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NEWTON POLYHEDRA (RESOLUTION OF SINGULARITIES) 

A. G. Khovanskii UDC 512.761 

Some results are presented on the resolution of singularities and compactification 
of an algebraic manifold determined by a system of algebraic equations with fixed 
Newton polyhedra and rather general coefficients. Resolution and compactification 
are carried out by means of smooth toric manifolds which are described in the first 
half of the survey. 

The Newton polyhedron of a polynomial depending on several variables is the convex hull 
of the exponents of the monomials contained in the polynomial with nonzero coefficients. The 
Newton polyhedron generalizes the concept of degree and plays an analogous role. Discrete 
characteristics of a joint level line of several polynomials in multidimensional complex space 
are the same for almost all values of the coefficients and are computed in terms of Newton 
polyhedra. Among the discrete characteristics computed are the number of solutions of a sys- 
tem of n equations in n unknowns, the Euler characteristic, the arithmetic and geometric 
genus of full intersections, and the Hodge numbers of a mixed Hodge structure on the cohomo- 
logy of full intersections. 

A Newton polyhedron is defined not only for polynomials but also for germs of analytic 
functions. For germs of analytic functions of general position with given Newton polyhedra 
the multiplicity of a joint solution of a system of analytic equations, the Milnor number 
and zeta function of the monodromy operator, the asymptotics of oscillating integrals, and 
the Hodge numbers of a mixed Hodge structure on vanishing cohomology are computed; in the 
two-dimensional case and the multidimensional quasihomogeneous case the modality of a germ of 
a function is computed. 

In the answers quantities characterizing both the sizes of the polygons (the volume and 
the number of integer points contained inside the polygon) and their combinatorics (the number 
of faces of different dimensions and the numerical characteristics of their abutments) are 
encountered. These and other results connected with Newton polyhedra can be found in the 
works [I-9, 11-16, 18-24, 26-28]. 

A large part of the computations with Newton polyhedra is carried out by means of toric 
manifolds. "Elementary" computations in which it is possible to get by without their help are 
are most often exceptional. The basic step in applying toric manifolds consists in the ex- 
plicit construction of a resolution of singularities and subsequent nonsingular compactifica- 
tion of the joint level line of several polynomials having sufficient general coefficients 
and fixed Newton polyhedra. The present paper is devoted to toric manifolds from the point 
of view of their applications to the resolution of singularities and compactification. 

In the first half of the paper we present a detailed construction of smooth toric mani- 
folds. Usually the description of these manifolds is presented in terms of spectra of rings 
which are common in algebraic geometry but are little suited for specialists in mathematical 
analysis. In our exposition the entire algebraic apparatus is reduced to linear algebra and 
to the simplest properties of integral lattices. 

The second half of the paper is devoted to theorems on compactification and resolution 
of singularities. In the first of these (part 2.4) a nonsingular compactification of a joint 
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level line of polynomials in the group T n is set forth. This most simple (and, perhaps, 
most applicable) theorem was published in [18]. In the second theorem (part 2.6) a resolu- 
tion of singularities with subsequent compactification of a joint level line of polynomials 
in C n is set forth. In the third theorem (part 2.7) we present a resolution of singularities 
of the germ of a joint level line of several analytic functions (the case of a hypersurface 
was published in [28]). 

I. Toric Manifolds 

~I. Integral Lattice. Suppose that in real n-dimensional space R n* there is given 
an integral lattice (it is no accident that an asterisk appears in the notation: below ste- 
reometric constructions will be carried out in the space dual to the basic space Rn). We 
shall need the simplest properties of the lattice. Vectors al,...,an are called a basis of 
the integral lattice if integral linear combinations of them generate all integral vectors. 

LEMMA I. I) Independent integral vectors form a basis in the lattice if and only if 
the parallelepiped ~ = Ehiai, 0 ~ h i < I spanned by these vectors does not contain integral 
points distinct from the zero point. 2) Passage from one basis of the lattice to another 
is accomplished by an integral matrix with determinant equal to • 

Proof. I) Indeed, the space R n* is the disjoint union of parallelepiped Nm, where m = 
(ml,...,mn) are integral vectors, and Hm consists of vectors Ehiai for mi ~ h i < mi + I. All 
parallelepipeds Nm differ by a shift by an integral vector and thus contain the same number 
of integral points. If this number is greater than I, then al,...,a n do not form a basis of 
the lattice. 2) An integral matrix has an integral inverse if and only if its determinant 
is equal to • 

The second assertion of Lemma I makes it possible on the basis of a lattice to correctiy 
define a volume element in R n* so that the basis parallelepiped has unit volume. 

A collection of integral vectors al,...,ak is called primitive if the parallelepiped 
= Ehiai, 0 ~ hi < I contains no integral points different from the point 0. 

LEMMA 2. A collection of integral vectors al,...,a k is primitive if and only if it can 
be augmented to a basis of the lattice. 

Proof. Let ak+1,...,a n be integral vectors such that the volume of the parallelepiped 
spanned by al,...,ak, ak+1,...,an has smallest possible (integral) nonzero volume. We shall 
show that this value is I (and hence that the collection of vectors is a basis of the lat- 

h 
tice). Indeed, if this is not so, then the parallelepiped E~a~ for 0 ~ h i ~ I contains 
some integral point b. By replacing one of the vectors ak+1,...,a n by the vector b, we re- 
duce the volume of the parallelepiped. 

LEMMA 3. In a k-dimensional plane in which there exists an integral basis there also 
exists a primitive basis. 

The proof of Lemma 3 is similar to that of Lemma 2. 

1.2. Conical Polyhedra and Their Subdecompositions. A rational cone in R n* is a cone 
formed by linear combinations with nonnegative coefficients of a finite number of integral 
vectors. 

It is known that the set of solutions of a finite number of linear equations <x, mi> = 0 
and inequalities <x, mj> ~ 0 with integer coefficients is a rational cone. The cone is called 
pointed if it does not contain a linear subspace. A rational cone has a finite number of 
faces (the zero-dimensional face -- the vertex of the cone -- is included in the number of 
faces of a pointed cone). One-dimensional faces are called edges. The collection of ir- 
reducible integral vectors lying on the edges of a pointed rational cone is called the basis 
of the cone. A face of a pointed cone is determined by the collection of its edges. 

A simplicial cone is a pointed rational cone whose number of edges is equal to its di- 
mension. A simplicial cone is called primitive if its basis is primitive. The multiplicity 
of a k-dimensional simplicial cone is the volume of the parallelepiped spanned by its basis. 
(The volume is computed in a k-dimensional plane containing the cone whose volume element is 
determined by the integral lattice.) A simplicial cone is primitive if and only if it has 
multiplicity I. 
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A conical polyhedron is a collection of a finite number of pointed rational cones in 
which any two cones can intersect only along faces and which together with each cone contains 

all its faces. 

The Main Example. With an integral polygon A of full dimension dimA = n lying in the 
space R n there is connected a dual conical polyhedron A* in the space R n*. Here is its defi- 
nition. With a vector a@~ ~* there is connected the face A a of the polygon A on which the 
scalar product of vectors lying in A with the vector a is minimal. Two vectors a, b6~ ~* are 
called equivalent if the faces connected with them coincide, i.e., A a = A b. The closure of 
the equivalence class of vectors connected with a face A i forms a rational cone in R n* which 
is calledtheconedual to the faceA i. The collection of cones dual to all faces of a poly- 
gon 4 forms a conical polyhedron called the polyhedron dual to the polygon 4 and denoted 
by A*. In the conical polyhedron 4" to a k-dimensional face of the polygon A there corre- 
sponds a dual (n -- k)-dimensional cone. Thus, to the polygon ~itself (which is considered" 
an n-dimensional face) there corresponds the cone consisting of the single point 0 in R n*. 
To each (n -- 1)-dimensional face there corresponds a ray in R n* orthogonal to this face and 
"directed into the polyhedron 4," etc. 

With a conical polyhedron K there is connected a subset IKI lying in R n* which is the 
union of the cones defining K. The conical polyhedron K is determined not only by the set 
IKI but also by the method of decomposing this set into rational cones. We say that a coni- 
cal polyhedron M is a subdecomposition of the polyhedron K if IMI = IKI and each cone of the 
conical polyhedron M lies inside some cone of the conical polyhedron K. A conical polyhedron 
is called simplicial if it is formed from a collection of simplicial cones and primitive if 
it is formed from a collection of primitive cones. A primitive subdecomposition of a poly- 
hedron is called simple if no primitive cone of the original conical polyhedron is subde- 
composed. 

THEOREM I. For any conical polyhedron there exists a simple subdecomposition. 

Remark. In the book [25] it is proved that for any conical polyhedron there exists a 
primitive subdecomposition. The algorithm proposed in [25] actually reduces to a simple sub- 
decomposition, but this refinement is not formulated in [25]. I learned the formulation of 
this very useful refinement from A. N. Varchenko. 

The proof of Theorem I consists of two steps. At the first step we prove a version of 
the theorem in which primitive subdecompositions are replaced by simplicial subdecomposi- 
tions. The second step consists in a primitive subdecomposition of simplicial cones. 

Step I. We fix an edge of one of the cones of the conical polyhedron. We perform the 
following operation: we span the cones by this edge and each face of all cones of the conical 
polyhedron containing this edge. We obtain a subdecomposition of the polyhedron for which 
the edges are the same as for the original conical polyhedron. If for each subdecomposition 
obtained there is an edge for which this operation is nontrivial, we perform this operation, 
etc. After a finite number of steps we must stop, since from a fixed number of edges it is 
possible to form only a finite number of conical polyhedra. We thus obtain the desired sim- 
plicial subdecomposition. 

