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NEWTON POLYHEDRA (RESOLUTION OF SINGULARITIES)

A. G. Khovanskiil UDC 512.761

Some results are presented on the resolution of singularities and compactification
of an algebraic manifold determined by a system of algebraic equations with fixed
Newton polyhedra and rather general coefficients. Resolution and compactification
are carried out by means of smooth toric manifolds which are described in the first
half of the survey.

The Newton polyhedron of a polynomial depending on several variables is the convex hull
of the exponents of the monomials contained in the polynomial with nonzero coefficients. The
Newton polyhedron generalizes the concept of degree and plays an analogous role. Discrete
characteristics of a joint level line of several polynomials inmultidimensional complex space
are the same for almost all values of the coefficients and are computed in terms of Newton
polyhedra. Among the discrete characteristics computed are the number of solutions of a sys-—
tem of n equations in n unknowns, the Buler characteristic, the arithmetic and geometric
genus of full intersections, and the Hodge numbers of a mixed Hodge structure on the cohomo-
logy of full intersections. '

A Newton polyhedron is defined not only for polynomials but also for germs of analytic
functions. For germs of analytic functions of general position with given Newton polyhedra
the multiplicity of a joint solution of a system of analytic equations, the Milnor number
and zeta function of the monodromy operator, the asymptotics of oscillating integrals, and
the Hodge numbers of a mixed Hodge structure on vanishing cohomology are computed; in the
two~dimensional case and the multidimensional quasihomogeneous case the modality of a germ of
a function is computed.

In the answers quantities characterizing both the sizes of the polygons (the volume and
the number of integer points contained inside the polygon) and their combinatorics (the number
of faces of different dimensions and the numerical characteristics of their abutments) are
encountered. These and other results connected with Newton polyhedra can be found in the
works [1-9, t1-16, 18-24, 26-28].

A large part of the computations with Newton polyhedra is carried out by means of toric
manifolds. "Elementary" computations in which it is possible to get by without their help are
are most often exceptional. The basic step in applying toric manifolds consists in the ex-
plicit construction of a resolution of singularities and subsequent nonsingular compactifica-
tion of the joint level line of several polynomials having sufficient general coefficients
and fixed Newton polyhedra. The present paper is devoted to toric manifolds from the point
of view of their applications to the resolution of singularities and compactification.

In the first half of the paper we present a detailed construction of smooth toric mani-
folds. Usually the description of these manifolds is presented in terms of spectra of rings
which are common in algebraic geometry but are little suited for specialists in mathematical
analysis. In our exposition the entire algebraic apparatus is reduced to linear algebra and
to the simplest properties of integral lattices.

The second half of the paper is devoted to theorems on compactification and resolution
of singularities. 1In the first of these (part 2.4) a nonsingular compactification of a joint

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki, Vol.
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level line of polynomials in the group T is set forth. This most simple (and, perhaps,

most applicable) theorem was published in [18]. 1In the second theorem (part 2.6) a resolu-—
tion of singularities with subsequent compactification of a joint level line of polynomials
in C? is set forth. In the third theorem (part 2.7) we present a resolution of singularities
of the germ of a joint level line of several analytic functions (the case of a hypersurface
was published in [28]).

1. Toric Manifolds

1.1. Integral Lattice. Suppose that in real n—dimensional space R?® there is given
an integral lattice (it is no accident that an asterisk appears in the notation: below ste-
reometric constructions will be carried out in the space dual to the basic space R%). We
shall need the simplest properties of the lattice. Vectors &i,...,dpn are called a basis of
the integral lattice if integral linear combinations of them generate all integral vectors.

LEMMA 1. 1) Independent integral vectors form a basis in the lattice if and only if
the parallelepiped I = ZA;ai, 0 € A{ < 1 spanned by these vectors does not contain integral
points distinct from the zero point. 2) Passage from one basis of the lattice to another
is accomplished by an integral matrix with determinant equal to #1.

Proof. 1) Indeed, the space R®™ is the disjoint union of parallelepiped Ny, where m =
(m1,...,mp) are integral vectors, and Il consists of vectors Iijai for mj < A; < mj + 1. AIL
parallelepipeds Il differ by a shift by an integral vector and thus contain the same number
of integral points. If this number is greater than 1, then ai1,...,2; do not form a basis of
the lattice. 2) An integral matrix has an integral inverse if and only if its determinant
is equal to #1.

The second assertion of Lemma 1 makes it possible on the basis of a lattice to correctly
define a volume element in R™ so that the basis parallelepiped has unit volume.

A collection of integral vectors di,...,ak is called primitive if the parallelepiped
I = Z)ai, 0 < x{ < 1 contains no integral points different from the point O.

LEMMA 2. A collection of integral vectors ai,...,2k is primitive if and only if it can
be augmented to a basis of the lattice.

Proof. Let ayk+1,-..,ap be integral vectors such that the volume of the parallelepiped
spanned by @1,...,0ks Qk+1s-«->0n has smallest possible (integral) nonzero volume. We shall
show that this value is 1 (and hence that the collection of vectors is a basis of the lat-

n
tice). Indeed, if this is not so, then the parallelepiped ZMf; for O < A{ < 1 contains
some integral point b. By replacing one of the vectors ayx4i,...,an by the vector b, we re-
duce the volume of the parallelepiped.

