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NEWTON POLYGONS OF HIGHER ORDER

IN ALGEBRAIC NUMBER THEORY

JORDI GUÀRDIA, JESÚS MONTES, AND ENRIC NART

Abstract. We develop a theory of arithmetic Newton polygons of higher
order that provides the factorization of a separable polynomial over a p-adic
field, together with relevant arithmetic information about the fields generated
by the irreducible factors. This carries out a program suggested by Ø. Ore.
As an application, we obtain fast algorithms to compute discriminants, prime
ideal decomposition and integral bases of number fields.

Introduction

R. Dedekind based the foundations of algebraic number theory on ideal theory
because the constructive attempts to find a rigorous general definition of the ideal
numbers introduced by E. Kummer failed. This failure is due to the existence of
inessential discriminant divisors; that is, there are number fields K and prime num-
bers p, such that p divides the index i(θ) := (ZK : Z[θ]), for any integral generator
θ of K, where ZK is the ring of integers. Dedekind gave a criterion to detect when
p � i(θ), and a procedure to construct the prime ideals of K dividing p in that case,
in terms of the factorization of the minimal polynomial of θ modulo p [Ded78].

M. Bauer introduced an arithmetic version of Newton polygons to construct
prime ideals in cases where Dedekind’s criterion failed [Bau07]. This theory was
developed and extended by Ø. Ore in his 1923 thesis and a series of papers that
followed [Ore23, Ore24, Ore25, Ore26, Ore28]. Let f(x) ∈ Z[x] be an irreducible
polynomial that generates K. After K. Hensel’s work, the prime ideals of K lying
above p are in bijection with the irreducible factors of f(x) over Zp[x]. Ore’s work
determines three successive factorizations of f(x) in Zp[x], called dissections of
the set of prime ideals dividing p. The first dissection is determined by Hensel’s
lemma: f(x) splits into the product of factors that are congruent to the power of
an irreducible polynomial modulo p. The second dissection is a further splitting of
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each factor, according to the number of sides of a certain Newton polygon. The
third dissection is a further splitting of each of the latter factors, according to
the factorization of a certain residual polynomial with coefficients in a finite field,
attached to each side of the polygon.

Unfortunately, the factors of f(x) obtained after these three dissections are not
always irreducible. Ore defined a polynomial to be p-regular when it satisfies a
technical condition that ensures that the factorization of f(x) is complete after the
three dissections. Also, he proved the existence of a p-regular defining equation for
every number field, but the proof is not constructive: it uses the Chinese remainder
theorem with respect to the different prime ideals that one wants to construct. Ore
himself suggested that it should be possible to introduce Newton polygons of higher
order that continue the factorization process till all irreducible factors of f(x) are
achieved [Ore23, Ch.4, §8], [Ore28, §5].

Ore’s program was carried out by the second author in his 1999 thesis [Mon99],
under the supervision of the third author. For any natural number r ≥ 1, Newton
polygons of order r were constructed, the case r = 1 corresponding to the Newton
polygons introduced by Ore. Also, results analogous to Ore’s theorems were proved
for polygons of order r, providing two more dissections of the factors of f(x), for
each order r. The whole process is controlled by an invariant defined in terms of
higher order indices, which ensures that the process ends after a finite number of
steps. Once an irreducible factor of f(x) is detected, the theory determines the
ramification index and residual degree of the p-adic field generated by this factor,
and a generator of the maximal ideal. These invariants are expressed in terms
of combinatorial data attached to the sides of the higher order polygons and the
residual polynomials of higher order attached to each side. The process yields as
a by-product a computation of ind(f) := vp(i(θ)), where θ is a root of f(x). An
implementation in Mathematica of this factorization algorithm was worked out by
the first author [Gua97].

We now present these results after a thorough revision and some simplifications.
In section 1 we review Ore’s results, with proofs, which otherwise can be found
only in the original papers by Ore in the language of “höheren Kongruenzen”. In
section 2 we develop the theory of Newton polygons of higher order, based on the
concept of a type and its representative, which plays the analogous role in order r
to that played by an irreducible polynomial modulo p in order one. In section 3
we prove results in order r analogous to Ore’s theorems of the polygon and of the
residual polynomial (Theorems 3.1 and 3.7), which provide two more dissections
for each order. In section 4 we introduce resultants and indices of higher order
and we prove the theorem of the index (Theorem 4.18), which relates ind(f) with
the higher order indices constructed from the higher order polygons. This result
guarantees that the factorization process finishes at most in ind(f) steps.

Although the higher order Newton polygons are apparently involved and highly
technical objects, they provide fast factorization algorithms because all computa-
tions are mainly based on two reasonably fast operations: division with remainder
of monic polynomials with integer coefficients, and factorization of polynomials over
finite fields. Thus, from a modern perspective, the main application of these results
is the design of fast algorithms to compute discriminants, prime ideal decomposi-
tion and integral bases of number fields. However, we present in this paper only
the theoretical background of higher order Newton polygons. We shall describe the
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concrete design of the algorithms and discuss the relevant computational aspects
elsewhere [GMN08, GMN09].
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1. Newton polygons of the first order

1.1. Principal polygons. Let λ ∈ Q− be a negative rational number, expressed
in lower terms as λ = −h/e, with h, e positive coprime integers. We denote by
S(λ) the set of segments of the Euclidean plane with slope λ and end points having
nonnegative integer coordinates. The points of (Z≥0)

2 are also considered to be
segments in S(λ), whose initial and final points coincide. The elements of S(λ) will
be called sides of slope λ. For any side S ∈ S(λ), we define its length, � := �(S),
and height, H := H(S), to be the length of the respective projections of S to the
horizontal and vertical axes. We define the degree of S to be

d := d(S) := �(S)/e = H(S)/h.

Any side S is divided into d segments by the points with integer coordinates that
lie on S. A side S ∈ S(λ) is determined by the initial point (s, u) and the degree d.
The final point is (s+ �, u−H) = (s+de, u−dh). For instance, Figure 1 represents
a side of slope −1/2, initial point (s, u), and degree three.
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The set S(λ) has the structure of an abelian semigroup with the following ad-
dition rule: given S, T ∈ S(λ), the sum S + T is the side of degree d(S) + d(T )
of S(λ), whose initial point is the sum of the initial points of S and T . Thus, the
addition is geometrically represented by the process of joining the two segments
and choosing an appropriate initial point. The addition of a segment S with a
point P coincides with the translation P + S of S by the vector determined by P .
The neutral element is the point (0, 0). The invariants �(S), H(S), d(S) determine
semigroup homomorphisms

�, H, d : S(λ) −→ Z≥0.

The set of sides of negative slope is defined as S :=
⋃

λ∈Q− S(λ). Since the

points of (Z≥0)
2 belong to S(λ) for all λ, it is not possible (even in a formal sense)

to attach a slope to them.
There is a natural geometric representation of a formal sum of sides, as an open

convex polygon of the plane. Given a formal sum S1 + · · ·+St, of sides of negative
slope, we consider the sum P0 of all initial points of the Si, and we construct the
polygon N := N(S1+ · · ·+St) that starts at P0 and is obtained by joining all sides
of positive length, ordered by increasing slopes. The length of N is by definition the
largest abscissa �(N) of the points of N ; the abscissa of P0 is denoted by �∞(N).
The typical shape of this polygon is shown in Figure 2.
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Figure 2

Definition 1.1. The semigroup PP of principal polygons is defined to be the set
of all open convex polygons of the plane, attached to finite formal sums of sides
of negative slope. The length determines a semigroup homomorphism, � : PP −→
Z≥0.
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The addition of principal polygons is the operation induced by the formal sum
of sides. If N = N(S1 + · · ·+ St) and N ′ = N(S′

1 + · · · + S′
s), then N +N ′ is the

geometric representation of S1+· · ·+St+S′
1+· · ·+S′

s. The reader may easily check
that this is well-defined and that PP has a structure of a semigroup with neutral
element {(0, 0)}. Clearly, this addition is compatible with the sum operations that
we had on all S(λ). The addition of N ∈ PP with (the polygon represented by) a
point P ∈ (Z≥0)

2 is the translation P +N .
Note that N(S) = S, for all S ∈ S, but �(N(S)) = �∞(N(S)) + �(S). It is quite

natural to express a principal polygon directly as a sum of sides: N = S1+ · · ·+St.
This decomposition is unique in either of the two following situations:

(1) N = S, with S ∈ (Z≥0)
2,

(2) N = S1 + · · ·+ St, with all Si of positive length and slopes λ1 < · · · < λt.

Any N ∈ PP can be expressed in one (and only one) of these canonical forms. The
end points of these canonical sides are called the vertices of the polygon.

For technical reasons, in the canonical representation of a principal polygon as
a sum of sides we (eventually) include a side of slope −∞. Informally, it is the side
with initial point (0,∞) and final point P0, the starting point of the “finite part”
of the polygon (cf. Figure 2). In a more formal setting, we define the set of sides
of slope −∞ as S(−∞) := Z>0, with its natural structure of an abelian monoid. If
S ∈ S(−∞) corresponds to the positive integer �, we define �(S) := �, H(S) := ∞.

Definition 1.2. If N ∈ PP has �∞(N) > 0, then we consider the side of slope
−∞ determined by the positive integer �∞(N) as the “infinite part” of N .

From now on, when we write N = S1 + · · ·+ St, we implicitly assume that this
is the canonical decomposition of the whole of N , the infinite and finite parts, as a
sum of sides. Therefore, either S1 ∈ S has a left end point with abscissa zero (and
�∞(N) = 0), or S1 ∈ S(−∞) has length �∞(N) > 0.

We say that N is one-sided if either N = S1, with S1 ∈ S, �(S1) > 0, or
N = S1 + S2, with S1 ∈ S(−∞), �(S2) = 0.

This definition has some advantages. For instance, the projection of a (whole)
principal polygon N to the horizontal axis is always the interval [0, �(N)]. Also,
the length of N = S1 + · · ·+ St is equal to �(N) = �(S1) + · · ·+ �(St).

Clearly, the splitting of N ∈ PP into a finite part and an infinite part behaves
well with respect to the addition in PP: the sum of the finite (resp. infinite) parts
of N and N ′ are the finite (resp. infinite) parts of N +N ′.

Let N ∈ PP. For any integer abscissa, 0 ≤ i ≤ �(N), we denote

yi = yi(N) :=

{
∞, if i < �∞(N),
the ordinate of the point of N of abscissa i, if i ≥ �∞(N).

For i ≥ �∞(N) these rational numbers form a strictly decreasing sequence.

Definition 1.3. Let P = (i, y) be a “point” of the plane, with integer abscissa
0 ≤ i ≤ �(N), and ordinate y ∈ R ∪ {∞}. We say that P lies on N if y = yi. We
say that P lies on or above N if y ≥ yi. We say that P lies above N if y > yi.

Let i0 = �∞(N), and for any i0 < i ≤ �(N), let μi be the slope of the segment
joining (i − 1, yi−1) and (i, yi). The sequence μi0+1 ≤ · · · ≤ μ�(N) is an increasing
sequence of negative rational numbers. We call these elements the unit slopes of
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N . Consider the multisets of unit slopes:

Ui0(N) := ∅; Ui(N) := {μi0+1, . . . , μi}, i0 < i ≤ �(N).

Clearly, yi(N) = yi0(N) +
∑

μ∈Ui(N) μ.

Let N ′ be another principal polygon; denote j0 = �∞(N ′) and consider analogous
multisets Uj(N

′), for all j0 ≤ j ≤ �(N ′). By the definition of the addition law of
principal polygons, the multiset Uk(N +N ′) contains the smallest k − i0 − j0 unit
slopes of the multiset U�(N)(N) ∪ U�(N ′)(N

′). Thus,

yi(N) + yj(N
′) ≥ yi+j(N +N ′),

and equality holds if and only if Ui(N) ∪ Uj(N
′) = Ui+j(N +N ′).

Lemma 1.4. Let N,N ′ ∈ PP. Let P = (i, u) be a point lying on or above the
finite part of N and P ′ = (j, u′) a point lying on or above the finite part of N ′.
Then P + P ′ lies on or above the finite part of N +N ′, and

P + P ′ ∈ N +N ′ ⇐⇒ P ∈ N, P ′ ∈ N ′, and Ui(N) ∪ Uj(N
′) = Ui+j(N +N ′).

Proof. Clearly, u + u′ ≥ yi(N) + yj(N
′) ≥ yi+j(N +N ′), and P + P ′ ∈ N +N ′ if

and only if both inequalities are equalities. �
Definition 1.5. Let λ ∈ Q− and N ∈ PP. We define the λ-component of N to be
Sλ(N) := {(x, y) ∈ N | y − λx is minimal}. In this way we obtain a map:

Sλ : PP −→ S(λ).
If N has a canonical side S of positive length and slope λ, then Sλ(N) = S.

Otherwise, the λ-component Sλ(N) is a single point. Figure 3 illustrates both
possibilities; in this figure, Lλ is the line of slope λ having first contact with N
from below.
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Figure 3

Lemma 1.4 shows that Sλ is a semigroup homomorphism:

(1) Sλ(N +N ′) = Sλ(N) + Sλ(N
′),

for all N, N ′ ∈ PP and all λ ∈ Q−.

1.2. φ-Newton polygon of a polynomial. Let p be a prime number and let
Qp be a fixed algebraic closure of the field Qp of the p-adic numbers. For any

finite subextension, Qp ⊆ L ⊆ Qp, we denote by vL : Qp −→ Q ∪ {∞} the p-adic
valuation normalized by vL(L

∗) = Z. Throughout the paper OL will denote the
ring of integers of L, mL its maximal ideal, and FL the residue field. We usually
indicate simply by a bar the canonical reduction map, redL : OL −→ FL, and its
natural extension to polynomials: α := redL(α), f(x) := redL(f(x)).
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We fix a finite extension K of Qp as a base field, and we denote v := vK ,
O := OK , m := mK , F := FK . We also fix a prime element π ∈ O.

We extend the valuation v to O[x] in a natural way:

v : O[x] −→ Z≥0 ∪ {∞}, v(b0 + · · ·+ brx
r) := min{v(bj), 0 ≤ j ≤ r}.

Let φ(x) ∈ O[x] be a monic polynomial of degree m whose reduction modulo m

is irreducible. We denote by Fφ the finite field O[x]/(π, φ(x)), and by

redφ : O[x] −→ Fφ

the canonical homomorphism.
Any f(x) ∈ O[x] admits a unique φ-adic development:

f(x) = a0(x) + a1(x)φ(x) + · · ·+ an(x)φ(x)
n,

with ai(x) ∈ O[x], deg ai(x) < m. For any coefficient ai(x) we denote ui :=
v(ai(x)) ∈ Z≥0 ∪ {∞}.

Definition 1.6. The φ-Newton polygon of a nonzero polynomial f(x) ∈ O[x] is
the lower convex envelope of the set of points Pi = (i, ui), ui < ∞, in the Euclidean
plane. We denote this polygon by Nφ(f).

The length of this polygon is by definition the abscissa of the last vertex. We
denote it by �(Nφ(f)) := n = �deg(f)/m
. Note that deg f(x) = mn + deg an(x).
The typical shape of this polygon is as shown in Figure 4.
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Remark 1.7. The φ-Newton polygon of f(x) consists of a single point if and only
if f(x) = a(x)φ(x)n, with deg(a) < m.

Definition 1.8. The principal φ-polygon of f(x) is the element N−
φ (f) ∈ PP

determined by the sides of negative slope of Nφ(f), including the side of slope −∞
represented by the length ordφ(f). It has length �(N−

φ (f)) = ordφ

(
f/πv(f)

)
.

For any λ ∈ Q− we shall denote by Sλ(f) := Sλ(N
−
φ (f)) the λ-component of

this polygon (cf. Definition 1.5).

Let us denote N = N−
φ (f) for simplicity. By construction, the points Pi all lie

on or above N . The points that lie on N contain the arithmetic information we are
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interested in. We attach to any abscissa ordφ(f) ≤ i ≤ �(N) the following residual
coefficient ci ∈ Fφ:

ci =

{
0, if (i, ui) lies above N,

redφ (ai(x)/π
ui) , if (i, ui) lies on N.

Note that ci is always nonzero in the latter case because deg ai(x) < m.
Let λ = −h/e be a negative rational number, with h, e positive coprime integers.

Let S = Sλ(f) be the λ-component of N , (s, u) the initial point of S, and d = d(S)
the degree of S. The arithmetic information determined by the family of points
(i, ui) that lie on S is synthesized by two polynomials that are built with the
coefficients of the φ-development of f(x) to which these points are attached.

Definition 1.9. We define the virtual factor of f(x) attached to λ (or to S) to be
the polynomial

fS(x) := π−uφ(x)−sf0(x) ∈ K[x], where f0(x) :=
∑

(i,ui)∈S

ai(x)φ(x)
i.

We define the residual polynomial attached to λ (or to S) to be the polynomial

Rλ(f)(y) := cs + cs+e y + · · ·+ cs+(d−1)e y
d−1 + cs+de y

d ∈ Fφ[y].

Note that only the points (i, ui) that lie on S yield a nonzero coefficient of
Rλ(f)(y). In particular, cs and cs+de are always nonzero, so that Rλ(f)(y) has
degree d and it is never divisible by y.

If π′ = ρπ is another prime element of O and c = ρ̄ ∈ F∗, the residual coefficients
of N−

φ (f) with respect to π′ satisfy c′i = cic
−ui , so that the corresponding residual

polynomial R′
λ(f)(y) is equal to c−uRλ(f)(c

hy).
We can define in a completely analogous way the residual polynomial of f(x)

with respect to a side T , which is not necessarily a λ-component of N−
φ (f).

Definition 1.10. Let T ∈ S(λ) be an arbitrary side of slope λ, with abscissas
s0 ≤ s1 for the end points, and let d′ = d(T ). We say that the polynomial f(x)
lies on or above T if all points of N−

φ (f) with integer abscissa s0 ≤ i ≤ s1 lie on or
above T ; in this case we define

Rλ(f, T )(y) := c̃s0 + c̃s0+e y + · · ·+ c̃s0+(d′−1)e y
d′−1 + c̃s0+d′e y

d′ ∈ Fφ[y],

where c̃i = ci if (i, ui) lies on T and c̃i = 0 otherwise.

Thus, if all points of Sλ(f) lie above T we have Rλ(f, T )(y) = 0. Note that
degRλ(f, T )(y) ≤ d′ and equality holds if and only if the final point of T belongs
to Sλ(f). Usually, T will be an enlargement of Sλ(f) and then

(2) T ⊇ Sλ(f) =⇒ Rλ(f, T )(y) = y(s−s0)/eRλ(f)(y),

where s is the abscissa of the initial point of Sλ(f). See Figure 5.
The motivation for this more general definition lies in the bad behaviour of the

residual polynomial Rλ(f)(y) with respect to sums. Nevertheless, if T is a fixed
side and f(x), g(x) lie both on or above T , it is clear that f(x) + g(x) lies on or
above T and

(3) Rλ(f + g, T )(y) = Rλ(f, T )(y) +Rλ(g, T )(y).
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1.3. Admissible φ-developments and theorem of the product. Let

(4) f(x) =
∑
i≥0

a′i(x)φ(x)
i, a′i(x) ∈ O[x],

be a φ-development of f(x), not necessarily the φ-adic one. Take u′
i = v(a′i(x)),

for all i ≥ 0, and let N ′ be the principal polygon of the set of points (i, u′
i). Let i0

be the first abscissa with a′i0(x) �= 0. To any i0 ≤ i ≤ �(N ′) we attach a residual
coefficient as before:

c′i =

{
0, if (i, u′

i) lies above N ′,

redφ

(
a′i(x)/π

u′
i

)
, if (i, u′

i) lies on N ′.

For the points (i, u′
i) lying on N ′ we can now have c′i = 0; for instance, in the

case a′0(x) = f(x), the Newton polygon has only one point (0, v(f)) and c′0 = 0 if
f(x)/πv(f) is divisible by φ(x) modulo m.

Finally, for any negative rational number λ = −h/e as above, we can define the
residual polynomial attached to the λ-component S′ = Sλ(N

′) to be

R′
λ(f)(y) := c′s′ + c′s′+e y + · · ·+ c′s′+(d′−1)e y

d′−1 + c′s′+d′e y
d′ ∈ Fφ[y],

where d′ = d(S′) and s′ is the abscissa of the initial point of S′.

Definition 1.11. We say that the φ-development (4) is admissible if c′i �= 0 for
each abscissa i of a vertex of N ′.

Lemma 1.12. If a φ-development is admissible, then N ′ = N−
φ (f) and c′i = ci

for all abscissas i of the finite part of N ′. In particular, for any negative rational
number λ we have R′

λ(f)(y) = Rλ(f)(y).

Proof. Consider the φ-adic developments of f(x) and each a′i(x):

f(x) =
∑
0≤i

ai(x)φ(x)
i, a′i(x) =

∑
0≤k

bi,k(x)φ(x)
k.

By the uniqueness of the φ-adic development we have

(5) ai(x) =
∑

0≤k≤i

bi−k,k(x).

Clearly, wi,k := v(bi,k) ≥ u′
i, for all 0 ≤ k, 0 ≤ i ≤ �(N ′). In particular, all points

(i, ui) lie on or above N ′; in fact, for some 0 ≤ k0 ≤ i, we have

(6) ui = v(ai) ≥ min
0≤k≤i

{wi−k,k} = wi−k0,k0
≥ u′

i−k0
≥ yi−k0

(N ′) ≥ yi(N
′).

From now on, i will be an integer abscissa of the finite part of N ′. Clearly,

(7) wi−k,k ≥ u′
i−k ≥ yi−k(N

′) > yi(N
′),
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for any 0 < k ≤ i. Also, for the abscissas i with u′
i = yi(N

′) we have

(8) c′i = redφ(a
′
i(x)/π

u′
i) = redφ(bi,0(x)/π

u′
i).

Now, if (i, u′
i) is a vertex of N ′ we have c′i �= 0 by hypothesis, and from (8) we

get yi(N
′) = u′

i = wi,0. By (7) and (5) we have ui = wi,0 = u′
i. This shows that

N ′ = N−
φ (f). Let us denote this common polygon by N .