Step 2. Suppose that among the simplicial cones of the subdecomposition the~e are cones 
of multiplicity greater than I. We choose one of the cones of highest multiplicity. Such a 
cone must contain an integral vector all of whose coordinates are less than one in its ex- 
pansion in terms of the basis of the cone. By spanning the simplicial cones by this vector 
and all faces of all cones containing this vector (excepting, of course, that face strictly 
inside which the vector lies), we obtain a subdecomposition in which there are fewer cones 
of maximal multiplicity. Continuing this process, we annihilate all cones of highest multi- 
plicity. We then all annihilate all cones of the next multiplicity, etc. 

Remark. The proof of Theorem I contains an explicit algorithm for the simple decompo- 
sition of a conical polyhedron. 

1.3. The Torus, Its Characters, and One-Parameter Subgroups. We denote by C~ n-dimen- 
sional complex space with coordinates zl,...,zn from which all coordinate planes have been 
removed, i.e., z@C0 ~, if zl ~ 0,...,zn ~ 0. The space C~ together with the operation of com- 
ponentwise multiplication is a group. This commutative algebraic group is called an n-di- 
mensional (complex) torus and is denoted by T n. The group T n with a fixed coordinate system 
zl,...,Zn we call the standard torus. 
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A character X of the torous (more precisely, an algebraic character of the torus) is an 
algebraic homomorphism of the torus T n into the one-dimensional torus, X:T n § T I. In coor- 
dinate notation each character is a monomial, i . . . .  e., a function of the form z ml. .z nmn, where 
m i are integers (not necessarily positive). We number the monomials by means of integral 
vectors m = (ml,...,mn) of the fixed real space R n and use the abbreviated notation 
z m1.,,.., �9 zmn = z m. We denote the corresponding character by X TM. The characters form a group 
under multiplication. The enumeration gives an isomorphism' of this group with the integral 
lattice of the space R n. 

We consider the group of algebraic one-parameter subgroups, i.e., the algebraic homomorphisms 
h:T I § T n. Each such homomorphism in coordinate notation has the form zl = tal,...,zn = t an , 
where the a i are integers or, more briefly, z = ta. We number the one-parameter subgroups h 
by the points a of the integral lattice of the space R n*. 

Between the one-parameter subgroups h and the characters X there is a scalar product 
equal to the degree of the composite homomorphism X'h:T ~ + T I. The scalar product of the 
character X m and the one-parameter group h a is equal to Eaim i where a i and m i are the coor- 
dinates of the integral vectors a and m. This scalar product extends to the spaces R n* and 
R n and gives a duality between them (for this scalar product the degree xm-ha:T l § T I is equal 
to <a, m>). 

We consider the asymptotic behavior of a curve in the torus. Let z:(C\0) § T n be the 
germ of a meromorphic curve in the torus, and suppose that the leading terms of the expansion 
of this curve have the form zi(t) = citai(| + O(t)). Using the operation of multiplication in 
in T n, the leading terms of the expansion can be written more simply, namely: z(t) = cta(1 + 

O(t)) where C = cl,...,c n is the vector of coefficients and a6R ~:~ is the vector of degrees 
a = al,...,a n �9 For us the following simple assertion plays an important role. 

Assertion. Let X m be a character of the torus and let z(t) = cta(1 + O(t)) be a germ 
of a meromorphic curve in the torus. Then HmXm(Z(~)) can be computed explicitly. Namely, 

�9 two 

it is equal to Xm(c) if <a, m> = 0, it is zero if <a, m> > 0, and it is equal to infinity if 
<a, m> < O. 

Indeed, %m(Cta(I-~O(t))-~xm(C).xm(ta).%m(1-~O(t)). Further, Iim%m(|~-O(t))=1, and xm(t a) 

tends to one, zero, or infinity, respectively, depending on whether <a, m> = O, <a, m> > 
O, or <a, m> ~ < 0. 

If to an integral line in R n* there corresponds a one-dimensional subgroup of the torus, 
then to a multidimensional plane in R n* there corresponds a multidimensional subgroup. 

A plane in R n* is called integral if it is generated by the integral vectors lying on it. 
Let al,...,a k be a primitive collection of vectors in a k-dimensional plane ~. We define a 
k-dimensional subgroup T(~) of the torus T n as the set of points of the torus of the form 

z = t~ I" ... -tkk where tl,...,t k is an arbitrary collection of nonzero complex numbers. Not 
only the p!]ane ~ but also the primitive collection of vectors participate in the definition 
of the group T(~). It is easy to see, however, that the group T(~) does not depend on the 
choice of the primitive collection. Fixing this collection gives an isomorphism of the group 
T(~) with the standard k-dimensional torus T k. 

We denote by r the factor group of the torus by the subgroup T(~). The group ~(~) 
is isomorphic to the (n- k)-dimensional torus. Indeed, suppose that the vectors ak+l,...,a h 
augment the vectors al,...,a k to a basis of the lattice. The factor group ~[z] is isomorphic 

ak + i. an to the subgroup of points of the form z = ~k+l "'" "tn " 

1.4. Toric Manifolds (as Sets of Points). With each conical polyhedron in the space 
R n* of one-parameter subgroups of the torus there is connected a certain algebraic manifold 
[25]. This manifold has no singularities if and only if the conical polyhedron is primitive. 
We shall need singular manifolds. We proceed to the description of nonsingular manifolds. 
We�9 first describe the sets of points of such manifolds and then introduce on these sets the 
structure of an analytic manifold. 

Let K be a primitive conical polyhedron in the space R n* of one-parameter subgroups of 
the torus, and let {o i} be the collection of its primitive cones, K=U{~}. With each cone 
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o i we connect a group ~[o i] as follows: we set ~[o i] equal to the group ~(~(oi)) where ~(oi) 
is the integral plane generated by the cone o i- 

Definition I. The set of points of a toric manifold MK corresponding to a primitive coni- 
cal polyhedron K is the disjoint union of the factor groups ~[oi] where {o i} is the collection 
of simplicial cones of the polyhedron K. 

The torus group acts in a natural manner on the set M K. The orbits of this action are 
the factor groups ~[oi]. 

Thus, to each simplicial cone 0 of (real) dimension k in the set M K there corresponds 
the torus ~[0] of (complex) dimension n -- k. Each manifold MK contains exactly one n-dimen- 
sional torus Tn; it corresponds to the point 0 -- the vertex of all cones 0 i. The manifold 
M K contains precisely as many (n -- 1)-dimensional tori as there are one-dimensional cones in 
the conical polyhedron K, etc. 

We note that the same group can be contained several times in the set MK: if the planes 
generated by the cones ol and 02 coincide, then the groups ~[01] and r also coincide. But 
in the set MK in this case both ~[Ol] and ~[02] are present. 

So far the set of points M K is a conglomerate in no way connected which consists of the 
group T n and a collection of its factor groups ~[oi]. The structure of an analytic manifold 
will later be introduced on this set. Looking ahead, we formulate an assertion (which we 
shall prove later and shall not use for the time being) necessary for an intuitive idea of 
the situation. In the torus T n we consider the shifted one-parameter subgroup Ct a. As t § 0 
this one-parameter subgroup will converge in M K to a point c6~[o~] if and only if the degree 
vector a lies strictly within the cone o i (i.e., it does not lie on a face of it), while the 
coefficient C goes over into c under the factorization p:T~--~[~] . The point c of the factor 
group ~[o i] should be thought of as the limit as t + 0 of the line Ct a. 

Definition 2. An orbit ~[01] is said to abut the orbit ~[02] if ol is a face of the 
cone o2 (the orbit ~[oi] has larger dimension than ~[02]). 

The topology on the set M K (see part 1.6) is arranged such that one orbit abuts another 
if and only if the second orbit lies in the closure of the first. 

The Basic Example. Let A be an n-dimensional integral polyhedron in R n for which the 
dual polyhedron A* in the space R n* is primitive. Let MA, be the toric manifold constructed 
on the basis of this decomposition. The set of orbits of the manifold MA* is in one-to-one 
correspondence with the set of faces of the polyhedron A. Here to faces of real dimension 
k there correspond orbits of complex dimension k, and the orbits abut one another if and only 
if the faces corresponding to them abut one another (the polyhedron itself is considered an 
n-dimensional face; to it in MA, there corresponds the n-dimensional torus Tn). 

Let Kl and K2 be two primitive conical polyhedra whereby the interior of each cone of 
the polyhedron Kl belongs to the interior of some cone of the polyhedron K2 (the interior of 

a cone spanned by vectors al,...,a k is the set ~la~, where I i > 0). Under these conditions 
we define the mapping g:MKI § MK2. 

We assign to the cone ol of the polyhedron KI the smallest cone 02 of the polyhedron 
K2 containing the cone ol. 

There exists a natural homomorphism of the factor group r into the group ~[02] (since 
the plane containing the cone oe also contains the cone 01). We define the mapping g:MKI § 
ME2 as the union of this conglomerate of homomorphisms. 

Remark I. The intuitive basis for this definition is the following. A point r 
is to be thought of as the limit of a shifted one-parameter subgroup. The mapping g assigns 
to the point c the limit of the same one-parameter subgroup in MK2. 

Let g:MKl § MK2 be the mapping defined above, and let ~[0] be one of the orbits in MK2. 
The mapping injectively takes the subset g-lr into the orbit %[0] if and only if the cone 
o is present among the cones of the polyhedronK~ 

1.5. Structure of the Analytic Manifold. Case of a Simplicial Cone. We begin with 
~he definition of the structure of an analytic manifoid for the simplest conical polyhedron 
0 consisting of a k-dimensional primitive cone o and all its faces. A certain collection of 
functions will first be defined on the set of points M~. The coordinate functions in dif- 
ferent charts of the manifold M~ will be chosen from this collection. We begin fromstereometry. 
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The dual cone a ' m R  ~ to the cone o c R  ~* is defined as the set of vectors x6R ~ for 
which <a, x> ~ 0 for all a6~. The dual cone to a k-dimensional cone contains an (n -- k)- 
dimensional subspace. The collection of integral vectors ml,...,m n is called a basis of the 
cone o* if it is a basis of the lattice in R n and any vector of the cone o* can be repre- 
sented in the form Zhim i where the numbers hl,...,l k are nonnegative and hk+l,...,h n are 
arbitrary real numbers. 