LEMMA 3. 1In a k~dimensional plane in which there exists an integral basis there also
exists a primitive basis.

The proof of Lemma 3 is similar to that of Lemma 2.

1.2. Conical Polyhedra and Their Subdecompositions. A rational cone in R* is a cone

formed by linear combinations with nonnegative coefficients of a finite number of integral
vectors.

It is known that the set of solutions of a finite number of linear equations <x, mj> = 0
and inequalities <x, mj> 2 0 with integer coefficients is a rational cone. The cone is called
pointed if it does not contain a linear subspace. A rational cone has a finite number of
faces (the zero-—dimensional face — the vertex of the cone — is included in the number of
faces of a pointed cone). One-dimensional faces are called edges. The collection of ir-
reducible integral vectors lying on the edges of a pointed rational cone is called the basis
of the cone. A face of a pointed cone is determined by the collection of its edges.

A simplicial cone is a pointed rational cone whose number of edges is equal to its di-
mension. A simplicial cone is called primitive if its basis is primitive. The multiplicity
of a k—dimensional simplicial cone is the volume of the parallelepiped spanned by its basis.
(The volume is computed in a k—~dimensional plane containing the cone whose volume element is
determined by the integral lattice.) A simplicial cone is primitive if and only if it has
multiplicity 1.
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A conical polyhedron is a collection of a finite number of pointed rational cones in
which any two cones can intersect only along faces and which together with each cone contains
all its faces.

The Main Example. With an integral polygon A of full dimension dimA = n lying in the
space R1 there is connected a dual conical polyhedron A% in the space RM™. Here is its defi-
nition. With a vector a€R™ there is connected the face A% of the polygon A on which the
scalar product of vectors lying in A with the vector ¢ is minimal. Two vectors a,b€R™ are
called equivalent if the faces connected with them coincide, i.e., A% = AP,  The closure of
the equivalence class of vectors connected with a face A; forms a rational cone in R™ which

is called the cone dual to the face Ay, The collection of cones dual to all faces of a poly-
gon A forms a conical polyhedron called the polyhedron dual to the polygon A and denoted
by A*. 1In the conical polyhedron A* to a k-dimensional face of the polygon A there corre-

sponds a dual (n — k)-dimensional come. Thus, to the polygon 4 itself (which is considered
an n-dimensional face) there corresponds the cone consisting of the single point 0 in RE¥,
To each (n — 1)-dimensional face there corresponds a ray in RI* orthogonal to this face and
"directed into the polyhedron A," etc.

With a conical polyhedron K there is connected a subset |K! 1lying in R™* which is the
union of the cones defining K. The conical polyhedron K is determined not only by the set
Kl but also by the method of decomposing this set into rational cones. We say that a coni-
cal polyhedron M is a subdecomposition of the polyhedron K if IMI = |Kl and each cone of the
conical polyhedron M lies inside some cone of the conical polyhedron K. A conical polyhedron
is called simplicial if it is formed from a collection of simplicial cones and primitive if
it is formed from a collection of primitive cones. A primitive subdecomposition of a poly-—
hedron is called simple if no primitive cone of the original conical polyhedron is subde-
composed.

THEOREM 1. TFor any conical polyhedron there exists a simple subdecomposition.

Remark. 1In the book [25] it is proved that for any conical polyhedron there exists a
primitive subdecomposition. The algorithm proposed in [25] actually reduces to a simple sub-
decomposition, but this refinement is not formulated in [25]. I learned the formulation of
this very useful refinement from A. N. Varchenko.

The proof of Theorem 1 consists of two steps. At the first step we prove a version of
the theorem in which primitive subdecompositions are replaced by simplicial subdecomposi-
tions. The second step consists in a primitive subdecomposition of simplicial cones.

Step 1. We fix an edge of one of the cones of the conical polyhedron. We perform the
following operation: we span the cones by this edge and each face of all cones of the conical
polyhedron containing this edge. We obtain a subdecomposition of the polyhedron for which
the edges are the same as for the original conical polyhedron. 1If for each subdecomposition
obtained there is an edge for which this operation is nontrivial, we perform this operation,
etc. After a finite number of steps we must stop, since from a fixed number of edges it is
possible to form only a finite number of conical polyhedra. We thus obtain the desired sim—
plicial subdecomposition.

Step 2. Suppose that among the simplicial cones of the subdecomposition thefe are cones
of multiplicity greater than 1. We choose one of the cones of highest multiplicity. Such a
cone must contain an integral vector all of whose coordinates are less than one in its ex—
pansion in terms of the basis of the cone. By spanning the simplicial cones by this vector
and all faces of all cones containing this vector (excepting, of course, that face strictly
inside which the vector lies), we obtain a subdecomposition in which there are fewer cones
of maximal multiplicity. Continuing this process, we annihilate all cones of highest multi-
plicity. We then all annihilate all cones of the next multiplicity, etc.

Remark. The proof of Theorem 1 contains an expiicit algorithm for the simple decompo-
sition of a conical polyhedron.

