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Newton polygons and formal groups:
Conjectures by Manin and Grothendieck

By Frans Oort

Introduction

We consider p-divisible groups (also called Barsotti-Tate groups) in char-
acteristic p, their deformations, and we draw some conclusions.

For such a group we can define its Newton polygon (abbreviated NP).
This is invariant under isogeny. For an abelian variety (in characteristic p) the
Newton polygon of its p-divisible group is “symmetric”.

In 1963 Manin conjectured that conversely any symmetric Newton poly-
gon is “algebroid”; i.e., it is the Newton polygon of an abelian variety. This
conjecture was shown to be true and was proved with the help of the “Honda-
Serre-Tate theory”. We give another proof in Section 5.

Grothendieck showed that Newton polygons “go up” under specialization:
no point of the Newton polygon of a closed fiber in a family is below the
Newton polygon of the generic fiber. In 1970 Grothendieck conjectured the
converse: any pair of comparable Newton polygons appear for the generic and
special fiber of a family. This was extended by Koblitz in 1975 to a conjecture
about a sequence of comparable Newton polygons. In Section 6 we show these
conjectures to be true.

These results are obtained by deforming the most special abelian varieties
or p-divisible groups we can think of. In describing deformations we use the
theory of displays; this was proposed by Mumford, and has been developed in
[17], [18], and recently elaborated in [32] and [33]; also see [11], [31].

Having described a deformation we like to read off the Newton polygon of
the generic fiber. In most cases it is difficult to determine the Newton polygon
from the matrix defined by F on a basis for the (deformed) Dieudonné module.
In general I have no procedure to do this (e.g. in case we deform away from a
formal group where the Dieudonné module is not generated by one element).
However in the special case we consider here, a(G0) = 1, a noncommutative
version of the theorem of Cayley-Hamilton (“every matrix satisfies its own
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characteristic polynomial”) suffices for our purposes. This enables us to find
equations singling out specific Newton polygons (in that coordinate system NP-
strata are linear subspaces). Once this is done (Sections 2 and 3), conjectures
by Manin, Grothendieck and Koblitz follow easily (Sections 5 and 6).

Many people have patiently listened to me in discussions about this topic.
Especially I mention, and I thank: Ching-Li Chai, Johan de Jong and Ben
Moonen for sharing their time and interests with me.

1. Definitions and notation

Throughout the paper we fix a prime number p.

(1.1) For a commutative finite group scheme N → S we denote by ND

its Cartier dual; see [22, I.2], [27, VIIA.3], [30, 2.4]. It can be characterized
functorially by:

ND(T ) = Hom(NT ,Gm,T );

see [22, III.16], [27, VIIA.3.3].
For an abelian scheme X → S we denote its dual by X t. Note the duality

theorem: for an isogeny ϕ : X → Y we canonically have an exact sequence

0→ (Ker(ϕ))D → Yt ϕt−→ X t → 0;

see [22, III.19] and [16, III.15].
For p-divisible groups, see [28]. An abelian scheme X → S of relative

dimension g defines a p-divisible group of height 2g, which we denote by

ind.lim.X [pi] =: X [p∞].

A polarization for an abelian scheme is an isogeny

λ : X → X t

which on each geometric fiber is defined by an ample divisor; see [15, 6.2]. Note
that a polarization λ is an isogeny which is symmetric in the sense that

(λ : X → X t)t = λ

with the canonical identification X = X tt; see [16, 21 Appl. III, p. 208]. A
polarization is called a principal polarization if it is an isomorphism.

We say that λ : G→ Gt is a quasi-polarization of a p-divisible group G if
it is a symmetric isogeny of p-divisible groups.

From now on we work over a base scheme of characteristic p.
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(1.2) From [27, VIIA.4], “Frobeniuseries”, we recall: For every morphism
X → S, there is functorially a morphism

F : X → X(p/S).

For a group scheme G/S this is a homomorphism, and we write G[F ]
:= Ker(F : G→ G(p/S)). For a commutative group scheme G there is (functo-
rially) a homomorphism

V : G(p/S) → G,

which moreover has the property that V ·F = p = V ·F.

(1.3) For a group scheme G over a field K of characteristic p we define
its p-rank f(G) = f by: Hom(µp,k, Gk) ∼= (Z/p)f ; here k is an algebraically
closed field containing K, and µp := Gm[p]. Note that for an abelian variety
X this is the same as saying

X[p](k) ∼= (Z/p)f .

We write αp := Ga[F ]; for a group scheme G over a field K of characteristic p,

a = a(G) := dimL(Hom(αp, G⊗K L)),

where L is a perfect field containing K (this number does not depend on the
choice of a perfect L ⊃ K).

(1.4) Dieudonné modules. In this paper we use the covariant theory. For
a finite (commutative) group scheme N of p-power rank over a (perfect) field K
there is a Dieudonné module D(N). This functor has the following properties:

• N 7→ D(N) is an equivalence between the category of finite group schemes
of p-power rank over K and the category of Dieudonné modules of finite
length as W -modules,

• if rank(N) = pn, then the length of D(N) = M equals n,

• D(F : N → N (p)) = (V : M →M (p)),

• D(V : N (p) → N) = (F : M (p) →M).

In this ring W [F, V ] we have the relations V ·F = p = F ·V, and F ·a = aσ·F
and V ·aσ = a·V , for a ∈ W = W∞(K); this ring is noncommutative if and
only if K 6= Fp.

For a p-divisible group G of height h over a perfect field K there is a
Dieudonné module D(G). This module is free of rank h over W . If more-
over the p-divisible group is a formal group, this module is over the ring
W [F ][[V ]]. If X is an abelian variety, we shall write D(X) = D(X[p∞]).
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The dimension of G is d if G[F ] is of rank equal to pd, and this is the
case if and only if dimK(D(G)/V D(G)) = d. For a perfect field K we have
a(G) = dimK(M/(FM + VM)), where M = D(G).

(1.5) In [14], contravariant Dieudonné module theory was used. By Gm,n
we denote a p-divisible group defined over Fp, given by: G1,0 = Gm[p∞] and
G0,1 for its dual, i.e. G0,1[pi] is the constant group scheme Z/pi over Fp, and
for coprime m,n ∈ Z>0 we define the (formal) p-divisible group Gm,n by the
covariant Dieudonné module

D(Gm,n) = W [[F, V ]]/W [[F, V ]]·(Fm − V n)

(in the contravariant theory the exponents are interchanged; see [14, p. 35]).
Note that the dimension of Gm,n equals m, that

(Gm,n)t = Gn,m,

hence the dual of Gm,n has dimension n. The notation Gm,n used in [14] and
used here denote the same p-divisible group (but the Dieudonné module of it
in [14] differs from the one used here).