Finally, let us prove the equality of all residual coefficients. If ci �= 0, then
ui = yi(N), and from (6) we get k0 = 0 and ui = wi,0 = u′

i. By (7), (5) and (8),
we get ci = redφ(ai(x)/π

ui) = redφ(bi,0(x)/π
ui) = c′i. If ci = 0, then ui > yi(N),

and from (5) and (7) we get wi,0 > yi(N) too. By (8) we get c′i = 0. �

The construction of the principal part of the φ-Newton polygon of a polynomial
can be interpreted as a mapping

N−
φ : O[x] \ {0} −→ PP, f(x) �→ N−

φ (f).

Also, for any negative rational number λ, the construction of the residual polyno-
mial attached to λ determines a mapping

Rλ : O[x] \ {0} −→ Fφ[y], f(x) �→ Rλ(f)(y).

The theorem of the product says that both mappings are semigroup homomor-
phisms.

Theorem 1.13 (Theorem of the product). For any f(x), g(x) ∈ O[x] \ {0} and
any λ ∈ Q− we have

N−
φ (fg) = N−

φ (f) +N−
φ (g), Rλ(fg)(y) = Rλ(f)(y)Rλ(g)(y).

Proof. Consider the respective φ-adic developments

f(x) =
∑
0≤i

ai(x)φ(x)
i, g(x) =

∑
0≤j

bj(x)φ(x)
j,

and denote ui = v(ai(x)), vj = v(bj(x)), Nf = N−
φ (f), Ng = N−

φ (g). Then,

(9) f(x)g(x) =
∑
0≤k

Ak(x)φ(x)
k, Ak(x) =

∑
i+j=k

ai(x)bj(x).

Denote by N ′ the principal part of the Newton polygon of fg, determined by this
φ-development. We shall show that N ′ = Nf + Ng, that this φ-development is
admissible, and that R′

λ(fg) = Rλ(f)Rλ(g) for all λ. The theorem will then be a
consequence of Lemma 1.12.

Let wk := v(Ak(x)) for all 0 ≤ k. Lemma 1.4 shows that the point (i, ui)+(j, vj)
lies on or above Nf +Ng for any i, j ≥ 0. Since wk ≥ min{ui + vj | i+ j = k}, the
points (k, wk) all lie on or above Nf +Ng. On the other hand, let Pk = (k, yk) be
a vertex of Nf +Ng; that is, Pk is the end point of S1 + · · · + Sr + T1 + · · ·+ Ts,
for certain sides Si of Nf and Tj of Ng, ordered by increasing slopes among all
sides of Nf and Ng. By Lemma 1.4, for all pairs (i, j) such that i + j = k, the
point (i, ui) + (j, vj) lies above Nf +Ng except for the pair i0 = �(S1 + · · · + Sr),
j0 = �(T1 + · · ·+Ts) that satisfies (i0, ui0)+ (j0, vj0) = Pk. Thus, (k, wk) = Pk and

redφ

(
Ak(x)

πyk

)
= redφ

(
ai0(x)bj0(x)

πyk

)
= redφ

(
ai0(x)

πyi0
(Nf )

)
redφ

(
bj0(x)

πyj0
(Ng)

)
�= 0.

This shows that N ′ = Nf +Ng and that the φ-development (9) is admissible.
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Finally, by (1), the λ-components S′ := Sλ(N
′), Sf := Sλ(Nf ), Sg := Sλ(Ng) are

related by S′ = Sf + Sg. Let (k, yk(N
′)) be a point with integer coordinates lying

on S′ (not necessarily a vertex). Denote by I the set of the pairs (i, j) such that
(i, ui) lies on Sf , (j, vj) lies on Sg, and i+ j = k. Take P (x) =

∑
(i,j)∈I ai(x)bj(x).

By Lemma 1.4, for all other pairs (i, j) with i+ j = k, the point (i, ui) + (j, vj) lies

above N ′. Therefore, c′k(fg) = redφ

(
P (x)/πyk(N

′)
)

=
∑

(i,j)∈I ci(f)cj(g). This

shows that R′
λ(fg)(y) = Rλ(f)(y)Rλ(g)(y). �

Notation. Let F be a field and ϕ(y), ψ(y) ∈ F [y] two polynomials. We write
ϕ(y) ∼ ψ(y) to indicate that there exists a constant c ∈ F∗ such that ϕ(y) = cψ(y).

Corollary 1.14. Let f(x) ∈ O[x] be a monic polynomial. Let φ1(x), . . . , φr(x) be
monic polyomials in O[x] such that their reductions modulo m are pairwise different
irreducible polynomials of F[x] and

f(x) ≡ φ1(x)
n1 · · ·φr(x)

nr (mod m).

Let f(x) = F1(x) · · ·Fr(x) be the factorization into a product of monic polynomials
of O[x] satisfying Fi(X) ≡ φi(x)

ni (mod m), provided by the Hensel lemma. Then,

Nφi
(Fi) = N−

φi
(Fi) = N−

φi
(f), Rλ(Fi)(y) ∼ Rλ(f)(y),

for all 1 ≤ i ≤ r and all λ ∈ Q−.

Proof. For 1 ≤ i ≤ r, let Gi(x) =
∏

j �=i Fj(x). Since φi(x) does not divide Gi(x)

modulo m, N−
φi
(Gi) is the single point (0, 0) and Rλ(Gi)(y) is a nonzero constant

for all λ ∈ Q−. By the theorem of the product, N−
φi
(f) = N−

φi
(Fi) + N−

φi
(Gi) =

N−
φi
(Fi), and Rλ(f)(y) = Rλ(Fi)(y)Rλ(Gi)(y) ∼ Rλ(Fi)(y). On the other hand,

Nφi
(Fi) = N−

φi
(Fi) because both polygons have length ni. �

1.4. Theorems of the polygon and of the residual polynomial. Let f(x) ∈
O[x] be a monic polynomial divisible by φ(x) modulo m. By Hensel’s lemma, f(x) =
fφ(x)G(x) in O[x], with monic polynomials fφ(x), G(x) such that redφ(G(x)) �= 0
and fφ(x) ≡ φ(x)n (mod m). The aim of this section is to obtain a further factori-
zation of fφ(x) and certain arithmetic data about the factors. Thanks to Corollary
1.14, we shall be able to read this information directly on f(x); more precisely,
on the Newton polygon N−

φ (f) = Nφ(fφ) and the residual polynomial Rλ(f)(y) ∼
Rλ(fφ)(y).

Theorem 1.15 (Theorem of the polygon). Let f(x) ∈ O[x] be a monic polynomial
divisible by φ(x) modulo m. Suppose that N−

φ (f) = S1 + · · · + Sg has g sides with

slopes −∞ ≤ λ1 < · · · < λg. Then, fφ(x) admits a factorization in O[x] into a
product of g monic polynomials

fφ(x) = F1(x) · · ·Fg(x),

such that, for all 1 ≤ i ≤ g:

(1) Nφ(Fi) is one-sided and equal to Si up to a translation.
(2) If Si has finite slope λi, then Rλi

(Fi)(y) ∼ Rλi
(f)(y).

(3) For any root θ ∈ Qp of Fi(x), we have v(φ(θ)) = |λi|.
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Proof. By the theorem of the product and Corollary 1.14, it is sufficient to show
that if F (x) := fφ(x) is irreducible, then Nφ(F ) = S is one-sided and the roots

θ ∈ Qp all have v(φ(θ)) equal to minus the slope of S.

For all roots θ ∈ Qp of F (x), v(φ(θ)) takes the same value because the p-adic
valuation is invariant under the Galois action. Since F (x) is congruent to a power
of φ(x) modulo m, we have λ := −v(φ(θ)) < 0. Clearly, λ = −∞ if and only if
F (x) = φ(x), and in this case the theorem is clear. Suppose λ is finite.

Let xk + bk−1x
k−1 + · · ·+ b0 ∈ O[x] be the minimal polynomial of φ(θ) and let

Q(x) = φ(x)k + bk−1φ(x)
k−1+ · · ·+ b0. We have v(b0) = k|λ| and v(bi) ≥ (k− i)|λ|

for all i; this implies that Nφ(Q) is one-sided with slope λ. Since Q(θ) = 0, our
polynomial F (x) is an irreducible factor of Q(x), and by the theorem of the product
Nφ(F ) is also one-sided with slope λ. �

If S1 ∈ S(−∞), the corresponding factor of fφ(x) is F1(x) = φ(x)ordφ(f).
Let λ = −h/e, with h, e coprime positive integers, be a negative rational number

such that S := Sλ(f) has positive length. Let fφ,λ(x) be the factor of f(x), corres-

ponding to the pair φ, λ by the theorem of the polygon. Choose a root θ ∈ Qp of
fφ,λ(x) and let L = K(θ). Since v(φ(θ)) > 0, we can consider an embedding

(10) O[x]/(π, φ(x)) = Fφ ↪→ FL, redφ(x) �→ θ.

Thus, a polynomial P (x) ∈ O[x] satisfies v(P (θ)) > 0 if and only if P (x) is divisible
by φ(x) modulo m. This embedding depends on the choice of θ (and not only on L).
After this identification of Fφ with a subfield of FL we can think that all residual
polynomials have coefficients in FL. The theorem of the polygon yields certain
arithmetic information on the field L.

Corollary 1.16. With the notation above, the residual degree f(L/K) is divisible by
m = deg φ(x), and the ramification index e(L/K) is divisible by e. Moreover, the
number of irreducible factors of fφ,λ(x) is at most d(S); in particular, if d(S) = 1,
then the polynomial fφ,λ(x) is irreducible in O[x], and f(L/K) = m, e(L/K) = e.

Proof. The statement on the residual degree is a consequence of the embedding
(10). By the theorem of the polygon, vL(φ(θ)) = e(L/K)h/e. Since this is an
integer and h, e are coprime, necessarily e divides e(L/K). The upper bound for
the number of irreducible factors is a consequence of the theorem of the product.
Finally, if d(S) = 1, we have me = deg(fφ,λ(x)) = f(L/K)e(L/K), and necessarily
f(L/K) = m and e(L/K) = e. �

Let γ(x) := φ(x)e/πh ∈ K[x]. Note that v(γ(θ)) = 0; in particular, γ(θ) ∈ OL.

Proposition 1.17 (Computation of v(P (θ))). We keep the notation above for
f(x), λ = −h/e, θ, L, γ, and the embedding Fφ ⊆ FL of (10). Let P (x) ∈ O[x] be
a nonzero polynomial, S = Sλ(P ), Lλ be the line of slope λ that contains S, and
H be the ordinate of the intersection of this line with the vertical axis. Then:

(1) v(PS(θ)) ≥ 0, PS(θ) = Rλ(P )(γ(θ)).
(2) v(P (θ)− P 0(θ)) > H.

(3) v(P (θ)) ≥ H, and equality holds if and only if Rλ(P )(γ(θ)) �= 0.

(4) Rλ(f)(γ(θ)) = 0.
(5) If Rλ(f)(y) ∼ ψ(y)a for an irreducible polynomial ψ(y) ∈ Fφ[y], then

v(P (θ)) = H if and only if ψ(y) � Rλ(P )(y) in Fφ[y].
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Proof. Let P (x) =
∑

0≤i bi(x)φ(x)
i be the φ-adic development of P (x), and denote

ui = v(bi), N = N−
φ (P ). Recall that PS(x) = φ(x)−sπ−uP 0(x), where (s, u) are

the coordinates of the initial point of S, and P 0(x) =
∑

(i,ui)∈S bi(x)φ(x)
i. Hence,

for d = d(S) we have

PS(x) = π−u
(
bs(x) + bs+e(x)φ(x)

e + · · ·+ bs+deφ(x)
de
)

= (bs(x)/π
u) + (bs+e(x)/π

u−h)γ(x) + · · ·+ (bs+de(x)/π
u−hd)γ(x)d.

Since v(bs+ie) ≥ ys+ie(N) = u − hi, for all 1 ≤ i ≤ d, the two statements of item
(1) are clear.

•
•

���
���

����

�
��
�

��

��������

Lλ

S

N−
φ (P )

H

Figure 6

All points of N lie on or above the line Lλ; hence, for any integer abscissa i,

v(bi(θ)φ(θ)
i) = ui + i|λ| ≥ yi(N) + i|λ| ≥ H,

and equality holds if and only if (i, ui) ∈ S. This proves item (2). Also, this shows
that v(P (θ)) ≥ H. Since v(φ(θ)sπu) = u+ s|λ| = H, we have

v(P (θ)) = H ⇐⇒ v(P 0(θ)) = H ⇐⇒ v(PS(θ)) = 0 ⇐⇒ Rλ(P )(γ(θ)) �= 0,

the last equivalence by item (1). This proves item (3).
Since f(θ) = 0, item (4) is a consequence of item (3) applied to P (x) = f(x).

Finally, if Rλ(f)(y) ∼ ψ(y)a, then ψ(y) is the minimal polynomial of γ(θ) over Fφ,

by item (4). Hence, Rλ(P )(γ(θ)) �= 0 is equivalent to ψ(y) � Rλ(P )(y) in Fφ[y]. �

We now discuss how Newton polygons and residual polynomials are affected by
an extension of the base field by an unramified extension.

Lemma 1.18. We keep the notation above for f(x), λ = −h/e, θ, L. Let K ′ ⊆ L
be the unramified extension of K of degree m, and identify Fφ = FK′ through the
embedding (10). Let G(x) ∈ OK′ [x] be the minimal polynomial of θ over K ′. Let
φ′(x) = x − η, where η ∈ K ′ is the unique root of φ(x) such that G(x) is divisible
by x− η modulo mK′ . Then, for any nonzero polynomial P (x) ∈ O[x]:

N−
φ′(P ) = N−

φ (P ), R′
λ(P )(y) = εsRλ(P )(εey),

where R′ denotes the residual polynomial with respect to φ′(x) over K ′, ε ∈ F∗
K′

does not depend on P (x), and s is the initial abscissa of Sλ(P ).

Proof. Consider the φ-adic development of P (x):

P (x) = φ(x)n + an−1(x)φ(x)
n−1 + · · ·+ a0(x)

= ρ(x)nφ′(x)n + an−1(x)ρ(x)
n−1φ′(x)n−1 + · · ·+ a0(x),

where ρ(x) = φ(x)/φ′(x) ∈ OK′ [x]. Since φ(x) is irreducible modulo m, it is a
separable polynomial modulo mK′ , so that ρ(x) is not divisible by φ′(x) modulo
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mK′ , and v(ρ(θ)) = 0. Therefore, the above φ′(x)-development of P (x) is admissible
and N−

φ′(P ) = N−
φ (P ) by Lemma 1.12. Moreover the residual coefficients of the

two polygons are related by c′i = ciε
i, where ε = ρ(θ) ∈ F∗

K′ . This proves that
R′

λ(P )(y) = εsRλ(P )(εey). �

Theorem 1.19 (Theorem of the residual polynomial). Let f(x) ∈ O[x] be a monic
polynomial divisible by φ(x) modulo m, S a side of N−

φ (f) with finite slope λ, and

Rλ(f)(y) ∼ ψ1(y)
a1 · · ·ψt(y)

at

the factorization of the residual polynomial of f(x) into the product of powers of
pairwise different monic irreducible polynomials in Fφ[y]. Then, the factor fφ,λ(x)
of f(x), attached to φ, λ by the theorem of the polygon, admits a factorization

fφ,λ(x) = G1(x) · · ·Gt(x)

into a product of t monic polynomials in O[x], such that Nφ(Gi) is one-sided with
slope λ, and Rλ(Gi)(y) ∼ ψi(y)

ai in Fφ[y], for all 1 ≤ i ≤ t.

Proof. By the theorem of the product, we only need to prove that if F (x) := fφ,λ(x)
is irreducible, then Rλ(F )(y) is the power of an irreducible polynomial of Fφ[y]. Let
θ, L, K ′, G(x) be as in Lemma 1.18, so that F (x) =

∏
σ∈Gal(K′/K) G

σ(x). Under

the embedding Fφ ↪→ FL, the field Fφ is identified to FK′ . By Lemma 1.18, there
is a polynomial of degree one, φ′(x) ∈ OK′ [x], such that R′

λ(F )(y) ∼ Rλ(F )(cy),
for some nonzero constant c ∈ FK′ . For any σ �= 1, the polynomial Gσ(x) is not
divisible by φ′(x) modulo mK′ ; thus, Nφ′(Gσ) is a single point, and R′

λ(G
σ)(y) is

a constant. Therefore, by the theorem of the product, R′
λ(G)(y) ∼ R′

λ(F )(y) ∼
Rλ(F )(cy), so that Rλ(F )(y) is the power of an irreducible polynomial of Fφ[y] if
and only if R′

λ(G)(y) has the same property over FK′ . In conclusion, by extending
the base field, we can suppose that deg φ = m = 1.

Now consider the minimal polynomial P (x) = xk + bk−1x
k−1 + · · · + b0 ∈ K[x]

of γ(θ) = φ(θ)e/πh over K. Since v(γ(θ)) = 0, we have v(b0) = 0. Thus, the
polynomial Q(x) := φ(x)ek + πhbk−1φ(x)

e(k−1) + · · ·+ πkhb0 has one-sided N−
φ (Q)

with slope λ, and Rλ(Q)(y) is the reduction of P (y) modulo m, which is the power
of an irreducible polynomial because P (x) is irreducible in K[x]. Since Q(θ) = 0,
F (x) divides Q(x), and it has the same property by the theorem of the product. �

Corollary 1.20. With the notation above, let θ ∈ Qp be a root of Gi(x), and L =
K(θ). Then, f(L/K) is divisible by m degψi. Moreover, the number of irreducible
factors of Gi(x) is at most ai; in particular, if ai = 1, then Gi(x) is irreducible in
O[x], and f(L/K) = m degψi, e(L/K) = e.

Proof. The statement about f(L/K) is a consequence of the embedding of the

finite field Fφ[y]/(ψi(y)) into FL determined by redφ(x) �→ θ, y �→ γ(θ). This
embedding is well-defined by item (4) of Proposition 1.17. The other statements
are a consequence of the theorem of the product and Corollary 1.16. �

1.5. Types of order one. Starting with a monic and separable polynomial f(x) ∈
O[x], the Newton polygon techniques provide partial information on the factoriza-
tion of f(x) in O[x], obtained after three dissections. In the first dissection we
obtain as many factors of f(x) as pairwise different irreducible factors modulo m
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(Hensel’s lemma). In the second dissection, each of these factors splits into the
product of as many factors as sides of a certain Newton polygon of f(x) (theorem
of the polygon). In the third dissection, the factor that corresponds to a side of finite
slope splits into the product of as many factors as irreducible factors of the residual
polynomial of f(x) attached to this side (theorem of the residual polynomial).

The final list of factors of f(x) obtained by this procedure can be parameterized
by certain data, which we call types of order zero and of order one.

Definition 1.21. A type of order zero is a monic irreducible polynomial t =
ψ0(y) ∈ F[y]. We attach to any type of order zero the semigroup homomorphism:

ωt : O[x] \ {0} −→ Z≥0, P (x) �→ ordψ0
(P (x)/πv(P )).

Let f(x) ∈ O[x] be a monic and separable polynomial. We say that the type
t is f -complete if ωt(f) = 1. In this case, we denote by ft(x) ∈ O[x] the monic
irreducible factor of f(x) determined by ft(y) ≡ ψ0(y) (mod m).

Definition 1.22. A type of order one is a triple: t = (φ(x);λ, ψ(y)), where:

(1) φ(x) ∈ O[x] is a monic polynomial which is irreducible modulo m.
(2) λ = −h/e ∈ Q−, with h, e positive coprime integers.
(3) ψ(y) ∈ Fφ[y] is a monic irreducible polynomial, ψ(y) �= y.

By truncation of t we obtain the type of order zero: Trunc0(t) := φ(y) (mod m).

We denote by t0(f) the set of all monic irreducible factors of f(x) modulo m. We
denote by t1(f) the set of all types of order one obtained from f(x) along the process
of applying the three classical dissections: for any non-f -complete ψ0(y) ∈ t0(f),
we take a monic lift φ(x) to O[x]; then we consider all finite slopes λ of the sides
of positive length of N−

φ (f), and finally, for each of them we take the different

monic irreducible factors ψ(y) of the residual polynomial Rλ(f)(y) ∈ Fφ[y]. These
types are not intrinsic objects of f(x). There is a noncanonical choice of the lifts
φ(x) ∈ O[x], and the data λ, ψ(y) depend on this choice.

Let T1(f) be the union of t1(f) and the set of all f -complete types of order zero.
Let f∞(x) be the product of all polynomials φ(x) of the types t ∈ t1(f) such that
φ(x) divides f(x) in O[x]. By the previous results, we have a factorization in O[x]:

f(x) = f∞(x)
∏

t∈T1(f)
ft(x),

where, for any t ∈ t1(f), ft(x) is defined to be the unique monic divisor of f(x) in
O[x] satisfying the following properties:

ft(x) ≡ φ(x)ea degψ (mod m), a = ordψ(Rλ(f)),

Nφ(ft) is one-sided with slope λ,

Rλ(ft)(y) ∼ ψ(y)a in Fφ[y].

The factor f∞(x) is already expressed as a product of irreducible polynomials in
O[x]. Also, if a = 1, the theorem of the residual polynomial shows that ft(x) is
irreducible too. Thus, the remaining task is to obtain the further factorization of
ft(x), for the types t ∈ t1(f) with a > 1.
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Suppose a type of order one, t = (φ(x);λ, ψ(y)), is fixed. Then, for any nonzero
P (x) ∈ O[x], any N ∈ PP, and any T ∈ S(λ), we shall denote from now on:

v1(P ) := v(P ), ω1(P ) := ωφ(P ) = ordφ(P (x)/πv(P )),

N1(P ) := Nφ(P ), N−
1 (P ) := N−

φ (P ),

S1(N) := Sλ(N), S1(P ) := Sλ(P ) = Sλ(N
−
1 (P )),

R1(P )(y) := Rλ(P )(y), R1(P, T )(y) := Rλ(P, T )(y).