1.3. The Torus, Its Characters, and One-Parameter Subgroups. We denote by C? n—~dimen-
sional complex space with coordinates zi,...,zn from which all coordinate planes have been
removed, i.e., 2€C¢", 1if z; # 0,...,2z2n # 0. The space CJ together with the operation of com-
ponentwise multiplication is a group. This commutative algebraic group is called an n—-di-
mensional (complex) torus and is denoted by TR. The group T® with a fixed coordinate system
Z1s.+.,2n We call the standard torus.
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A character X of the torous (more precisely, an algebraic character of the torus) is an
algebraic homomorphism of the torus TU into the one-dimensional torus, ¥:T? > T'. 1In coor-
dinate notation each character is a monomial, i.e., a function of the form z?l-... -zgn,where
m{ are integers (not necessarily positive). We number the monomials by means of integral
vectors m (my,...,mp) of the fixed real space R® and use the abbreviated notation
z?l-,..,-ﬂWl =z, Wedenotethecorrespondingcharacterlnzxm The characters form a group
under multiplication. The enumeration gives an 1somorphlsm of this group with the integral
lattice of the space RRZ,

Weconsiderthegroupofalgebralcone—parametersubgroups i. e.,thealgebralchomomorphlsms
A:TY > TR, Each such homomorphism in coordinate notation has the form z1 = t%1 seessZn = LI
where the g are integers or, more briefly, z = t&, We number the one-parameter subgroups A
by the points a of ‘the 1ntegra1 lattice of the space Rn¥

Between the one-parameter subgroups A and the characters x there is a scalar product
equal to the degree of the composite homomorphism yx-A:T® > T'. The scalar product of the
character x™ and the one—parameter group AZ is equal to Zgimj where @ and mj are the coor-—
dinates of the integral vectors ¢ and m. This scalar product extends to the spaces R and
R" and gives a duality between them (for this scalar product the degree x®:-AZ:T! - T! is equal
to <a, m>).

We consider the asymptotic behavior of a curve in the torus. Let z:(C\0) -+ T be the
germ of a meromorphic curve in the torus, and suppose that the leading terms of the expansion
of this curve have the form z;j(t) = cjt 1(1 + 0(t)). Using the operation of multiplication in
in T®, the leading terms of the expan81on can be written more simply, namely: z(t) = Ct(1 +

0(t)) where C = c1,...,cp is the vector of coefficients and a@6R™ is the vector of degrees
@ = dls...5ap. For us the following simple assertion plays an important role.

Assertion. Let Xx™ be a character of the torus and let z(t) = Ct%(1 + 0(t)) be a germ
of a meromorphic curve in the torus. Then limy™(2(¢)) can be computed explicitly. Namely,
. C =0

it is equal to x™(C) if <a, m> = 0, it is zero if <@, m> > 0, and it is equal to infinity if
<a, m> < 0.

Indeed, ¥™(Cta(1-0(8)=yx"(C)-x"(¢9)-x" (1-+O(#). Further, ltirgx”'(l+0(t))=1, and xm(t%)

. tends to one, zero, or infinity, respectively, depending on whether <a, m> = 0, <a, m> >
0, or <g, m> < 0.

If to an integral line in R™ there corresponds a one-dimensional subgroup of the torus,
then to a multidimensional plane in R™ there corresponds a multidimensional subgroup.

A plane in R®* is called integral if it is generated by the integral vectors lying on it.
Let @1,...,0x be a primitive collection of vectors in a k~dimensional plane w. We define a
k—-dimensional subgroup T(w) of the torus TR as the set of points of the torus of the form

z = t?l'... -t7k where ti,...,tx is an arbitrary collection of nonzero complex numbers. Not
only the plane m but also the primitive collection of vectors participate in the definition
of the group T(n). It is easy to see, however, that the group T(w) does not depend on the
choice of the primitive collection. Fixing this collection gives an isomorphism of the group
T(w) with the standard k-dimensional torus TK.

We denote by ®(w) the factor group of the torus by the subgroup T(w). The group o(m)
is isomorphic to the (n — k)-dimensional torus. Indeed, suppose that the vectors di+i,...,dh

augment the vectors gi,...,akx to a basis of the lattice. The factor group ¢{n] is isomorphic
. a
to the subgroup of points of the form z = k&fl et

1.4. Toric Manifolds (as Sets of Points). With each conical polyhedron in the space
RY* of one-parameter subgroups of the torus there is connected a certain algebralc manifold
[25]. This manifold has no singularities if and only if the conical polyhedron is primitive.
We shall need singular manifolds. We proceed to the description of nonsingular manifolds.
We first describe the sets of points of such manifolds and then introduce on these sets the
structure of an analytic manifold.

Let K be a primitive conical polyhedron in the space RD* of one-parameter subgroups of
the torus, and let {oj} be the collection of its primitive cones, K={J{o.}. With each cone
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0; we connect a group ®[o;] as follows: we set ¢®[ojl equal to the group ®(n(ci)) where w(oj)
is the integral plane generated by the cone oj.

Definition 1. The set of points of a toric manifold Mg corresponding to a primitive coni-
cal polyhedron K is the disjoint union of the factor groups ®[ci] where {oi} is the collection
of simplicial cones of the polyhedron K.

The torus group acts in a natural manner on the set Mg. The orbits of this action are
the factor groups ®[oi].

Thus, to each simplicial cone ¢ of (real) dimension k in the set Mg there corresponds
the torus ®[c] of (complex) dimension n — k. Each manifold Mg contains exactly one n~dimen-
sional torus TR; it corresponds to the point O — the vertex of all cones ¢j. The manifold
My contains precisely as many (n — 1)-dimensional tori as there are one-~dimensional cones in
the conical polyhedron K, etc.