By the Dieudonné-Manin classification, see [14] and [2], we find: if G is a
p-divisible group over a field K, there is a finite set of pairs {(mi, ni) | i ∈ I}
with mi ≥ 0 and ni ≥ 0 and mi and ni relatively prime, such that there is an
isogeny

G⊗ k ∼
∑
i∈I

Gmi,ni ,

where k is an algebraically closed field containing K. This set of pairs is called
the formal isogeny type of this p-divisible group G.

(1.6) Notation (the Newton polygon). The formal isogeny type of a p-
divisible group is encoded in the concept of a Newton polygon, abbreviated
NP. We write N (G) for the Newton polygon of G; each of the summands
Gm,n gives a slope λ = n/(m + n) with multiplicity (m + n); arranged in
nondecreasing order this gives a polygon which has the following properties
(the definition of a Newton polygon):

• The polygon starts at (0, 0) and ends at (h, h− d) for a p-divisible group
of height h and dimension d,

• each slope λ ∈ Q has the property 0 ≤ λ ≤ 1,

• the polygon is lower convex, and

• its break-points have integral coordinates.
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By “lower convex” we mean that it is the graph of a convex piecewise-linear
function on the interval [0, h]. A Newton polygon determines, and is deter-
mined by, its set of slopes 0 ≤ λ1 ≤ · · · ≤ λh ≤ 1. It is called symmetric if
λi = 1− λh−i+1 for 1 ≤ i ≤ h.

(1.7) The formal isogeny type of an abelian variety X is symmetric; i.e.,
it can be written

X[p∞]⊗ k ∼ f ·(G1,0 ⊕G0,1) ⊕ s·G1,1 ⊕
∑
j

(Gmj ,nj ⊕Gnj ,mj ).

Indeed, an abelian variety has a polarization; by the duality theorem this
implies that X[p∞] is isogenous with its dual.

The converse of this statement is called the “Manin conjecture”; see (5.1).

(1.8) We say that a Newton polygon β is lying above γ, notation

β ≺ γ,

if β and γ have the same end points, and if no point of β is strictly below γ

(!! note the reverse order). The Newton polygon consisting only of slopes 1
2 is

called the supersingular one, notation σ; this is a symmetric Newton polygon.
The Newton polygon belonging to d·G1,0 ⊕ c·G0,1) is called the ordinary one,
denoted by ρ = ρd,c. Note that any symmetric ξ satisfies σ ≺ ξ ≺ ρ = ρg,g.

More generally, a Newton polygon of height h and dimension d is between
the straight line, the Newton polygon of Gd,d−h and the Newton polygon of
dG1,0 + (h− d)G0,1.

(1.9) Displays over a field. In this section we work over a perfect field
K ⊃ Fp. Covariant Dieudonné module theory over a perfect field is a special
case of the theory of displays. Consider a p-divisible group G of height h over
K, and its Dieudonné-module D(G) = M. We choose a W -base

{e1 = X1, . . . , ed = Xd, ed+1 = Y1, . . . , eh = Yc}

for M such that Y1, . . . , Yc ∈ VM ; on this base the structure of the Dieudonné
module is written as:

Fej =
h∑
i=1

aijei, 1 ≤ j ≤ d,

ej = V

(
h∑
i=1

aijei

)
, d < j ≤ h.

We have written the module in displayed form; see [17, §1], [18, §0], and [32].
Now

(ai,j | 1 ≤ i, j ≤ h) =

(
A B

C D

)
.
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This matrix, denoted by (a), will be called the matrix of the display. Note
that in this case the σ-linear map F is given on this base by the matrix(

A pB

C pD

)
,

where

A = (aij | 1 ≤ i, j ≤ d), B = (aij | 1 ≤ i ≤ d < j ≤ h),

C = (aij | 1 ≤ j ≤ d < i ≤ h, ), D = (aij | d < i, j ≤ h).

Where the display-matrix is symbolically denoted by (a), we write (pa) sym-
bolically for the associated F -matrix (it is clear what is meant as soon as d is
given). Note that the induced maps

F : M/VM −→ FM/pM,
F

p
: VM/pM −→M/FM

are bijective, hence the matrix (ai,j | 1 ≤ i, j ≤ h) has as determinant a unit
in W ; let its inverse be (bi,j), written in block form as

(bi,j) =

(
E G

H J

)
(in [32], the block matrix called J here is denoted by B). Working over a
perfect field K, with W := W∞(K), we write

τ := σ−1 : W −→W.

Then the map V : M →M on the given basis has as matrix(
pE pG

H J

)τ
,

called the V -matrix.
Note that the p-divisible group is a formal group if and only if the opera-

tion V on its covariant Dieudonné module is topologically nilpotent (note that
D(F ) = V ). We remark that the Dieudonné module of G[p]/G[F ] corresponds
with ⊕hi=d+1 K·ei; hence we see that G is a formal p-divisible group if and only
if the matrix J mod p is nilpotent in the τ -linear sense (also see [32, p. 6]).

We write Q := VM , T := ⊕di=1 W ·ei, L := ⊕hi=d+1 W ·ei, and note that

F ⊕ V −1 : T ⊕ L→M,

as given above by the transformation formulas on a basis, is a σ-linear bijective
map (we follow [32] for this notation).

(1.10) Suppose (G,λ) is a p-divisible group with a principal quasi-
polarization over a perfect field K. The quasi-polarization can be given on
the Dieudonné module M = D(G) by a skew perfect pairing

〈 , 〉 : M × M −→W



     

NEWTON POLYGONS AND FORMAL GROUPS 189

which satisfies
〈Fa, b〉 = 〈a, V b〉σ, for all a, b ∈M ;

see [20, p. 83]. Then we can choose a symplectic base {X1, . . . , Xd, Y1, . . . , Yd}
for the Dieudonné module D(G) = M ; i.e., the polarization is given by a skew
bilinear form which on this base is given by:

〈Xi, Yj〉 = δij , 〈Xi, Xj〉 = 0 = 〈Yi, Yj〉.

Note that if the module is in displayed form on a symplectic base as above,
with the display-matrices (a) and (b) as given above, then not only do we have
(a) · (b) = 1 = (b) · (a) but also

(ai,j) =

(
A B

C D

)
, (bi,j) =

(
E G

H J

)
=

(
Dt −Bt

−Ct At

)
,

where At is the transpose of the matrix A.

(1.11) Displays. In order to describe deformations we choose a complete
Noetherian local ring R with perfect residue class field K (a complete Noethe-
rian local ring is excellent). We assume p·1 = 0 ∈ R. In this case the theory of
displays as described in [32] gives an equivalence of categories between the cat-
egory of displays over R and the category of formal p-divisible groups over R.
We refer to [18], [32] and [33] for further details and will describe deformations
by constructing a display.