Assertion I. For a cone dual to a primitive cone there exists a basis (for k < n the 
basis is not uniquely determined). If al,...,ak is a basis of the primitive cone o, then 
the collection of vectors {m} of the basis of the dual cone o* can by numbered so that <ai, 
mj> = 6i, j where i varies from I to k and j from I to n. 

For the proof of the assertion it is necessary to augment the primitive collection of 
vectors al,..., a kto abasisandconsider the cone o* in coordinates of the dual space equal 
to the scalar products with the basis vectors. 

Let ~Eo* , and suppose that X m is a character with index m. The function X m is defined 
m extending X m to MS. on the torus T n. We shall now define the function X~ 

Definition. On the torus T n the function X~ is set equal to X m. On an orbit ~[oi], 
where o i is a face of o, X~ is set equal to zero if for some (and hence any) vector a lying 
inside the face oi the inequality <a, m> > 0 holds. Otherwise the function X m is constant on 
equivalent classes in T n corresponding to points of the factor group ~[oi]. In this case the 
function is defined as the value of X m on the corresponding equivalence class. 

LEMMA I. Let c be a point of the factor group ~[oi], let C be a point of the torus T n 
going into c under the homomorphism of factorization, and let a be a vector lying strictly 
inside the cone oi" Then for any character X m for ~CO* there is the equality 

l i ra  Z ~ (C t  a) ~ c =z~(). 

The proof of thelemma follows immediately from the computation of part 1.3. We note that lemma 
I agrees completely with the concept of points of the orbit ~[oi] as limits of shifted one- 
parameter subgroups. 

LEMMA 2. The extended functions satisfy the same relations as the original functions, 
more precisely, the equalities Z~+t= m l Z~.~ hold where m,l~*. 

Proof. The limit of the product is equal to the product of the limits. 
n 

We denote by C k the domain in standard coordinate space C n with coordinates zl,...,z n 
defined by the inequalities Zk+ 1 ~ 0,...,z n ~ O. 

We shall construct a one-to-one mapping of the set M~ into C%which plays the role of a 
coordinate system in M~. This mapping will be constructed on the basis of a basis A in the 
cone ~*. Let A = {ml,...,mn} be a basis in o* with <ai, mj> = 6i, j where al,...,ak is a 
basis of the cone o. 

Definition. A coordinate mapping fA:J4~-+C~ is a mapping taking a point cCJ4~ into 
m 

the point with coordinates %$ (c) ..... %~n(c). 

LEMMA 3. I) Let l~(1,...,k) be a subset of indices, and let oI be the face spanned by 
the vectors az, i~[ . The mapping fA establishes a one-to-one correspondence between the fac- 

n 
tor group ~[oi] and the set defined in C k by the equations z i = 0 for i~I and the inequali- 

n 
ties zj ~ 0 for j~I. 2) The mapping fA gives a one-to-one correspondence between MS and C k. 

Proof. I) The characters X~ i for iC[ on the orbit #[oi] are equal to zero, since <ai, 
mi> Z I ~nd o �9 �9 mj hence <x, mi> > 0 if x lies inside the cone @I" The remalnlng characters X , 
j~I, are constant on the subgroup T(~(ol) ) and separate the equivalence classes relative to 
this subgroup, since the collection A forms a basis of the lattice. 2) Summing the images 
of all the factor groups, we obtain the required assertion. 

n 

In the domain C k defined in C n by the inequalities Xk+ I ~ 0,...,z n < 0 the monomials 

Z ~  �9 m ~ �9 Zkk'~m~+~ .Z~ for which the degree of the first k variables are nonnegative, i.e. . . . .  k+l " ' "" 

m~ ~ 0,...,mk ~ O, are regular. 
n 

LEMMA 4. The preimages of regular monomials in the domain C k under the mapping fA:M$ § 
n 

C k are all characters X~, where ~@~* , and only these. 

2816 



Proof. An integral vector belongs to the cone o* if and only if the first k coordinates 
of its expansion in the basis A are nonnegative. 

LEMMA 5. Let fB:Ms-+Ck n be the one-to-one mapping connected with the collection B of 
--1. n n basis vectors in o*. Then the mapping fsfA 'Ck-~Ck is bianalytic, 

Proof. Let z i be a coordinate function in C~. The function fBzi is one of the charac- 
...... , , n 

ters X m, where r~Es*. Therefore, (f~l)~=f~z i is a regular monomial in the domain C k. There- 

fore, the mapping fBf~ i is analytic. The inverse mapping is analytic for the same reasons. 

We introduce on M~ the structure of an analytic manifold by means of the one-to-one 
mapping f-~1:C;-+~-. The preceding assertion shows that the structure is well defined (does 
not depend on the basis in the cone o*). 

Let z(t) = cta(1 + O(t)) be the germ of a meromorphic curve in the torus T n. Now that 
an analytic structure has been introduced on M~ it is necessary to prove the assertion re- 
garding the behavior of the curve z(t) as t § 0 mentioned in part 1.4. 

LEMMA 6. I) If a vector of degree a of the curve does not lie in the cone o, then on 
the manifold M~ there exists an analytic function whose restriction to the curve tends to oo 
as t § 0; 2) if a vector of degree a lies in the cone o, then as t § 0 the curve has a limit 
in M~, namely, if a lies inside the face o i of the cone o, then the limit lies in ~[o i] and 
is equal to the image of the point C in the group ~[o i] under the homomorphism of factoriza- 
tion. 

Proof. If a does not lie in the cone o, then in the cone o* there is a vector m such 
that <a, m> < 0. The character X m extends analytically to M~ (this extenslon' is" X~)-m The 
limit as t § 0 of xm(z(t)) is equal to infinity, since <a, m> < 0. This proves the first 
assertion of the lemma. Suppose a lies in the face o I of the cone o. The basis characters 
X mi for i6f are constant on the subgroupT(~(oi) ) and llmEmi(z(t))=Xmt(C). This proves the 
second assertion of the lemma, t~0 

LEMMA 7. Each character X m on the torus extends meromorphically to the manifold MS. 
The corresponding meromorphic function X~ is regular on M~ if and only if r~Cg*. 

Proof. Each integral vector in R m is the difference of two integral vectors lying in 
the cone 0*. Therefore, each character on the torus coincides with the ratio of two holo- 
morphic functions on MS. Further, if m~o* , then there exists an integral vector a6o' such 
that <a, m> < 0. The function X m along the one-parameter subgroup t a as t § 0 tends to in- 
finity. The curve t a as t § 0 has a limit in M~. Hence, the function X m is not regular. 

LEMMA 8. Let ol be a face of the cone 0. The analytic structures introduced on the 
sets M~i and M~ agree, i.e., the imbedding g:M$i § M~ is analytic. 

* (but some of Proof. A basis A of the cone 0* is simultaneously a basis of the cone o i 
the basis Vectors of the cone o* not invertible in this cone are invertible in the cone o~). 

A chart of the manifold M~i connected with the basis A is obtained from a chart of the 
manifold M o by dropping some coordinate hyperplanes (these hyperplanes correspond to vectors 
of the basis A not invertible in the cone 0* but invertible in the cone o~). 

LEMMA 9. Suppose that the cone oi is contained inside another cone o2. Then the map- 

ping g:M$i § M$2 is analytic. 

Proof. The dual cones are connected by the reverse inclusion ~i*~g2" We consider any 
~ g "  tr't ~;'/Z 

character X m where mEo2* . We have the equality g '~ ~ . Indeed, we choose an arbitrary 

shifted one-parameter subgroup passing into the point c@I~I~ . Then the same one-parameter 

subgroup in M~2 passes into the point g(c). On the shifted one-parameter subgroup the func- 
m m m 

tions X~ 1 and X~ coincide with the character X �9 Passing to the limit we obtain the re- 
. . 2 

qulred equality. The assertion has been proved, since the collection of coordinate functions 
m 

in M~2 is chosen among functions X~ 2 for m692*. 

1.6. Structure of the Analytic Manifold (General Case). We proceed to the definition 
of the analytic structure on the set M K. With each primitive cone o of the conical polyhe- 
dron K there is connected a conical polyhedron ~ the collectionof cones of which is con- 
tained in the collection of cones of the conical polyhedron K. The set MS can therefore be 
identified with a subset in M K. In each subset of M- an analytic structure has already been 
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introduced. These analytic structures are consistent. Indeed, the common part of the sets 
M~ i and M~ 2 is M~3 where ~s=O1no2 , and the imbeddings of the analytic manifold M~3 in M~i 
and M~ 2 are analytic (see Lemma 8, part 1.5). We now define a topology on M K as follows: we 
call a set Ucf~K open if and only if the intersections of U with all subsets of MS are 
open. There are sufficiently many open sets: the image of an open set in each chart of M~ 
will be open in the entire manifold M K (this follows from the consistency of the topologies 
of different charts). Thus, everything occurring in a small neighborhood of a point of the 
manifold M K can be considered in any of the charts containing it. 

Remark. In gluing together analytic manifolds it is possible to obtain sets with a bad 
topology. Here is the simplest example. For two copies of the complex line we identify all 
points with the exception of the origins (the set obtained can be thought of as the complex 
line with a double origin). On this set there are two charts with consistent analytic struc- 
tures, but any two neighborhoods of the double origin intersect. We note that in this set 
there is an analytic curve having two distinct limits. 

We shall prove that in the set M K any two points have nonintersecting neighborhoods (or, 
in other words, that the topology on the set M K is Hausdorff). The proof is based on the 
fact that a meromorphic curve in M K has no more than one limit. 