The subscript “1” emphasizes that these objects are first order data.
The aim of the next two sections is to introduce Newton polygons of higher order

and prove similar theorems, yielding a further factorization of each ft(x). As before,
we shall obtain arithmetic information about the factors of ft(x) just by a direct
manipulation of f(x), without actually computing a p-adic approximation to these
factors. This fact is crucial to ensure that the whole process has a low complexity.
However, once an irreducible factor of f(x) is “detected”, the theory provides a
reasonably good approximation to this factor as a by-product (Proposition 3.12).

2. Newton polygons of higher order

Throughout this section, r is an integer, r ≥ 2. We shall construct Newton
polygons of order r and prove their basic properties and the theorem of the product
in order r, under the assumption that analogous results have already been obtained
in orders 1, . . . , r− 1. We also assume that the theorems of the polygon and of the
residual polynomial have been proved in orders 1, . . . , r − 1 (cf. section 3). For
r = 1 all these results have been proved in section 1.

2.1. Types of order r − 1. A type of order r − 1 is a sequence of data

t = (φ1(x);λ1, φ2(x); · · · ;λr−2, φr−1(x);λr−1, ψr−1(y)),

where φi(x) are monic polynomials in O[x], λi are negative rational numbers and
ψr−1(y) is a polynomial over a certain finite field (to be specified below), that satisfy
the following recursive properties:

(1) φ1(x) is irreducible modulo m. Let ψ0(y) ∈ F[y] be the polynomial obtained
by reduction of φ1(y) modulo m, and define F1 := F[y]/(ψ0(y)).

(2) For all 1 ≤ i < r − 1, the Newton polygon of i-th order, Ni(φi+1), is
one-sided with slope λi.

(3) For all 1 ≤ i < r−1, the residual polynomial of i-th order, Ri(φi+1)(y), is an
irreducible polynomial in Fi[y]. Let ψi(y) ∈ Fi[y] be the monic polynomial
determined by Ri(φi+1)(y) ∼ ψi(y), and define Fi+1 := Fi[y]/(ψi(y)).

(4) For all 1 ≤ i < r− 1, φi+1(x) has minimal degree among all monic polyno-
mials in O[x] satisfying (2) and (3).

(5) ψr−1(y) ∈ Fr−1[y] is a monic irreducible polynomial, ψr−1(y) �= y. We
define Fr := Fr−1[y]/(ψr−1(y)).

The type determines a tower F =: F0 ⊆ F1 ⊆ · · · ⊆ Fr of finite fields. The field
Fi should not be confused with the finite field with i elements.

By the theorem of the product in orders 1, . . . , r − 1, the polynomials φi(x) are
all irreducible over O[x].

Let us be more precise about the meaning of Ni(−), Ri(−), used in items (2),
(3).
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Notation. We denote Trunc0(t) := ψ0(y). For all 1 ≤ i < r, we obtain by truncation
of t a type of order i:

Trunci(t) := (φ1(x);λ1, φ2(x); · · · ;λi−1, φi(x);λi, ψi(y)).

We have semigroup homomorphisms:

N−
i : O[x]\{0} → PP, Si : O[x]\{0} → S(λi), Ri : O[x]\{0} → Fi[y].

For any nonzero polynomial P (x) ∈ O[x], Ni(P ) is the i-th order Newton polygon
with respect to the type Trunci(t), Si(P ) is the λi-component of N−

i (P ), and
Ri(P )(y) is the residual polynomial of i-th order with respect to λi. The polynomial
Ri(P )(y) has degree d(Si(P )).

Other data attached to the type t deserve a specific notation. For all 1 ≤ i < r:

• λi = −hi/ei, with ei, hi positive coprime integers.
• fi := degψi(y).
• mi := deg φi(x). Note that mi+1 = mieifi = m1e1f1 · · · eifi.
• �i, �

′
i ∈ Z are fixed integers such that �ihi − �′iei = 1.

• zi := y (mod ψi(y)) ∈ F∗
i+1. Note that Fi+1 = Fi(zi).

We also denote: f0 := degψ0(y) = deg φ1(x), z0 := y (mod ψ0(y)) ∈ F∗
1, and

mr := mr−1er−1fr−1.
Moreover, for all 0 ≤ i < r we have semigroup homomorphisms

ωi+1 : O[x] \ {0} −→ Z≥0, P (x) �→ ordψi
(Ri(P )),

where, by convention, R0(P )(y) = P (y)/πv(P ) ∈ F[y]. By Lemma 2.17 in order
r − 1 (see Definition 1.8 for order one):

(11) �(Ni(P )) = �degP/mi
, �(N−
i (P )) = ωi(P ), 1 ≤ i < r,

and N−
i (P ) has a side of slope −∞ if and only if P (x) is divisible by φi(x) in O[x].

Definition 2.1. We say that a monic polynomial P (x) ∈ O[x] is of type t when

(1) P (x) ≡ φ1(x)
a0 (mod m), for some positive integer a0.

(2) For all 1 ≤ i < r, the Newton polygon Ni(P ) is one-sided with slope λi,
and Ri(P )(y) ∼ ψi(y)

ai in Fi[y], for some positive integer ai.

Lemma 2.2. Let P (x) ∈ O[x] be a nonzero polynomial. Then,

(1) ω1(P ) ≥ e1f1ω2(P ) ≥ · · · ≥ e1f1 · · · er−1fr−1ωr(P ).
(2) degP < mr =⇒ ωr(P ) = 0.
(3) If P (x) is of type t, then all inequalities in item (1) are equalities, and

degP (x) = mrωr(P ) = mr−1ωr−1(P ) = · · · = m1ω1(P ).

Proof. Item (1) is a consequence of (11); in fact, for all 1 ≤ i < r:

(12) eifiωi+1(P ) ≤ ei degRi(P ) = eid(Si(P )) = �(Si(P )) ≤ �(N−
i (P )) = ωi(P ).

Item (2) is a consequence of (11) and item (1):

mr > degP ≥ mr−1ωr−1(P ) ≥ mrωr(P ).

Finally, if P (x) is of type t the two inequalities of (12) are equalities, so that
miωi(P ) = mi+1ωi+1(P ); on the other hand, degP = m1a0 = m1ω1(P ). �
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Definition 2.3. Let P (x) ∈ O[x] be a monic polynomial with ωr(P ) > 0. We
denote by Pt(x) the monic factor of P (x) of greatest degree among all factors that
are of type t. By the theorems of the polygon and of the residual polynomial in
orders 1, . . . , r − 1, this factor exists and it satisfies

(13) ωr(Pt) = ωr(P ), degPt = mrωr(P ).

Lemma 2.4. Let P (x), Q(x) ∈ O[x] be monic polynomials of positive degree.

(1) If P (x) is irreducible in O[x], then it is of type t if and only if ωr(P ) > 0.
(2) P (x) is of type t if and only if degP = mrωr(P ) > 0.
(3) P (x)Q(x) is of type t if and only if P (x) and Q(x) are both of type t.

Proof. The polynomial P (x) is of type t if and only if ωr(P ) > 0 and Pt(x) = P (x);
thus, items (1) and (2) are an immediate consequence of (13). Item (3) follows from
the theorem of the product in orders 1, . . . , r − 1. �

We fix a type t of order r − 1 for the rest of section 2.

2.2. The p-adic valuation of r-th order. In this paragraph we shall attach to
t a discrete valuation vr : K(x)∗ −→ Z, that restricted to K extends v with index
e1 · · · er−1. We only need to define vr on O[x]. Consider the mapping

Hr−1 : S(λr−1) −→ Z≥0,

that assigns to each side S ∈ S(λr−1) the ordinate of the point of intersection of
the vertical axis with the line Lλr−1

of slope λr−1 that contains S. If (i, u) is any
point with integer coordinates lying on S, then Hr−1(S) = u+ |λr−1|i; thus, Hr−1

is a semigroup homomorphism.

Definition 2.5. For any nonzero polynomial P (x) ∈ O[x], we define

vr(P ) := er−1Hr−1(Sr−1(P )).

•
•
���� ����

�
��

�
��

�����������
Nr−1(P )

Lλr−1

vr(P )/er−1

Figure 7

Note that vr depends only on vr−1, φr−1 and λr−1.

Proposition 2.6. The natural extension of vr to K(x)∗ is a discrete valuation,
whose restriction to K∗ extends v with index e1 · · · er−1.

Proof. The mapping vr restricted to O[x] \ {0} is a semigroup homomorphism,
because it is the composition of three semigroup homomorphisms; in particular,
vr : K(x)∗ −→ Z is a group homomorphism.

Let P (x), Q(x) ∈ O[x] be two nonzero polynomials and denote NP = N−
r−1(P ),

NQ = N−
r−1(Q). Let LP , LQ be the respective lines of slope λr−1 having first

contact with NP , NQ from below. All points of NP lie on or above the line LP and
all points of NQ lie on or above the line LQ. If vr(P ) ≤ vr(Q), all points of both
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polygons lie on or above the line LP . Thus, all points of N−
r−1(P + Q) lie on or

above this line too, and this shows that vr(P +Q) ≥ vr(P ).
Finally, for any a ∈ O, we have vr(a) = er−1vr−1(a) by definition, since the

(r − 1)-th order Newton polygon of a is the single point (0, vr−1(a)). �
This discrete valuation was introduced by S. MacLane in a more abstract set-

ting [McL36, McL36b]. More precisely, items (3) and (4) of Proposition 2.7 below
show that vr/er−1 is an “augmented valuation” of vr−1 with respect to the “key
polynomial” φr−1, in MacLane’s terminology [McL36, Sec.4,(3)].

In [Mon99, Ch.2, §2], explicit generators of the residue field of vr as a trans-
cendental extension of a finite field were computed. These results lead to a more
conceptual and elegant definition of residual polynomials in higher order, as the
reductions modulo vr of the virtual factors (cf. section 2.5). We shall not follow
this approach, in order not to burden the paper with more technicalities.

The next proposition gathers the basic properties of this discrete valuation.

Proposition 2.7. Let P (x) ∈ O[x] be a nonzero polynomial.

(1) vr(P ) ≥ er−1vr−1(P ) and equality holds if and only if ωr−1(P ) = 0.
(2) vr(P ) = 0 if and only if v2(P ) = 0 if and only if redφ1

(P ) �= 0.
(3) vr(φr−1) = er−1vr−1(φr−1) + hr−1.
(4) If P (x) =

∑
0≤i ai(x)φr−1(x)

i is the φr−1-adic development of P (x), then

vr(P ) = min
0≤i

{vr(ai(x)φr−1(x)
i)} = er−1 min

0≤i
{vr−1(ai) + i(vr−1(φr−1) + |λr−1|)}.

Proof. We denote N = N−
r−1(P ) throughout the proof. By item (1) of Lemma 2.17

in order r − 1, all points of N lie on or above the horizontal line with ordinate
vr−1(P ). Hence, vr(P ) ≥ er−1vr−1(P ). Equality holds if and only if N is the single
point (0, vr−1(P )); this is equivalent to ωr−1(P ) = 0, by (11). This proves item (1).

•
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Lλr−1

vr(P )/er−1

vr−1(P )

Figure 8

By a recurrent application of item (1), vr(P ) = 0 is equivalent to v1(P ) = 0 and
ω1(P ) = · · · = ωr−1(P ) = 0. By Lemma 2.2 this is equivalent to v1(P ) = 0 and
ω1(P ) = 0, which is in turn equivalent to v2(P ) = 0, and also to P (x) �∈ (π, φ1(x)).
This proves item (2).

The polygon Nr−1(φr−1) is one-sided with slope −∞, and the finite part is the
point (1, vr−1(φr−1)). This proves item (3).

By definition, vr(ai(x)φr−1(x)
i) is er−1 times the ordinate at the origin of the

line L of slope λr−1 passing through (i, vr−1(ai(x)φr−1(x)
i)). Since all points of N

lie on or above the line Lλr−1
of slope λr−1 having first contact with N from below,

the line L lies on or above Lλr−1
too, and vr(ai(x)φr−1(x)

i) ≥ vr(P ). See Figure
9.

Since vr is a valuation, this proves item (4). �
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Figure 9

In a natural way, ωr induces a group homomorphism from K(x)∗ to Z, but
it is not a discrete valuation of this field. For instance, for K = Qp, π = p,
t = (x;−1, y + 1) and P (x) = x+ p, Q(x) = x+ p+ p2, we have

R1(P ) = y + 1, R1(Q) = y + 1, R1(P −Q) = 1,

ω2(P ) = 1, ω2(Q) = 1, ω2(P −Q) = 0.

However, we shall say that ωr is a pseudo-valuation with respect to vr; this is justified
by the following properties of ωr.

Proposition 2.8. Let P (x), Q(x) ∈ O[x] be two nonzero polynomials such that
vr(P ) = vr(Q). Then,

(1) vr(P − Q) > vr(P ) if and only if Sr−1(P ) = Sr−1(Q) and Rr−1(P ) =
Rr−1(Q). In particular, ωr(P ) = ωr(Q) in this case.

(2) If ωr(P ) �= ωr(Q), then ωr(P −Q) = min{ωr(P ), ωr(Q)}.

Proof. Denote N = N−
r−1(P ), N ′ = N−

r−1(Q). Since vr(P ) = vr(Q), there is a line
Lλr−1

of slope λr−1 having first contact simultaneoulsly with N and N ′ from below.
We consider the shortest segment T of Lλr−1

that contains Sr−1(P ) and Sr−1(Q).
See Figure 10.
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By Lemma 2.23 in order r − 1 (cf. (3) in order one):

(14) Rr−1(P −Q, T ) = Rr−1(P, T )−Rr−1(Q, T ).

By (19) in order r − 1 (cf. (2) in order one), the double condition Sr−1(P ) =
Sr−1(Q), Rr−1(P ) = Rr−1(Q), is equivalent to Rr−1(P, T ) = Rr−1(Q, T ); that is,
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to Rr−1(P−Q, T ) = 0. This is equivalent to N−
r−1(P−Q) lying above Lλr−1

, which
is equivalent in turn to vr(P −Q) > vr(P ). This proves item (1).

By (19) and (2), again, the equality (14) translates into

yaRr−1(P −Q)(y) = ybRr−1(P )(y)− ycRr−1(Q)(y)

for certain nonnegative integers a, b, c. Since the residual polynomials are never
divisible by y, and ψr−1(y) �= y, from ordψr−1

(Rr−1(P )) < ordψr−1
(Rr−1(Q)) we

deduce ordψr−1
(Rr−1(P −Q)) = ordψr−1

(Rr−1(P )). This proves item (2). �

We can reinterpret the computation of v(P (θ)) given in item (5) of Proposition
3.5 in order r − 1 (Proposition 1.17 for r = 2), in terms of the pair vr, ωr.

Proposition 2.9. Let θ ∈ Qp be a root of a polynomial in O[x] of type t. Then,
for any nonzero polynomial P (x) ∈ O[x],

v(P (θ)) ≥ vr(P (x))/e1 · · · er−1,

and equality holds if and only if ωr(P ) = 0. �
2.3. Construction of a representative of t. By Lemma 2.2, a nonconstant
polynomial of type t has degree at least mr. In this section we shall show how
to construct in an effective (and recursive) way a polynomial φr(x) of type t and
minimal degree mr.

We first show how to construct a polynomial with prescribed residual polynomial.

Proposition 2.10. Let V be an integer, V ≥ er−1fr−1vr(φr−1). Let ϕ(y) ∈
Fr−1[y] be a nonzero polynomial of degree less than fr−1, and let ν = ordy(ϕ).
Then, we can construct in an effective way a polynomial P (x) ∈ O[x] satisfying the
following properties:

degP (x) < mr, vr(P ) = V, yνRr−1(P )(y) = ϕ(y).

Proof. Let L be the line of slope λr−1 with ordinate V/er−1 at the origin. By item
(3) of Proposition 2.7, V/er−1 ≥ fr−1vr(φr−1) ≥ fr−1hr−1; thus, the line L cuts
the horizontal axis at the abscissa V/hr−1 ≥ er−1fr−1. Let T be the greatest side
contained in L, whose end points have nonnegative integer coordinates. Let (s, u)
be the initial point of T and denote uj := u− jhr−1, for all 0 ≤ j < fr−1, so that
(s+ jer−1, uj) lies on L. Clearly, s < er−1 and, for all j,

(15) j < fr−1, s < er−1 =⇒ s+ jer−1 < er−1fr−1.

Hence, (s+ jer−1, uj) lies on T .
Let ϕ(y) =

∑
0≤j<fr−1

cjy
j , with cj ∈ Fr−1. Select polynomials cj(y) ∈ Fr−2[y]

of degree less than fr−2, such that cj is the class of cj(y) modulo ψr−2(y), or
equivalently, cj(zr−2) = cj .

For any nonzero polynomial P (x) ∈ O[x] we denote by si(P ) the initial abscissa
of Si(P ), for all 1 ≤ i < r. We want to construct P (x) satisfying:

degP (x) < mr, vr(P ) = V, ν = (sr−1(P )− s)/er−1, yνRr−1(P )(y) = ϕ(y).

We proceed by induction on r ≥ 2. For r = 2 the polynomials cj(y) belong to
F[y]; we abuse language and denote by cj(x) ∈ O[x] the polynomials obtained by
choosing arbitrary lifts to O of the nonzero coefficients of cj(y). The polynomial
P (x) =

∑
0≤j<fr−1

πu−jh1cj(x)φ1(x)
s+je1 satisfies the required properties. In fact,

deg(cj(x)φ1(x)
s+je1) < m1 + (e1f1 − 1)m1 = m2,
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for all j, by (15). For the coefficients cj = 0 we take cj(x) = 0. For the coefficients
cj �= 0, we have cj(y) �= 0 and v(cj(x)) = 0; hence, v(πu−jh1cj(x)) = u− jh1 = uj .
Thus, the coefficient πu−jh1cj(x) determines a point of N−

1 (P ) lying on T , and
v2(P ) = V . Finally, it is clear by construction that ν = (s1(P ) − s)/e1 and
yνR1(P )(y) = R1(P, T )(y) = ϕ(y).

Now let r ≥ 3, and suppose that the proposition has been proved for orders
2, . . . , r− 1. For any 0 ≤ j < fr−1, denote Vj := uj − (s+ jer−1)vr−1(φr−1). Since
u = (V − shr−1)/er−1, we get

Vj =
1

er−1
(V − (s+ jer−1)(er−1vr−1(φr−1) + hr−1) = (by item (3) of Prop. 2.7)

=
1

er−1
(V − (s+ jer−1)vr(φr−1)) ≥ (by (15))

≥ 1

er−1
(V − (er−1fr−1 − 1)vr(φr−1)) ≥ (by hypothesis)

≥ 1

er−1
vr(φr−1) = vr−1(φr−1) +

hr−1

er−1
> vr−1(φr−1) = er−2fr−2vr−1(φr−2),

the last equality by (16) below, in order r − 1.
Let Lj be the line of slope λr−2 with ordinate at the origin Vj/er−2. Let T (j)

be the greatest side contained in Lj , whose end points have nonnegative integer
coordinates. Let sj be the initial abscissa of T (j). Consider the unique polynomial
ϕj(y) ∈ Fr−2[y], of degree less than fr−2, such that

ϕj(y) ≡ y(�r−2uj−sj)/er−2cj(y) (mod ψr−2(y)),

and let νj = ordy(ϕj). By the induction hypothesis, we are able to construct a
polynomial Pj(x) of degree less than mr−1, with vr−1(Pj) = Vj , νj = (sr−2(Pj) −
sj)/er−2, and yνjRr−2(Pj)(y) = ϕj(y) in Fr−2[y].
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The polynomial we are looking for is:

P (x) =
∑

0≤j<fr−1

Pj(x)φr−1(x)
s+jer−1 ∈ O[x].

In fact, by (15), deg(Pj(x)φr−1(x)
s+jer−1) < mr−1+(er−1fr−1−1)m1 = mr, for all

j. If Pj(x) �= 0, then vr−1(Pj(x)φr−1(x)
s+jer−1) = Vj+(s+jer−1)vr−1(φr−1) = uj ,

so that all of these coefficients determine points of N−
r−1(P ) lying on T ; this shows

that vr(P ) = V . For cj = 0 we take Pj(x) = 0; hence, ν = (sr−1(P )− s)/er−1, and
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by (19) in order r − 1:

yνRr−1(P )(y) = Rr−1(P, T )(y) =
∑

Pj(x) �=0

(zr−2)
t(j)Rr−2(Pj)(zr−2)y

j ,

where t(j) := tr−2(s + jer−1) = (sr−2(Pj) − �r−2uj)/er−2 (cf. Definition 2.19).
Finally,

(zr−2)
t(j)Rr−2(Pj)(zr−2) = (zr−2)

t(j)−νjϕj(zr−2)

= (zr−2)
t(j)−νj+

�r−2uj−sj
er−2 cj(zr−2) = cj ,

so that yνRr−1(P )(y) = ϕ(y). �

Theorem 2.11. We can effectively construct a monic polynomial φr(x) of type t
such that Rr−1(φr)(y) ∼ ψr−1(y). This polynomial is irreducible over O[x] and it
satisfies

(16) deg φr = mr, ωr(φr) = 1, vr(φr) = er−1fr−1vr(φr−1).

Proof. The Newton polygon Nr−1(φr−1) is one-sided with slope −∞ and finite
part the single point (1, vr−1(φr−1)). Therefore, Sr−1(φr−1) is a single point and
Rr−1(φr−1)(y) = c1, where c1 is equal to (cf. Definition 2.20):

c1 =

{
1, if r = 2,

(zr−2)
−�r−2vr−1(φr−1)/er−2 , if r > 2.

Denote c := c
er−1fr−1

1 . The polynomial ϕ(y) := c(ψr−1(y) − yfr−1) has degree
less than fr−1, and ν = ordy(ϕ) = 0. Let P (x) be the polynomial attached by
Proposition 2.10 to ϕ(y) and V = er−1fr−1vr(φr−1). Since deg(P (x)) < mr, the
polynomial φr(x) := φr−1(x)

er−1fr−1 + P (x) is monic and it has degree mr. Let
T be the auxiliary side used in the construction of P (x); we saw along the proof
of Proposition 2.10 that Rr−1(P )(y) = ϕ(y) = Rr−1(P, T )(y). By (19) (and (2) if
r = 2), Sr−1(P ) has the same initial point as T and Rr−1(φr, T )(y) = Rr−1(φr)(y).
Also,

Rr−1(φ
er−1fr−1

r−1 , T )(y) = yfr−1Rr−1(φ
er−1fr−1

r−1 )(y) = cyfr−1 .