(1.12) Deformations of formal p-divisible groups. Displays can be applied
as follows. Consider a formal p-divisible group G0 over a perfect field K,
and suppose we have written its Dieudonné module and base {e1, · · · , eh} =
{X1, . . . , Xd, Y1, . . . , Yc} in displayed form as above. We write h for the height
of G0, and d for its dimension, c := h − d. Choose R as above, let tr,s be
elements in the maximal ideal of R, with 1 ≤ r ≤ d < s ≤ h, and let

Tr,s = (tr,s, 0, · · ·) ∈W (R)

be their Teichmüller lifts. We define a display over R by considering a base

{e1 = X1, . . . , ed = Xd, ed+1 = Y1, . . . , eh = Yc},

and

FXj =
d∑
i=1

aijXi +
h−d∑
v=1

ad+v,j(Yv +
d∑
r=1

Tr,v+dXr), 1 ≤ j ≤ d,

Yt = V

(
h∑
i=1

ai,d+tXi +
h−d∑
v=1

ad+v,d+t(Yv +
d∑
r=1

Tr,v+dXr)

)
, 1 ≤ t ≤ c = h−d.
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Note that this corresponds with the matrix

(
A+ TC pB + pTD

C pD

)
, T =


T1,d+1 · · · T1,h

...
...

Td,d+1 · · · Td,h

 ,
which gives the map F . Now if for display-matrices,

(
A B

C D

)−1

=

(
E G

H J

)
,

then

(
A+ TC B + TD

C D

)−1

=

(
E G− ET
H J −HT

)
.

(1.13) Let K be a perfect field, let R be a complete Noetherian local ring
with residue class field K, and let G0 be a formal p-divisible group over K.
The formulas above define a display over W , the ring of Witt vectors over R
(in the sense of [32]). Hence these formulas define a deformation G→ Spec(R)
of G0.

In fact, we have written the module in displayed form. We write ε :W→K

for the residue class map. The matrix ε(J − HT ) is σ-linear nilpotent (still,
after deforming); hence this gives the condition necessary for a “display” in
the sense of [32]. By the theory of Dieudonné modules we conclude that this
defines a formal p-divisible group G→ Spec(R); see [17], [18], [32], [33].

(1.14) Remark. One can show that the deformation just given is the uni-
versal deformation of G0 in equal characteristic p, by taking the elements tr,s
as parameters,

R := K[[tr,s | 1 ≤ r ≤ d < s ≤ h]].

(1.15) Deformations of principally quasi-polarized formal p-divisible groups.
Suppose moreover the p-divisible groupG0 has a principal quasi-polarization λ0

and let the base {X1, . . . , Yd} be in symplectic form (in this case c = h−d = d).
Assume moreover that

tr,s = ts−d,r+d ∈ R,

and the displayed form above defines a deformation (G,λ) as a quasi-polarized
formal p-divisible group of (G0, λ0) (see [18], [32], [33]). After renumbering:
xi,j = ti,j+d, with d = g = c = h/2, we have the familiar equations xi,j =
xj,i, 1 ≤ i, j ≤ g.
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2. Cayley-Hamilton

We denote by k = k ⊃ Fp an algebraically closed field.

(2.1) Definition. We consider matrices which can appear as F -matrices
associated with a display. Let d, c ∈ Z≥0, and h = d+ c. Let W be a ring. We
say that a display-matrix (ai,j) of size h× h is in normal form form over W if
the F -matrix is of the following form:

(F)



0 0 · · · 0 a1d pa1,d+1 · · · · · · · · · pa1,h

1 0 · · · 0 a2d · · · pai,j · · ·
0 1 · · · 0 a3d 1 ≤ i ≤ d
...

...
. . . . . .

... d ≤ j ≤ h
0 0 · · · 1 add pad,d+1 · · · · · · · · · pad,h

0 · · · · · · 0 1 0 · · · · · · · · · 0
0 · · · · · · 0 p 0 · · · · · · 0
0 · · · · · · 0 0 p 0 · · · 0

0 · · · · · · 0 0 0
. . . 0 0

0 · · · · · · 0 0 · · · · · · p 0



,

ai,j ∈ W, a1,h ∈ W ∗; i.e. it consists of blocks of sizes (d or c) × (d or c); in
the left hand upper corner, which is of size d× d, there are entries in the last
column, named ai,d, and the entries immediately below the diagonal are equal
to 1; the left and lower block has only one element unequal to zero, and it is
1; the right hand upper corner is unspecified, entries are called pai,j ; the right
hand lower corner, which is of size c × c, has only entries immediately below
the diagonal, and they are all equal to p.

Note that if a Dieudonné module is defined by a matrix in displayed normal
form then either the p-rank f is maximal, f = d, and this happens if and only
if a1,d is not divisible by p, or f < d, and in that case a = 1. The p-rank is
zero if and only if ai,d ≡ 0 (mod p), for all 1 ≤ i ≤ d.

(2.2) Lemma. Let M be the Dieudonné module of a p-divisible group G
over k with f(G) = 0. Suppose a(G) = 1. Then there exists a W -basis for M
on which F has a matrix which is in normal form.

In this case the entries a1,d, . . . , ad,d are divisible by p and can be chosen
to equal zero.

The proof is easy and is omitted, but we do give the proof of the following
lemma which is slightly more involved.
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(2.3) Lemma. Let k be an algebraically closed field, and let M be
the Dieudonné module of a local, principally quasi-polarized formal p-divisible
group G over k with f(G) = 0 (hence G is of “local -local type”). Write d for
its dimension, and h = 2d for its height. Suppose a(M) = 1. Then there exists
a symplectic W -basis for M on which the matrix of F is in normal form; see
(2.1).

Proof. For every a ∈ Z>0 we shall choose an element X(a), with X(a) 6∈
FM + VM , with X(a+1) −X(a) ∈ paM .

First step. We choose X ∈ M with X 6∈ FM + VM . Let 〈X,F dX〉 =
β ∈ W, and write β mod pW = β0 ∈ k. We note that β0 6= 0; in fact, write
FM1 ∩ VM1 = F dM1 = V dM1; this is of dimension one over k; note that
the pairing induces a perfect pairing between M/(FM + VM) and F dM1.
Choose λ ∈ W , with λ0 ∈ k = W/pW such that λp

d+1
0 ·β0 = 1. Note that

〈λX,F dλX〉 = λ · λpd · β; hence 〈λX,F dλX〉 ≡ 1 mod pW .
We change notation, choosing a new X instead of the old λ · X, and

concluding that for the new X,

〈X,F dX〉 ≡ 1 mod pW.