LEMMA I. Let z(t) = cta(1 + O(t)) be the germ of a meromorphic curve in the torus T n, 
and let M K be the toric manifold constructed on the basis of a conical polyhedron K. If a 
vector a of the degree of the curve lies in the set IKI, then the curve z(t) as t + 0 has a 
unique limit in M K. This limit lies in the orbit ~[o], where o is a cone of the polyhedron 
containing the vector a in its interior, and is equal to the image of C in the group #[o] 
under the factorization homomorphism. If a ~ IKI, then as t § 0 the curve z(t) has no limit 
points in M K- 

The proof follows immediately from the consideration of the curve z(t) in the charts of 
~$ carried out in Lemma 6 of part 1.5. For us the following version of the theorem on selec- 
tion of curves familiar in algebraic geometry will play an important role. 

THEOREM (Selection of One-Parameter Subgroups). Let {X m} be a finite set of characters 
of the torus. Suppose that in the torus T n there is given a sequence of points along which 
all characters of the finite set tend to limits (finite and infinite). Then there is a 
shifted one-parameter subgroup Ct a along which all characters tend to the same limits as 
t + 0. 

LEMMA 2. Suppose there is given a finite set of real linear functions on R n*. Suppose 
in R n* there is given a sequence of points along which all the linear functions of the set 
tend to limits (finite and infinite). Then there exists a shifted ray pT + q, where #, g6R ~ 
and ~6R , along which the linear functions tend to the same limits as T § If all the 
linear functions have integer coefficients, then the vector p can be chosen to be an integer. 

~roof. Let {/i}, {fi}, {gi} be subsets of linear functions which along the sequence 
tend, respectively, to +~, to _~o, and to finite limits. We denote by o the cone defined by 
the inequalities I i ~ 0, fi < 0. We denote by L + q the shifted linear subspace defined by 
the equations gi = ci where c i is the limit of the function gi along the given sequence. 

Inside the cone ~ arbitrarily far from its faces there exist points arbitrarily close 
to the shifted subspace L + q (in particular, the coneo has full dimension dimo = n). In- 
deed, for such points it is possible to take points of the sequence with sufficiently large 
indices. 

The space L cannot intersect the cone o along a face: otherwise all points lying a 
small distance from the plane L + q would be a finite distance from the face of the cone. 
Therefore, in the space L there is a vector r pointing strictly into the cone ~. If the 
space L is defined by integer equations, then by a slight perturbation of r it is possible 
to make it rational and then, by multiplying by a natural number, to make it an integral 
vector. The ray pT + q, where p = --r, possesses all the required properties. 

LEMMA 3. Suppose in the hypotheses of the theorem {X gi} is the subset of characters 
tending to finite limits c i ~ 0; then there exists a point z6T ~ at which xgi(z) = c i. 

Proof. Suppose that in the subset of vectors {gi} corresponding to characters tending 
to finite limits the vectors gl,-.-,gk are linearly independent. The equations X gi = c i for 
i = 1,...,k are compatible and define a finite number of surfaces in the torus on which the 
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remaining characters of the subset are constant. The sequence tends to one of the surfaces. 
Any point of this surface satisfies the conditions of the lemma. 

We proceed to the proof of the theorem. We consider the homomorphism p of the group T n 
into the linear space R n* defined by the formula p(z)=Inlz I where z = (zl ..... Zn) and 

In I zl-----(Inlzll ..... In lznl). Under this mapping for any point xGR n* and character %m m@R~ the 
following relation is satisfied: the logarithm of the modulus of the character • is constant 
on the preimage p-l(x) of the point x and is equal to <x, m>. Suppose the characters {x~i}, 
{xfi}, and {xgi} along the given sequence of points tend, respectively, to ~, to O, and to 
the complex number ci ~ 0. Then the linear functions on R n* defined by the vectors {li} , 
{fi}, {gi} in R n will tend along the image of the sequence to ~, to -~o, and to Inleil , re- 
spectively. By Lemma 2 there exists a ray pT + q along which the linear functions tend as 

§ to the same limits. The shifted one-parameter subgroup ztP, where z is the point 
found in Lemma 3, satisfies all the conditions of the theorem. 

LEMMA 4. The topology of M K is Hausdorff. 

Lemma 4 together with the lemma on bianalyticity of the functions of passing from one 
chart to another show that the topology introduced makes the set M K a complex analytic mani- 
fold. 

Proof. All open sets in M K intersect the torus T n (in each chart except the torus are 
found only certain points on coordinate hyperplanes). Suppose that all neighborhoods of 
pointsaand b intersect. Choosing according to a point of intersection with the torus small 
neighborhoods of the points a and b and then reducing the neighborhoods, we obtain a se- 
quence of points of the torus having as its limit both the point a and the point b. We fix 
charts containing the points ~ and b. Let {X m} be a finite collection of characters corre- 
sponding to the coordinate functions of these charts. The functions {X m} tend to finite 
limits (equal to the coordinates of the point a and the coordinates of the point b in these 
coordinate systems) along the sequence of points constructed. By the theorem on selection 
of one-parameter subgroups there is a shifted one-parameter subgroup along which the functions 
{X m} tend to the same limits. Considering this curve in a coordinate chart containing the 
point a, we see that this curve tends to the point a. Considering this curve in a chart con- 
taining the point b, we see that it tends to the point b, However, the ~hifted one-parameter 
subgroup as t § 0 has no more than one limit point in MK, and hence the points ~ and b coin- 
cide. 

COROLLARY. The system of charts in the set M K converts it into a complex-analytic mani- 
fold. The mapping of the manifold M K into MK2 defined in part 1.4 is analytic. 

We have verified the first part of the assertion. The second part reduces to a local 
consideration of Lemma 9 of part 1.5. 

1.7. Criteria of Compactness and Properness. THEOREM (Criterion of Compactness of the 
Manifold MK). The manifold M K is compact if and only if the primitive conical polyhedron K 
covers the entire space of one-parameter lines of R n*, i.e., IKI = R n*. 

Proof. If IK1 ~ R n*, then there exists a vector aER ~* not lying in tK1. The one- 
parameter line of degree ~ as t § 0 has no limit points in M K. Hence, the manifold M K is 
noncompact. 

Suppose now that IKl = R n*. We shall show that from any sequence of points of M K it is 
possible to select a convergent subsequence. The manifold M K consists of a finite number of 
orbits. Any sequence has an infinite subsequence lying entirely in one of the orbits. We 
first consider the case where such a subsequence lies in the torus T n itself. 

In each of a finite M~ in M K we fix a coordinate system. Let {xm} be the finite collec- 
tion of characters in the torus corresponding to these coordinate functions. We choose a 
subsequence along which each of the functions has a finite or infinite limit (such a subse- 
quence exists: the values of each function lie in the space C ~ compactified by the infinitely 
distant point, and the product of compact spaces is compact). We shall prove that this sub- 
sequence converges in M K. Indeed, we choose a shifted one-parameter subgroup along which 
the functions {X m} tend to the same limits. This curve, just as any meromorphic curve in 
the torus, has a limit in M K (see Lemma I of part 1.6). The subsequence also converges to 
this limit. Indeed, in the collection of functions {X m} there are coordinate functions of a 
chart in which the limit of the curve lies. The subsequence converges to the point with the 
same coordinates, since the limits of the coordinate functions coincide. We now consider a 
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sequence of points in the orbit ~[~]. Let ~l,-..,~k be a basis of the cone o, and let mi,..., 
m k be vectors of the cone 0" such that <~i, mj> = ~i,j- We consider all cones of the conical 

* containing polyhedron K for which 0 is a face. For each such cone 01 we fix a basis in o I 
the vectors ml,...,m k (see part ].5). We now consider the collection of characters {X} cor- 
responding to all vectors of the fixed bases. This collection contains, in particular, the 
characters xmi,...,X mk. All the characters {X} are regular on M~ (since all the cones ~ lie 
in the cone o*). We now shift the q-th point of the sequence from the orbit $[o] into the 
torus T n so that each function of the collection {X} changes by no more than 2-q in modulus. 
From the shifted points we choose a subsequence such that each character of {X} has a finite 
or infinite limit along it. We shall show that the corresponding subsequence of the original 
sequence converges. Let Ct ~be a shifted one-parameter subgroup tending to the same limit as 
the shifted subsequence. We consider the new shifted one-parameter subgroup Ct ~+b where the 
vector b lies strictly within the cone o. The limits of all the characters {X m} do not depend 
on b. 

Indeed, for the characters {X m} the limit as t + 0, xm(t b) = 0 is equal to zero (just as 
for points of the predeformed sequence), while for the remaining characters of {X} there is 
the identity X{t b} = ]. For a sufficiently large vector b the vector ~ + b lies inside one 
of the cones oI a face of which is the cone ~ (because the union of such cones oI covers a 
neighborhood of the cone o in Rn*). The limit of the shifted one-parameter subgroup Ct a+b 
is found in the chart Mol. All coordinates of the chart Moi are present in the collection 
of characters. The subsequence of points selected has the same limits of all coordinate 
functions as the curve Ct ~+b and therefore has the same limit. 

The coordinate functions of the corresponding subsequence of points in the orbit ~[o] 
differ from the coordinates of the shifted points by no more than 2-q. Therefore, they also 
converge to the same limit. 

Remark. An orbit of a toric manifold of dimension k together with all orbits abutting 
it, in turn, forms a toric manifold of dimension k. We shall describe the conical polyhedron 
corresponding to this manifold. Let p:T n § ~[0] be the factorization homomorphism. Under 
this homomorphism the space of one-parameter subgroups of the torus T n goes over into the 
space of one-parameter subgroups of the torus $[0], whereby a plane spanned by an (n -- k)- 
dimensional simplicial cone ~ goes over into 0. The images of the simplicial cones oI con- 
taining ~ as a face are simplicial cones in the space of one-parameter subgroups of the torus 
~[0]. The collection of these cones forms the conical polyhedron of the k-dimensional toric 
manifold corresponding to the closure of the orbit. The last part of the proof of the com- 
pactness criterion is actually based on this construction. 