We note that the same group can be contained several times in the set Mg: if the planes
generated by the cones o3 and ¢, coincide, then the groups ®[oi1] and ?[o,] also coincide. But
in the set Mg in this case both ®[o1] and 9[o2] are present.

So far the set of points Mg is a conglomerate in no way connected which consists of the
group TP and a collection of its factor groups ®[c;]. The structure of an analytic manifold
will later be introduced on this set. Looking ahead, we formulate an assertion (which we
shall prove later and shall not use for the time being) necessary for an intuitive idea of
the situation. In the torus T! we consider the shifted one-parameter subgroup Ct%. As t + 0
this one-parameter subgroup will converge in Mg to a point ¢€Dlo;] if and only if the degree
vector g lies strictly within the cone oi (i.e., it does not lie on a face of it), while the
coefficient C goes over into c under the factorization p:T"—®lg] . The point ¢ of the factor
group ®[o;j] should be thought of as the limit as t + 0 of the line Ct%.

Definition 2. An orbit ®[o3;] is said to abut the orbit ®[o,] if o1 is a face of the
cone 02 (the orbit ¢[o1] has larger dimension than ¢[o2]).

The topology on the set Mg (see part 1.6) is arranged such that one orbit abuts another
if and only if the second orbit lies in the closure of the first.

The Basic Example. Let A be an n-dimensional integral polyhedron in R® for which the
dual polyhedron A* in the space R is primitive. Let Mpx be the toric manifold constructed
on the basis of this decomposition. The set of orbits of the manifold Mpx is in one-to-one
correspondence with the set of faces of the polyhedron A. Here to faces of real dimension
k there correspond orbits of complex dimension k, and the orbits abut one another if and only
if the faces corresponding to them abut one another (the polyhedron itself is considered an
n-dimensional face; to it in Mpx there corresponds the n-dimensional torus TH).

Let K; and Kz be two primitive conical polyhedra whereby the interior of each cone of
the polyhedron K1 belongs to the interior of some cone of the polyhedron K, (the interior of

a cone spanned by vectors ai,...,ak is the set :Sl4a” where Aj > 0). Under these conditions
we define the mapping g: Mg, ~ Mg,

We assign to the cone o1 of the polyhedron K; the smallest cone o, of the pdlyhedron
K, containing the cone gj.

There exists a natural homomorphism of the factor group ®[o1] into the group ®{o,] (since
the plane containing the cone o, also contains the cone 031). We define the mapping g:Mg, ~
Mg, as the union of this conglomerate of homomorphisms.

Remark 1. The intuitive basis for this definition is the following. A point c¢€® |o;]
is to be thought of as the limit of a shifted one-parameter subgroup. The mapping g assigns
to the point ¢ the limit of the same one-parameter subgroup in Mg, . ’

Let g: MKl + Mg, be the mapping defined above, and let ¢[o] be one of the orbits in Mg,.
The mapping injectively takes the subset g~'¢[c¢] into the orbit ¢[c)] if and only if the cone
o is present among the cones of the polyhedronXK,

1.5. Structure of the Analytic Manifold., Case of a Simplicial Come. We begin with
the definition of the structure of an analytic manifold for the simplest conical polyhedron
g consisting of a k-dimensional primitive come o and all its faces. A certain collection of
functions will first be defined on the set of points Mj. The coordinate functions in dif-
ferent charts of the manifold M7 will be chosen from thiscollection. Webegin fromstereometry.
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The dual cone o*cR®™ to the cone o<R"™ is defined as the set of vectors x6R* for
which <a, x> 2 0 for all a€o. The dual cone to a k-dimensional cone contains an (n — k)-
dimensional subspace. The collection of integral vectors mi,...,mp is called a basis of the
cone ¢* if it is a basis of the lattice in RD and any vector of the cone 0* can be repre-—
sented in the form ZX;mj; where the numbers Xi,...,Ax are nonnegative and Ag+1,...,An are
arbitrary real numbers.

Assertion 1. TFor a cone dual to a primitive cone there exists a basis (for k < n the
basis 1s not uniquely determined). If @i1,...,0kx is a basis of the primitive cone o, then
the collection of vectors {m} of the basis of the dual cone 0% can by numbered so that <ai,

J> = &4 )3 where i varies from 1 to k and j from 1 to n.

For the proof of the assertion it is necessary to augment the primitive collection of
vectors di,..., @k to abasis and consider the cone o* in coordinates of the dual space equal
to the scalar products with the basis vectors.

Let mEo® , and suppose that Y™ is a character with index m. The function ™ is defined
on the torus TR. We shall now define the function X? extending M to Mz.

Definition. On the torus TR the function X? is set equal to Xm. On an orbit 9[oi],
where o is a face of g, Xg is set equal to zero if for some (and hence any) vector a lying
inside the face oi the inequality <a, m> > 0 holds. Otherwise the function ¥® is constant on
equivalent classes in TR corresponding to points of the factor group ¢[oi]. 1In this case the
function is defined as the value of M on the corresponding equivalence class.