Finally, by Lemma 2.23 in order r − 1 (cf. (3) in order one):

Rr−1(φr, T )(y) =Rr−1(φ
er−1fr−1

r−1 , T )(y) +Rr−1(P, T )(y)

= cyfr−1 + ϕ(y) = cψr−1(y),

so that Rr−1(φr)(y) ∼ ψr−1(y) and ωr(φr) = 1. The polynomial φr(x) is irreducible
over O[x] by the theorem of the product in order r − 1. Finally, it has vr(φr) = V
because all points of Nr−1(φr) lie on T . �

Definition 2.12. A representative of the type t is a monic polynomial φr(x) ∈ O[x]
of type t such that Rr−1(φr)(y) ∼ ψr−1(y). This object plays the analogous role
in order r − 1 to that of an irreducible polynomial modulo m in order one.

From now on, we fix a representative φr(x) of t, without necessarily assuming
that it has been constructed by the method of Proposition 2.10.
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384 JORDI GUÀRDIA, JESÚS MONTES, AND ENRIC NART

2.4. Certain rational functions. We introduce in a recursive way several rational
functions in K(x). We let hr, er be arbitrary coprime positive integers, and we fix
�r, �

′
r ∈ Z such that �rhr − �′rer = 1.

Definition 2.13. We define π0(x) = 1, π1(x) = π, and, for all 1 ≤ i ≤ r,

Φi(x) =
φi(x)

πi−1(x)fi−1vi(φi−1)
, γi(x) =

Φi(x)
ei

πi(x)hi
, πi+1(x) =

Φi(x)
�i

πi(x)�
′
i

.

Each of these rational functions can be written as πn0φ1(x)
n1 · · ·φr(x)

nr , for
adequate integers ni ∈ Z. Also,

(17) Φi(x) = · · ·φi(x), γi(x) = · · ·φi(x)
ei , πi+1(x) = · · ·φi(x)

�i ,

where the dots indicate a product of integral powers of π and φj(x), with 1 ≤ j < i.
We want to compute the value of vr on all these functions.

Lemma 2.14. For all 1 ≤ i < j ≤ r, we have ωj(φi) = 0.

Proof. Since Ni(φi) is one-sided with slope −∞, we have ωi+1(φi) = 0 because
Si(φi) is a single point. By Lemma 2.2, ωj(φi) = 0 for all i < j ≤ r. �

Proposition 2.15. For all 1 ≤ i < r we have

(1) vr(φi) =
∑i

j=1 (ej+1 · · · er−1) (ejfj · · · ei−1fi−1)hj,

(2) vr(Φi) = ei+1 · · · er−1hi,
(3) vr(πi+1) = ei+1 · · · er−1,
(4) vr(γi) = 0,
(5) ωr(φi) = ωr(Φi) = ωr(γi) = ωr(πi+1) = 0.

Moreover, vr(φr) =
∑r−1

j=1 (ej+1 · · · er−1) (ejfj · · · er−1fr−1)hj and vr(Φr) = 0.

Proof. We proceed by induction on r. For r = 2 all formulas are easily deduced
from v2(φ1) = h1, which was proved in Proposition 2.7. Suppose r ≥ 3 and all
statements true for r − 1.

Let us start with item (1). By Proposition 2.7 and (16),

vr(φr−1) = hr−1 + er−1vr−1(φr−1), vr−1(φr−1) = er−2fr−2vr−1(φr−2).

Hence, the formula for i = r − 1 follows from the induction hypothesis. Suppose
from now on that i < r − 1. By Lemma 2.14, φi(x) = φi(x) is an admissible
φr−1-adic development of φi(x), and by Lemma 2.25 in order r − 1 (Lemma 1.12
in order one) we get N−

r−1(φi) = (0, vr−1(φi)), so that vr(φi) = er−1vr−1(φi) and
the formula follows by induction.

Let us now prove items (2) and (3) by induction on i. For i = 1, item (1) shows
that:

vr(Φ1) = vr(φ1) = e2 · · · er−1h1,

vr(π2) = �1vr(Φ1)− �′1vr(π) = (�1h1 − �′1e1)e2 · · · er−1 = e2 · · · er−1.

Now suppose i > 1 and the formulas hold for 1, . . . , i− 1. We have:

vr(Φi) = vr(φi)− fi−1vi(φi−1)ei−1 · · · er−1 = ei+1 · · · er−1hi,

vr(πi+1) = �ivr(Φi)− �′ivr(πi) = (�ihi − �′iei)ei+1 · · · er−1 = ei+1 · · · er−1.

Item (4) is easily deduced from the previous formulas, and item (5) is an imme-
diate consequence of (17) and Lemma 2.14. The last statements follow from (16)
and the previous formulas. �
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Lemma 2.16. For n = (n0, . . . , nr−1) ∈ Zr, consider the rational function Φ(n) =
πn0φ1(x)

n1 · · ·φr−1(x)
nr−1 ∈ K(x). Then, if vr(Φ(n)) = 0, there exists a unique

sequence i1, . . . , ir−1 of integers such that Φ(n) = γ1(x)
i1 · · · γr−1(x)

ir−1. Moreover,
is depends only on ns, . . . , nr−1, for all 1 ≤ s < r.

Proof. Since the polynomials φs(x) are irreducible and pairwise different, we have
Φ(n) = Φ(n′) if and only if n = n′. By (17), any product γ1(x)

i1 · · · γr−1(x)
ir−1

can be expressed as Φ(j), for a suitable j = (j0, . . . , jr−2, er−1ir−1). Thus, if
γ1(x)

i1 · · · γr−1(x)
ir−1 = 1 we have necessarily ir−1 = 0, and recursively, i1 =

· · · = ir−2 = 0. This proves the uniqueness of the expression of any Φ(n) as a
product of powers of gammas.

Let us prove the existence of such an expression by induction on r ≥ 1. For
r = 1, let n = (n0); the condition vr(π

n0) = 0 implies that n0 = 0 and Φ(n) = 1.
Suppose r ≥ 2 and that the lemma has been proven for all n′ ∈ Zr−1. By item
(1) of Proposition 2.15, vr(Φ(n)) ≡ nr−1hr−1 (mod er−1); hence, if vr(Φ(n)) = 0
we have necessarily nr−1 = er−1ir−1 for some integer ir−1 that depends only on
nr−1. By (17), γr−1(x)

ir−1 = Φ(j), for some j = (j0, . . . , jr−2, er−1ir−1); hence,
Φ(n)γr−1(x)

−ir−1 = Φ(n′), with n′ = (n′
0, . . . , n

′
r−2, 0), and each n′

s depends only
on ns and nr−1. By item (4) of Proposition 2.15, we still have vr(Φ(n

′)) = 0,
and by induction hypothesis we get the desired expression of Φ(n) as a product of
powers of gammas. �
2.5. Newton polygon and residual polynomials of r-th order. Let f(x) ∈
O[x] be a nonzero polynomial and consider its canonical φr-adic development

(18) f(x) =
∑

0≤i≤	deg(f)/mr

ai(x)φr(x)

i, deg ai(x) < mr.

We define the Newton polygon Nr(f) of f(x), with respect to t and φr to be the
lower convex envelope of the set of points (i, ui), ui < ∞, where

ui := vr
(
ai(x)φr(x)

i
)
= vr(ai(x)) + ivr(φr(x)).

This definition makes sense for r = 1, and Nr(f) coincides with the Newton polygon
of the first order. In fact, v1(ai(x)φ1(x)

i) = v1(ai(x)), because v1(φ1(x)) = 0.
The principal part N−

r (f) is the principal polygon formed by all sides of negative
slope, including the side of slope −∞ if f(x) is divisible by φr(x) in O[x]. The
typical shape of the polygon is shown in Figure 12.

Lemma 2.17. (1) min0≤i≤n{ui} = vr(f), where n := �(Nr(f)) = �deg f/mr
.
(2) The length of N−

r (f) is ωr(f).
(3) The side of slope −∞ of N−

r (f) has length ordφr
(f).

Proof. The third item is obvious. Let us prove items (1), (2). Let u :=min0≤i≤n{ui}
and consider the polynomial

g(x) :=
∑
ui=u

ai(x)φr(x)
i.

All monomials of g(x) have the same vr-value and a different ωr-value:

ωr(ai(x)φr(x)
i) = ωr(ai(x)) + ωr(φr(x)

i) = i

because ωr(ai) = 0 by Lemma 2.2. By item (2) of Proposition 2.8, vr(g) = u
and ωr(g) = i0, the least abscissa with ui0 = u. Since vr(f − g) > u, we have
vr(f) = vr(g) = u, and this proves item (1). On the other hand, item (1) of
Proposition 2.8 shows that ωr(f) = ωr(g) = i0, and this proves item (2). �
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The following observation is a consequence of Lemmas 2.2 and 2.17.

Corollary 2.18. If f(x) has type t, then Nr(f) = N−
r (f). �

From now on let N = N−
r (f). As we did in order one, we attach to any integer

abscissa i of the finite part of N a residual coefficient ci ∈ Fr. The natural idea is
to consider ci = Rr−1(ai)(zr−1) for the points lying on N . However, this does not
lead to the right concept of a residual polynomial attached to a side; it is necessary
to twist these coefficients by certain powers of zr−1.

Definition 2.19. For any nonzero P (x) ∈ O[x] and any index 1 ≤ j < r, we
denote by sj(P ) the initial abscissa of Sj(P ).

For any nonzero f(x) ∈ O[x] with φr-adic development (18), we denote

tr−1(i) := tr−1(i, f) :=
sr−1(ai)− �r−1ui

er−1
.

This number tr−1(i) is always an integer. In fact,

ui = vr(ai) + ivr(φr) ≡ vr(ai) ≡ hr−1sr−1(ai) (mod er−1),

the first congruence by (16), and the second congruence being a consequence of
vr(ai) = hr−1sr−1(ai) + er−1ur−1(ai), where ur−1(ai) is the ordinate of the initial
point of Sr−1(ai). Hence, �r−1ui ≡ sr−1(ai) (mod er−1).
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Definition 2.20. For any integer abscissa ordφr
(f) ≤ i ≤ ωr(f), the residual

coefficient ci of N := N−
r (f) is defined to be:

ci := ci(f) :=

{
0, if (i, ui) lies above N,

z
tr−1(i)
r−1 Rr−1(ai)(zr−1) ∈ Fr, if (i, ui) lies on N.

Note that ci �= 0 if (i, ui) lies on N because ωr(ai) = 0 and ψr−1(y) is the
minimal polynomial of zr−1 over Fr−1.

Definition 2.21. Let λr = −hr/er be a negative rational number, with hr, er
positive coprime integers. Let S = Sλr

(N) be the λr-component of N , d = d(S)
the degree, and (s, u) the initial point of S.

We define the virtual factor of f(x) attached to S (or to λr) to be the rational
function

fS(x) := Φr(x)
−sπr(x)

−uf0(x) ∈ K(x), f0(x) :=
∑

(i,ui)∈S
ai(x)φr(x)

i,

where Φr(x), πr(x) are the rational functions introduced in Definition 2.13.
We define the residual polynomial attached to S (or to λr) to be the polynomial

Rλr
(f)(y) := cs + cs+er y + · · ·+ cs+(d−1)er y

d−1 + cs+der y
d ∈ Fr[y].

Only the points (i, ui) that lie on S yield a nonzero coefficient of Rλr
(f)(y). In

particular, cs and cs+de are always nonzero, so that Rλr
(f)(y) has degree d and it

is never divisible by y. We emphasize that Rλr
(f)(y) does not depend only on λr;

as for all other objects in section 2, it depends on the type t too.
We define in an analogous way the residual polynomial of f(x) with respect to a

side T that is not necessarily a λr-component of N . Let T ∈ S(λr) be an arbitrary
side of slope λr, with abscissas s0 ≤ s1 for the end points. Let d′ = d(T ). We say
that f(x) lies on or above T in order r if all points of N with abscissa s0 ≤ i ≤ s1
lie on or above T . In this case we define

Rλr
(f, T )(y) := c̃s0 + c̃s0+er y + · · ·+ c̃s0+(d′−1)er y

d′−1 + c̃s0+d′er y
d′ ∈ Fr[y],

where c̃i := c̃i(f) := ci if (i, ui) lies on T and c̃i = 0 otherwise.
Note that degRλr

(f, T )(y) ≤ d′ and equality holds if and only if the final point
of T belongs to Sλr

(f). Usually, T will be an enlargement of Sλr
(f) and then

(19) T ⊇ Sλr
(f) =⇒ Rλr

(f, T )(y) = y(s−s0)/erRλr
(f)(y),

where s is the abscissa of the initial point of Sλr
(f).

For technical reasons, we express ci in terms of a residual polynomial attached
to a certain auxiliary side.

Lemma 2.22. Let T ∈ PP be a principal polygon. Let (i, yi) be a point lying on
T , with integer abscissa i. Let V = yi − ivr(φr) and let Lλr−1

be the line of slope
λr−1 that cuts the vertical axis at the point with ordinate V/er−1. Denote by T (i)
the greatest side contained in Lλr−1

, whose end points have nonnegative integer
coordinates, and let si be the abscissa of the initial point of T (i).

Let a(x) ∈ O[x] be a nonzero polynomial such that ui := vr(aφ
i
r) ≥ yi. Then,

y(si−�r−1ui)/er−1Rr−1(a, T (i))(y) = y(sr−1(a)−�r−1ui)/er−1Rr−1(a)(y)

if ui = yi, whereas Rr−1(a, T (i))(y) = 0 if ui > yi.
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In particular, for T = N−
r (f) we get ci = z

(si−�r−1ui)/er−1

r−1 Rr−1(ai, T (i))(zr−1).

•
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Proof. If vr(aφ
i
r) = yi, we have vr(a) = V and Sr−1(a) ⊆ T (i). Then, the lemma

follows from (19) in order r − 1. If vr(aφ
i
r) > yi, then Sr−1(a) lies above T (i) and

Rr−1(ai, T (i))(y) = 0. See Figure 14. �

Lemma 2.23. Let T ∈ S(λr) be a side of slope λr and let f(x), g(x) ∈ O[x]. If
f(x) and g(x) lie on or above T in order r, then (f + g)(x) lies on or above T in
order r and

Rλr
(f + g, T ) = Rλr

(f, T ) +Rλr
(g, T ).

Proof. Let s0 ≤ s1 be the abscissas of the end points of T . We want to check that,
for all integers s0 ≤ i ≤ s1,

(20) c̃i(f + g) = c̃i(f) + c̃i(g).

Let ai(x), bi(x), be the respective i-th coefficients of the φr-adic development of
f(x), g(x); then, ai(x) + bi(x) is the i-th coefficient of the φr-adic development of
f(x) + g(x). By Lemma 2.22 applied to the point (i, yi(T )) of T ,

c̃i(f) = z
(si−�r−1ui)/er−1

r−1 Rr−1(ai, T (i))(zr−1).

Analogous equalities hold for g(x) and (f + g)(x), and (20) follows from Lemma
2.23 itself, in order r − 1 (cf. (3) for r = 2). �

2.6. Admissible φr-developments and theorem of the product in order r.
Consider an arbitrary φr-development of f(x), not necessarily the φr-adic one:

(21) f(x) =
∑

i≥0
a′i(x)φr(x)

i, a′i(x) ∈ O[x].

LetN ′ be the principal polygon of the set of points (i, u′
i), with u′

i = vr(a
′
i(x)φr(x)

i).
Let i0 be the first abscissa with a′i0(x) �= 0. As we did in order one, to each integer
abscissa i0 ≤ i ≤ �(N ′) we attach a residual coefficient

c′i =

⎧⎨
⎩ 0, if (i, u′

i) lies above N ′,

z
t′r−1(i)

r−1 Rr−1(a
′
i)(zr−1) ∈ Fr, if (i, u′

i) lies on N ′,

where t′r−1(i) = (sr−1(a
′
i)−�r−1u

′
i)/er−1. For the points (i, u

′
i) lying on N ′ we may

now have c′i = 0; for instance in the case a′0(x) = f(x) the Newton polygon has
only one point (0, vr(f)) and c′0 = 0 if ωr(f) > 0.
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Finally, for any negative rational number λr = −hr/er, with hr, er positive
coprime integers, we define the residual polynomial attached to the λr-component
S′ = Sλr

(N ′) to be

R′
λr
(f)(y) := c′s′ + c′s′+er y + · · ·+ c′s′+(d′−1)er

yd
′−1 + c′s′+d′er y

d′ ∈ Fr[y],

where d′ = d(S′) and s′ is the initial abscissa of S′.

Definition 2.24. We say that the φr-development (21) is admissible if c′i �= 0 (or
equivalently, ωr(a

′
i) = 0) for each abscissa i of a vertex of N ′.

Lemma 2.25. If a φr-development is admissible, then N ′ = N−
r (f) and c′i = ci

for all abscissas i of the finite part of N ′. In particular, for any negative rational
number λr we have R′

λr
(f)(y) = Rλr

(f)(y).

Proof. Consider the φr-adic developments of f(x) and each a′i(x):

f(x) =
∑

0≤i
ai(x)φr(x)

i, a′i(x) =
∑

0≤k
bi,k(x)φr(x)

k.

By the uniqueness of the φr-adic development we have

(22) ai(x) =
∑

0≤k≤i
bi−k,k(x).

Let us denote wi,k := vr(bi,k), w := vr(φr). By item (1) of Lemma 2.17, u′
i =

vr(a
′
i) + iw = min0≤k{wi,k + (k + i)w}. Hence, for all 0 ≤ k and all 0 ≤ i ≤ �(N ′):

(23) wi,k + (k + i)w ≥ u′
i ≥ yi(N

′).

Therefore, by (22) and (23), all points (i, ui) lie on or above N ′; in fact,

(24) ui = vr(ai) + iw ≥ min
0≤k≤i

{wi−k,k + iw} = wi−k0,k0
+ iw

≥ u′
i−k0

≥ yi−k0
(N ′) ≥ yi(N

′)

for some 0 ≤ k0 ≤ i. On the other hand, for any abscissa i of the finite part of N ′

and for any 0 < k ≤ i we have by (23)

(25) wi−k,k ≥ u′
i−k − iw ≥ yi−k(N

′)− iw > yi(N
′)− iw.

The following claim ends the proof of the lemma:

Claim. Let i be an abscissa of the finite part of N ′ such that (i, u′
i) ∈ N ′. Then,

ui = u′
i if and only if c′i �= 0, and in this case, c′i = ci.

In fact, suppose c′i �= 0, or equivalently, ωr(a
′
i) = 0. We decompose

a′i(x) = bi,0(x) +B(x), B(x) =
∑
0<k

bi,k(x)φr(x)
k.

Note that ωr(B) > 0 because φr(x)|B(x). By (23), vr(bi,0) = wi,0 ≥ u′
i − iw =

vr(a
′
i). Since ωr(a

′
i) = 0 and ωr(B) > 0, item (1) of Proposition 2.8 shows that

vr(bi,0) = min{vr(a′i), vr(B)}; hence, vr(bi,0) = vr(a
′
i). By (22) and (25) we have

ui − iw = vr(ai) = wi,0 = u′
i − iw, so that ui = u′

i. Let T (i) be the side at-
tached to the point (i, u′

i) ∈ N ′ in Lemma 2.22. Since Rr−1(B)(zr−1) = 0, (19)
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shows that Rr−1(B, T (i))(zr−1) = 0. By Lemma 2.23, Rr−1(a
′
i, T (i))(zr−1) =

Rr−1(bi,0, T (i))(zr−1), and Lemma 2.22 shows that

c′i =(zr−1)
(si−�r−1ui)/er−1Rr−1(a

′
i, T (i))(zr−1)

= (zr−1)
(si−�r−1ui)/er−1Rr−1(bi,0, T (i))(zr−1)

= (zr−1)
(sr−1(bi,0)−�r−1ui)/er−1Rr−1(bi,0)(zr−1)

= (zr−1)
(sr−1(ai)−�r−1ui)/er−1Rr−1(ai)(zr−1) = ci,

the next to the last equality because Sr−1(ai) = Sr−1(bi,0), Rr−1(ai) = Rr−1(bi,0),
by (25) and Proposition 2.8.

Conversely, if ui = u′
i = yi(N

′), we have necessarily k0 = 0 in (24) and all
inequalities of (24) are equalities. Hence, wi,0 + iw = u′

i, or equivalently, vr(a
′
i) =

vr(bi,0). Since ωr(bi,0) = 0 and ωr(B) > 0, Proposition 2.8 shows that ωr(a
′
i) = 0.

This ends the proof of the claim. �
Theorem 2.26 (Theorem of the product in order r). For any nonzero f(x), g(x) ∈
O[x] and any negative rational number λr we have

N−
r (fg) = N−

r (f) +N−
r (g), Rλr

(fg)(y) = Rλr
(f)(y)Rλr

(g)(y).

Proof. Consider the respective φr-adic developments

f(x) =
∑
0≤i

ai(x)φr(x)
i, g(x) =

∑
0≤j

bj(x)φr(x)
j ,

and denote ui = vr(aiφ
i
r), vj = vr(bjφ

j
r), Nf = N−

r (f), Ng = N−
r (g). Take

(26) f(x)g(x) =
∑
0≤k

Ak(x)φr(x)
k, Ak(x) =

∑
i+j=k

ai(x)bj(x),

and denote by N ′ the principal part of the Newton polygon of order r of fg,
determined by this φr-development.