THEOREM (Criterion That a Mapping Be Proper). A mapping g:MK$ § MK2 of toric manifolds 
(defined in the case where each cone of the Conical polyhedron Kl is contained in some cone 
of the conical polyhedron K2) is proper if and only if JKil = IK2J. A proper mapping is a 
mapping "onto." 

Proof. Both manifolds MKI and MK2 contain as an open, dense set the torus T n on which 
the mapping g is an isomorphism. Therefore, a proper mapping is a mapping "onto." Further, 
we suppose that there exists a vector a lying in IK21 but not belonging to fKiF. The one- 
parameter line t a of degree ~ in the torus T n as t § 0 has a limit in MK2 but has no limit in 
MK1 which contradicts the property that the mapping be proper. 

For JKi! = IKzl the preimage of any curve having a limit in MK2 has a limit in MKi. To 
complete the proof that the mapping is proper it is necessary to use the theorem on selection 
of one-parameter subgroups (in the same way as this was done in detail in the proof of the 
compactness criterion). 

2. Compactification and Resolution of Singularities 

2.1. Laurent Polynomials and Their Newton Polyhedra. The simplest toric manifold is 
the torus group T n itself. The conical polyhedron corresponding to this manifold consists 
of the single point 0. On the other hand, the collection of regular functions on T n is the 
richest collection. 

A Laurent polynomial on T n is a finite linear combination of characters P~---~cm% ~ . The 

support supp (P) of a Laurent polynomial P is t~e finite set of points {~}~R ~ for which the 
coefficient c m is nonzero. The Newton polyhedron A(P) of a Laurent polynomial P is the con- 
vex hull of its support. The support function of a Laurent polynomial P is the function 
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HA(p) on the dual space R n* defined by the formula HA(p)(a)=min ( a, x } The contraction 
x~a(P) 

pa of a Laurent polynomial P by a vector afiR n* is ~r m -- the linear combination of 
m~A a 

characters whose degrees lie on the support face AS(p) of the polygon A(P) in the direction 
a [i.e., the face of the polygon A(P) on which the scalar product with a achieves its 
minimum], and each character X m of degree m6Aa(P) is contained in the Laurent polynomial 
pa with the same coefficient as in the Laurent polynomial P. 

LEMMA I. Let Ct a be a shifted one-parameter subgroup, and let P be a Laurent poly- 
nomial. Suppose that the contraction pa of the Laurent polynomial P of order a at the point 
C~T n is not equal to zero, i.e., paiC)=/=O . Then the lowest'order term as t § 0 of the re- 

striction of P to the line Ct a has the form pa(C) t~(P)(a) . If Pa(C) = 0, then the lowest- 
order term of the restriction has higher degree. 

Proof. Restricting the Laurent polynomial P = ~c~% m to the shifted one-parameter 

group Ct a, we obtain ~cm%m(C).%m(La). We separate out the terms of lowest degree in t: 

cruz "~ (C) Z '~ (t~) _-- t'vA(P> (~> 7~ c,~Z ~ ( C ) ~  . . . .  tnA(P)(~)P ~ ( C ) +  . . .  

mQAa(p) 

[here the dots denote terms of degree higher than H&(p)(a)]. 

The proof of Lemma I is complete. 

Let P and Q be two Laurent polynomials, and let R = P-Q. 

LEMMA 2. In multiplication of Laurent polynomials I) the contractions by any integral 
vector a are multiplied: R a = paQa; 2) the support functions of the Newton polyhedra add: 
HA(R) = H&(p) + HA(Q); 3) the Newton polyhedra add: A(R) = A(P) + s 

Proof. Let C be any point of the torus for which pa(c) ~ 0 and Qa(c) ~ 0 (almost all 
points of the torus T n satisfy this condition, since no Laurent polynomial vanishes identi- 
cally) . 

By restricting the Laurent polynomials P and Q to the line Ct a, we find the lowest-order term 
of the expansion of the restriction of the polynomial R to this line. This lowest-order term 

is p~ (C) Q~ (C) F'A(~')~)+H~(o) C~)" 

This computation (together with Lemma I) proves part 1) and also part 2) for integral 
vectors. The support functions are homogeneous and continuous, and hence the assertion of 
part 2) extends to rational and then to arbitrary (vectorial) arguments of the support func- 
tions. The additivity of the Newton polyhedra follows from the additivity of the support 
functions. 

2.2. Conditions of Nondegeneracy. A system of equations Pl =... = Pk = 0 with Laurent 
polynomials Pl,...,Pk is called regular in the torus T n if at each root of this system the 
differentials of the functions Pi are linearly independent. 

LEMMA I. For almost all collections of coefficients c i of Laurent polynomials Pi = 
im ECmX with fixed supports the system of equations PI --... = Pk = 0 is regular in T n. More 

precisely, in the space of coefficients there exists an algebraic subset of complex codimen- 
sion~1 (real codimension~2) in whose complement the corresponding system is regular. More- 
over, if for m < k the system Pl =... = Pm = 0 is regular, then for almost all (in the same 
sense) coefficients of the remaining Laurent polynomials Pm+l,...,Pk the system PI = ... = 
Pm+l =--. = Pk = 0 is regular. 

Proof. Suppose the system P1 =..- = Pm = 0 is regular. Then it defines a nonsingular 
manifold X~T n. In each of the equations Pj = 0 for j > m we separate out a character xmj 

and represent the equation Pj = 0 in the form P]=--e~% mj where Pj----Pj--c~j% mj . The com- 

plete system of equations is equivalent to the system P]% ~---Vmj on the manifold X. By 

the Sard--Bertini theorem for almost all coefficients C]mj this system is nondegenerate on X. 
For these collections of coefficients the system P1 =-.- = Pk = 0 is regular in the torus. 
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The system of equations PI =... = Pk = 0 with Laurent polynomials Pl,...,Pk is called 
a-regular for an integral vector a6R n~ if the system PI =''" = P = 0 is regular (thus, 
regular systems are a-regular for a = 0). 

LEMMA 2. In Lemma I regularity can be replaced by a-regularity. 

For the proof it suffices to use Lemma I for the system P~ = ... = P~ = 0. 

The system PI =... = Pk = 0 is called A-nondegenerate if it is a-regular for any inte- 
gral vector aER ~'~'. 

LEMMA 3. For a given system PI =... = Pk = 0 there exists only a finite number of dif- 
ferent conditions for a-regularity. Namely, all distinct conditions are obtained by choosing 
one vector a in the partition A* of the space R n* dual to the polyhedron A = A(Pl) +... + 

A(P k)  . 

Proof. In order that for two vectors a and b the support faces of the polyhedron of the 
sum coincide, i.e., in order that A a = A b, it is necessary and sufficient that their support 
faces of the polyhedral terms coincide, i.e., that Aa(Pi) = Ab(p i) for i = 1,...,k. If 
Aa(p~) =Ab(p~)for i=l .... , k, then the condition of a-regularity does not differ from the 

condition of S-regularity. 

LEMMA 4. In Lemma I regularity can be replaced by A-nondegeneracy. 

According to Lemma 3, for the proof it suffices to use Lemma 2 a finite number of times. 

2.3. Laurent Polynomials on Toric Manifolds. A Laurent polynomial is a finite linear 
combination of characters of the torus. Together with the characters the Laurent polynomials 
extend as meromorphic functions to toric manifold. 

Let P ~  e~% m be a Laurent polynomial with Newton polyhedron A(P). Let o be a primi- 

tive cone in the space R n*. We are interested in how the function P~ obtained by extending 

P to the manifold M~ behaves. The situation is especially simple in the case where the support 
function HA(p) of the polyhedron A(P) is linear on the cone o. Thus, suppose that on the 
cone o the function HA(P) coincides with the scalar product with a vector m (the vector m is 
not uniquely determined if dimo < n; the scalar products with a vector m on the cone o are 
uniquely determined). 

LEMMA I. Suppose that for vectors bEG the equality HA(p)(b) = <b, m> holds; then I) 
the function PSX -m is regular on the manifold M~; 2) the restriction of the function P~X -m 
to the orbit @[o] is Pax-m where a is any vector lying strictly within o (more precisely, the 
value of the function PSX -m at a point c of the orbit ~[o] coincides with the value of the 
Laurent polynomial pax-m at any point C of the torus T nthat goes over into cunder the factor- 
ization homomorphism p:T n * ~[o]). 

Proof. For each character X ~ contained in the Laurent polynomial the scalar product 
<b, l> with the vector b on the cone o, bEo, is not less than the support function of the 
polyhedron HA(p). Therefore, the character X/-m extends in a regular way to the manifold 

�9 7-- m . . M~. Further, on the orblt r those and only those characters X > vanlsh for whlch <a, 
l- m> > 0. Characters for which <a, 1- m> = 0 correspond to points 1 on the face Aa(p) of 
the Newton polyhedron, and they extend so that x~-m(c) = x/-m(c) where the point C is any 

point going over into c under the factorization homomorphism D:T n + ~[q]. 

On a one-dimensional cone the function HA(p) is always linear. 

COROLLARY. The order of a zero of the Laurent polynomial P with Newton polyhedron A(P) 
on the unique (n -- 1)-dimensional orbit of the manifold M~, where o is the one-dimensional 
cone in which the vector a is an integral generator, is equal to the value of the support 
function of the polyhedronA(P)onthevectora [a zero of negative order on an (n- 1)-dimen- 
sional orbit means, as usual, a pole of the corresponding order]. 

Suppose now that PI,-..,Pk is a collection of Laurent polynomials with Newton polyhedra 
A1,...,Ak whose support functions are linear on the cone o. We shall be interested in how 
the manifold X defined in T n by the system PI =-.. = Pk = 0 behaves near the orbit r of 
the manifold MS. 