LEMMA 1. Let c be a point of the factor group ®[oi], let C be a point of the torus TR
going into ¢ under the homomorphism of factorization, and let a be a vector lying strictly
inside the cone o4. Then for any character ™ for mEo* there is the equality

lim x™ (Ct%) =y (¢)-
f+co

The proof of the lemma follows immediately from the computation of part 1.3. We note that lemma
1 agrees completely with the concept of points of the orbit &[cj] as limits of shifted one-
parameter subgroups.

LEMMA 2. The extended functions satisfy the same relations as the original functions,
more precisely, the equalities X?+l==X§'X§ hold where m, l6o®.

Proof. The limit of the product is equal to the product of the limits.

n . . . .
We denote by Cy the domain in standard coordinate space C¢" with coordinates Z1yesssZp
defined by the inequalities zx4+1 # 0,...,zp 2 0.

We shall construct a one-to-one mapping of the set M§ into C%cwhich plays the role of a
coordinate system in Mg. This mapping will be constructed on the basis of a basis A in the
cone 0%, Let A = {mi1,...,mp} be a basis in o* with <ai, mj> = 6ij,j where a1,...,ak is a
basis of the cone o.

Definition. A coordinate mapping fa4:Mz->C} is a mapping taking a point ¢€Mg into
the point with coordinates‘X? UO,---=X;F(C)

LEMMA 3. 1) Let J€(1,...,k) be a subset of indices, and let oy be the face spanned by
the vectors a,;, i€/ . The mapping fa establlshes a one-to-one correspondence between the fac-

tor group ®[o1] and the set defined in Ck by the equations zj = 0 for 6/ and the 1nequa11—
ties zj # 0 for j€I . 2) The mapping fA gives a one-to-one correspondence between M5 and Ck

Proof. 1) The characters Xal for i¢] on the orbit ¢[c1] are equal to zero, since <aj,
mi> = 1 and hence <x, mj> > 0 if x lies inside the cone or. The remaining characters x J,

J&I, are constant on the subgroup T(m(oy)) and separate the equivalence classes relative to
this subgroup, since the collection A forms a basis of the lattice. 2) Summing the images
of all the factor groups, we obtain thé required assertion.

In the domain CE defined in C" by the inequalities xp4; # 0,...,2z5 # 0 the monomials

m m m m . . . . .
FASEEY 2E.E zkjp ... 2, " for which the degree of the first k variables are nonnegative, i.e.,

m; 2 O,...,mk 0, are regular,

LEMMA 4. The prelmages of regular monomials in the domain Ck under the mapping fp:M5 -
Ck are all characters x—, where m@o* , and only these.
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Proof. An integral vector belongs to the cone o% if and only if the first k coordinates
of its expansion in the basis A are nonnegative.

LEMMA 5. Let fp:Myg—C,» be the one-to-one mapping connected with the collection B of
basis vectors in o*. Then the mapping fpf;':Ci—C; is bianalytic.

Proof. Let zj be a coordinate functlon in Ck The function f%zi is one of tge charac-
ters xM, where meo*. Therefore, (fgl)* 3zi 1s a regular monomial in the domain Cp. There-
i

fore, the mapping fogl is analytic. The inverse mapping is analytic for the same reasons.

We introduce on Mg the structure of an analytic manifold by means of the one-to-one
mapping _f;l;cg->ﬂ45. The preceding assertion shows that the structure is well defined (does
not depend on the basis in the cone g%).

Let z(t) = Ct9(1 + 0(t)) be the germ of a meromorphic curve in the torus T8, Now that
an analytic structure has been introduced on Mg it is necessary to prove the assertion re-
garding the behavior of the curve z(t) as t - 0 mentioned in part 1.4.

LEMMA 6. 1) If a vector of degree g of the curve does not lie in the cone o, then on
the manifold M3y there exists an analytic function whose restriction to the curve tends to «
as t » 0; 2) 1f a vector of degree @ lies in the cone ¢, then as t » 0 the curve has a limit
in Mg, namely, if ¢ lies inside the face oj of the cone o, then the limit lies in (03] and
is equal to the image of the point C in the group ¢[c;] under the homomorphism of factoriza-
tion.

Proof. If @ does not lie in the cone o, then in the cone ¢* there is a vector m such
that <a, m> < 0. The character Y™ extends analytically to M5 (this extension is Xg)' The
limit as t > 0 of ¥™(z(t)) is equal to infinity, since <a, m> < 0. This proves the first
assertlon of the lemma. Suppose a lies in the face oy of the cone ¢. The basis characters
X i for il are constant on the subgroup T(w(o1)) and Hnlx i(z(¢)=y"t(C). This proves the
second assertion of the lemma.

LEMMA 7. Each character ™ on the torus extends meromorphically to the manifold Mg.
—— . . m . . . %
The corresponding meromorphic function X5 is regular on Mz if and only if me€o™.

Proof. Each integral vector in RM is the difference of two integral vectors lying in
the cone o*. Therefore, each character on the torus coincides with the ratio of two holo-
morphic functions on M5. Further, if méo* , then there exists an integral vector &@€¢ such
that <g, m> < 0. The function Y™ along the one-parameter subgroup tZ as t -~ 0O tends to in-
finity. The curve t¢ as t » 0 has a limit in M;. Hence, the function xM is not regular.