We shall show that N ′ = Nf +Ng, that this φr-development is admissible, and
that R′

λr
(fg) = Rλr

(f)Rλr
(g) for all negative λr. The theorem will then be a

consequence of Lemma 2.25.
Let wk := vr(Akφ

k
r ) for all 0 ≤ k. Lemma 1.4 shows that the point (i, ui)+(j, vj)

lies on or above Nf +Ng for all i, j ≥ 0. Since wk ≥ mini+j=k{ui + vj}, the points
(k, wk) all lie on or above Nf + Ng too. On the other hand, let Pk = (k, y) be
a vertex of Nf + Ng; then, Pk is the end point of S1 + · · · + Sr + T1 + · · · + Ts,
for certain sides Si of Nf and Tj of Ng, ordered by increasing slopes among all
sides of Nf and Ng. By Lemma 1.4, for all pairs (i, j) with i + j = k, the point
(i, ui) + (j, vj) lies above Nf + Ng except for the pair i0 = �(Sr−1 + · · · + Sr),
j0 = �(Tr−1+ · · ·+Ts), which satisfies (i0, ui0)+(j0, vj0) = Pk. Thus, (k, wk) = Pk.
This shows that N ′ = Nf +Ng.

Moreover, for all (i, j) �= (i0, j0) we have

vr(Akφ
k
r ) = vr(ai0bj0φ

k
r ) < vr(aibjφ

k
r ),

so that vr(Ak) = vr(ai0bj0) < vr(aibj). By Proposition 2.8, ωr(Ak) = ωr(ai0bj0) =
ωr(ai0) + ωr(bj0) = 0, and the φr-development (26) is admissible.

Finally, by (1), the λr-components S′ = Sλr
(N ′), Sf = Sλr

(Nf ), Sg = Sλr
(Ng)

are related by S′ = Sf + Sg. Let (k, yk(N
′)) be a point with integer coordinates

lying on S′ (not necessarily a vertex), and let T (k) be the corresponding side of
slope λr−1 given in Lemma 2.22, with starting abscissa sk. Denote by I the set of
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the pairs (i, j) such that (i, ui) lies on Sf , (j, vj) lies on Sg, and i + j = k. Take
P (x) =

∑
(i,j)∈I ai(x)bj(x). By Lemma 1.4, for all other pairs (i, j) with i+ j = k,

the point (i, ui) + (j, vj) lies above N ′. By Lemma 2.23,

Rr−1(Ak, T (k)) = Rr−1(P, T (k)) =
∑

(i,j)∈I
Rr−1(aibj , T (k)).

Lemma 2.22, (19) and the theorem of the product in order r − 1 show that

c′k(fg) = (zr−1)
sk−�r−1wk

er−1 Rr−1(Ak, T (k))(zr−1)

= (zr−1)
sk−�r−1wk

er−1

∑
(i,j)∈I

Rr−1(aibj , T (k))(zr−1)

=
∑

(i,j)∈I
(zr−1)

sr−1(aibj)−�r−1wk
er−1 Rr−1(aibj)(zr−1)

=
∑

(i,j)∈I
(zr−1)

tr−1(i,f)+tr−1(j,g)Rr−1(ai)(zr−1)Rr−1(bj)(zr−1)

=
∑

(i,j)∈I
ci(f)cj(g).

This shows that the residual polynomial attached to S′ with respect to the φr-
development (26) is equal to Rλr

(f)Rλr
(g). �

Corollary 2.27. Let f(x) ∈ O[x] be a monic polynomial with ωr(f) > 0, and let
ft(x) be the monic factor of f(x) determined by t (cf. Definition 2.3). Then Nr(ft)
is equal to N−

r (f) up to a vertical shift, and Rλr
(f) ∼ Rλr

(ft) for any negative
rational number λr.

Proof. Let f(x) = ft(x)g(x). By (13), ωr(g) = 0. By the theorem of the product,
N−

r (f) = N−
r (ft) +N−

r (g) and Rλr
(f) = Rλr

(ft)Rλr
(g). Since N−

r (g) is a single
point with abscissa 0 (cf. Lemma 2.17), the polygon N−

r (f) is a vertical shift of
N−

r (ft) and Rλr
(g) is a constant. �

3. Dissections in order r

In this section we extend to order r the theorems of the polygon and of the
residual polynomial. We fix throughout a type t of order r−1 and a representative
φr(x) of t. We proceed by induction and we assume that all results of this section
have been proved already in orders 1, . . . , r − 1. The case r = 1 was considered in
section 1.

3.1. Theorem of the polygon in order r. Let f(x) ∈ O[x] be a monic poly-
nomial such that ωr(f) > 0. The aim of this section is to obtain a factorization
of ft(x) and certain arithmetic data of the factors. Thanks to Corollary 2.27, we
shall be able to read this information directly on N−

r (f) and the different residual
polynomials Rλr

(f)(y).

Theorem 3.1 (Theorem of the polygon in order r). Let f(x) ∈ O[x] be a monic
polynomial such that ωr(f) > 0. Suppose that N−

r (f) = S1 + · · · + Sg has g sides
with slopes −∞ ≤ λr,1 < · · · < λr,g. Then, ft(x) admits a factorization

ft(x) = F1(x) · · ·Fg(x),
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as a product of g monic polynomials of O[x] satisfying the following properties:

(1) Nr(Fi) is equal to Si up to a translation.
(2) If Si has finite slope, then Rλr,i

(Fi)(y) ∼ Rλr,i
(f)(y).

(3) For any root θ ∈ Qp of Fi(x), v(φr(θ)) = (vr(φr) + |λr,i|)/e1 · · · er−1.

Proof. Let us denote e = e1 · · · er−1. We deal first with the case that ft(x) is
irreducible. In this case, ρ := v(φr(θ)) is constant among all roots θ ∈ Qp of ft(x),
and ρ > 0, because φr is congruent to a power of φ1 modulo m (cf. Definition 2.1).
We have ρ = ∞ if and only if ft(x) = φr(x), and in this case the theorem is clear.
Suppose ρ is finite. Lemma 2.2 shows that deg ft = mrωr(f) > 0, and we have
Nr(ft) = N−

r (ft), by Corollary 2.18.
Let P (x) =

∑
0≤i≤k bix

i ∈ O[x] be the minimal polynomial of φr(θ), and let

Q(x) = P (φr(x)) =
∑

0≤i≤k biφr(x)
i. By the theorem of the polygon in order one,

the x-polygon of P has only one side and it has slope −ρ. The end points of Nr(Q)
are (0, ekρ) and (k, kvr(φr)). Now, for all 0 ≤ i < k,

vr(biφ
i
r)− kvr(φr)

k − i
=

ev(bi) + ivr(φr)− kvr(φr)

k − i
≥ eρ− vr(φr).

This implies that Nr(Q) has only one side and it has slope λr := −(eρ − vr(φr)).
Since Q(θ) = 0, ft(x) divides Q(x) and the theorem of the product shows that
Nr(ft) is one-sided with the same slope. By Corollary 2.27, N−

r (f) is one-sided
with the same slope and Rλr

(ft) ∼ Rλr
(f). This ends the proof of the theorem

when ft(x) is irreducible.
If ft(x) is reducible, we consider its decomposition ft(x) =

∏
j Pj(x) into a

product of monic irreducible factors in O[x]. By Lemma 2.4, each Pj(x) is of type
t and by the proof in the irreducible case, each Pj(x) has a one-sided Nr(Pj). The
theorem of the product shows that the slope of Nr(Pj) is λr,i for some 1 ≤ i ≤ s. If
we group these factors according to the slope, we get the desired factorization. By
the theorem of the product, Rλr,i

(Fi) ∼ Rλr,i
(ft), because Rλr,i

(Fj) is a constant
for all j �= i. Finally, Rλr,i

(ft) ∼ Rλr,i
(f) by Corollary 2.27. The statement about

v(φr(θ)) is obvious because Pj(θ) = 0 for some j, and we have already proved the
formula for an irreducible polynomial. �

We recall that if S1 has slope −∞, the corresponding factor is necessarily F1(x) =
φr(x)

ordφr (f) (cf. Lemma 2.17).
Let λr = −hr/er, with hr, er positive coprime integers, be a negative rational

number such that S := Sλr
(f) has positive length. Let ft,λr

(x) be the factor of
f(x), corresponding to the side S by the theorem of the polygon. Choose a root
θ ∈ Qp of ft,λr

(x), and let L = K(θ). By item (4) of Propositions 1.17 and 3.5, in
orders 1, . . . , r − 1, there is a well-defined embedding Fr −→ FL, determined by

(27) Fr ↪→ FL, z0 �→ θ, z1 �→ γ1(θ), . . . , zr−1 �→ γr−1(θ).

This embedding depends on the choice of θ. After this identification of Fr with
a subfield of FL we can think that all residual polynomials of r-th order have
coefficients in FL.

Corollary 3.2. For the rational functions of Definition 2.13:

(1) v(φr(θ)) =
∑r

i=1 eifi · · · er−1fr−1hi/(e1 · · · ei),
(2) v(πr(θ)) = 1/(e1 · · · er−1),
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(3) v(Φr(θ)) = hr/(e1 · · · er),
(4) v(γr(θ)) = 0.

Proof. Item (1) is a consequence of the theorem of the polygon and the formula
for vr(φr) in Proposition 2.15. Item (2) follows from Proposition 2.9, because
vr(πr) = 1, ωr(πr) = 0 by Proposition 2.15. Item (3) follows from the theorem of
the polygon and item (2) in order r − 1. Item (4) follows from items (2), (3). �
Corollary 3.3. The residual degree f(L/K) is divisible by f0 · · · fr−1, and the ra-
mification index e(L/K) is divisible by e1 · · · er. Moreover, the number of irreducible
factors of ft,λr

(x) is at most d(S); in particular, if d(S) = 1 the polynomial ft,λr
(x)

is irreducible in O[x], and f(L/K) = f0 · · · fr−1, e(L/K) = e1 · · · er.
Proof. The statement on the residual degree is a consequence of the embedding
(27). Denote eL = e(L/K), e = e1 · · · er−1, f = f0 · · · fr−1. By the same result in
order r− 1 (cf. Corollary 1.16 for r = 2), eL is divisible by e. Now, by the theorem
of the polygon, vL(φr(θ)) = (eL/e)vr(φr) + (eL/e)(hr/er). Since this is an integer
and hr, er are coprime, necessarily er divides eL/e.

The upper bound for the number of irreducible factors is a consequence of
the theorem of the product. Finally, if d(S) = 1, we have efer = deg(ft,λr

) =
f(L/K)e(L/K), and necessarily f(L/K) = f and e(L/K) = eer. �

We now prove an identity that plays an essential role in what follows.

Lemma 3.4. Let P (x) =
∑

0≤i ai(x)φr(x)
i be the φr-adic development of a nonzero

polynomial in O[x]. Let λr = −hr/er be a negative rational number, with hr, er
coprime positive integers. Let S = Sλr

(P ) be the λr-component of N−
r (P ), (s, u)

the initial point of S, and (i, ui) any point lying on S. Let (s(ai), u(ai)) be the
initial point of the side Sr−1(ai). Then, the following identity holds in K(x):

(28) φr(x)
iΦr−1(x)

s(ai)πr−1(x)
u(ai)

Φr(x)sπr(x)u
= γr−1(x)

tr−1(i)γr(x)
i−s
er .

Proof. If we substitute u = ui + (i − s)hr

er
and γr = Φer

r /πhr
r in (28), we see that

the identity is equivalent to

φr(x)
iΦr−1(x)

s(ai)πr−1(x)
u(ai)

πr(x)ui
= γr−1(x)

tr−1(i)Φr(x)
i.

If we now substitute Φr, πr and γr−1 by their defining values and we use er−1tr−1(i)
= s(ai)− �r−1ui, we get an equation involving only πr−1, which is equivalent to

u(ai) + �′r−1ui + hr−1tr−1(i) + ifr−1vr(φr−1) = 0.

This equality is easy to check by using er−1u(ai)+s(ai)hr−1 = vr(ai) = ui−ivr(φr),
vr(φr) = er−1fr−1vr(φr−1), and �r−1hr−1 − �′r−1er−1 = 1. �
Proposition 3.5 (Computation of v(P (θ))). We keep the notation above for f(x),
λr = −hr/er, θ, L, and the embedding (27). Let P (x) ∈ O[x] be a nonzero poly-
nomial, S = Sλr

(P ), Lλr
be the line of slope λr that contains S, and H be the

ordinate at the origin of this line. Denote e = e1 · · · er−1. Then:

(1) v(PS(θ)) ≥ 0, PS(θ) = Rλr
(P )(γr(θ)).

(2) v(P (θ)− P 0(θ)) > H/e.

(3) v(P (θ)) ≥ H/e, and equality holds if and only if Rλr
(P )(γr(θ)) �= 0.

(4) Rλr
(f)(γr(θ)) = 0.
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(5) If Rλr
(f)(y) ∼ ψr(y)

a for some irreducible polynomial ψr(y) ∈ Fr[y], then
v(P (θ)) = H/e if and only if ψr(y) � Rλr

(P )(y) in Fr[y].

�����������H

•
•

•������

������

����

����

N−
r (P )

(i, ui)

s i

u

Lλr

0

Figure 15

Proof. Let P (x) =
∑

0≤i ai(x)φr(x)
i be the φr-adic development of P (x), and

denote ui = vr(aiφ
i
r), N = N−

r (P ). Recall that

PS(x) = Φr(x)
−sπr(x)

−uP 0(x), P 0(x) =
∑

(i,ui)∈S
ai(x)φr(x)

i,

where (s, u) are the coordinates of the initial point of S. By Corollary 3.2,

(29) v(Φr(θ)
sπr(θ)

u) =
1

e

(
s
hr

er
+ u

)
=

H

e
.

On the other hand, by the theorem of the polygon and Proposition 2.9:

(30) v(ai(θ)φr(θ)
i) =

vr(ai)

e
+

i

e

(
vr(φr) +

hr

er

)
=

1

e

(
ui + i

hr

er

)
≥ H

e
,

for all i, with equality if and only if (i, ui) ∈ S. This proves item (2).
Also, (29) and (30) show that v(PS(θ)) ≥ 0, so that PS(θ) belongs toOL. Denote

for simplicity zr = γr(θ). In order to prove the equality PS(θ) = Rλr
(P )(zr), we

need to show that for every (i, ui) ∈ S:

(31) redL

(
ai(θ)φr(θ)

i

Φr(θ)sπr(θ)u

)
= (zr−1)

tr−1(i)Rr−1(ai)(zr−1)(zr)
(i−s)/er .

Let (s(ai), u(ai)) be the initial point of Sr−1(ai). By items (1), (2) of the proposition
in order r − 1 (Proposition 1.17 if r = 2), applied to the polynomial ai(x),

(ai)Sr−1(ai)(θ) = Rr−1(ai)(zr−1),

ai(θ) ≡ Φr−1(θ)
s(ai)πr−1(θ)

u(ai)(ai)
Sr−1(ai)(θ) (mod m

(vr(ai)e(L/K)/e)+1
L ).

Since vr(ai)e(L/K)/e = vL(ai(θ)), it suffices to check the following identity in L:

φr(θ)
iΦr−1(θ)

s(ai)πr−1(θ)
u(ai)

Φr(θ)sπr(θ)u
= γr−1(θ)

tr−1(i)γr(θ)
i−s
er ,

which is a consequence of Lemma 3.4. This ends the proof of item (1).
Also, (30) shows that v(P (θ)) ≥ H/e, and

v(P (θ)) = H/e ⇐⇒ v(P 0(θ)) = H/e
(29)⇐⇒ v(PS(θ)) = 0 ⇐⇒ Rλr

(P )(zr) �= 0,

the last equivalence by item (1). This proves item (3). The last two items are
proved by similar arguments to that of the proof of Proposition 1.17. �
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3.2. Theorem of the residual polynomial in order r. We now discuss how
Newton polygons and residual polynomials are affected by an extension of the
base field by an unramified extension. We keep the notation above for f(x), λr =
−hr/er, θ, L and the embedding (27).

Proposition 3.6. Let K ′ be the unramified extension of K of degree f0 · · · fr−1.
We identify Fr = FK′ through the embedding (27). Let G(x) ∈ OK′ [x] be the
minimal polynomial of θ over K ′. Then, there exist a type of order r − 1 over K ′,
t′ = (φ′

1(x);λ1, φ
′
2(x); · · · ;λr−1, ψ

′
r−1(y)), anda representative φ′

r(x) of t
′, with the

following properties (where the superscript ′ indicates that the objects are taken with
respect to t′):

(1) f ′
0 = · · · = f ′

r−1 = 1.
(2) G(x) is of type t′.
(3) For any nonzero polynomial P (x) ∈ O[x],

(N ′)−r (P ) = N−
r (P ), R′

λr
(P )(y) = σs

rτ
u
r Rλr

(P )(μry),

where (s, u) is the initial point of Sλr
(P ) and σr, τr, μr ∈ F∗

K′ are constants
that depend only on t and θ.

Proof. We proceed by induction on r. The case r = 1 is considered in Lemma 1.18;
for the constant ε defined there, we can take σ1 = ε, τ1 = 1, and μ1 = εe1 . Let
r ≥ 2 and suppose we have already constructed t′r−2 and a representative φ′

r−1(x)
satisfying these properties. Let η1, . . . , ηfr−1

∈ FK′ be the roots of ψr−1(y), and
denote F (x) = ft,λr

(x). We have

R′
r−1(φr)(y) ∼ Rr−1(φr)(μr−1y) ∼ ψr−1(μr−1y) =

∏fr−1

i=1 (μr−1y − ηi),

R′
r−1(F )(y) ∼ Rr−1(F )(μr−1y) ∼ ψr−1(μr−1y)

ar−1 =
∏fr−1

i=1 (μr−1y − ηi)
ar−1 .

Since G(x) is of type t′r−2, Lemma 2.2 shows that degG = m′
r−1ω

′
r−1(G). Since

(N ′)−r−1(F ) = N−
r−1(F ), the theorem of the product shows that (N ′)−r−1(G) is one-

sided, with slope λr−1 and positive length ω′
r−1(G). By the theorem of the residual

polynomial, R′
r−1(G)(y) ∼ (μr−1y − η)a, for some root η ∈ FK′ of ψr−1(y) and

some positive integer a. We take ψ′
r−1(y) = y − μ−1

r−1η, and

t′ = (φ′
1(x);λ1, φ

′
2(x); · · · ;λr−2, φ

′
r−1(y);λr−1, ψ

′
r−1(y)).

Thus, f ′
r−1 = 1. We have a = ω′

r(G) and degG = m′
r−1ω

′
r−1(G) = m′

r−1er−1a =
m′

ra; therefore, G(x) is of type t′, by Lemma 2.4.
The same argument shows that there is a unique irreducible factor φ′

r(x) of φr(x)
in OK′ [x] such that R′

r−1(φ
′
r)(y) ∼ (μr−1y−η). We choose φ′

r(x) as a representative
of t′. Let ρr(x) = φr(x)/φ

′
r(x) ∈ OK′ [x]. By construction, ω′

r(ρr) = 0, because
R′

r−1(ρr)(y) ∼ ψr−1(μr−1y)/(μr−1y − η).
Let P (x) ∈ O[x] be a nonzero polynomial. As an immediate consequence of

(N ′)−r−1(P ) = N−
r−1(P ), and R′

r−1(P )(y) ∼ Rr−1(P )(μr−1y), we get respectively
v′r(P ) = vr(P ), and ω′

r(P ) = ωr(P ). Consider the φr-adic development of P (x):

P (x) = φr(x)
n + an−1(x)φr(x)

n−1 + · · ·+ a0(x)

= ρr(x)
nφ′

r(x)
n + an−1(x)ρr(x)

n−1φ′
r(x)

n−1 + · · ·+ a0(x).

Since ω′
r(ρr) = 0, this φ′

r-adic development of P (x) is admissible. On the other
hand, the equality (N ′)−r (P ) = N−

r (P ) is deduced from the tautology:

vr(ai(x)φr(x)
i) = v′r(ai(x)φr(x)

i) = v′r(ai(x)ρr(x)
iφ′

r(x)
i).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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In order to prove the relationship between R′
λr
(P )(y) and Rλr

(P )(y), we intro-
duce some elements in F∗

K′ , constructed in terms of the rational functions of Defi-
nition 2.13. By Corollary 3.2, v(Φr(θ)) = v(Φ′

r(θ)), v(πr(θ)) = (e1 · · · er−1)
−1 =

v(π′
r(θ)), and v(γr(θ)) = 0 = v(γ′

r(θ)). Also, by the theorem of the polygon,

v(ρr(θ)) = (vr(φr)− v′r(φ
′
r))/(e1 · · · er−1) = v(π′

r−1(θ))(vr(φr)− v′r(φ
′
r))/er−1.

We introduce the following elements of F∗
K′ :

μr := γr(θ)/γ′
r(θ), τr := πr(θ)/π′

r(θ),

σr := Φr(θ)/Φ′
r(θ), εr := ρr(θ)/π′

r−1(θ)
(vr(φr)−v′

r(φ
′
r))/er−1 .

Since fr−1vr(φr−1) = vr(φr)/er−1, the recursive definition of the functions of De-
finition 2.13 yields the following identities:

(32) σr = εr/(τr−1)
vr(φr)/er−1 , τr = (σr−1)

�r−1/(τr−1)
�′r−1 .

We need still another interpretation of εr. Since (N ′)−r−1(φr) = N−
r−1(φr), the

theorem of the product shows that (N ′)−r−1(ρr) is one-sided with slope λr−1; hence,
the initial point (s′r−1(ρr), u

′
r−1(ρr)) of S := S′

r−1(ρr) is given by s′r−1(ρr) = 0 and

(33) u′
r−1(ρr) = v′r(ρr)/er−1 = (v′r(φr)− v′r(φ

′
r))/er−1 = (vr(φr)− v′r(φ

′
r))/er−1.

Recall that the virtual factor ρSr (x) is by definition ρr(x)/π
′
r−1(x)

u′
r−1(ρr); therefore,

item (1) of Proposition 3.5 shows that, for r ≥ 2:

(34) εr = R′
r−1(ρr)(z

′
r−1).

We have seen above that for each integer abscissa i, the i-th terms of the φr-adic
and φ′

r-adic developments of P (x) determine the same point (i, ui) of the plane.
Let i = s + jer be an abscissa such that (i, ui) lies on Sλr

(P ) = S′
λr
(P ); the

corresponding residual coefficients at this abscissa are respectively

ci = (zr−1)
tr−1(i)Rr−1(ai)(zr−1), c′i = (z′r−1)

t′r−1(i)R′
r−1(aiρ

i
r)(z

′
r−1),

and Rλr
(P )(y) =

∑
0≤j≤d ciy

j , R′
λr
(P )(y) =

∑
0≤j≤d c

′
iy

j . Hence, the last equality

of item (3) is equivalent to c′i = ciσ
s
rτ

u
r μ

j
r, for all such i.