LEMMA 2. Suppose that the Laurent polynomials PI,...,Pk are a-regular for some (and 
hence for any) vector a lying strictly within o. Then the closure X of the set X in the 
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manifold M~ in a neighborhood of the orbit r is a nonsingular analyti_c manifold trans- 
versally intersecting the orbit ~[o]. The intersection of the closure X with the orbit ~[o] 
is hereby given in ~[o] by the system of equations 

P ~ ( - ~  = . . .  = Pk~( -'~k = O. 

Proof. In a neighborhood of each point of the orbit ~[o] the lemma follows from the 
implicit function theorem and Lemma I. To complete the proof it remains to take the union 
of these neighborhoods of its points as a neighborhood of the orbit. 

Remark. Lemma 2 remains valid not only for Laurent polynomials but also for Laurent 
series fl =... = fk = 0 where the summation goes over an infinite set of indices. For the 
validity of such a generalization it suffices that the series of fl,-..,fk converge in a 
neighborhood of the orbit. The generalization of Lemma 2 is especially convenient if all 

(7 
the contractions fi are Laurent polynomials. Old considerations suffice to prove the gen- 
eralization, since the implicit function theorem is valid for analytic functions as well as 
for algebraic functions. 

Suppose now that K is an arbitrary primitive conical polyhedron in R ", Pi~.--,Pk are 
Laurent polynomials, and PI,K,'-',Pk,K are meromorphic extensions of the Laurent polynomials 
to the manifold M K. We summarize the results obtained. 

THEOREM. I) The order of a meromorphic function Pi,K on the manifold M K on the (n -- 
1)-dimensional orbit corresponding to an edge oi in K with generator ~ is equal to H~(Pi)(a). 

2) If the support functions HA(Pi ) are linear on a cone o of the conical polyhedron K and 

the system PI = ... = Pk is a-regular for ~ lying strictly within o, then the closure X of 
the set X of solutions of the system in T n in a neighborhood of r is a nonsingular mani- 
fold transversally intersecting ~[o]. The equations of the intersection X with ~[o] in the 

pk~ -"k 0 factor torus ~[o] are Pla% -m ..... ~ % = �9 

The proof of the theorem follows automatically from the local computations of Lemmas I 
and 2. 

2.4. Compactification (Case of Tn). Let PI =... = Pk = 0 be a A-nondegenerate system 
of equations in T n with polyhedra AI,...,Ak, and let X be the manifold in T n defined by this 
system. 

Let K be an arbitrary primitive conical polyhedron giving a subdecomposition of the poly- 
hedron A* in R n* dual to the polyhedron A = AI +... + A k. The imbedding g of the torus T n in 
the toric manifold M K is called a compactification resolving the collection of polyhedra 
AI,...,A k. We shall identify the image of the torus under the imbedding g with the original 
torus and the image of the manifold X with the original manifold X. 

THEOREM. The closure X of the manifold X in the toric manifold is compact, nonsingular, 
and transversally intersects all orbits of the manifold M K- 

Proof. By the implicit function theorem the manifold X~F ~ is nonsingular in T n. Near 
each orbit ~[o] of the manifold M K the set X is an analytic manifold transversally intersect- 
ing the orbit ~[o]. This was proved in the theorem of part 2.3. 

Remark I. The Laurent polynomials PI,...,Pk are meromorphic functions on the manifold 
M K. The orders of these functions on (n- 1)-orbits of the manifold M K are determined in the 
theorem of part 2.3. The equations of the intersection of the manifold X with an orbit of 
any dimension of the manifold M K are also determined in that theorem. 

Remark 2. It is possible to explicitly construct a compactification resolving a given 
collection of polyhedra AI,...,A k. For this it suffices to use the explicit algorithm for a 
simple subdecomposition of the polyhedron A* presented in the theorem of part 1.2. 

Remark 3. It follows from the theorem that the discrete characteristics of the manifold 
X depend only on the Newton polyhedra (and do not depend on the prescription of concrete co- 
efficients of a A-nondegenerate system). Indeed, the A-nondegenerate systems form a set of 
real codimension no less than two in the space of systems with given Newton polyhedra. There- 
fore, it is possible to pass continuously from one A-nondegenerate system to another without 
passing through degenerate systems. The corresponding manifolds X will be deformed while 
remaining compact, analytic, and transversal orbits of the manifold M K. A considerable part 
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of the discrete invariants of a manifold X does not change under such deformations. Computa- 
tions show that the main discrete invariants can be explicitly and rather simply expressed 
in terms of Newton polyhedra. In the expressions for the invariants such geometric char- 
acteristics of polyhedra as the number of integer points lying on their faces, the volumes 

of the polyhedra, etc. are encountered. 

2.5. Compatibility Conditions. A collection of I + I polyhedra in R n is called degen- 
erate if there exists an l-dimensional subspace in which it is possible to parallel trans- 
port all the polyhedra. For example, the collection of one polyhedron consisting of a single 
point, the collection of two polyhedra consisting of two parallel segments, etc. are degen- 

erate. 

Definition. A collection of polyhedra in R n is called dependent if it contains a de- 

generate subcollection. 

THEOREM I. ~ A-nondegenerate system of equations Pl = ... = Pk = 0 with Newton poly- 
hedra A1,...,s is incompatible in T n if the Newton polyhedra AI,...,A k are dependent. Other- 
wise it defines in T n an analytic (n -- k)-dimensional manifold. 

Proof. Let AI,...,A~+ l be a degenerate collection of polyhedra. Then the system of 
equations Pl = ... = P~+l = 0 actually depends on ~ variables. Therefore, by an arbitrarily 
small chauge of its coefficients (in order to make this subsystem regular) it is possible 
to arrange that this subsystem, and hence also the entire system, becomes incompatible. The 
origina (unperturbed) system cannot be compatible. Indeed, if it were compatible, then by 
the implicit function theorem under a small perturbation of the coefficients the manifold 
of solutions of the original system would not vanish but only be slightly deformed. 

To prove the second part of the theorem we need Bernshtein's theorem on the number of 
roots [4]. We add to the system Pl = .-- = Pk = 0 the equations Pk+l = -.- = Pn = 0 with New- 
ton polyhedra Ak+1,...,s n of full dimension so that the total system remains A-nondegenerate 

(this can be done byLemma 4 of part 2.2). The system of equationsP~ = ... =Pk =Pk+1 = ... = Pn = 
0 is compatible in T n, since the number of its solutions by Bernshtein~ theorem is equal to 
the mixed volume of the Newton polyhedra AI,...,A n multiplied by n!, and the mixed volume of 

independent polyhedra is not equal to zero. 

Let PI = ... = Pk = 0 be a A-nondegenerate system in the torus T n which is invariant 
under the action of a q-dimensional subgroup of the torus. Such a situation arises if all 
the newton polyhedra A(PI) .... ,A(P k) lie in an (n -- q)-dimensional plane Ln- q of the space 
~] orthogonal to a q-dimensional plane ~cR ~* corresponding to a q-dimensional subgroup of 
the torus. By multiplying the equations of the system by characters, the system PI = ... = 
Pk = 0 whose Newton polyhedra lie in planes parallel to the plane Ln_ q can be reduced to 
this situation. We consider the new A-nondegenerate system PI = ... = Pk = Pk+l = ... = Pm = 
0 containing the old equations and some new equations. 

When is there at least one root of the extended system Pl = ... = Pm = 0 in each orbit 
of the action of the q-dimensional group T(~) on the manifold of solutions of the original 
system PI =... = Pk = 0? The next theorem provides an answer to this question. 

THEOREM 2. On each orbit there is a root of the extended system if and only if the 
polyhedra s m are independent (the case in which the polyhedra AI,...,A k are dependent 
is an exception; in this case the set.* 

Proof. The restriction of the equations Pk+l = "-. = Pm = 0 to an orbit of the group 
T(~) lying in the manifold of solutions of the system Pl =-.. = Pk = 0 is a A-nondegenerate 
system in the torus T n whose Newton polyhedra are the images of the polyhedra Ak+1,...,An 
under the factorization of the space R n by the subspace Ln- q. Theorem 2 now follows from 
Theorem I. 

2.6. Resolution of Singularities and Compactification (Case cn). In this subsection 
a resolution of singularities and a compactification of the resolved manifold are constructed 
for manifolds defined in C n by a A-nondegenerate system of equations. The construction is 
entirely determined by the collection of Newton polyhedra of the system of equations. The 
cross of the singularity -- the union of several coordinate planes along which it is neces- 
sary to blow up C n in resolving singularities -- is determined by the collection of Newton 
polyhedra. The cross of a singularity decomposes into orbits of three types: unnecessary 

*Omission in Russian original -- Publisher. 
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orbits, attainable orbits, and unattainable orbits. This decomposition is determined by the 
collection of Newton polyhedra and possesses the following properties. First of all, the 
manifold defined by a A-nondegenerate system does not intersect unnecessary orbits. Secondly, 
each point of the intersection of this manifold with an attainable orbit is a limit point for 
the toric part of the manifold (i.e., for the subset of points of the manifold lying on the 
torus). Third, all points of the manifold lying on unattainable orbits do not belong to the 
closure of the toric part of the manifold. 

The space C n is a toric manifold whose conical polyhedron is the positive octant in R n*. 
The characters whose degrees lie in the positive octant of R n extend holomorphically to the 
space C n and are ordinary monomials. Their linear combinations are the polynomials on C n. 

With each polynomial on C n there is connected a Laurent polynomial: the restriction of 
this polynomial to the torus T n. Admitting some liberty of speech, we shall call the Newton 
polyhedron of this Laurent polynomial, the contraction of this Laurent polynomial etc. the 
Newton polyhedron of the polynomial, the contraction of the polynomial, etc. 

Let AI,...,A k be polyhedra lying in the positive octant of the space R n. We restrict 
the support functions of the polyhedra AI,...,A k to the positive octant in R n*. A face o of 
the positive octant in R n* is called nonsingular for the collection of polyhedra AI,...,A k 
if the support functions of all the polyhedra of the collection are identically equal to zero 
on o. All the remaining faces of the octant are called singular. 