LEMMA 8. Let 01 be a face of the cone 0. The analytic structures introduced on the
sets My, and My agree, i.e., the imbedding g:Mg1 + M5 is analytic.
Proof. A basis A of the cone 0% is simultaneously a basis of the cone o} (but some of

. “ . . . . . . %
the basis vectors of the cone 0% not invertible in this comne are invertible in the cone ¢
1

A chart of the manifold My, connected with the basis A is obtained from a chart of the
manifold My by dropping some coordinate hyperplanes (these hyperplanes correspond to vectors
of the basis A not invertible in the cone o* but invertible in the cone Gl)

LEMMA 9. Suppose that the cone ¢1 is contained inside another cone o2. Then the map-
ping g:M5, - MEZ is analytic.

Proof. The dual cones are connected by the reverse inclusion 6,*20,* . We consider any
character Y™ where m€o,* . We have the equality g*xg==xg . Indeed, we choose an arbitrary
shifted one-parameter subgroup passing into the point ¢EM- . Then the same one-parameter

1

subgroup in Mg, passes into the point g(c). On the shifted one-parameter subgroup the func-

m m . . . m . .
tions X5 and x5, colncide with the character x . Passing to the limit, we obtain the re-
quired equallty The assertion hag been proved, since the collection of coordinate functions
in Mg, is chosen among functions X5 for mgo,*.

1.6. Structure of the Analytic Manifold (General Case). We proceed to the definition
of the analytic structure on the set Mg. With each primitive cone ¢ of the conical polyhe-
dron K there 'is connected a conical polyhedron o, the collectionof cones of which is con-
tained in the collection of cones of the conical polyhedron K. The set Mz can therefore be
identified with a subset in Mg. In each subset of Mg an analytic structure has already been
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introduced. These analytic structures are consistent. Indeed, the common part of the sets
Mg, and M5, is Mg, where 03=0,()0; , and the imbeddings of the analytic manifold Mz, in Mz,
and M7, are analytic (see Lemma 8, part 1.5). We now define a topology on Mg as follows: we
call a set UcMx open if and only if the intersections of U with all subsets of M7 are
open. There are sufficiently many open sets: the image of an open set in each chart of M3
will be open in the entire manifold Mg (this follows from the consistency of the topologies
of different charts). Thus, everything occurring in a small neighborhood of a point of the
manifold Mg can be considered in any of the charts containing it.

Remark. In gluing together analytic manifolds it is possible to obtain sets with a bad
topology. Here is the simplest example. For two copies of the complex line we identify all
points with the exception of the origins (the set obtained can be thought of as the complex
line with a double origin). On this set there are two charts with consistent analytic struc~
tures, but any two neighborhoods of the double origin intersect. We note that in this set
there is an analytic curve having two distinct limits.

We shall prove that in the set Mg any two points have nonintersecting neighborhoods (or,
in other words, that the topology on the set Mg is Hausdorff). The proof is based on the
fact that a meromorphic curve in Mg has no more than one limit.

LEMMA 1. Let z(t) = ct¥(1 + 0(t)) be the germ of a meromorphic curve in the torus TR,
and let Mg be the toric manifold coustructed on the basis of a conical polyhedron K. 1If a
vector a of the degree of the curve lies in the set IKl, then the curve z(t) as t = 0 has a
unique limit in Mg. This limit lies in the orbit @[c], where ¢ is a cone of the polyhedron
containing the vector ¢ in its interior, and is equal to the image of C in the group ¢[0]
under the factorization homomorphism. If ¢ & IKl, then as t - 0 the curve z(t) has no limit
points in Mg- )

The proof follows immediately from the consideration of the curve z(t) in the charts of
Mg carried out in Lemma 6 of part 1.5. For us the following version of the theorem on selec~
tion of curves familiar in algebraic geometry will play an important role.

THEOREM (Selection of One-Parameter Subgroups). Let {x®} be a finite set of characters
of the torus. Suppose that in the torus TR there is given a sequence of points along which
all characters of the finite set tend to limits (finite and infinite). Then there is a
shifted one-parameter subgroup Ct? along which all characters tend to the same limits as
t > 0.

LEMMA 2. Suppose there is given a finite set of real linear functions on R"*. Suppose
in RO¥* there is given a sequence of points along which all the linear functions of the set
tend to limits (finite and infinite). Then there exists a shifted ray pt + q, where p, géR™*
and 7€R, along which the linear functions tend to the same limits as T - —~, If all the
linear functions have integer coefficients, then the vector p can be chosen to be an integer.

proof. Let {Z;}, {fi}, {g;} be subsets of linear functions which along the sequence
tend, respectively, to +», to —», and to finite limits. We denote by ¢ the cone defined by
the inequalities 7Zj 2 0, fi < 0. We denote by L + q the shifted linear subspace defined by
the equations gi = ci where ¢j is the limit of the function g; along the given sequence.

Inside the cone ¢ arbitrarily far from its faces there exist points arbitrarily close
to the shifted subspace L + q (in particular, the conec has full dimension dimo = n). In-
deed, for such points it is possible to take points of the sequence with sufficiently large
indices.