Note that tr−1(i) = (sr−1(ai)− �r−1ui)/er−1 = t′r−1(i), since

s′r−1(aiρ
i
r) = s′r−1(ai) + is′r−1(ρr) = s′r−1(ai) = sr−1(ai),

the last equality because N−
r−1(ai) = (N ′)−r−1(ai). For simplicity we denote by

(s(ai), u(ai)) the initial point of Sr−1(ai). By (33), the initial point of S′
r−1(aiρ

i
r)

is (s(ai), u(ai) + i(vr(φr) − v′r(φ
′
r))/er−1). Now, by induction, the theorem of the

product, and (34), we have

c′i =(z′r−1)
tr−1(i)R′

r−1(ai)(z
′
r−1) ε

i
r

=(z′r−1)
tr−1(i)(σr−1)

s(ai)(τr−1)
u(ai)Rr−1(ai)(zr−1) ε

i
r

= ci(μr−1)
−tr−1(i)(σr−1)

s(ai)(τr−1)
u(ai)εir

= ciμ
j
r

(
μ−j
r (μr−1)

−tr−1(i)
)
(σr−1)

s(ai)(τr−1)
u(ai)εir.
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By Lemma 3.4,

γr(θ)
jγr−1(θ)

tr−1(i) =φr(θ)
iΦr−1(θ)

s(ai)πr−1(θ)
u(ai)Φr(θ)

−sπr(θ)
−u

=φr(θ)
iΦr−1(θ)

s(ai)−�r−1uπr−1(θ)
u(ai)+�′r−1uΦr(θ)

−s.

We get an analogous expression for γ′
r(θ)

jγ′
r−1(θ)

tr−1(i), just by putting ′ every-
where and by replacing u(ai) by u(aiρ

i
r) = u(ai) + i(vr(φr) − v′r(φ

′
r))/er−1. By

taking the quotient of both expressions and taking classes modulo mK′ we get

μj
r(μr−1)

tr−1(i) = εir(σr−1)
s(ai)−�r−1u(τr−1)

u(ai)+�′r−1uσ−s
r .

Therefore, c′i = ciμ
j
r(σr−1)

�r−1u(τr−1)
−�′r−1uσs

r = ciμ
j
rτ

u
r σ

s
r , by (32). �

Theorem 3.7 (Theorem of the residual polynomial in order r). Let f(x) ∈ O[x]
be a monic polynomial with ωr(f) > 0, and let S be a side of N−

r (f) with finite
slope λr. Consider the factorization

Rλr
(f)(y) ∼ ψr,1(y)

a1 · · ·ψr,t(y)
at

of the residual polynomial of f(x) into the product of powers of pairwise different
monic irreducible polynomials in Fr[y]. Then, the factor ft,λr

(x) of ft(x), corres-
ponding to S by the theorem of the polygon, admits a factorization in O[x],

ft,λr
(x) = G1(x) · · ·Gt(x),

into a product of t monic polynomials, with all Nr(Gi) one-sided of slope λr, and
Rλr

(Gi)(y) ∼ ψr,i(y)
ai in Fr[y].

Proof. Let us deal first with the case F (x) := ft,λr
(x) irreducible. We only need to

prove that Rλr
(F )(y) is the power of an irreducible polynomial of Fr[y]. Let θ ∈ Qp

be a root of F (x), take L = K(θ), and fix the embedding Fr → FL as in (27). Let
K ′ be the unramified extension of K of degree f0 · · · fr−1, and let G(x) ∈ OK′ [x]
be the minimal polynomial of θ over K ′, so that F (x) =

∏
σ∈Gal(K′/K) G

σ(x).

Under the embedding Fr → FL, the field Fr is identified to FK′ . By Proposition
3.6, we can construct a type t′ of order r − 1 over K ′ such that R′

λr
(F )(y) ∼

Rλr
(F )(cy), for some nonzero constant c ∈ FK′ . By the construction of t′, for

any σ �= 1, the polynomial Gσ(x) is not divisible by φ′
1(x) modulo mK′ ; thus,

ω′
r(G

σ) ≤ ω′
1(G

σ) = 0, and R′
λr
(Gσ)(y) is a constant. Therefore, by the theorem

of the product, R′
λr
(G)(y) ∼ R′

λr
(F )(y) ∼ Rλr

(F )(cy), so that Rλr
(F )(y) is the

power of an irreducible polynomial of Fr[y] if and only if R′
λr
(G)(y) has the same

property over FK′ . In conclusion, by extending the base field, we can suppose that
f0 = · · · = fr−1 = 1.

Let P (x) =
∑k

j=0 bjx
j ∈ O[x] be the minimal polynomial of γr(θ) over K. Let

Π(x) := γr(x)/φr(x)
er = πr−1(x)

−erfr−1vr(φr−1)πr(x)
−hr .

By (17), Π(x) admits an expression Π(x) = πn′
0φ1(x)

n′
1 · · ·φr−1(x)

n′
r−1 for some

integers n′
1, . . . , n

′
r. Take Φ(x) := πn0φ1(x)

n1 · · ·φr−1(x)
nr−1 with sufficiently large

nonnegative integers ni so that Π(x)kΦ(x) is a polynomial in O[x]. Then, the
following rational function is actually a polynomial in O[x]:

Q(x) := Φ(x)P (γr(x)) =
k∑

j=0

Bjer(x)φr(x)
jer , Bjer(x) = Φ(x)Π(x)jbj .
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Moreover, by item (5) of Proposition 2.15, ωr(Bjer) = 0 for all j such that Bjer �= 0,
so that this φr-development of g(x) is admissible.

Our aim is to show that Nr(Q) is one-sided with slope λr, and Rλr
(Q)(y) is

equal to P (y) modulo m, up to a nonzero multiplicative constant. Since P (x) is
irreducible, Rλr

(Q)(y) will be the power of an irreducible polynomial of F[y]. Since
Q(θ) = 0, F (x) is a divisor of Q(x) and the residual polynomial of F (x) will be the
power of an irreducible polynomial too, by the theorem of the product. This will
end the proof of the theorem in the irreducible case.

Let us find a lower bound to all vr(Bjerφ
jer
r ). Denote u := vr(Φ). By Proposition

2.15 and (16), we get vr(πr−1) = er−1, vr(πr) = 1, and vr(Π) = −ervr(φr) − hr.
Therefore,

(35) ujer := vr(Bjerφ
jer
r ) = vr(bj) + u− j(ervr(φr) + hr) + jervr(φr) ≥ u− jhr.

For j = 0, k we have v(b0) = 0 (because v(γr(θ)) = 0) and v(bk) = 0 (because
bk = 1). Hence, equality holds in (35) for these two abscissas. This proves that
Nr(g) has only one side T , with end points (0, u), (ker, u− khr), and slope λr.

Let Rλr
(g)(y) =

∑k
j=0 cjery

j . We want to show that cjer = cb̄j for a certain

constant c ∈ F∗ independent of j. If (jer, ujer) �∈ T , then cjer = 0, and by (35),
this is equivalent to b̄j = 0. Now suppose that (jer, ujer) ∈ T ; by item (1) of
Proposition 3.5 (cf. (31))

redL

(
Bjer(θ)φr(θ)

jer

πr(θ)u

)
= cjerγr(θ)

j
.

Hence, we want to check that for all j,

redL

(
Bjer(θ)φr(θ)

jer

πr(θ)uγr(θ)j

)
= cb̄j ,

for some nonzero constant c. Now, if we substitute Bjer(x) and Π(x) by its defining
values, the left-hand side is equal to cb̄j , for c = redL(Φ(θ)/πr(θ)

u). This ends the
proof of the theorem in the irreducible case.

In the general case, consider the decomposition, F (x) =
∏

j Pj(x), into a product

of monic irreducible factors in O[x]. By Lemma 2.4, each Pj(x) has type t, so
that ωr(Pj) > 0. By the theorem of the product, Nr(Pj) is one-sided, of positive
length and slope λr. By the proof in the irreducible case, the residual polynomial
Rλr

(Pj)(y) is the positive power of an irreducible polynomial, and by the theorem
of the product it must be Rλr

(Pj)(y) ∼ ψr,i(y)
bj for some 1 ≤ i ≤ t. If we group

these factors according to the irreducible factor of the residual polynomial, we get
the desired factorization. �

Corollary 3.8. With the notation above, let θ ∈ Qp be a root of Gi(x) and let
L = K(θ). Let fr = degψr,i(y). Then, f(L/K) is divisible by f0f1 · · · fr. Moreover,
the number of irreducible factors of Gi(x) is at most ai; in particular, if ai = 1,
then Gi(x) is irreducible in O[x] and

f(L/K) = f0f1 · · · fr, e(L/K) = e1 · · · er−1er.

Proof. The statement about f(L/K) is a consequence of the extension of the em-
bedding (27) to an embedding

(36) Fr[y]/(ψr,i(y)) ↪→ FL, y �→ γr(θ),
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which is well-defined by item (4) of Proposition 3.5. The other statements follow
from the theorem of the product. The computation of f(L/K) and e(L/K) follows
from

f(L/K)e(L/K) = degGi = f0f1 · · · fre1 · · · er−1er

and the fact that f(L/K) is divisible by f0 · · · fr and e(L/K) is divisible by e1 · · · er
(cf. Corollary 3.3). �

3.3. Types of order r attached to a separable polynomial. Let f(x) ∈ O[x]
be a monic separable polynomial.

Definition 3.9. Let t be a type of order r − 1. We say that t is f -complete if
ωr(f) = 1. In this case, ft(x) is irreducible and the ramification index and residual
degree of the extension of K determined by ft(x) can be computed in terms of
some data of t, by applying Corollary 3.8 in order r − 1 (Corollary 1.20 if r = 2).

The results of section 3 can be interpreted as the addition of two more dissections,
for each order 2, . . . , r, to the three classical ones, in the process of factorization
of f(x). If t is a type of order r − 1 and ωr(f) > 1, we construct a representative
φr(x) of t. The factor ft(x) then admits to further factorizations at two levels: first
ft(x) factorizes into as many factors as the number of sides of N−

r (f), and then, the
factor corresponding to each finite slope splits into the product of as many factors
as the number of pairwise different irreducible factors of the residual polynomial
attached to the slope.

Notation. Suppose t is a type of order r−1, ωr(f) > 1 and φr(x) is a representative
of t. We denote by

(t;λr, ψr) = (φ1(x);λ1, φ2(x); · · · ;λr−1, φr(x);λr, ψr(y))

the type of order r distinguished by the choice of a finite slope λr of a side of N−
r (f)

and a monic irreducible factor ψr(y) of Rλr
(f)(y) in Fr[y].

Definition 3.10. In section 1.5, we defined two sets t0(f), t1(f). We recur-
sively define tr(f) to be the set of all types of order r constructed as above,
t′ = (t;λr, ψr(y)), from those t ∈ tr−1(f) that are not f -complete. This set is
not an intrinsic invariant of f(x) because it depends on the choices of the represen-
tatives φ1(x), . . . , φr(x) of the truncations of t.

We denote by ts(f)
compl the subset of the f -complete types of ts(f), and we

define

Tr(f) := tr(f) ∪

⎛
⎝ ⋃

0≤s<r

ts(f)
compl

⎞
⎠ .

Hensel’s lemma and the theorems of the polygon and of the residual polynomial
in orders 1, . . . , r determine a factorization

(37) f(x) = fr,∞(x)
∏

t∈Tr(f)

ft(x),

where fr,∞(x) is the product of the different representatives φi(x) (of the different
types in Tr(f)) that divide f(x) in O[x].

The following remark is an immediate consequence of the definitions.
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Lemma 3.11. The following conditions are equivalent:

(1) tr+1(f) = ∅.
(2) tr(f)

compl = tr(f).
(3) For all t ∈ tr−1(f) and all λr ∈ Q−, the residual polynomial of r-th order,

Rλr
(f)(y), is separable. �

If these conditions are satisfied, then (37) is a factorization of f(x) into the
product of monic irreducible polynomials inO[x], and we get arithmetic information
about each factor by Corollary 3.8. As long as there is some t ∈ tr(f) which is not
f -complete, we must apply the results of this section in order r + 1 to get further
factorizations of ft(x), or to detect that it is irreducible. We need some invariant
to control the whole process and ensure that after a finite number of steps we shall
have tr(f)

compl = tr(f). This is the aim of the next section.
We end with a remark about p-adic approximations to the irreducible factors of

f(x), which is an immediate consequence of Lemma 2.2, the theorem of the polygon
and Proposition 2.15.

Proposition 3.12. Let t be an f -complete type of order r, with representative
φr+1(x). Let θ ∈ Qp be a root of ft(x), and L = K(θ). Then, deg φr+1 = deg ft,
and φr+1(x) is an approximation to ft(x) satisfying

v(φr+1(θ)) = (vr+1(φr+1) + hr+1)/e(L/K) =
r+1∑
i=1

eifi · · · erfr
hi

e1 . . . ei
,

where −hr+1 is the slope of the unique side of N−
r+1(f), and er+1 = 1. �

4. Indices and resultants of higher order

We fix throughout this section a natural number r ≥ 1.

4.1. Computation of resultants with Newton polygons.

Definition 4.1. Let t be a type of order r− 1 and let φr(x) ∈ O[x] be a represen-
tative of t. For any pair of monic polynomials P (x), Q(x) ∈ O[x] we define

Rest(P,Q) := f0 · · · fr−1

(∑
i,j

min{EiH
′
j , E

′
jHi}

)
,

where Ei = �(Si), Hi = H(Si) are the lengths and heights of the sides Si of N
−
r (P ),

and E′
j = �(S′

j), H
′
j = H(S′

j) are the lengths and heights of the sides S′
j of N−

r (Q).

We recall that for a side S of slope −∞ we took H(S) = ∞ by convention. Thus,
the part of Rest(P,Q) that involves sides of slope −∞ is always

(38) f0 · · · fr−1(ordφr
(P )H(Q) + ordφr

(Q)H(P )),

where H(P ), H(Q) are the total heights respectively of N−
r (P ), N−

r (Q).

Lemma 4.2. Let P (x), P ′(x), Q(x) ∈ O[x] be monic polynomials.

(1) Rest(P,Q) = 0 if and only if ωr(P )ωr(Q) = 0.
(2) Rest(P,Q) < ∞ if and only if ordφr

(P ) ordφr
(Q) = 0.

(3) Rest(P,Q) = Rest(Q,P ).
(4) Rest(PP ′, Q) = Rest(P,Q) + Rest(P

′, Q).

Proof. The first three items are an immediate consequence of the definition. Item
(4) follows from N−

r (PP ′) = N−
r (P ) +N−

r (P ′). �
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In the simplest case when N−
r (P ) and N−

r (Q) are both one-sided, Rest(P,Q)
represents the area of the rectangle joining the two triangles determined by the
sides if they are ordered by increasing slope. The reader may figure out a similar
geometrical interpretation of Rest(P,Q) in the general case, as the area of a union
of rectangles below the Newton polygon N−

r (PQ) = N−
r (P ) +N−

r (Q). See Figure
16.

•

•

•

�
�

��
�

�
�

�
��

�
�

��
�

�
�

�
��

N−
r (P )

N−
r (Q)Rest(P,Q)

Figure 16

Our aim is to compute v(Res(P,Q)) as a sum of several Rest(P,Q) for an ade-
quate choice of types t. To this end, we want to compare types attached to P and
Q, and this is not easy because in the definition of the sets tr(P ), tr(Q), we had
freedom in the choices of the different representatives φi(x). For commodity in the
exposition, we assume in this section that these polynomials are universally fixed.

Convention. We fix from now on a monic lift φ1(x) ∈ O[x] of every monic ir-
reducible polynomial ψ0(y) ∈ F[y]. We then proceed recursively: for any type
of order i, t = (φ1(x);λ1, φ2(x); · · · ;λi−1, φi(x);λi, ψi(y)), with 1 ≤ i < r and
φ1(x), . . . , φi(x) belonging to the infinite family of previously chosen polynomials,
we fix a representative φi+1(x) of t. Also, we assume from now on that all types
are made up only with our chosen polynomials φi(x).

Once these choices are made, the set tr(P ) is uniquely determined by r and P (x).
More precisely, tr(P ) is the set of all types t of order r such that ωt

r+1(P ) > 0 and
the truncation Truncr−1(t) is not P -complete; in other words,

tr(P ) =
{
t type of order r such that ωt

r+1(P ) > 0, ωt
r(P ) > 1

}
.

However, in view of the computation of resultants, we need a broader concept of
“type attached to a polynomial”.

Definition 4.3. For any monic polynomial P (x) ∈ O[x], we define

t̂r(P ) := {t type of order r such that ωt
r+1(P ) > 0} ⊇ tr(P ).

The following observation is a consequence of the fact that ωt
r+1 is a semigroup

homomorphism for every type t of order r.

Lemma 4.4. t̂r(PQ) = t̂r(P ) ∪ t̂r(Q), for all monic P (x), Q(x) ∈ O[x]. �
Note that the analogous statement for the sets tr(P ) is false. For instance, let

P (x), Q(x) be two monic polynomials congruent to the same irreducible polynomial
ψ(y) modulo m. We have t0(P ) = t0(Q) = {ψ(y)} = t0(PQ), and the type of order
zero ψ(y) is P -complete and Q-complete; thus, t1(P ) = ∅ = t1(Q). However, ψ(y)
is not PQ-complete, and t1(PQ) �= ∅.
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We can build the set t̂r(P ) in a constructive way analogous to that used to
construct tr(P ). To this end, the P -complete types of order r−1 must be expanded
as well to produce types of order r. Thanks to our convention about fixing a
universal family of representatives of the types, these expansions are unique.

Lemma 4.5. Let P (x) ∈ O[x] be a monic polynomial. Let t be a P -complete type
of order r − 1 with representative φr(x) and suppose that P (x) is not divisible by

φr(x) in O[x]. Then, t can be extended to a unique type t′ ∈ t̂r(P ) such that
Truncr−1(t

′) = t. The type t′ is P -complete too.

Proof. By Lemma 2.17, N−
r (P ) has length one and finite slope λr ∈ Q−; hence,

degRλr
(P ) = 1. Let ψr(y) be the monic polynomial of degree one determined by

Rλr
(P )(y) ∼ ψr(y). The type t′ = (t;λr, ψr(y)) is P -complete and it is the unique

type of order r such that Truncr−1(t
′) = t and ωt′

r+1(P ) > 0. In fact, let us check

that ωt′′

r+1(P ) = 0 for any t′′ = (t;λ′
r, ψ

′
r(y)) �= t′. If λ′

r �= λr, then Rλ′
r
(P ) is a

constant; if λ′
r = λr, but ψr(y) �= ψ′

r(y), then ψ′
r(y) cannot divide Rλr

(P )(y). �

Lemma 4.6. Let P (x) ∈ O[x] be a monic polynomial. Then, t̂r(P ) = ∅ if and
only if all irreducible factors of P (x) are the representatives of some type of order
0, 1, . . . , r − 1. Moreover, if P (x) is irreducible and t̂r(P ) �= ∅, then |t̂r(P )| = 1.

Proof. By Lemma 4.4, we can assume that P (x) is irreducible. If P (x) = φs(x) is
the representative of some type of order s− 1 ≤ r − 1, then Ns(φs) is one-sided of

slope −∞; hence, Rλs
(φs) is a constant for every λs ∈ Q−, and ωt′

s+1(φs) = 0, for

every type t′ of order ≥ s. Thus, t̂r(φs) = ∅, for all r ≥ s. Otherwise, the theorems
of the polygon and of the residual polynomial show that the unique element of
t̂0(P ) can be successively extended to a unique element of t̂1(P ), . . . , t̂r(P ). �

Definition 4.7. For any pair of monic polynomials P (x), Q(x) ∈ O[x], we define

Resr(P,Q) :=
∑

t∈t̂r−1(P )∩t̂r−1(Q)
Rest(P,Q).

The following two lemmas are an immediate consequence of Lemmas 4.2 and 4.4.

Lemma 4.8. The following conditions are equivalent:

(1) Resr+1(P,Q) = 0.
(2) t̂r(P ) ∩ t̂r(Q) = ∅.
(3) For all t ∈ t̂r−1(P )∩ t̂r−1(Q) and all λr ∈ Q−, the residual polynomials of

r-th order, Rλr
(P )(y), Rλr

(Q)(y), have no common factor in Fr[y]. �

Lemma 4.9. For any three monic polynomials P (x), P ′(x), Q(x) ∈ O[x], we have
Resr(PP ′, Q) = Resr(P,Q) + Resr(P

′, Q). �

Theorem 4.10. Let P (x), Q(x) ∈ O[x] be two monic polynomials having no com-
mon factors. Then,

(1) v(Res(P,Q)) ≥ Res1(P,Q) + · · ·+Resr(P,Q), and
(2) equality holds if and only if Resr+1(P,Q) = 0.

Proof. Let us deal first with the case where P (x), Q(x) are both irreducible and

t̂r−1(P ) = t̂r−1(Q) = {t}, for some type t. Let φr(x) be the representative of t.
For 0 ≤ i ≤ r, let Ei, Hi be the length and height of the unique side of Ni(P ),
and E′

i, H
′
i be the length and height of the unique side of Ni(Q). By Lemma 4.6,
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neither P nor Q is equal to φ1, . . . , φr−1, and by Lemma 2.4, P and Q are both of
type t; hence, 0 < EiE

′
i, 0 < HiH

′
i < ∞, and Hi/Ei = H ′

i/E
′
i, for all 1 ≤ i < r.