It follows from the definition that all faces of the octant (including the octant it- 
self) are nonsingular if and only if all polyhedra contain the point 0~R ~. 

A singular face ~ of the octant in R n* is called unnecessary in the following case. We 
consider all polyhedra of the collection AI,...,Ak for which the support function on the face 
o is identically equal to zero, and we consider their support faces for which the support 
function is equal to zero. If the collection of support faces obtained is dependent, then 
the face is called unnecessary. 

A singular face o is called attainable if there exists a vector a lying strictly within 
the face o such that the support faces A~,... A a ' k are independent. 

A singular face is called unattainable if it is not unnecessary and is not attainable. 

An orbit of the toric manifold C n (i.e., a coordinate plane from which all smaller co- 
ordinate planes have been eliminated) is called singular (nonsingular, unnecessary, attain- 
able, unattainable) for the Newton polyhedra Al,...,&k if the cone corresponding to this orbit 
(which is a face in R n*) is singular (nonsingular, unnecessary, attainable, unattainable) for 
these polyhedra. The union of all singular orbits fills the union of several coordinate 
planes and is called the cross of the singularity for the polyhedra AI,...,A k. 

We connect with a collection of polyhedra AI,...,A k a decomposition A* of the space 
R n* dual to the polyhedron A = Al +... + A k and the decomposition A+ of the positive octant 
in R n* induced by the decomposition A*. 

We call a simple subdecomposition K + of the polyhedron A+ a resolving subdecompositi0n 
for the collection of polyhedra AI, .... A k. We call a pair of primitive polyhedra K§ , 
where K + is a subpolyhedron of K, a compactifying pair for the collection of polyhedra {A} 
if K + is a resolving polyhedron for these polyhedra and K is a primitive subdecomposition of 
the polyhedron A*. 

LEMMA I. On the basis of polyhedra Al,...,&k it is possible to explicitly construct 
some resolving polyhedra and compactifying pairs of the polyhedra. 

Proof. To construct resolving polyhedra it is necessary to apply the theorem of part 
1.2 for the polyhedron A*. To construct compactifying pairs of polyhedra it suffices to 
apply this same theorem to the polyhedron A~ dual to the polyhedron A~ = &0 + Al + ... + Ak, 
where A0 is a standard simplex (defined by the inequalities 0 ~< xi; Zx i ~< I). 

Definition. A toric manifold MK+ together with the projection g:MK+ § C n is called a 
resolution for the polyhedra AI,...,A k if K + is a resolving polyhedron for these polyhedra; 
toric manifolds MK+ , M K with projection g:MK+ § C n and imbedding g0:MK+ § M K are called a 
resolution with compactification for the polyhedra Az,...,A k if the polyhedra K +, K form a 
compact ifying pair. 
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LEMMA 2. I) A resolution g:MK+ + C n is a proper mapping which is single-valued away 
from the cross of a singularity of the collection of polyhedra AI,...,A k. In particular, the 
mapping is one-to-one if all the polyhedra contain the point 0ER n . 2) The imbedding go: 
MK+ § M K is a compactification of the space MK+. The complement of the image of MK+ consists 
of transversally intersecting divisors in M K. 

Proof. By definition, support functions of polyhedra are equal to zero on nonsingular 
faces of the positive octant in R n*. These faces are primitive and are contained in the poly- 
hedron A~. Since K+ is a simple decomposition, these faces do not subdecompose further, and 
the mapping g:MK+ + C n is one-to-one on nonsingular orbits. The second part of the assertion 
follows from general properties of toric manifolds. 

We proceed to the connection of a resolution for polyhedra &1,...,Ak with A-nondegenerate 
systems with the same Newton polyhedra. Let PI = ... = Pk = 0 be a system of polynomial equa- 
tions in C n with Newton polyhedra Al,...,Ak; let X~C n be the manifold defined by this sys- 
tem; let X c be the intersection of this manifold with the cross of a singularity for the 
polyhedra AI,...,A k. Let g:MK+ § C n be a resolution, and let g:MK+ § C n, g0:MK+ § M K be a 
resolution with compactification for the polyhedra AI,...,Ak. We denote by X0 the preimage 
of the set X\X c in MK+, by X + its closure in MK+, and by X + the closure of its image in M K. 

THEOREM. Under the conditions formulated below on the coefficients of the equations 
P~,---,Pk, which are almost always satisfied, the following assertions hold: I) X + is an 
analytic manifold in MK+ intersecting its orbits transversally; 2) X0 is obtained from X + 
by eliminating its intersections with the collection of transversally intersecting hyper- 
surfaces which represent the preimage of the cross of the singularity under the projection 
g; 3) the projection g establishes a mutually analytic correspondence between the manifolds 
X0 and the set X\Xc; 4) the projection g maps X + onto the manifold X from which intersec- 
tions with all orbits of unattainability for the polyhedra {A i} have been eliminated; 5) if 
the polyhedra K +, K form a compactifying pair, then the closure X+ of the manifold X + is a 
nonsingular compact manifold transversally intersecting the "infinitely distant" hypersur- 
faces of the manifold MK, and X + is obtained from X + by eliminating these intersections. 

We shall formulate the conditions on the coefficients under which the theorem is valid. 
Let R I be any coordinate plane in R n (the space R n is also considered a coordinate plane). 
We denote by {A~} the collection of polyhedra A~ = A i N R I (in which empty polyhedra are 

l 
I I 

deleted). We connect with the plane R I the system {Pi }I of equations PI =''~ = Pk = 0 where 
I I 

Pi is the contraction of the polynomial Pi on the face A i. Parts I-4) of the theorem are 

satisfied for systems of equations for which the systems {Pi }I for all planes of R1 are a- 

regular for all vectors of the positive octant a~R~ �9 For the validity of part 5) it is 

necessary to require that this condition be satisfied for all vectors ~ER n*. 

Remark. The orders of the function g*Pi on (n -- 1)-dimensional orbits of the manifolds 
MK+ and M K are determined by means of the theorem of part 2.3. By means of this same theo- 
rem we determine the equations of the intersection of the manifolds X + and X+, respectively, 
with the orbits of the manifolds MK+ and M K- 

We note three special cases of Theorem ]. 

I. All Newton polyhedra contain the origin. In this case the cross of the singularity 
is empty, the manifold M K coincides with C n, and the manifold X + coincides with the 
original manifold X. In this case Theorem I sets forth a toric compactification of 
the space C n in which the closure X of the manifold X is nonsingular and intersects 
the infinitely distant orbits transversally. In this case Theorem I is altogether 
analogous to the theorem on compactification for T n (see part 2.4). 

2. The cross of a singularity for Newton polyhedra contains only unnecessary orbits. 
For this case Theorem I sets forth a blow-up M K of the space C n containing the mani- 
fold X + which is bianalytically equivalent to the manifold X and a compactification 
of the space MK+ in which the closure X of the manifold X is nonsingular and trans- 
versally intersects infinitely distant orbits. 

3. The cross of a singularity for the Newton polyhedra contains only unnecessary and 
attainable orbits. This case differs from the preceding case in that the nonsingular 
manifold X + is not equivalent to the (singular) manifold X but maps onto the manifold 
X in one-to-one fashion on an open, dense set. 
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We proceed to the proof of the theorem. Parts I)-3) and 5) are proved in the same way 
as in the theorem of part 2.4. The only part needing verification is part 4. It is neces- 
sary to prove that no point of the set X lying on an unattainable orbit is a limit point for 
the manifold X\X c and that any point of the set X lying on an attainable orbit is a limit 

point for this set. 

If a point on an unattainable orbit lies in the closure of X\ X c, then there exists a 
meromorphic curve in X\Xc tending to this point (by the theorem on the selection of curves 
[17]). Let z(t) = Ct a • (I + O(t)) be this curve. Then the vector a lies inside the dual 
cone to an unattainable face, while the point C is a root of the system of equations PI ='--= 
P~ = 0 [the latter condition is obtained by separating out the leading terms in the identities 
Pi(z(t)) ~ 0]. However, by the condition of unattainability the polyhedra A~,...,A~ are de- 

s pendent, and the nondegenerate system P~ = ... = Pk = 0 is incompatible (Theorem I of part 
2.5). 

Suppose now that x is an arbitrary point of the set X lying on an attainable orbit. 
I Since x lies on X, it follows that P~(x) = 0 (here Pi are the restrictions of the polynomials 

i 

Pi to the coordinate plane which is the closure of an attainable orbit). By hypothesis there 
exists a vector a lying within the dual cone to this orbit for which the polyhedra A~,...,A~ 
are independent. We consider the toric manifold M~I where oi is the one-dimensional cone 

generated by the vector a. We consider the closure Xol in M~ of the manifold defined in T n 

by the system PI = ... = Pk = 0. According to the theorem of part 2.3, this closure is an 

analytic manifold, and its intersection with the orbit r on r is given by the system 
I I 

Pi = 0. According to Theorem 2 of part 2.5, for each solution x of the system Pi = 0 there 
G 

is a solution of the system Pi = 0 equivalent to it relative to the action of the group T(~) 
(here ~ is the plane containing the cone o corresponding to the attainable orbit). Let x be 
this solution. The manifold Xol transversally intersects the orbit r of the manifold 
Mol; therefore, there exists a curve issuing from the point x in T n and lying in Xol. The 
projection of this curve under the mapping g:Mol § C n issues from the point x and lies in 
X\X c. The proof of the theorem is complete. 

2.7. Resolution of Singularities (Local Version). In this subsection we discuss a 
local version of the global constructions presented above. A conical Newton polyhedron is 
defined for a germ of an analytic function in (C n, 0). For a system of analytic equations 
given in a neighborhood of zero the condition of A-nondegeneracy is defined which is satis- 
fied for almost all systems of equations with fixed conical Newton polyhedra. The main re- 
sult of the subsection is the resolution of singularities of a A-nondegenerate system of 
equations by means of a suitable toric manifold. 