Suppose
〈X,F s−1X〉 = bs, 2 ≤ s ≤ d.

Choosing

X ′ = X +
d∑
s=2

bs·Ys,

we see that
〈X ′, F s−1X ′〉 ≡ 0 (mod pW ),

and still 〈X ′, F dX ′〉 ≡ 1.
We call this new X ′ finally X(1), defining Xs = F s−1X(1) for 1 ≤ s < d,

and Yj = −V d−j+1X(1) for 1 ≤ j ≤ d. The set {X(1) = X1, . . . , Yd} is a
W -basis for M , which is symplectic modulo pW . On this basis the matrix of
F is congruent to (F) mod pW .

We introduce some notation to be used in this proof. We say that B =
{X1, . . . , Xd, Y1, . . . , Yd} is an n-basis, if X = X(a) ∈W , with X 6∈ FM+VM ,
and Xs := F s−1X for 1 < s ≤ d, and Yj ≡ −V d−j+1X mod pW for 1 ≤ j ≤ d;
note that an n-basis indeed is a W -basis for M . We say that an n-basis is (sa)
if it is simplectic modulo paW . We say that an n-basis is (Fa) if the matrix of
F on this basis is in normal form; see (2.1), modulo paW .

For a ∈ Z>0 we study the statement:
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(Ia): For X = X(a), assume that there exists an n-basis B = B(a) which is
(sa) and (Fa).

The construction in the first step makes a choice such that (I1) is satisfied.
This ends the first step.

We assume for a ≥ 1 that (Ia) is satisfied, and construct a basis which
satisfies (Ia+1). In order to formulate the proof of the induction step we assume
that a ∈ Z>0 is fixed, and write ≡ for equivalence modulo paW , and ≈ for
equivalence modulo pa+1W . In order to prove the induction step (Ia) 7→ (Ia+1)
we study the condition:

(Jk) Here a ∈ Z>0 is fixed, and 1 ≤ k ≤ d. Assume there is an n-basis sat-
isfying (Ia), and satisfying the property that {X1, . . . , Xd, Y1, . . . , Yk} is
(ps(a+1)). This last property means that pairs of elements appearing in
this set satisfy the symplectic properties modulo pa+1W , and Y1, . . . , Yk−1

transform as prescribed by some (F) mod pa+1W .

Second Step. We choose a basis satisfying (J1). By induction we know
that 〈X,F dX〉 ≡ 1 + pa·β, with β ∈ W ; write β0 = β mod pW . Choose
λ ∈ W such that λp

d

0 + λ0 + β0 = 0, and replace X by (1 + pa·λ)X. For this
new X we have achieved 〈X,F dX〉 ≈ 1. Choose bs ∈W such that for this new
X we have: 〈X,F s−1X〉 ≈ pa·bs, for 2 ≤ s ≤ d. Now, choose

X ′ := X +
d∑
s=2

bs·pa·Ys,

and then
〈X ′, F s−1X ′〉 ≡ 0 (mod pa+1W ).

We call this X ′ finally X. The new X,FX, . . . , Y1 = F dX and the old
Y2, . . . , Yd satisfy the condition (J1). This ends the second step.

Third Step. Here a ∈ Z>0 is fixed. With 1 ≤ k < d, we assume (Jk)
satisfied, and construct and prove: There exists a basis satisfying (Jk) such
that 〈Yk, V X〉 ≡ 0 (mod pa+2W ).

Next we construct and prove (Jk+1).
There exists an element ξ ∈ pa+2M . Choose a new X instead of the old

X+ξ, constructX1, . . . , Xd, Y1, . . . , Yk which together with the old Yk+1, . . . , Yd
satisfy (Jk) and the properties: 〈Xi, Xj〉 ≡ 0 mod pa+2, for all 1 ≤ i, j ≤ d,
and 〈FYk, Xi〉 ≡ 0 mod pa+2 for all i and 〈FYk, Xk+1〉 ≡ 1 mod pa+2. We
choose this new n-basis and write

FYk = pY ′+px with Y ′ ∈W ·Y1 + · · ·W ·Yd, and x ∈W ·X1 + · · ·W ·Xd.
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Let 〈FYk, Yj〉 = cj for 1 ≤ j ≤ k; note that cj ∈ pa+1W . Define the new

Yk+1 := Y ′ −
∑

1≤j≤k
cjXj ; then FYk = p·Yk+1 + p

x+
∑

1≤j≤k
cjXj

 .
The new X1, . . . , Xd, Y1, . . . , Yk+1 together with the old Yk+2, . . . , Yd satisfy the
condition (Jk+1). This ends the third step.

For fixed a ∈ Z>0, we start induction (J1) by the second step, and then
by induction in the third step (Jk) 7→ (Jk+1) we show that (Jd) is satis-
fied. Note that (Ia) + (Jd) = (Ia+1); thus we have proved that (Ia) ⇒
(Ia+1). By the first step we can start induction: I1 is satisfied. Hence in-
duction shows that all steps (Ia) for a ∈ Z>0 are satisfied. Moreover the
bases B(a) = {X(a)

1 , . . . X
(a)
d , Y

(a)
1 , . . . , Y

(a)
d } constructed satisfy B(a+1) ≡ B(a)

(mod paM). Hence this process converges to a W -basis for M ; by construc-
tion, on this basis the matrix of F is in normal form. This ends the proof of
the lemma.

(2.4) How to determine N (G)? Consider the Dieudonné module of a p-
divisible group (or of an abelian variety), by writing down the matrix of F
relative to some W -basis. In general it is difficult to see directly from that
matrix what the Newton polygon of the p-divisible group studied is.

There are general results which enable us to compute the Newton polygon
from a given displayed form. Here is an example: Nygaard proved in [19,
Th. 1.2, p. 84], a general result, which e.g. for g = 3 gives the following:
Suppose there is an abelian variety of dimension 3, and let F be the action of
Frobenius on its Dieudonné module; this abelian variety is supersingular if and
only if p3|F 8. For explicit computations this does not look attractive. Also see
[9]: “slope estimates”.

(2.5) Remark. We can compute the p-adic values of the eigenvalues of the
matrix. Note however that if we change the basis, this σ-linear map gives a
matrix on the new basis in the σ-linear way. In [9, pp. 123/124], we find an
example by B. H. Gross of a 2×2 matrix which, on one basis has p-adic values
of the eigenvalues equal to 1

2 , while after a change of basis these p-adic values
equal 0 and 1. We see that the change of basis can change the p-adic values
of the eigenvalues of this matrix. Thus we have the question: how can we
determine the Newton polygon from the matrix (say of F on the Dieudonné
module)?