Suppose that −λr := Hr/Er ≤ H ′
r/E

′
r =: −λ′

r. Since P , Q cannot be both equal
to φr(x), we have P (x) �= φr(x) and Hr < ∞. Since,

Res(P,Q) = ±
∏

Q(θ)=0
P (θ), v(Res(P,Q)) = deg(Q) v(P (θ)),

we need to relate v(P (θ)) with the resultants Resi(P,Q).
If Q(x) �= φr(x), the theorem of the residual polynomial shows that Rλ′

r
(Q)(y) ∼

ψ′
r(y)

a′
, for some monic irreducible polynomial ψ′

r(y) ∈ Fr[y] and some positive a′.
By applying Proposition 2.9 to the type of order r, t′ = (t;λ′

r, ψ
′
r(y)), we get

(39) v(P (θ)) ≥ v′r+1(P )/e1 · · · er−1e
′
r = (vr(P ) +Hr)/e1 · · · er−1,

the last equality by the definition of v′r+1. Also, equality holds in (39) if and only
if ω′

r+1(P ) = 0, where ω′
r+1 is the pseudo-valuation of order r + 1 attached to t′.

•
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��������
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�
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� Lλ′
r

Nr(P )

v′r+1(P )/e′r

vr(P )

Figure 17

If Q(x) = φr(x), then P (θ) = a0(θ), where a0(x) is the 0-th coefficient of the
φr-adic development of P (x). By Proposition 2.9, v(a0(θ)) = vr(a0)/e1 · · · er−1,
and by Lemma 2.17, vr(a0) = vr(P ) +Hr. Thus,

v(P (θ)) = (vr(P ) +Hr)/e1 · · · er−1.

In both cases, degQ = mrωr(Q) = f0e1f1 · · · er−1fr−1E
′
r, by Lemma 2.2. If we

apply recursively vs+1(P ) = es(vs(Ps)+Hs), E
′
s+1 = (esfs)

−1E′
s, for all 1 ≤ s < r,

and v1(P ) = 0, we get

v(Res(P,Q)) = deg(Q)v(P (θ)) ≥ degQ (vr(P ) +Hr)/e1 · · · er−1

= f0 · · · fr−1E
′
r(vr(P ) +Hr)

=
∑r

s=1
f0 · · · fs−1E

′
sHs =

∑r

s=1
Ress(P,Q),

and equality holds if and only if either Q = φr, or Q �= φr and ω′
r+1(P ) = 0.

If Q = φr, then t̂r(Q) = ∅ and Resr+1(P,Q) = 0. If Q �= φr, the condition
ψ′
r � Rλ′

r
(P ) is equivalent to item (3) of Lemma 4.8, because Rλr

(P )(y) ∼ ψr(y)
a

for some irreducible ψr(y) ∈ Fr[y], and Rλ′′
r
(P )(y) is a constant for any negative

rational number λ′′
r �= λr. This ends the proof of the theorem in this case.

Assume now that P (x) and Q(x) are both irreducible, but t̂r−1(P )∩t̂r−1(Q) = ∅.
If t̂0(P ) ∩ t̂0(Q) = ∅, then Res1(P,Q) = · · · = Resr+1(P,Q) = 0, by definition; on
the other hand, v(Res(P,Q)) = 0, because P (x) and Q(x) have no common factors

modulo m. Hence, the theorem is proven in this case. If t̂0(P )∩ t̂0(Q) �= ∅, let 1 ≤
s < r be maximal with the property t̂s−1(P )∩t̂s−1(Q) �= ∅. Clearly, Resr(P,Q) = 0
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for all r > s; thus, we want to show that v(Res(P,Q)) = Res1(P,Q) + · · · +
Ress(P,Q), and this follows from the proof of the previous case for r = s.

Now let P (x) = P1(x) · · ·Pg(x), Q(x) = Q1(x) · · ·Qg′(x) be the factorizations of
P (x), Q(x) into a product of monic irreducible polynomials in O[x]. We know that
v(Res(Pi, Qj)) ≥ Res1(Pi, Qj)+ · · ·+Resr(Pi, Qj) for all i, j; thus, item (1) follows
from Lemma 4.9 and the bilinearity of resultants. Equality in item (1) holds if and
only if it holds for each pair Pi, Qj ; that is, if and only if Resr+1(Pi, Qj) = 0, for
all i, j. This is equivalent to Resr+1(P,Q) = 0, again by Lemma 4.9. �

We end this section with an example that illustrates the necessity to introduce
the sets t̂r(P ). Let O = Zp, P (x) = x+p, Q(x) = x+p+p100, and let t0 = y ∈ F[y].
Clearly, t0(P ) = {t0} = t0(Q), and t0 is both P -complete and Q-complete, so that
t1(P ) = ∅ = t1(Q). If we take φ1(x) = x, we get Res1(P,Q) = Rest0(P,Q) = 1,
whereas v(Res(P,Q)) = 100. Thus, we need to consider the expansions of t0 to
types of higher order in order to reach the right value of v(Res(P,Q)). The number
of expansions to consider depends on the choices of the representatives φi(x); for
instance, if we take t = (x;−1, y+1), with representative φ2(x) = x+p, we already
have Res2(P,Q) = 99.

Nevertheless, the sets t̂r(P ) were introduced only as an auxiliary tool to prove
Theorem 4.10. In practice, the factorization algorithm computes only the sets
tr(P ), as we shall show in the next section.

4.2. Index of a polynomial and index of a polygon. All representatives of
types are still assumed to belong to a universally fixed family, as in the last section.

Let F (x) ∈ O[x] be a monic irreducible polynomial, θ ∈ Qp a root of F (x), and

L = K(θ). It is well known that (OL : O[θ]) = |F|ind(F ), for some natural number
ind(F ) that will be called the v-index of F (x). Note that

ind(F ) = v(OL : O[θ])/[K : Qp].

Recall the well-known relationship, v(disc(F )) = 2 ind(F ) + v(disc(L/K)), linking
ind(F ) with the discriminant of F (x) and the discriminant of L/K.

Definition 4.11. Let f(x) ∈ O[x] be a monic separable polynomial and f(x) =
F1(x) · · ·Fk(x) its decomposition into the product of monic irreducible polynomials
in O[x]. We define the index of f(x) by the formula

ind(f) :=
k∑

i=1

ind(Fi) +
∑

1≤i<j≤k
v(Res(Fi, Fj)).

Definition 4.12. Let S be a one-sided principal polygon, and denote E = �(S),
H = H(S), d = d(S). We define

ind(S) :=

{
1
2 (EH − E −H + d), if S has finite slope,
0, otherwise.

Let N = S1 + · · · + Sg be a principal polygon, with all sides of positive length,
ordered by increasing slopes −∞ ≤ λ1 < · · · < λg. We define

ind(N) :=

g∑
i=1

ind(Si) +
∑

1≤i<j≤g
EiHj .

If S1 has slope −∞, then it contributes E1Hfin(N) to ind(N), where Hfin(N) is
the total height of the finite part of N .
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Remark 4.13. Note that ind(N) = 0 if and only if either N is a single point, or N
is one-sided with slope −∞, or N is one-sided with E = 1 or H = 1.

Remark 4.14. The contribution of the sides of finite slope to ind(N) is the number
of points with integer coordinates that lie on or below the finite part of N , above
the horizontal line L that passes through the last point of N , and to the right of
the vertical line L′ that passes through the initial point of the finite part of N .

For instance, the polygon in Figure 18 has index 25, the infinite side contributes
18 (the area of the rectangle 3× 6) and the finite part has index 7, corresponding
to the marked seven points with integer coordinates, distributed into ind(S1) = 2,
ind(S2) = 1, E1H2 = 4.
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Figure 18

Let i0 ≤ i1 be the respective abscissas of the starting point and the last point of
the finite part Nfin of N . For any integer abscissa i0 ≤ i ≤ i1, let yi be the distance
of the point of N of abscissa i to the line L. Clearly, we can count the points with
integer coordinates on or below Nfin, above L and to the right of L′, as the sum of
the points with given abscissa:

(40) ind(Nfin) = �yi0+1
+ · · ·+ �yi1−1
.
For instance, in Figure 18 we have y4 = 4, y5 = 2, y6 = 1 and y7 = 0.

Definition 4.15. Let P (x) ∈ O[x] be a monic and separable polynomial. Let t be
a type of order r − 1 and φr(x) a representative of t. We define

indt(P ) := f0 · · · fr−1 ind(N
−
r (P )),

where Nr(P ) is the Newton polygon of r-th order with respect to t and φr(x).
For any natural number r ≥ 1 we define

indr(P ) :=
∑

t∈tr−1(P )
indt(P ).

Since the Newton polygon N−
r (P ) depends on the choice of φr(x), the value of

indt(P ) depends on this choice too, although this is not reflected in the notation.

Lemma 4.16. Let P (x) ∈ O[x] be a monic and separable polynomial.

(1) Let t be a type of order r, and suppose that t �∈ tr(P ) or t is P -complete.
Then, indt(P ) = 0.

(2) If tr(P ) = tr(P )compl, then indr+1(P ) = 0.
(3) If indr(P ) = 0, then tr(P ) = tr(P )compl.
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Proof. If t �∈ tr(P ), then either ωr+1(P ) = 0 or ωr(P ) = 1. If t is P -complete, then
ωr+1(P ) = 1. By Lemmas 2.2 and 2.17, in all cases �(N−

r+1(P )) = ωr+1(P ) ≤ 1, and
indt(P ) = 0 by Remark 4.13. This proves item (1), and item (2) is an immediate
consequence.

If indr(P ) = 0, then indt(P ) = 0 for all t ∈ tr−1(P ). For any such t we have
ωr(P ) > 0, so that N−

r (P ) is not a single point. By Remark 4.13, N−
r (P ) is one-

sided with either slope −∞, or length one, or height one. In the first case P (x) is
divisible by the representative φr(x) of t and ωr(P ) = �(N−

r (P )) = ordφr
(P ) = 1,

because P (x) is separable; thus, t is P -complete and t is not extended to any type in
tr(P ). If N−

r (P ) is one-sided with finite slope λr and the side has degree one, then
the residual polynomial Rλr

(P )(y) has degree one. Thus, t is either P -complete
or it can be extended in a unique way to a type t′ ∈ tr(P ); in the latter case,

necessarily ωt′

r+1(P ) = 1 and t′ is P -complete. This proves item (3). �

Lemma 4.17. Let P (x), Q(x) ∈ O[x] be two monic and separable polynomials,
without common factors, and let t be a type of order r − 1. Then,

indt(PQ) = indt(P ) + indt(Q) + Rest(P,Q),

indr(PQ) = indr(P ) + indr(Q) + Resr(P,Q).

Proof. For simplicity, in the discussion we omit the weight f0 · · · fr−1 that multiplies
all terms in the identities.

All terms involved in the first identity are the sum of a finite part and an infinite
part. If P (x)Q(x) is not divisible by φr(x), all infinite parts are zero. If φr(x) di-
vides (say) P (x), then the infinite part of indt(PQ) is ordφr

(P )(Hfin(P )+Hfin(Q)),
the infinite part of indt(P ) is ordφr

(P )Hfin(P ), the infinite part of indt(Q) is zero,
and the infinite part of Rest(P,Q) is ordφr

(P )H(Q), by (38). Thus, the first iden-
tity is correct, as far as the infinite parts are concerned.

The finite part of the first identity follows from N−
r (PQ) = N−

r (P ) + N−
r (Q)

and Remark 4.14. Let N = N−
r (PQ) and let R be the region of the plane that

lies on or below N , above the line L and to the right of the line L′, as indicated
in Remark 4.14. The number indt(PQ) counts the total number of points with
integer coordinates in R, the number indt(P ) + indt(Q) counts the number of
points with integer cordinates in the regions determined by the right triangles whose
hypotenuses are the sides of N−

r (P ) and N−
r (Q). The region of R not covered by

these triangles is a union of rectangles and Rest(P,Q) is precisely the number of
points with integer coordinates of this region.

In order to prove the second identity, we note first that for any monic separable
polynomial R(x) ∈ O[x],

indr(R) =
∑

t∈t̂r−1(R)
indt(R),

by item (1) of Lemma 4.16. Now, if we apply this to R = P,Q, PQ, the identity
follows from the first one and Lemma 4.4, keeping in mind that indt(Q) = 0 =
Rest(P,Q) if t �∈ t̂r−1(Q), because N−

r (Q) is a single point. �

We are ready to state the theorem of the index, which is a crucial ingredient of
the factorization process. It ensures that an algorithm based on the computation of
the sets tr(f) and the higher indices indr(f) obtains the factorization of f(x), and
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relevant arithmetic information on the irreducible factors, after a finite number of
steps. Also, this algorithm yields a computation of ind(f) as a by-product.

Theorem 4.18 (Theorem of the index). Let f(x) ∈ O[x] be a monic and separable
polynomial. Then,

(1) ind(f) ≥ ind1(f) + · · ·+ indr(f), and
(2) equality holds if and only if indr+1(f) = 0.

Note that Lemma 4.16 and this theorem guarantee the equality in (1) when-
ever all types of tr(f) are f -complete. Also, Theorem 4.18 shows that this latter
condition will be reached at some order r.

Corollary 4.19. Let f(x) ∈ O[x] be a monic and separable polynomial. There
exists r ≥ 0 such that all types in tr(f) are f -complete, or equivalently, such that
tr+1(f) = ∅.

Proof. By the theorem of the index, there exists r ≥ 1 such that indr(f) = 0, and
by item (3) of Lemma 4.16, this implies tr(f) = tr(f)

compl. �

In the next section we exhibit an example where the factorization is achieved in
order three. More examples, and a more accurate discussion of the computational
aspects, can be found in [GMN08].

4.3. An example. Take p = 2, and f(x) = x4 + ax2 + bx + c ∈ Z[x], with
v(a) ≥ 2, v(b) = 3, v(c) = 2. This polynomial has v(disc(f)) = 12 for all a, b, c
with these restrictions. Since f(x) ≡ x4 (mod 2), all types we are going to consider
will start with φ1(x) = x. The Newton polygon N1(f) has slope λ1 = −1/2,
and the residual polynomial of f(x) with respect to λ1 is R1(f)(y) = y2 + 1 =
(y + 1)2 ∈ F, where F is the field with two elements. Hence, t1(f) = {t}, where
t := (x;−1/2, y + 1). We have e1 = 2, f0 = f1 = 1 and ω2(f) = 2, so that t is
not f -complete. The partial information we get in order one is ind1(f) = 2, and
the fact that all irreducible factors of f(x) will generate extensions L/Q2 with even
ramification number, because e1 = 2.
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× ×

Figure 19

Take φ2(x) = x2 − 2 as a representative of t. The φ2-development of f(x) is

f(x) = φ2(x)
2 + (a+ 4)φ2(x) + (bx+ c+ 2a+ 4).

By Proposition 2.7 and (16), we have

v2(x) = 1, v2(φ2) = 2, v2(a+ 4) ≥ 4, v2(bx) = 7, v2(c+ 2a+ 4) ≥ 6.

Hence, according to v(c+ 2a+ 4) = 3 or v(c+ 2a+ 4) ≥ 4, the Newton polygon of
second order, N2(f), is shown in Figure 20.

If v(c + 2a+ 4) ≥ 4, N2(f) is one-sided with slope λ2 = −3/2, and R2(f)(y) =
y+1. The type t′ := (x;−1/2, x2 − 2;−3/2, y+1) is f -complete and t2(f) = {t′}.
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v(c+ 2a+ 4) = 3 v(c+ 2a+ 4) ≥ 4
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Figure 20

We have e2 = 2, f2 = 1. Thus, f(x) is irreducible over Z2[x], and it generates
an extension L/Q2 with e(L/Q2) = e1e2 = 4, f(L/Q2) = f0f1f2 = 1. Moreover,
ind2(f) = 1, so that ind(f) = ind1(f) + ind2(f) = 3.

If v(c + 2a + 4) = 3, N2(f) is one-sided with slope λ2 = −1, and R2(f)(y) =
y2 + 1 = (y + 1)2. The type t′ := (x;−1/2, x2 − 2;−1, y + 1) is not f -complete,
t2(f) = {t′}, and we need to pass to order three. We have h2 = e2 = f2 = 1
and ind2(f) = 1. Take φ3(x) = x2 − 2x − 2 as a representative of t′. The φ3-adic
development of f(x) is

f(x) = φ3(x)
2 + (4x+ a+ 8)φ3(x) + (b+ 2a+ 16)x+ c+ 2a+ 12.

By Proposition 2.7 and (16), we have

v3(x) = 1, v3(φ3) = 3, v3(4x) = 5, v3(c+ 2a+ 12) ≥ 8,

v3(4x+ a+ 8) =

{
4, if v(a) = 2,
5, if v(a) ≥ 3,

v3((b+ 2a+ 16)x) =

{
≥ 9, if v(a) = 2,
7, if v(a) ≥ 3.

In Figure 21, we show three possibilities for the Newton polygon of third order.
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If v(a) ≥ 3, N3(f) is one-sided with slope λ3 = −1/2, and R3(f)(y) = y+1. The
type t′′ := (x;−1/2, φ2(x);−1, φ3(x);−1/2, y + 1) is f -complete and t3(f) = {t′′}.
We have e3 = 2, f3 = 1. Thus, f(x) is irreducible over Z2[x], and it generates
an extension L/Q2 with e(L/Q2) = e1e2e3 = 4, f(L/Q2) = f0f1f2f3 = 1. Also,
ind3(f) = 0, so that ind(f) = ind1(f) + ind2(f) + ind3(f) = 3.

If v(a) = 2 and v(c+ 2a+ 12) = 4, N3(f) is one-sided with slope λ3 = −1, and
R3(f)(y) = y2+y+1. The type t′′ := (x;−1/2, φ2(x);−1, φ3(x);−1, y2+y+1) is f -
complete and t3(f) = {t′′}. We have e3 = 1, f3 = 2. Thus, f(x) is irreducible over
Z2[x], and it generates an extension L/Q2 with e(L/Q2) = e1e2e3 = 2, f(L/Q2) =
f0f1f2f3 = 2. Also, ind3(f) = 1, so that ind(f) = ind1(f) + ind2(f) + ind3(f) = 4.
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If v(a) = 2 and v(c + 2a + 12) ≥ 5, N3(f) has two sides with slopes λ3 ≤ −2,
λ′
3 = −1, and Rλ3

(f)(y) = Rλ′
3
(f)(y) = y + 1. There are two types extending t′:

t′′1 := (x;−1/2, φ2(x);−1, φ3(x);λ3, y + 1),
t′′2 := (x;−1/2, φ2(x);−1, φ3(x);−1, y + 1).

Both types have e3 = f3 = 1, they are both f -complete and t3(f) = {t′′1 , t′′2}.
Thus, f(x) has two irreducible factors of degree two over Z2[x], and both generate
extensions L/Q2 with e(L/Q2) = 2, f(L/Q2) = 1. Finally, ind3(f) = 1, so that
ind(f) = ind1(f) + ind2(f) + ind3(f) = 4.

In the final design of the Montes algorithm as presented in [GMN08], this poly-
nomial f(x) is factorized already in order two. In the case v(c + 2a + 4) = 3 the
algorithm considers φ3(x) = x2 − 2x − 2 as a different representative of type t, in
order to avoid the increase of recursivity caused by the work in a higher order. See
[GMN08, Sec.3] for more details on this optimization.

4.4. Proof of the theorem of the index. Our first aim is to prove Theorem
4.18 for f(x) ∈ O[x] a monic irreducible polynomial of degree n such that t̂r(f) is

not empty. By Lemma 4.6, t̂r(f) = {t} for some t = (φ1(x); · · · , φr(x);λr, ψr(y)),
and f(x) �= φs(x) for s = 1, . . . , r. By Lemma 2.4, f(x) is of type t and n =
mr+1ωr+1(f).

For 1 ≤ s ≤ r, let Es, Hs, ds be the length, height and degree of the unique side
of Ns(f). Note that Es > 0, because f(x) is of type t, and 0 < Hs < ∞, because
f(x) �= φs(x). By the theorem of the residual polynomial, Rλr

(f) ∼ ψr(y)
ar , for

ar = ωr+1(f) > 0.
Let θ ∈ Qp be a root of f(x), L = K(θ), and let us fix an embedding Fr[y]/ψr(y)

↪→ FL, as in (36). We introduce some notation:

νs := v(φs(θ)) =
∑s

i=1 eifi · · · es−1fs−1
hi

e1 . . . ei
, for all 1 ≤ s ≤ r,

νj := j1ν1 + · · ·+ jrνr ∈ Q, for all j = (j0, . . . , jr) ∈ Nr+1,

Φ(j) :=
θj0φ1(θ)

j1 . . . φr(θ)
jr

π	νj

∈ OL, for all j = (j0, . . . , jr) ∈ Nr+1,

b0 := f0; bs := esfs, for 1 ≤ s < r; br := erfrar,

J := {j ∈ Nr+1 | 0 ≤ js < bs, 0 ≤ s ≤ r}.

Lemma 4.20. Let O′
L ⊆ OL be the sub-O-module generated by {Φ(j) | j ∈ J}, and

denote q = |F|. Then,

(1) O′
L is a free O-module of rank n, with basis {Φ(j) | j ∈ J},

(2) O[θ] ⊆ O′
L, and (O′

L : O[θ]) = q
∑

j∈J	νj
.

Proof. Clearly, |J | = n, and the numerators of Φ(j), for j ∈ J , are monic poly-
nomials of degree 0, 1, . . . , n − 1. Thus, the family {Φ(j) | j ∈ J} is O-linearly
independent. This proves item (1) and O[θ] ⊆ O′

L. Finally, since the numerators
of Φ(j), for j ∈ J , are an O-basis of O[θ]:

O′
L/O[θ] �

∏
j∈J

π−	νj
O/O �
∏
j∈J

O/π	νj
O,

and since |O/πaO| = qa, we get (O′
L : O[θ]) = q

∑
j∈J	νj
. �
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Our next step is to prove that O′
L is actually an order of OL. To this end we

need a couple of auxiliary results.

Lemma 4.21. Let Q(x) =
∑

j=(j0,...,jr−1,0)∈J aj x
j0φ1(x)

j1 . . . φr−1(x)
jr−1, for

some aj ∈ O. Then,

v(Q(θ)) = min{v(aj) + νj | j = (j0, . . . , jr−1, 0) ∈ J}.

