8 | 34.2
1 1.0 16.0 25.2 27.6 27.4
3 1.0 34.3 | 38.0 | 40.6 | 39.7
5 1.0 45.9 | 52.7 | 56.9 | 55.5
Algorithm A2
negeig
ncond 0 10 50 90 100
0 1.0 16.6 15.0 13.4 14.1
1 1.0 16.7 | 173 | 184 | 17.8
3 1.0 177 | 164 | 185 | 18.3
5 1.0 175 | 176 | 193 | 19.6

Table 2: Comparison of the various algorithms in terms of the mean number
of times the leftmost eigenvalue of an n x n matrix had to be solved. The
mean is computed over 10 problems randomly selected as explained in the

text.
34

Number of system solves per problem

Algorithm A1l with simplified Step 1

negeig
ncond 0 10 50 90 100
0 23.1 65.9 89.4 90.8 96.5
1 24.1 61.4 76.6 78.1 82.7
3 26.9 75.3 82.5 86.0 86.4
5 32.0 92.2 94.0 98.8 100.8

Algorithm A2 with simplified Step 1

negeig
ncond 0 10 50 90 100
0 49.2 66.4 78.6 85.0 75.0
1 65.2 69.2 58.4 60.0 61.2
3 158.4 58.0 48.0 55.6 56.0
5 107.0 52.4 51.8 51.0 53.0

Interior trust-region [Tse04]

negeig
ncond 0 10 50 90 100
0 1140.9 | 1540.1 | 1632.9 | 1982.2 | 1933.1
1 1252.8 | 1589.6 | 1567.1 | 1646.0 | 1696.6
3 1543.0 | 1532.0 | 1610.8 | 1760.8 | 1621.6
5 1875.4 | 1454.8 | 1429.2 | 1518.6 | 1504.2

Algorithm A1

negeig
ncond 0 10 50 90 100
0 23.1 67.2 92.2 94.2 92.5
1 24.1 74.9 80.5 81.2 82.8
3 26.9 93.5 91.1 91.6 92.6
5 32.0 111.9 | 106.8 | 111.6 | 112.6

Algorithm A2

negeig
ncond 0 10 50 90 100
0 49.2 72.0 71.6 76.4 81.6
1 65.2 66.8 69.6 64.0 64.4
3 158.4 80.8 55.6 59.6 61.6
5 107.0 60.6 54.0 58.2 59.4

Table 3: Comparison of the various algorithms in terms of the mean number
of times an n x n linear system has to be solved. The values are computed
over 10 problems randomly selected as explained in the text.

35

Occurences
w
o
T
Il

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10
log10(f by A2 - f by TR)

Occurences

0
-12 -10 -8 -6 -4 -2 0 2 4 6 8 10
log10(f by TR - f by A2)

Figure 1: Comparison of the quality of the solutions obtained by Algo-
rithm A2 and the TR algorithm. The horizontal axes give, on a logarithmic
scale, the difference between the final values of the cost function f obtained
by the two methods. The upper histogram tallies the cases where the TR al-
gorithm reached a better quality solution than Algorithm A2, and vice versa
for the lower histogram. The data comes from the 200 tests reported on in
the tables.

interior trust-region method. The reasons are unknown. The variants of the
Newton-KKT algorithms (simple or elaborate Step 1, barrier parameter or
not) produce results of comparable quality.

We also tested variants of Algorithms A1 and A2 where the update of z*
was replaced by updates along Az* and Az**. For example, in the case of
Algorithm A2, 2**1 was computed as zF™ = 2% + tkAz#F where 8 was the
largest stepsize such that

min{ || AcF||2 + || AR, 2} < 2F At <z Wie

With the modified Algorithm A1, the results were clearly not as good. With
the modified Algorithm A2, results were alternatively slightly better and
slightly worse.

36

Occurences

-10 -8 -6 -4 -2 0 2 4 6 8 10
log10(f by A2 - f by A1)

Occurences
w
o
T
Il

-4 -2 0 2 4 6 8 10
10g10(f by AL - f by A2)

Figure 2: Comparison of the quality of solutions obtained by Algorithms A2
and Al.

Convergence properties of Algorithms Al and A2 were proved in Sec-
tions 3 and 4 under certain nondegeneracy assumptions. To get a sense for
how critical nondegeneracy may be to satisfactory behavior of the algorithms,
as a final set of experiments, we tested Algorithms A1 and A2 on problems
in which linear independence constraint qualification (Assumption 1) is vio-
lated. Specifically, we first randomly generated a number of (nondegenerate)
problems as described above, for each value of the pair (ncond, negeig). We
then solved these problems with Algorithm A1l (resp. A2), yielding z*. Ten
new a;’s, t =m+ 1,...,m + 10, were then randomly chosen in the convex
hull of {a;};ecr(z+) and appended to A, and b was appended with the values
alxz*, i =m+1,...,m+ 10. Consequently, linear independence constraint
qualification did not hold at z*, while the feasible set was unaltered. We ob-
served that while, typically (but not always), more iterations were needed to
solve the degenerate problems, in many cases the difference was no more than
10. Specifically, this happened with about two thirds of the problems in the
case of Algorithm A1, and with over 90 percent of the problems in the case
of Algorithm A2. Thus Algorithm A2 and to a lesser extent Algorithm Al
show promise even for degenerate problems.

37

Occurences

- I
-12 -10 -8 -6 -4 -2 0 2 4 6 8 10
log10(f by A2 - f by A2 simplified)

60

50 i
] 40 -
o
]
S 301 i
5
O 20} 4

10 — - Bl

0
-12 -10 -8 -6 -4 -2 0 2 4 6 8 10

log10(f by A2s1 - f by A2 simplified)

Figure 3: Comparison of the quality of solutions obtained by Algorithm A2
and Algorithm A2 with simplified Step 1.