In this section we show how in case the matrix is in normal form the
Newton polygon can be read off easily:
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(2.6) Lemma (of Cayley-Hamilton type). Let L be a field of characteris-
tic p, let W = W∞(L) be its ring of infinite Witt vectors. Let G be a p-divisible
group, with dim(G) = d, and height(G) = h, with Dieudonné module M . Sup-
pose there is a W -basis of M , such that the display-matrix (ai,j) on this base
gives an F -matrix in normal form as in (2.1). Now, X = X1 = e1 for the
first base vector. Then for the expression

P :=
d∑
i=1

h∑
j=d

pj−daσ
h−j
i,j F h+i−j−1, F h·X = P ·X.

Note that we take powers of F in the σ-linear sense, i.e. if the display
matrix is (a), i.e. F is given by the matrix (pa) as above,

Fn is given by the matrix (pa)·(paσ)· · · · ·(paσn−1
).

The exponent h+ i− j−1 runs from 0 = h+ 1−h−1 to h−1 = h+d−d−1.
Note that we do not claim that P and F h have the same effect on all elements
of M .

Proof. Note that F i−1e1 = ei for i ≤ d.

Claim. For d ≤ s < h,

F sX =

 d∑
i=1

s∑
j=d

F s−jpj−dai,jF
i−1

X + ps−des+1.

This is correct for s = d. The induction step from s to s + 1 < h fol-
lows from Fes+1 =

(∑d
i=1 p ai,s+1F

i−1
)
X + pes+2. This proves the claim.

Computing F (F h−1X) gives the desired formula.

(2.7) Proposition. Let k be an algebraically closed field of character-
istic p, let W = W∞(K) be its ring of infinite Witt vectors. Suppose G is
a p-divisible group over k such that for its Dieudonné module the map F is
given by a matrix in normal form. Let P be the polynomial given in the previ-
ous proposition. The Newton polygon N (G) of this p-divisible group equals the
Newton polygon given by the polynomial P .

Proof. Consider the W [F ]-sub-module M ′ ⊂ M generated by X = e1.
Note that M ′ contains X = e1, e2, . . . , ed. Also it contains Fed, which equals
ed+1 plus a linear combination of the previous ones; hence ed+1 ∈ M ′. In
the same way we see: ped+2 ∈ M ′, and p2ed+3 ∈ M ′ and so on. This shows
that M ′ ⊂ M = ⊕i≤h and W ·ei is of finite index and that M ′ = W [F ]/W [F ]
·(F h − P ). From this we see by the classification of p-divisible groups up to
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isogeny, that the result follows by [14, II.1]. Also see [2, pp. 82-84]. By [2,
p. 82, Lemma 2] we conclude that the Newton polygon of M ′ in case of the
monic polynomial F h −∑m

0 biF
m−i is given by the lower convex hull of the

pairs {(i, v(bi)) | i}. Hence the proposition is proved.

(2.8) Corollary. With notation as above, suppose that every element
ai,j , 1 ≤ i ≤ d, d ≤ j ≤ h, is either equal to zero, or is a unit in W (k).
Let S be the set of pairs (i, j) with 0 ≤ i ≤ d and d ≤ j ≤ h for which the
corresponding element is nonzero:

(i, j) ∈ S ⇐⇒ ai,j 6= 0.

Consider the image T under

S → T ⊂ Z× Z given by (i, j) 7→ (j + 1− i, j − d).

Then N (G) is the lower convex hull of the set T ⊂ Z× Z and the point (0, 0);
note that a1,h ∈W ∗, hence (h, h− d = c) ∈ T .

This can be visualized in the following diagram (illustrating the case
d ≤ h− d):

ad,h · · · a1,h

. · · · .

ad,2d+2 · · ·
ad,2d+1 . . . a1,2d+1

.
...

...
... .

ad,d+1 · · · ai,d+1 · · · a2,d+1 a1,d+1

ad,d · · · ai,d · · · · · · a1,d

Here the element ad,d is in the plane with coordinates (x = 1, y = 0) and a1,h

has coordinates (x = h, y = h − d = c). One erases the spots where ai,j = 0,
and leaves the places where ai,j is a unit. The lower convex hull of these points
and (0, 0) (and (h, h− d)) equals N (G).

Proof. This we achieve by writing out the Newton polygon of the polyno-
mial P in the Cayley-Hamilton lemma.

3. Newton polygon strata

In this section k = k ⊃ Fp is an algebraically closed field.

(3.1) We fix integers h ≥ d ≥ 0, and write c := h− d considering Newton
polygons ending at (h, c). For such a Newton polygon β,

�(β) = {(x, y) ∈ Z× Z | y < c, y < x, (x, y) ≺ β};
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here we denote by (x, y) ≺ β the property “(x, y) is on or above β”; now,

dim(β) = #(�(β)).

Note that for ρ = d·(1, 0) + c·(0, 1), dim(ρ) = dc.
Suppose there is a formal p-divisible group G0 over k with N (G0) = γ

ending at (h, c). We write D = Def(G0) for the universal deformation space
in equal characteristic p. By this we mean the following. Formal deformation
theory of G0 is prorepresentable; we obtain a formal scheme Spf(A) and a
prorepresenting family G′ → Spf(A). By [5, Lemma 2.4.4, p. 23], we know
that there is an equivalence of categories of p-divisible groups over Spf(A)
respectively over Spec(A). We will say that G → Spec(A) = D = Def(G0)
is the universal deformation of G0 if the corresponding G′ → Spf(A) = D∧
prorepresents the deformation functor.

A theorem by Grothendieck and Katz, see [9, Th. 2.3.1, p. 143], says that
for any family G → S of p-divisible groups over a scheme S in characteristic
p, and for any Newton polygon β there is a unique maximal closed, reduced
subscheme W ⊂ S containing all points s at which the fiber has a Newton
polygon equal to or lying above β:

s ∈W ⇐⇒ N (Gs) ≺ β.

This set will be denoted by

Wβ(G → S) ⊂ S.

For every Newton polygon β with β Â γ = N (G0) we define Vβ ⊂ D = Def(G0)
as the maximal closed, reduced subscheme carrying all fibers with Newton
polygon equal to or above β in the universal deformation space of G0. Note
that Vρ = D, with ρ = d(1, 0) + c(0, 1).

In case of a family (G, λ) → S = Spec(R) of quasi-polarized p-divisible
groups there is an analogous notion, and for a symmetric Newton polygon ξ

we write
Wξ(G → Def(G0, λ0)) =: Wξ ⊂ Def(G0, λ0).

(3.2) Theorem (Newton polygon-strata for formal groups). Suppose
a(G0) ≤ 1. For every β Â γ = N (G0), dim(Vβ) = dim(β). The strata Vβ are
nested as given by the partial ordering on Newton polygons; i.e.,

Vβ ⊂ Vδ ⇐⇒ �(β) ⊂ �(δ)⇐⇒ β ≺ δ.