The space L cannot intersect the cone ¢ along a face: otherwise all points lying a
small distance from the plane L + ¢ would be a finite distance from the face of the cone.
Therefore, in the space L there is a vector r pointing strictly into the come o. If the
space L is defined by integer equations, then by a slight perturbation of r it is possible
to make it rational and then, by multiplying by a natural number, to make it an integral

vector. The ray pr + q, where p = —r, possesses all the required properties.
LEMMA 3. Suppose in the hypotheses of the theorem {Xgi} is the subset of characters
tending to finite limits ¢i # 0; then there exists a point 26T* at which Xgl(z) = cqi.
Proof. Suppose that in the subset of vectors {gj} corresponding to characters tending
to finite limits the vectors gi,...,gk are linearly independent. The equations xgl = ¢i for
i =1,...,k are compatible and define a finite number of surfaces in the torus on which the
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remaining characters of the subset are constant. The sequence tends to one of the surfaces.
Any point of this surface satisfies the conditions of the lemma.

We proceed to the proof of the theorem. We consider the homomorphism ¢ of the group T%
into the linear space RD* defined by the formula p(2)=In|z| where z = (z1,...,2y) and

In [z|=(n|2:|,...,1n|2,]|). Under this mapping for any point x6R™ and character %™ mER"  the
following relation is satisfied: the logarithm of the modulus of the character y® is constant
on the preimage p~'(x) of the point x and is equal to <x, m>. Suppose the characters {xt1},
{xfi}, and {¥8i} along the given sequence of points tend, respectively, to «, to 0, and to
the complex number ci # 0. Then the linear functions on RD* defined by the vectors {211,
{fi}, {gi} in R® will tend along the image of the sequence to ©, to —=, and to In|c;| , re-
spectively. By Lemma 2 there exists a ray pt + q along which the linear functions tend as

T > —» to the same limits. The shifted one-parameter subgroup ztP, where z is the point
found in Lemma 3, satisfies all the conditions of the theorem.

LEMMA 4. The topology of Mg is Hausdorff.

Lemma 4 together with the lemma on bianalyticity of the functions of passing from one
chart to another show that the topology introduced makes the set Mg a complex analytic mani-
fold.

Proof. All open sets in Mg intersect the torus TR (in each chart except the torus are
found only certain points on coordinate hyperplanes). Suppose that all neighborhoods of
pointsa and b intersect. Choosing according to a point of intersection with the torus small
neighborhoods of the points ¢ and b and then reducing the neighborhoods, we obtain a se-
quence of points of the torus having as its limit both the point ¢ and the point b. We fix
charts containing the points ¢ and b. TLet {x™} be a finite collection of characters corre-
sponding to the coordinate functions of these charts. The functions {¥™} tend to finite
limits (equal to the coordinates of the point ¢ and the coordinates of the point b in these
coordinate systems) along the sequence of points constructed. By the theorem on selection
of one-parameter subgroups there is a shifted one-parameter subgroup along which the functions
{x™} tend to the same limits. Considering this curve in a coordinate chart containing the
point ¢, we see that this curve tends to the point o. Comnsidering this curve in a chart con-
taining the point b, we see that it tends to the point b. However, the shifted one-parameter
subgroup as t - 0 has no more than one limit point in Mg, and hence the points « and b coin-
cide.

COROLLARY. The system of charts in the set My converts it into a complex-analytic mani-~
fold. The mapping of the manifold Mg into Mg, defined in part 1.4 is analytic.

We have verified the first part of the assertion. The second part reduces to a local
consideration of Lemma 9 of part 1.5.

1.7. Criteria of Compactness and Properness. THEOREM (Criterion of Compactness of the
Manifold My). The manifold My is compact if and only if the primitive conical polyhedron K
covers the entire space of one-parameter lines of R, i.e., Ikl = Ro*,

Proof. If IK| # R?*, then there exists a vector a€R*™* not lying in IKl. The one-
parameter line of degree @ as t > 0 has no limit points in Mg. Hence, the manifold Mg is
noncompact.

Suppose now that Kl = R"*. We shall show that from any sequence of points of Mg it is
possible to select a convergent subsequence. The manifold Mg consists of a finite number of
orbits. Any sequence has an infinite subsequence lying entirely in one of the orbits. We
first consider the case where such a subsequence lies in the torus T0 itself.

In each of a finite M7 in Mg we fix a coordinate system. Let {y®} be the finite collec-
tion of characters in the torus corresponding to these coordinate functions. We choose a
subsequence along which each of the functions has a finite or infinite limit (such a subse-.
quence exists: the values of each function lie in the space C' compactified by the infinitely
distant point, and the product of compact spaces is compact). We shall prove that this sub-
sequence converges in Mg. Indeed, we choose a shifted one-parameter subgroup along which
the functions {¥™} tend to the same limits. This curve, just as any meromorphic curve in
the torus, has a limit in Mg (see Lemma 1 of part 1.6). The subsequence also converges to
this limit. Indeed, in the collection of functions {x™} there are coordinate functions of a
chart in which the limit of the curve lies. The subsequence converges to the point with the
same coordinates, since the limits of the coordinate functions coincide. We now consider a
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sequence of points in the orbit &{c¢]. Let ai,...,ax be a basis of the cone ¢, and let mi,...,

be vectors of the cone o* such that <aj, mJ> = &4 e We consider all cones of the conical
polyhedron K for which ¢ is a face. For each such cone o1 we fix a basis in OI containing
the vectors mi,...,mc (see part 1.5). We now consider the collection of characters {y} cor-
responding to all vectors of the fixed bases. This collection contains, in particular, the
characters Xml,...,xmk. All the characters {y} are regular on Mj (since all the comnes Of lie
in the cone o*). We now shift the q-th point of the sequence from the orbit &[c] into the
torus T0 so that each function of the collection {x} changes by no more than 279 in modulus.
From the shifted points we choose a subsequence such that each character of {x} has a finite
or infinite limit along it. We shall show that the corresponding subsequence of the original
sequence converges. Let ct? be a shifted one-parameter subgroup tending to the same limit as
the shifted subsequence. We consider the new shifted one-parameter subgroup Ct?*b yhere the
vector b lies strictly within the cone ¢. The limits of all the characters {xMm} do not depend
on b.