38

7 Conclusion

Two “Newton-KKT” interior point algorithms for indefinite quadratic pro-
gramming were proposed and analyzed, one of the affine-scaling type, the
other barrier-based. Both were proved to converge globally and locally
quadratically under nondegeneracy assumptions. Numerical results on ran-
domly generated problems were reported that suggest that the proposed al-
gorithms hold promise, even for degenerate problems.

Acknowledgements

The authors wish to thank Paul Tseng for making available to them his
Matlab code for the algorithm studied in [Tse04], and for valuable advice.

References

[ABGO4]

[BBYS]

[BDD*00]

[BGNOO]

[BT03]

[CGTO00]

[CL99]

P-A. Absil, C. G. Baker, and K. A. Gallivan, A truncated-
CG style method for symmetric generalized eigenvalue problems,
http://www.csit.fsu.edu/~absil/Publi/SGEVP _tCG.htm, submitted,
2004.

J.F. Bonnans and M. Bouhtou, The trust region affine interior point algo-
rithm for convex and nonconvex quadratic programming, RAIRO Rech. Opér.

29 (1995), 195-217.

Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst (eds.), Tem-
plates for the solution of algebraic eigenvalue problems: A practical guide,
Society for Industrial and Applied Mathematics, Philadelphia, 2000.

R.H. Byrd, J.C. Gilbert, and J. Nocedal, A trust region method based on in-
terior point techniques for nonlinear programming, Mathematical Program-
ming 89 (2000), 149-185.

S. Bakhtiari and A.L. Tits, A simple primal-dual feasible interior-point
method for nonlinear programming with monotone descent, Comput. Optim.
Appl. 25 (2003), 17-38.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Trust-region methods,
MPS/SIAM Series on Optimization, Society for Industrial and Applied
Mathematics (STAM), Philadelphia, PA, and Mathematical Programming
Society (MPS), Philadelphia, PA, 2000.

T.F. Coleman and J. Liu, An interior Newton method for quadratic program-
ming, Math. Programming 85 (1999), 491-523.

39

[Dik67)

[ETTZ96]

[FGY8]

[GOWOS]

[MAS9]

[MT89)

INW99]

[PTHSS]

[Tse04]

[TWB*03]

[TY02]

[TZ94]

[VS99]

[Wri98]

LI Dikin, Iterative solution of problems of linear and quadratic programming,

Soviet Math. Dokl. 8 (1967), 674-675.

A.S. El-Bakry, R.A. Tapia, T. Tsuchiya, and Y. Zhang, On the formulation
and theory of the Newton interior-point method for nonlinear programming,
J. Opt. Theory Appl. 89 (1996), 507-541.

A. Forsgren and P.E. Gill, Primal-dual interior methods for nonconvex non-
linear programming, STAM J. on Optimization 8 (1998), no. 4, 1132-1152.

D. M. Gay, M. L. Overton, and M. H. Wright, A primal-dual interior method
for monconvex nonlinear programming, Advances in Nonlinear Programming
(Y. Yuan, ed.), Kluwer Academic Publisher, 1998, pp. 31-56.

R.D.C. Monteiro and I. Adler, Interior path following primal-dual algo-
rithms. Part ii: Convex quadratic programming, Mathematical Programming

44 (1989), 43-66.

Jorge J. Moré and Gerardo Toraldo, Algorithms for bound constrained
quadratic programming problems, Numer. Math. 55 (1989), no. 4, 377-400.
MR 90e:90091

J. Nocedal and S. Wright, Numerical optimization, Springer Series in Oper-
ations Research, Springer-Verlag, New York, 1999.

E.R. Panier, A.L. Tits, and J.N. Herskovits, A QP-free, globally conver-
gent, locally superlinearly convergent algorithm for inequality constrained
optimization, STAM J. Contr. and Optim. 26 (1988), no. 4, 788-811.

P. Tseng, Convergence properties of Dikin’s affine scaling algorithm for non-
convex quadratic minimization, J. Global Optim. 30 (2004), no. 2-3, special
issue on the International Conference on Optimization and Optimal Control,
to appear.

A.L. Tits, A. Wéchter, S. Bakhtiari, T.J. Urban, and C.T. Lawrence, A
primal-dual interior-point method for nonlinear programming with strong
global and local convergence properties, SIAM J. on Optimization 14 (2003),
no. 1, 173-199.

Paul Tseng and Yinyu Ye, On some interior-point algorithms for nonconvex
quadratic optimization, Math. Program. 93 (2002), no. 2, Ser. A, 217-225.
MR 1 952 651

A.L. Tits and J.L. Zhou, A simple, quadratically convergent algorithm for
linear and convex quadratic programming, Large Scale Optimization: State
of the Art (W.W. Hager, D.W. Hearn, and P.M. Pardalos, eds.), Kluwer
Academic Publishers, 1994, pp. 411-427.

R.J. Vanderbei and D.F. Shanno, An interior-point algorithm for nonconvex
nonlinear programming, Computational Optimization and Applications 13
(1999), 231-252.

M. H. Wright, Ill-conditioning and computational error in interior methods
for nonlinear programming, STAM J. Optim. 0 (1998), no. 1, 84-111.

40

[Yam98] H. Yamashita, A globally convergent primal-dual interior point method for
constrained optimization, Optimization Methods and Software 10 (1998),
443-469.

[Ye92] Y. Ye, On affine scaling algorithms for nonconvex quadratic programming,
Mathematical Programming 56 (1992), 285-300.

41