Generically on Vβ the fibers have Newton polygon equal to β. There is a coor-
dinate system on D in which all Vβ are linear subspaces.

Proof. At first we choose a coordinate system for D = Def(G0) where

G0 = G′ ⊕N ((G0)`,`)⊕G′′ with G′ ∼= ((Gm[p∞])f , G′′ ∼= (Qp/Zp)s.
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We apply (2.2) in order to have the Dieudonné module of (G0)`,` in normal
form, obtaining a basis for the Dieudonné module of G0. Now � := �(ρ);
this is the parallelogram of integral points (x, y) bounded by 0 ≤ y < c, and
y > x ≥ y − d. The universal deformation D of D(G0) is given by a display-
matrix (

A+ TC B + TD

C D

)
,

where T = (Tr,s | 1 ≤ r ≤ d < s ≤ h). Here Tr,s = (tr,s, 0 · · ·) and D =
Spec(k[[tr,s]]). We write as in (2.8) these variables in a diagram, by putting

Tr,s on the spot (s− r, s− 1− d) ∈ � = �(ρ);

i.e.,

0 · · · 0 −1
Td,h · · · · T1,h

.
...

...
... .

Td,d+2 · · · Ti,d+2 · · · T2,d+2 T1,d+2

Td,d+1 · · · Ti,d+1 · · · · · · T1,d+1

We see that

D = Spec(R) = Spec(k[[z(x,y) | (x, y) ∈ �]]), Tr,s = Z(s−r,s−1−d).

For any β Â N (G0),

Rβ =
k[[z(x,y) | (x, y) ∈ �]]

(z(x,y) ∀(x, y) 6∈ �(β))
.

Claim.
(Spec(Rβ) ⊂ Spec(R)) = (Vβ ⊂ D) .

Clearly, the claim proves all statements of the theorem.

Since G0 is a direct sum of a local-étale, a local-local and an étale-local
p-divisible group as above, we obtain N (G0) = γ = f ·(0, 1) + γ′ + s·(1, 0),
where γ′ = N ((G0)`,`). Note that β′ 7→ f ·(0, 1) + β′ + s·(1, 0) gives a bijection
between on the one hand all β′ Â γ′ and on the other hand all β Â γ. Note
moreover, see [1, Th. 4.4], that deformations of G0 are smoothly fibered over
deformations of (G0)`,`, with precise information on parameters (the matrix of
the display is in blocks). This shows that the theorem follows for G0 if it is
proved for (G0)`,`. Hence we are reduced to proving the theorem in case G0 is
supposed to be of local-local type.

We use (2.8) in case of the normal form of the matrix of D(G0) over k; we
concluded that the entries ai,j , with 1 ≤ i ≤ d, and d + 1 ≤ j ≤ h which are
nonzero are all situated in �(N (G0)). For any integral domain B which is a
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quotient of R = k[[z(x,y) | (x, y) ∈ �]] we can apply (2.6) and (2.8) to its field
of fractions. This shows that R→ B factors through R→ Rβ if and only if the
generic fiber over B has Newton polygon equal to or above β. This proves our
claim in case G0 is local-local. Hence this finishes the proof of the theorem.

(3.3) We fix an integer g. For every symmetric Newton polygon ξ of
height 2g,

4(ξ) = {(x, y) ∈ Z× Z | y < g, y < x ≤ g, (x, y) ≺ ξ},

and
sdim(ξ) = #(4(ξ)).

Consider a p-divisible group G0 over k of dimension g with a principal
quasi-polarization. Now, N (G0) = γ; this is a symmetric Newton polygon.
Now, D = Def(G0, λ) for the universal deformation space. For every symmetric
Newton polygon ξ with ξ Â γ we define Wξ ⊂ D as the maximal closed, reduced
formal subscheme carrying all fibers with Newton polygon equal to or above
ξ; this space exists by Grothendieck-Katz; see [9, Th. 2.3.1, p. 143]. Note that
Wρ = D, where ρ = g·((1, 0) + (0, 1)).

(3.4) Theorem (NP-strata for principally quasi-polarized formal groups).
Suppose a(G0) ≤ 1. For every symmetric ξ Â γ := N (G0), dim(Wξ) =
sdim(ξ). The strata Wξ are nested as given by the partial ordering on symmet-
ric Newton polygons; i.e.,

Wξ ⊂Wδ ⇐⇒4(ξ) ⊂ 4(δ)⇐⇒ ξ ≺ δ.

Generically on Wξ the fibers have Newton polygon equal to ξ. There is a
coordinate system on D in which all Wξ are given by linear equations.

(3.5) Corollary. There exists a principally polarized abelian variety
(X0, λ0) over k. Strata in Def(X0, λ0) according to Newton polygons are exactly
as in (3.4). In particular, the fiber above the generic point of Wξ is a principally
polarized abelian scheme over Spec(Bξ) having Newton polygon equal to ξ (for
Bξ, see the proof of (3.4) below ; for the notion “generic point of Wξ” see the
proof of (3.5) below).

Proof. We write (X0, λ0)[p∞] =: (G0, λ0). By Serre-Tate theory, see [8,
§1], the formal deformation spaces of (X0, λ0) and of (G0, λ0) are canonically
isomorphic, say (X , λ) → Spf(R) and (G, λ) → Spf(R) and (X , λ)[p∞] ∼=
(G, λ). By Chow-Grothendieck, see [4, III1.5.4] (this is also called a theo-
rem of “GAGA-type”), the formal polarized abelian scheme is algebraizable,
and we obtain the universal deformation as a polarized abelian scheme over
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Spec(R). Next, we can consider the generic point of Wξ ⊂ Spec(R). Hence the
Newton polygon of fibers can be read off from the fibers in (G, λ)→ Spec(R).
This proves that (3.5) follows from (3.4).

Proof of (3.4). The proof of this theorem is analogous to the proof of (3.2).
We use the diagram

−1
Xg,g · · · X1,g

.
...

1 Xg,1 · · · X1,1 .

Here Xi,j , 1 ≤ i, j ≤ g, is written on the place with coordinates (g−i+j, j−1).
We use the ring

B :=
k[[xi,j ; 1 ≤ i, j ≤ g]]

(xk` − x`k)
, xi,j = z(g−i+j,j−1), (g − i+ j, j − 1) ∈ 4.

Note that B = k[[xi,j | 1 ≤ i ≤ j ≤ g]] = k[[zx,y | (x, y) ∈ 4]]. For a symmetric
ξ with ξ Â N (X0) we consider

Bξ =
k[[ti,j ; 1 ≤ i, j ≤ g]]

(tk` − t`k, and z(x,y) ∀(x, y) 6∈ 4(ξ))
.