Proof. Since degQ < mr, we have v(Q(θ)) = vr(Q)/e1 · · · er−1, by Lemma 2.2 and
Proposition 2.9. Let us prove that v(aj) + νj ≥ vr(Q)/e1 · · · er−1, by induction on
r ≥ 1. If r = 1 this is obvious because v1(Q) = min{v(aj)}. Let r ≥ 2 and suppose
the result is true for r − 1. For each 0 ≤ jr−1 < br−1, consider the polynomial

Qjr−1
(x) =

∑
(j0,...,jr−2,0,0)∈J

aj x
j0φ1(x)

j1 . . . φr−2(x)
jr−2 ,

where j = (j0, . . . , jr−2, jr−1, 0) in each summand. Clearly,

Q(x) =
∑

0≤jr−1<br−1

Qjr−1
(x)φr−1(x)

jr−1

is the φr−1-adic development of Q(x). By item (4) of Proposition 2.7, the theorem
of the polygon and the induction hypothesis we get

vr(Q)/er−1 = min
0≤jr−1<br−1

{vr−1(Qjr−1
) + jr−1(vr−1(φr−1) + |λr−1|)}

= min
0≤jr−1<br−1

{vr−1(Qjr−1
) + jr−1e1 · · · er−2νr−1}

≤ e1 · · · er−2 (v(aj) + j1ν1 + · · ·+ jr−2νr−2 + jr−1νr−1) .

�

Lemma 4.22. Let j = (j0, . . . , jr) ∈ Nr+1.

(1) For all 0 ≤ s < r,

Φ(j0, . . . , js−1, js + bs, js+1, . . . , jr) = πδj,sΦ(j0, . . . , js, js+1 + 1, js+2, . . . , jr)

+
∑

j′=(j′0,...,j
′
s,0,...,0)∈J

cj, j′Φ(j+ j′),

for some nonnegative integer δj,s and some cj, j′ ∈ O.
(2) Φ(j0, . . . , jr−1, jr + br) =

∑
j′∈J cj, j′Φ(j+ j′), for some cj, j′ ∈ O.

Proof. Let 0 ≤ s < r, and denote φ0(x) = x, ν0 = 0, e0 = 1. The polynomial
Q(x) = φs(x)

bs − φs+1(x) has degree less than ms+1 = bsms; hence, it admits a
development

Q(x) =
∑

j′=(j′0,...,j
′
s,0,...,0)∈J

aj′ x
j′0φ1(x)

j′1 . . . φs(x)
j′s ,

for some aj′ ∈ O. If we substitute φs(x)
bs = φs+1(x) +Q(x) in Φ(j0, . . . , js−1, js +

bs, js+1, . . . , jr) we get the identity of item (1), with

δj,s = �νj + νs+1
 − �νj + bsνs
, cj,j′ = aj′ π
	νj+νj′
−	νj+bsνs
.

Clearly,

νs+1 = esfsνs +
hs+1

e1 · · · es+1
> bsνs,

so that δj,s ≥ 0. Also, νs+1 > bsνs implies that v(Q(θ)) = bsνs, and by the above
lemma we have v(aj′) + νj′ ≥ bsνs. This shows that v(cj,j′) ≥ 0.

Item (2) follows by identical arguments, starting with Q(x) = φr(x)
br−f(x). �
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Proposition 4.23. The O-module O′
L is a subring of OL.

Proof. For all j, j′ ∈ J we have Φ(j)Φ(j′) = πδΦ(j+ j′), with δ = �νj+ νj′
− �νj
−
�νj′
 ∈ {0, 1}. Thus, it is sufficient to check that Φ(j) ∈ O′

L, for all j ∈ Nr+1.
For any 0 ≤ s ≤ r+1, let Js := {j = (j0, . . . , jr) ∈ Nr+1 | 0 ≤ jt < bt, s ≤ t ≤ r}.

Note that J0 = J , Jr+1 = Nr+1. Consider the condition

(is) Φ(j) ∈ O′
L, for all j ∈ Js.

By the definition of O′
L, the condition (i0) holds, and our aim is to show that

(ir+1) holds. Thus, it is sufficient to show that (is) implies (is+1), for all 0 ≤ s ≤ r.
Let us prove this implication by induction on js. Take j0 = (j0, . . . , jr) ∈ Js+1.
If 0 ≤ js < bs, condition (is+1) holds for j0. Let js ≥ bs and suppose that
Φ(j′0, . . . , j

′
s−1, j, j

′
s+1, . . . , j

′
r) ∈ O′

L, for all j
′
0, . . . , j

′
s−1 ∈ N, all 0 ≤ j < js, and all

0 ≤ j′t < bt, for t > s.
By item (2) of the last lemma, applied to j = (j0, . . . , js−1, js − bs, 0, . . . , 0):

(41) Φ(j0, . . . , js−1, js − bs, 0, . . . , 0, br) =
∑
j′∈J

cj,j′Φ(j+ j′) if s < r,

and Φ(j0, . . . , jr) =
∑

j′∈Jcj,j′Φ(j+ j′) if s = r. In both cases, the terms Φ(j+ j′)

belong to O′
L, because the s-th coordinate of j+ j′ is js−bs+j′s < js. In particular,

if s = r we are done. If s < r we apply item (1) of the last lemma to j =
(j0, . . . , js−1, js − bs, js+1, . . . , jr) and we get

Φ(j0) = πδj,sΦ(j0, . . . , js − bs, js+1 + 1, js+2, . . . , jr)

+
∑

j′=(j′0,...,j
′
s,0,...,0)∈J

cj,j′Φ(j+ j′).

The last sum belongs to O′
L by the same argument as above. Thus, we need only

to show that the term Φ(j0, . . . , js − bs, js+1 + 1, js+2, . . . , jr) belongs to O′
L too.

If js+1 + 1 < bs+1, this follows from the induction hypothesis. If js+1 + 1 = bs+1

and s = r − 1, this is clear by (41). Finally, if js+1 + 1 = bs+1 and s < r − 1,
we can apply item (1) of the last lemma again to see that it is sufficient to check
that Φ(j0, . . . , js − bs, 0, js+2 + 1, . . . , jr) belongs to O′

L. In this iterative process
we conclude either by (41), or because we find some jt + 1 < bt. �

We still need some auxiliary lemmas. The first one is an easy remark about
integral parts.

Lemma 4.24. For all x ∈ R and e ∈ Z>0, we have
∑

0≤k<e

⌊x+ k

e

⌋
= �x
.

Proof. The identity is obvious when x is an integer, 0 ≤ x < e, because
⌊x+ k

e

⌋
= 1

for the x values of k such that e− x ≤ k < e, and it is zero otherwise.
Write x = n+ ε, with n = �x
 and 0 ≤ ε < 1; clearly, �(x+ k)/e
 = �(n+ k)/e
,

because ε/e < 1/e. Consider the division with remainder, n = Qe + r, with
0 ≤ r < e. Then,∑

0≤k<e

⌊n+ k

e

⌋
=

∑
0≤k<e

(
Q+

⌊r + k

e

⌋)
= eQ+ r = n.

�
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Lemma 4.25. Take e0 = 1, h0 = 0 by convention. Every j ∈ Nr+1 can be written
uniquely as j = j′ + j′′, with j′, j′′ belonging respectively to the two sets:

J ′ := {j′ = (j′0, . . . , j
′
r) ∈ Nr+1 | 0 ≤ j′s < es, for all 0 ≤ s ≤ r} ⊆ J,

J ′′ := {j′′ = (j′′0 , . . . , j
′′
r ) ∈ Nr+1 | j′′s ≡ 0 (mod es), for all 0 ≤ s ≤ r}.

Then, for any j′′ = (k0, e1k1, . . . , erkr) ∈ J ′′, there is a unique j′ = (j′0, . . . , j
′
r) ∈ J ′

such that v(Φ(j′+ j′′)) = 0. Moreover, j′r = 0, and j′s depends only on ks+1, . . . , kr,
for 0 ≤ s < r.

Proof. For any j ∈ Nr+1 denote by λj the positive integer

λj := e1 · · · er νj =
r∑

s=1

js

s∑
i=1

eifi · · · es−1fs−1ei+1 · · · erhi

=

r∑
i=1

(
r∑

t=i

jteifi · · · et−1ft−1

)
ei+1 · · · erhi.

Clearly,

(42) v(Φ(j)) = νj − �νj
 =
λj

e1 · · · er
−
⌊ λj

e1 · · · er

⌋
.

Thus, v(Φ(j)) = 0 if and only if λj ≡ 0 (mod e1 · · · er). Now define, for each
0 ≤ s ≤ r,

λj,s := jshses+1 · · · er +
r∑

i=s+1

(
r∑

t=i

jteifi · · · et−1ft−1

)
ei+1 · · · erhi.

Note that λj,s depends only on js, . . . , jr, and λj,0 = λj, λj,r = jrhr. Clearly,

λj,s − λj,s+1 = jshses+1 · · · er +
(

r∑
t=s+2

jtes+1fs+1 · · · et−1ft−1

)
es+2 · · · erhs+1,

for all 0 ≤ s < r. In particular, λj,s ≡ λj,s+1 (mod es+1 · · · er), and

λj ≡ 0 (mod e1 · · · er) ⇐⇒ λj,s ≡ 0 (mod es · · · er), for all 1 ≤ s ≤ r.

The condition λj,r ≡ 0 (mod er) is equivalent to jr ≡ 0 (mod er). On the other
hand, for 1 ≤ s < r, the condition λj,s ≡ 0 (mod es · · · er) is equivalent to

λj,s+1 ≡ 0 (mod es+1 · · · er), and

jshs +
(∑r

t=s+2 jt(fs+1 · · · ft−1)(es+2 · · · et−1)
)
hs+1 +

λj,s+1

es+1 · · · er
≡ 0 (mod es).

Thus, the class of js modulo es is uniquely determined, and it depends only on
js+1, . . . , jr. �

Corollary 4.26. Let κ = (k0, . . . , kr) ∈ Nr+1, and let j = j′ + (k0, e1k1, . . . , erkr),
where j′ is the unique element in J ′ such that v(Φ(j)) = 0. Then,

Φ(j) = θk0γ1(θ)
k1 · · · γr(θ)krγ1(θ)

i1 · · · γr−1(θ)
ir−1 ,

for some integers i1, . . . , ir−1. Moreover, each is depends only on ks+1, . . . , kr.
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Proof. By Lemma 4.25, j = (k0, j
′
1 + e1k1, . . . , j

′
r−1 + er−1kr−1, erkr). By (17),

γs(θ)
ks = πns,0φ1(θ)

ns,1 · · ·φs(θ)
esks ,

for all 1 ≤ s ≤ r, with integers ns,i that depend only on ks. Hence,

Φ(j)θ−k0γ1(θ)
−k1 · · · γr(θ)−kr = πn0φ1(θ)

n1 · · ·φr−1(θ)
nr−1 ,

for integers ns that depend only on j′s and ks+1, . . . , kr; hence they depend only on
ks+1, . . . , kr. By Corollary 3.2, v(πn0φ1(θ)

n1 · · ·φr−1(θ)
nr−1) = 0, and by Propo-

sitions 2.9 and 2.15 we have vr(π
n0φ1(x)

n1 · · ·φr−1(x)
nr−1) = 0. By Lemma 2.16,

this rational function can be expressed as a product γ1(x)
i1 · · · γr−1(x)

ir−1 , with
integers i1, . . . , ir−1 such that each is depends only on ns, . . . , nr−1, that is, on
ks+1, . . . , kr. �

Corollary 4.27. Let j1 = j′1+ j′′, j2 = j′2+ j′′, for some j′1, j
′
2 ∈ J ′, j′′ ∈ J ′′. Then,

v(Φ(j1)) = v(Φ(j2)) if and only if j1 = j2. In particular,

{v(Φ(j)) | j ∈ J ′} = {k/e1 · · · er | 0 ≤ k < e1 · · · er}.

Proof. Let j1 = (j1,0, . . . j1,r), j2 = (j2,0, . . . j2,r). With the notation of Lemma
4.25, (42) shows that

v(Φ(j1)) = v(Φ(j2)) ⇐⇒ λj1 ≡ λj2 (mod e1 · · · er)
⇐⇒ λj1,s ≡ λj2,s (mod es · · · er), for all 1 ≤ s ≤ r.

For s = r this is equivalent to j1,r = j2,r. Also, if j1,t = j2,t for all t > s,
then λj1,s − λj2,s = (j1,s − j2,s)hses+1 · · · er, so that λj1,s ≡ λj2,s (mod es · · · er) is
equivalent to j1,s = j2,s.

Finally, it is clear that |J ′| = e1 · · · er, and we have just shown that the elements
v(Φ(j)), j ∈ J ′, take e1 · · · er different values, all of them contained in the set
{k/e1 · · · er | 0 ≤ k < e1 · · · er} by (42). �

Proposition 4.28. If t is f -complete, then O′
L = OL. Moreover, the family of all

Φ(j)Φ(j′), for j ∈ J0 := {j ∈ J | v(Φ(j)) = 0} and j′ ∈ J ′, is an O-basis of OL.
Finally, if L/K is ramified, there exists j′ ∈ J ′ such that mL = Φ(j′)OL.

Proof. Corollary 3.8 shows that e(L/K) = e1 · · · er, f(L/K) = f0f1 · · · fr. By
Corollary 4.27, we have {vL(Φ(j′)) | j′ ∈ J ′} = {0, 1, . . . , e(L/K)−1}; in particular,
if e(L/K) > 1, there exists j′ ∈ J ′ such that vL(Φ(j

′)) = 1. By Lemma 4.25,
|J0| = f0f1 · · · fr = dimFK

FL, and each j ∈ J0 is parameterized by a sequence
(k0, . . . , kr), with 0 ≤ ks < fs for all 0 ≤ s ≤ r. By item (4) of Proposition

3.5, FL = FK(γ0(θ), . . . , γr(θ)), where γ0(x) := x. Recall that zi = γi(θ) for all
0 ≤ i ≤ r, under our identification of Fr+1 := Fr[y]/ψr(y) with FL.

By Corollary 4.26,

Φ(j) = zk0
0 zk1+i1

1 · · · (zr−1)
kr−1+ir−1zkr

r = zk0
0 zk1

1 Γ2(k2, . . . , kr) · · ·Γr(kr),

where Γs(ks, . . . , kr) := zks
s (zs−1)

is−1 , for s ≥ 2. Now, the family of all Φ(j) for
j ∈ J0 is an FK -basis of FL. In fact, the set of all Γr(kr) for 0 ≤ kr < fr is
an Fr-basis of FL = Fr+1, because they are obtained from the basis zkr

r , just by

multiplying every element by the nonzero scalar z
ir−1

r−1 ∈ Fr, which depends only on
kr. Then, the set of all Γr−1(kr−1, kr)Γr(kr) for 0 ≤ kr−1 < fr−1, 0 ≤ kr < fr, is an
Fr−1-basis of FL, because they are obtained from the basis (zr−1)

kr−1Γr(kr), just
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by multiplying every element by the nonzero scalar z
ir−2

r−2 ∈ Fr−1, which depends
only on kr−1, kr, etc.

Therefore, the e(L/K)f(L/K) elements Φ(j)Φ(j′), j ∈ J0, j
′ ∈ J ′, are an O-basis

of OL. By Proposition 4.23, all these elements are contained in O′
L, and we have

necessarily O′
L = OL. �

Proof of Theorem 4.18. Suppose first that f(x) ∈ O[x] is a monic irreducible poly-
nomial, such that t̂r(f) = {t}. In this case we have built an order O[θ] ⊆ O′

L ⊆ OL,
such that (for q = |F|):

(43) (OL : O[θ]) = qind(f), (O′
L : O[θ]) = q

∑
j∈J	νj
,

the last equality by Lemma 4.20. Therefore, in order to prove item (1) of Theorem
4.18, it is sufficient to show that

(44)
∑
j∈J

�νj
 = f0
∑

j=(0,j1,...,jr)∈J

�νj
 = ind1(f) + · · ·+ indr(f).

Let us prove this identity by induction on r ≥ 1. For r = 1 we have ind1(f) =
f0 ind(N1(f)), and jν1 = j|λ1| = yj(N1(f)); thus, (44) was proved already in (40).
From now on, let r ≥ 2. Both sides of the identity depend only on ar, f0 and the
vectors e = (e1, . . . , er), f = (f1, . . . , fr−1), h = (h1, . . . , hr). Recall that

νs = νs(e, f ,h) :=
s∑

i=1

eifi · · · es−1fs−1
hi

e1 . . . ei
.

If we denote e′ = (e2, . . . , er), f
′ = (f2, . . . , fr−1), h

′ = (h2, . . . , hr), it is easy to
check that, for every 2 ≤ s ≤ r:

(45) νs(e, f ,h)−
ms

m2
f1h1 =

1

e1
νs−1(e

′, f ′,h′).

Let us show that the identity

f0
∑

j=(0,j1,...,jr)∈J

⌊ r∑
s=1

jsνs(e, f ,h)
⌋
= ind1(f) + · · ·+ indr(f)

holds for any choice of ar, f0 and e, f ,h, under the assumption that the same
statement is true for r − 1. Write j1 = je1 + k, with 0 ≤ j < f1, 0 ≤ k < e1, and
let 0 ≤ sk < e1 be determined by kh1 ≡ sk (mod e1). Then, by (45),

⌊ r∑
s=1

jsνs(e, f ,h)
⌋
=

⌊
jh1 + k

h1

e1
+

r∑
s=2

jsνs(e, f ,h)
⌋

=

r∑
s=2

js
ms

m2
f1h1 + jh1 +

⌊
k
h1

e1
+

1

e1

r∑
s=2

jsνs−1(e
′, f ′,h′)

⌋

=

r∑
s=2

js
ms

m2
f1h1 + jh1 +

⌊
k
h1

e1

⌋
+
⌊sk
e1

+
1

e1

r−1∑
s=1

js+1νs(e
′, f ′,h′)

⌋
.
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Therefore, it is sufficient to check the two identities:

f0
∑

(0, 0, j2, . . . , jr) ∈ J

0 ≤ j < f1, 0 ≤ k < e1

(
r∑

s=2

js
ms

m2
f1h1 + jh1 +

⌊
k
h1

e1

⌋)
= ind1(f),

f0
∑

(0, 0, j2, . . . , jr) ∈ J

0 ≤ j < f1, 0 ≤ k < e1

⌊sk
e1

+
1

e1

r−1∑
s=1

js+1νs(e
′, f ′,h′)

⌋
= ind2(f) + · · ·+ indr(f).

The integers 0 ≤ i < (n/f0) are in 1-1 correspondence with the vectors (0, j1, . . . , jr)
in J via

i = j1 + j2(m2/f0) + · · ·+ jr(mr/f0).

Therefore, the left-hand side of the first identity is equal to f0
∑

0≤i<(n/f0)
�ih1

e1

,

which is equal to ind1(f) by (40). The second identity follows from the induction
hypothesis. In fact, the set {sk | 0 ≤ k < e1} coincides with {0, 1, . . . , e1 − 1}, and
by Lemma 4.24 the left-hand side of the identity is equal to

f0f1
∑

(0,0,j2,...,jr)∈J

⌊ r−1∑
s=1

js+1νs(e
′, f ′,h′)

⌋
.

Let us now prove the second part of the theorem. Suppose that ind(f) =
ind1(f) + · · ·+ indr(f). Let φr+1(x) be the representative of t; if f(x) = φr+1(x),
we have directly indr+1(f) = 0 because Nr+1(f) is a side of slope −∞. If f(x) �=
φr+1(x), then t̂r+1(f) �= ∅ by Lemma 4.6, and indr+1(f) = 0 by item (1) of the
theorem in order r + 1.

Conversely, suppose that indr+1(f) = 0. Lemma 4.16 shows that all types in
tr+1(f) are f -complete, and Lemma 4.5 shows that all types in t̂r+1(f) are f -
complete too. If t is f -complete, we have O′

L = OL by Proposition 4.28, and we
get ind(f) = ind1(f) + · · · + indr(f), by (43) and (44). If t is not f -complete,
we have in particular f(x) �= φr+1(x), and we can extend t in a unique way to a
type t′ = (t;λr+1, ψr+1(y)) of order r+ 1, which is f -complete by our assumption.
By Proposition 4.28, (43) and (44), applied to t′ in order r + 1, we get ind(f) =
ind1(f)+ · · ·+indr(f)+indr+1(f) as above. Since indr+1(f) = 0, we have ind(f) =
ind1(f) + · · · + indr(f), as desired. This ends the proof of the theorem in the
particular case we were dealing with.

Let us now prove the theorem in the other instances where f(x) is irreducible:
f(x) = φs(x) for the representative φs(x) of some type of order s − 1 ≤ r − 1 (cf.
Lemma 4.6). In this case, inds(f) = 0 because Ns(f) is a side of slope −∞. Also,
if s < r we have inds+1(f) = · · · = indr(f) = 0 by definition, because ts(f) = ∅
by Lemma 4.6. Since f(x) �= φ1(x), . . . , φs−1(x), we have t̂s−1(f) �= ∅ and we can
apply the theorem in order s− 1:

ind(f) = ind1(f) + · · ·+ inds−1(f) = ind1(f) + · · ·+ indr(f).

This proves both statements of the theorem and it ends the proof of the theorem
when f(x) is irreducible.
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In the general case, if f(x) = F1(x) · · ·Fk(x) is the factorization of f(x) into a
product of monic irreducible polynomials, we have by definition

ind(f) =

k∑
i=1

ind(Fi) +
∑

1≤i<j≤k

v(Res(Fi, Fj)).

By Lemma 4.17, an analogous relationship holds for every inds(f), 1 ≤ s ≤ r.
Hence, item (1) of the theorem holds by the theorem applied to each ind(Fi), and
by Theorem 4.10. Let us now prove item (2). By Lemma 4.17, indr+1(f) = 0
if and only if indr+1(Fi) = 0 and Resr+1(Fi, Fj) = 0, for all i and all j �= i.
By the theorem in the irreducible case and Theorem 4.10, this is equivalent to
ind(f) = ind1(f) + · · ·+ indr(f). �
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[Mon99] J. Montes, Poĺıgonos de Newton de orden superior y aplicaciones aritméticas, Tesi
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