A we call an infinite, closed, convex polyhedron A conical if, first, g lies in the 
n 

positive octant R+, second, A with each point m contains the translated positive octant 
m + R~ with vertex at the point m, and, third, if all the vertices of A are integral points. 

An analytic function f in a neighborhood of the point 0@C n can be expanded in the Taylor 

series f(z)=~Cm%m(Z) where the summation goes over the set of all vectors m lying in the 

positive octant R~, and %m(z)=z~.....z~ n . The support supp (f) of the germ of an analytic 

function is the set of points n~ER~ n for which the coefficient c m ~ 0. The conical Newton 
polyhedron A(f) of the germ of an analytic function f is the convex hull of the set of trans- 
lated positive octants with vertices at all points of the support of the function f, i.e., 
the convex hull of the set U {m-~+n} 

m~supp(f) 

LEMM_A I. The conical polyhedron has only a finite number of vertices. 

Proof. A conical polyhedron with an infinite number of vertices has an infinite in-. 
creasing sequence of imbedded conical polyhedra. We assign to each conical polyhedron the 
ideal in the ring of convergent power series in a neighborhood of the point 0 of the space 
C n consisting of all analytic functions with supports contained in the given conical 
polyhedron. Under this correspondence to a large polyhedron there corresponds a large 
ideal. Therefore, the existence of a conical polyhedron with an infinite number of vertices 
contradicts Hilbert's theorem on the breaking off of an increasing chain of ideals [10]. Of 
course, Lemma I can also be proved geometrically without appealing to Hilbert's theorem. 
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COROLLARY. The conical polyhedron has a finite number of compact faces. 

The union of the compact faces of the conical polyhedron is called its diagram. 

The conical polyhedron is called favorable if it has a vertex on each edge of the posi- 
tive octant. 

The support function of the conical polyhedron is defined for vectors in the positive 
octant R~*: the minimum over x 6A of the scalar product <a, x> of a vector aER ~* with non- 
negative components is achieved at one of a finite number of vertices (if at least one co- 
ordinate of the vector a is negative, then this minimum is equal to -~o). We note that on a 
face of the positive octant of R n* the support function is equal to zero if and only if the 
conical polyhedron intersects the dual face of the positive octant in R n. 

Let fl = ... = fk = 0 be a system of analytic equations in a neighborhood of 0 with the 
conical Newton polyhedra AI,...,A k. For each vector a6R ~* with positive coordinates there 
are defined compact faces A~,. .,A~ of the conical Newton polyhedra AI,...,A k. The defini- 

�9 �9 a 

tlon of the contractlon fi of the analytic function fi to order a literally repeats the defi- 
nition of the contraction of a Laurent polynomial. 

The system of equations fl = ... = fk = 0 is called a-regular if the system of equations a 
fl = ... = f~ = 0 (in which fq are already Laurent polynomials) is regular in T n. 

i 

The system of equations fl = ... = fk = 0 is called A-nondegenerate if it is a-regular 
for any vector a with positive coordinates. 

The conditions of a-regularity and A-nondegeneracy are satisfied for almost all systems 
of analytic functions with given conical polyhedra. 

Conical Newton polyhedra At,... A k are called dependent if for any vector a with posi- �9 �9 a ' a 

tive coefflclents the polyhedra Al, ..,A k are dependent. 

THEOREM I. The germ X of an analytic set which is defined near the point 06C ~ by a A- 
nondegenerate system of analytic equations fl = ... = fk = 0 lies entirely in the union of 
coordinate planes if the conical Newton polyhedra of these equations are dependent. If the 
conical Newton polyhedra are independent, then the germ X, after eliminating its intersec- 
tions with the coordinate planes, becomes an analytic (n -- k)-dimensional manifold. 

Proof. We shall show that for dependent conical polyhedra the germ X lies entirely 
in coordinate planes. 

Indeed, we suppose that the point 0 is a limit point of the set obtained from the germ 
X after eliminating its intersections with coordinate planes. Then by the theorem on the 
selection of curves [17] there exists an analytic curve z(t) = cta(1 + O(t)) lying in the set 
constructed and tending to zero as t § 0. The identities fi(z(t)) ~ 0 are hereby satisfied. 
Separating out the lowest-order terms in these identities, we find that the point C is a 
joint root of the system fl a=... = fk a= 0. 

a a 
However, by Theorem I of part 2.5 the system fl = ... = fk = 0 is incompatible in the 

torus T n, since the polyhedra A~,. a ..,A k are dependent. The second part of the theorem can 
be deduced from the theorem on resolution of singularities. 

We proceed to the resolution of singularities of a manifold defined in a neighborhood 
of the point zero in C n by a A-nondegenerate system of analytic equations. The construction 
is entirely determined by the collection of conical Newton polyhedra and is a local modifica- 
tion of the construction of part 2.6. 

The support functions of the conical manifolds are defined in the positive octant of 
space R n*. In part 2.6, in particular, the singular and nonsingular faces of the positive 
octant in R n*, the resolving polyhedrons K +, the cross of the singularity, and the resolution 
consisting of a toric manifold MK+ together with the projection g:MK+ § C n were determined 
on the basis of the collection of Newton polyhedra. The definition of all these objects car- 
ries over literally to the case of conical polyhedra. The definition of unnecessary, attain- 
able, and unattainable orbits of the cross of a singularity needs modification. 

We recall that conical polyhedra are called dependent if for any covector with positive 
coordinates the support faces of these polyhedra corresponding to the covector are dependent. 

A coordinate plane RI in the space R n is called unnecessary for the conical polyhedra 
Al . ,A k if the nonempty conical polyhedra A~, ,AS, where A~ = A i ~ R I, are dependent. 

' "" "'" l 
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A coordinate plane R I is called counnecessary for the conical polyhedra AI,...,A k if 
the conical polyhedra in the complementary coordinate plane of R I, which are the projections 
of those polyhedra of Al,...,A k for which the intersection with the plane R I are empty, are 
dependent. 

A singular orbit of the space C n for a collection of conical polyhedra is called un- 
necessary if the coordinate plane ascribed to the orbit in R n is unnecessary for these poly- 
hedra. A singular orbit is called unattainable if it is unnecessary and the coordinate plane 
ascribed to it is counnecessary. The remaining singular orbits (for which the corresponding 
planes are independent and are not codependent) are called attainable. The coordinate plane 
R I ascribed to an orbit of the space C n is determined as follows. To the orbit there corre- 
sponds a simplicial face of the positive octant in R n*. A cone in R n is dual to this space. 
We call the coordinate plane ascribed to the orbit the maximal linear subspace contained in 
this cone. 

We proceed to the connection of the resolution for conical polyhedra AI,...,A k with A- 
nondegenerate systems of analytic equations with the same Newton polyhedra. Let fl = ... = 
fk = 0 be a system of germs of analytic equations in a neighborhood of the point 0 in C n 
with conical Newton polyhedra AI,...,Ak, let X be the germ of the manifold defined by this 
system, and let Xc be the intersection of this germ with the cross of the singularity for the 
conical manifolds Al,...,A k. Let g:MK+ § C n be the resolution for this collection of poly- 
hedra. We denote by X0 the preimage of the germ X\ X c in MK+ and by X0 its closure in MK+. 

THEOREM. The following assertions hold under the conditions on the coefficients of the 
initial segments of the Taylor series of the functions fi which are almost always satisfied: 

I) X0 is the germ of an analytic manifold in MK+ transversally intersecting its orbits; 

2) X0 is obtained from X0 by eliminating intersections with the collection of trans- 
versally intersecting hypersurfaces -- the preimages of the cross of the singularity 
for the projection g; 

3) the projection g establishes a mutual analytic correspondence between X0 and X\ Xc; 

4) the projection g gives a proper mapping of X0 onto the germ of the manifold X from 
which intersections with all orbits in C n which are unattainable for the polyhedra 
{A i} have been eliminated; 

5) assertions I)-4) remain in force if by X and X c we understand the parts of the corre- 
sponding analytic manifolds lying in a sufficiently small ball about the point zero, 
by X0 we understand the preimage of X\ X c, and by X0 we understand its closure. 

We shall formulate conditions on the coefficients under which the theorem holds. We 
connect with the coordinate plane R I the system of equations f~ =... = f~ = 0, where f~ is 
the restriction of fi to the coordinate plane C I in C n (restrictions identically equal to 
zero are not considered). The theorem holds for systems of equations which, first of all, 
are themselves A-nondegenerate and, secondly, all systems {fl} are A-nondegenerate. 

The proof of the theorem is similar to the proofs of the theorems of parts 2.4 and 
2.6, and we shall therefore not consider it. We note interesting special cases. 

I. All conical Newton polyhedra are favorable, and hence the cross of the singularity 
consists of the single point 0. In this case the theorem shows that the manifold X 
has the isolated singular point 0 and gives a resolution of singularities g:MK+ + C n 
blowing up only this point 0. 

2. The cross of the singularity for the conical Newton polyhedra, with the exception of 
the point zero, contains only unnecessary orbits. In this case the theorem shows 
that the manifold X has the isolated singular point 0. The resolution of singulari- 
ties g:MK+ + C n blows up in C n more than the point 0. However, the restriction of 
g to the manifold X0 blows up only the singular point 0 on the manifold X. 

3. The cross of the singularity contains only unnecessary and attainable orbits. In 
this case the theorem gives a nonsingular manifold X0 together with the proper pro- 
jection g:X0 + X which is an isomorphism on an open, dense set. This case differs 
from the preceding case in that the singular point 0 of the manifold X, generally 
speaking, is not isolated. The mapping g:X0 § X is a mapping "onto" and is an iso- 
morphism away from a proper analytic set. 
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Remark. Under the conditions of the theorem the orders of the functions g*fi on hyper- 
planes lying in the preimage of zero are determined by means of the theorems of part 2.3. 
The equations of the intersection of the manifold X0 with orbits of the manifold MK+ lying 
in the preimage of zero are determined in a similar way. 
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