With this notation, applying (2.6) and (2.8), we finish the proof of (3.4) as we
did in the proof of (3.2) above.

(3.6) A remark on numbering. In the unpolarized case, see (3.2), where
there is a deformation matrix (Tr,s | 1 ≤ r ≤ d < s ≤ h), we put Tr,s in
the “NP diagram space” on the spot (s− r, s− 1− d). In the polarized case,
see (3.4), we have a square matrix; according to notation used in case of the
Riemann symmetry condition we write (Xi,j | 1 ≤ i, j ≤ d = g), and put Xi,j

on the spot (g− i+j, j−1), with d = g = c. Up to this change in numbering in
the indices these amount to the same when methods concern the same cases:
Tr,s = Xr,s−d. Note that we work with entries in the matix (a) just below the
diagonal, and obtain deformations starting from the variables tr,s producing
elements “ar,s−1 = tr,s”, which cause the shifts in indices between (2.8) and
(3.2).

4. Where to start

(4.1) Lemma. Given d ∈ Z>0, c ∈ Z>0 and a prime number p, there
exists a field K of characteristic p, and a formal group G over K of height
h = d + c, of dimension d with a(G) = 1 such that its Newton polygon N (G)
is the straight line connecting (0, 0) with (h, c), i.e. it has h slopes each equal
to c/h.
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(4.2) Suppose we are given h, d ∈ Z>0 with d < h. Consider the matrix
(of size h× h with left hand upper corner a block of size d× d):



0 0 · · · 0 0 0 · · 0 −p
1 0 · · · 0 0 0 · · · · 0

0 1
. . . 0 0 · · ·

...
...

. . . . . .
...

... 0
...

...

0 0 · · · 1 0 0 · · · · · 0

0 · · · · · · 0 1 0 · · · · 0 0

0 · · · · · · 0 p 0 · · · · 0

0 · · · · · · 0 0 p
. . . · 0

...
...

...
. . . 0 0

0 · · · · · · 0 0 0 · · · p 0



.

We say this matrix is in cyclic normal form of height h and dimension d.

Proof of (4.1). Consider (say over K = Fp) the display given by the matrix
above. Clearly this defines a Dieudonné module M and hence (as long as K is
perfect) a p-divisible formal group G with D(G) = M . This matrix gives F on
a basis for M . We see that F h·X1 = −pc·X1. Hence N (G) is a straight line,
e.g. apply (2.7). From the matrix we see that the Hasse-Witt matrix of G has
rank equal to d− 1; hence a(G) = 1.

(4.3) Lemma. Given g ∈ Z>0 and a prime number p there exists:

(1) A field K of characteristic p, and a principally quasi-polarized supersin-
gular formal group (G,λ) over K of dimension equal to g with a(G) = 1.

(2) A field k of characteristic p, and a principally polarized supersingular
abelian variety (X,λ) over k of dimension equal to g with a(X) = 1.

Proof. Consider a matrix in cyclic normal form with h = 2g, and d = g.
This defines a supersingular formal group G of dimension g, height h, with
a(G) = 1. We give a nondegenerate skew form on M = D(G) by requiring the
basis to be symplectic; we are going to show this is possible. We compute the
action of V :

V (Xi+1) = pXi, V X1 = −Yg, V Y1 = pXg, V Yj+1 = Yj .
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Now, F and V must respect the pairing on this symplectic base; i.e., we have
to prove that for a, b ∈M ,

〈Fa, b〉 = 〈a, V b〉σ.

It suffices to show this directly on base vectors; let us show the essential steps
(the others being obvious):

−1 = 〈Y1, X1〉 = 〈FXd, X1〉 ?= 〈Xg, V X1 = −Yg〉σ = −1,

and analogously 〈FYd, Y1〉 = −p = 〈Yd, V Y1〉σ. This proves the first statement.
In order to prove (2), we have to see that (G,λ) is algebraizable, i.e.

comes from a principally polarized abelian variety. Using [21, §2] there is exists
(canonically) a polarized flag-type quotient H → H/N = G, (H,µ′)→ (G,λ)
with a(H) = g. We know that a(H) = g implies that H ⊗ k ∼= E[p∞]g,
where E is a supersingular elliptic curve (isomorphism, say, over an algebraic
closure k of K). We see that µ′ on H comes from a polarization µ on Eg with
deg(µ′) = deg(µ) (e.g. use [13, Prop. 6.1]). Hence (H,µ′) is algebraizable:
(Eg, µ)[p∞] ∼= (H,µ′) ⊗ k and thus the quotient (G,λ) ⊗ k is algebraizable.
This ends a construction which shows (2).

(4.4) Remark. For a proof of (4.3) we could also refer to [13, (4.9)] (where
it is proved that every component of the supersingular locus in the principally
polarized case has generically a = 1). However that is a much more involved
result than just the lemma above.

5. A conjecture by Manin

(5.1) A conjecture by Manin (see [14, p. 76]). For any prime number p
and any symmetric Newton polygon ξ there exists an abelian variety X over a
field in characteristic p such that N (X) = ξ.

This is the converse of (1.7).

(5.2) This conjecture was proved in the Honda-Serre-Tate theory; see [29,
p. 98].

Using that theory we can actually prove somewhat more; we know that a
supersingular abelian variety (of dimension at least 2) is not absolutely simple;
however this is about the only general exception: for a symmetric Newton
polygon which is not supersingular, there exists an absolutely simple abelian
variety in characteristic p having this Newton polygon; see [12]. Can we prove
the result of that paper using the deformation theory as discussed here?

Once the conjecture by Manin is proved, we conclude that actually there
exists an abelian variety defined over a finite field with the desired Newton
polygon.
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(5.3) A proof of the Manin conjecture. Suppose there is a symmetric New-
ton polygon ξ of height 2g. Choose (X0, λ0) as in (4.3)(2) above; in particular
a(X0) ≤ 1 and λ0 is a principal polarization. Apply (3.5). We conlude that the
generic fiber over Wξ ⊂ Def(X0, λ0) is a (principally) polarized abelian variety
with Newton polygon equal to ξ.

(5.4) Remark. Actually we proved that for any ξ there exists a principally
polarized (X,λ) with N (X) = ξ and a(X) ≤ 1.

(5.5) Let us analyze the essential step, where we made a formal group
algebraic. Starting with supersingular formal groups, we know that the a-
number is maximal if and only if the formal group is isomorphic with (G1,1)g

(see [23]); hence this can be algebraized (note that E[p∞] ∼= G1,1 ⊗ Fp for a
supersingular elliptic curve E). We can algebraize a principally quasi-polarized
supersingular formal group with a(G0) = 1 (use polarized flag-type quotients).
Then we apply the deformation theory (say of quasi-polarized formal groups),
obtaining the Newton polygon desired, and then the theory of Serre-Tate, see
[8, §1]. Then the Chow-Grothendieck algebraization, see [4, III1.5.4], allows
us to algebraize the family; it produces an abelian variety as required in the
Manin conjecture.

(5.6) By methods just explained a weak form of the conjecture by
Grothendieck follows:

Weak form. Let β Â γ be two Newton polygons belonging to a height
h and a dimension d which are comparable. There exists a p-divisible group
G → S over an integral formal scheme S in characteristic p, such that the
generic fiber Gη has N (Gη) = β and the closed special fiber G0 has N (G0) = γ.

Weak form, AV. Suppose there are two symmetric Newton polygons,
ξ Â γ. There exists a specialization of polarized abelian varieties (Xη, λη) ⊂
(X , λ) ⊃ (X0, λ0) having ξ and γ as Newton polygons for the generic an special
fiber.

This proves the following (see Koblitz, [10, p. 215]): Suppose there exists a
sequence ξ1 ≺ · · · ≺ ξn of comparable symmetric Newton polygons. Then there
exists a sequence of specializations having these Newton polygons in each step.

6. A conjecture by Grothendieck

(6.1) In [3, Appendix], we find a letter of Grothendieck to Barsotti, and
on page 150 we read: “· · · The wishful conjecture I have in mind now is the
following: the necessary conditions · · · that G′ be a specialization of G are
also sufficient. In other words, starting with a BT group G0 = G′, taking its
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formal modular deformation · · · we want to know if every sequence of rational
numbers satisfying · · · these numbers occur as the sequence of slopes of a fiber
of G as some point of S.”

We say that G0 is a specialization of Gη if there exists an integral local
scheme S and a p-divisible group G → S with G0 as closed fibre and Gη as
generic fibre; in this case we shall write Gη ∼→ G0. We use analogous
notation for polarized abelian varieties and quasi-polarized p-divisible groups.

(6.2) Theorem (a conjecture by Grothendieck). Given a p-divisible group
G0 and Newton polygons N (G0) =: γ ≺ β, assume a(G0) ≤ 1. Then there
exists a specialization Gη ∼→ G0 with β = N (Gη).

(6.3) Theorem (an analogue of the conjecture by Grothendieck). (a)
Suppose there are a principally quasi-polarized p-divisible group (G0, λ0) and
symmetric Newton polygons N (G0) =: γ ≺ ξ. Assume a(G0) ≤ 1. There exists
a specialization (Gη, µ) ∼→ (G0, λ0) with ξ = N (Gη).

(b) Given a principally polarized abelian variety (X0, λ0) and symmetric
Newton polygons N (X0) =: γ ≺ ξ, assume a(X0) ≤ 1. Then there exists a
specialization (Xη, µ) ∼→ (X0, λ0) with ξ = N (Xη).

Proof of (6.2). Applying (2.2) to D(G0), we use deformation theory and its
methods, as developed in Section 4, to obtain a generic fiber with the desired
Newton polygon; by (3.2) any β Â N (G0) is realized in D = Def(G0). This
proves (6.2).

Proof of (6.3). We apply (2.3) to D(G0), respectively to D(X0[p∞]). By
(3.4) and (3.5), a principally polarized (X0, λ0) can be deformed to a principally
polarized abelian variety with a given symmetric ξ Â N (X0). This proves all
existence results in (6.3).

(6.4) Remark. The analogue of the conjecture by Grothendieck does not
hold for arbitrary polarized abelian varieties. This is shown by the following:

Example (see [7, Remark 6.10]). Fix a prime number p, consider abelian
varieties of dimension 3 with a polarization of degree p6. In that 6-dimensional
moduli space A3,p3 ⊗ Fp (of course) the locus where the p-rank is zero, has
dimension 3; see [18, Th. 4.1]. It can be proved that the supersingular locus in
this moduli space has a component of dimension equal to three; see [21, Cor.
3.4]. Hence we conclude there exists a polarized abelian variety (X0, λ0) of
dimension 3, supersingular, hence N (X0) = σ = 3·(1, 1) with degree(λ0) = p3,
such that every deformation of this polarized abelian variety either is super-
singular or has positive p-rank; thus no such deformation will produce the
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Newton polygon γ = (2, 1) + (1, 2). This ends the description of the example,
and the claim that (6.2) does not hold for arbitrary polarized abelian varieties
is proved.

We expect an example (G0, λ0), which cannot be deformed to some
ξ Â γ = N (G0) as just explained, to be available for every symmetric Newton
polygon γ with f(γ) ≤ g − 2, i.e. which allows in its isogeny class a formal
group with a ≥ 2, and a carefully chosen inseparable polarization.

(6.5) Remark. In the previous example we know that a(X0) = 1 (by
[18, Th. 4.1]). Hence for any Newton polygon γ with h = 6, d = 3 the
p-divisible group X0[p∞] (no quasi-polarization considered) can be deformed
to a p-divisible group with Newton polygon equal to γ. We see the curious fact
that a deformation of a given Newton polygon as p-divisible groups does exist,
but as (nonprincipally) polarized p-divisible groups does not exist in this case.

(6.6) Remark. The conjecture by Grothendieck in its general form, i.e.
(6.2) without assuming anything about a(G0), and the analogue for the
(quasi-) principally polarized case, i.e. (6.3) without assuming anything about
a(G0), have been proved; see [6] and [25].

It follows that the dimension (of every component) of Wξ ⊂ Ag,1 ⊗ Fp
equals sdim(ξ), as announced in [24]; this was conjectured for the supersingular
Newton polygon σ in [21], and proved for Wσ = Sg,1 in [13]. Note that for a
Newton polygon stratum for ξ for nonseparably polarized abelian varieties the
dimension count can give an answer different from sdim(ξ).
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Norm. Sup. 2 (1969), 63–135.

[21] T. Oda and F. Oort, Supersingular abelian varieties, Proc. Intl. Sympos. on Algebraic Ge-
ometry (M. Nagata, ed.) (Kyoto 1977), 595–621, Kinokuniya Book Store, Tokyo (1978).

[22] F. Oort, Commutative Group Schemes, Lecture Notes in Math. 15 Springer-Verlag, New
York, 1966.

[23] , Which abelian surfaces are products of elliptic curves?, Math. Ann. 214 (1975),
35–47.

[24] , Moduli of abelian varieties and Newton polygons, C. R. Acad. Sci. Paris 312
(1991), 385–389.

[25] , Newton polygon strata in the moduli space of abelian varieties, preprint.
[26] , A stratification of a moduli space of abelian varieties, preprint.
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