Indeed, for the characters {x™} the limit as t = O, Xm(tb) = 0 is equal to zero (just as
for points of the predeformed sequence), while for the remaining characters of {yx} there is
the identity x{t } = 1. For a sufficiently large vector b the vector ¢ + b lies inside one
of the cones o7 a face of which is the cone o (because the union of such cones oy covers a
neighborhood of the come ¢ in RB¥). The limit of the shifted one-parameter subgroup Ctd+*P
is found in the chart Mgy. All coordinates of the chart Mgy are present in the collection
of characters. The subsequence of points selected has the same 11m1ts of all coordinate
functions as the curve Ct%*tb and therefore has the same limit.

The coordinate functions of the corresponding subsequence of points in the orbit &[o]
differ from the coordinates of the shifted points by no more than 279. Therefore, they also
converge to the same limit.

Remark. An orbit of a toric manifold of dimension k together with all orbits abutting
it, in turn, forms a toric manifold of dimension k. We shall describe the conical polyhedron
corresponding to this manifold. Let p:T® = ®[c] be the factorization homomorphism. Under
this homomorphism the space of one-parameter subgroups of the torus TP goes over into the
space of one-parameter subgroups of the torus ®[¢], whereby a plane spanned by an (n — k)-
dimensional simplicial cone ¢ goes over into 0. The images of the simplicial cones oy con-
taining ¢ as a face are simplicial cones in the space of one—parameter subgroups of the torus
®fo]. The collection of these cones forms the conical polyhedron of the k-dimensional toric
manifold corresponding to the closure of the orbit. The last part of the proof of the com-
pactness criterion is actually based on this construction.

THEOREM (Criterion That a Mapping Be Proper). A mapping g: MK > Mg, of toric manifolds
(defined in the case where each cone of the conical polyhedron K; 1s contalned in some cone
of the conical polyhedron K,) is proper if and only if IKil = IKz!. A proper mapping is a

mapping ''onto."

Proof. Both manifolds Mg, and Mg, contain as an open, dense set the torus T" on which
the mapping g is an isomorphism. Therefore, a proper mapping is a mapping "onto." Further,
we suppose that there exists a vector a lying in |K2! but not belonging to IK:il. The one-
parameter line t% of degree ¢ in the torus T as t - 0 has a limit in MK but has no limit in
Mg, which contradicts the property that the mapping be proper.

For IK;| = [K,! the preimage of any curve having a limit in Mg, has a limit in Mg;. To
complete the proof that the mapping is proper it is necessary to use the theorem on selection
of one-parameter subgroups (in the same way as this was done in detail in the proof of the
compactness criterion).

2. Compactification and Resolution of Singularities

2.1. Laurent Polynomials and Their Newton Polyhedra. The simplest toric manifold is
the torus group TZ itself. The conical polyhedron corresponding to this manifold consists
of the single point O. On the other hand, the collection of regular functions on TD is the
richest collection.

A Laurent polynomial on T is a finite linear combination of characters 1)==zacmxm . The

support supp (P) of a Laurent polynomial P is the finite set of points {m}cR* for which the
coefficient cp is nonzero. The Newton polyhedron A(P) of a Laurent polynomial P is the con-
vex hull of its support. The support function of a Laurent polynomial P is the function
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Hp(p) on the dual space R"Y* defined by the formula Hapy(@)=min (@, x) . The contraction
xeA(P)

P2 of a Laurent polynomial P by a vector afR*™ is Eicmxm — the linear combination of
mEAa

characters whose degrees lie on the support face A9(P) of the polygon A(P) in the direction

a {i.e., the face of the polygon A(P) on which - the scalar product with « achieves its

minimum}, and each character M of degree m€A?(P) 1is contained in the Laurent polynomial

P2 with the same coefficient as in the Laurent polynomial P.

LEMMA 1. Let Ct? be a shifted one-parameter subgroup, and let P be a Laurent poly-
nomial. Suppose that the contraction P2 of the Laurent polynomial P of order @ at the point
Ccel™ is not equal to zero, i.e., P2(C)#0 . Then the lowest—order term as t - O of the re-

striction of P to the line Ct% has the form Pa(C)tHAW)W). If PY(C) = 0, then the lowest-
order term of the restriction has higher degree.

Proof. Restricting the Laurent polynomial P = jicmxm to the shifted one-parameter

group Ct%, we obtain zacmxm((n-xm(t% . We separate out the terms of lowest degree in t:

Deanm (€) g (¢ =A@ W ym(C) L =t IPa(C) .
mBA% (P)

[here the dots denote terms of degree higher than HA(P)(G)].
The proof of Lemma 1 is complete.
Let P and Q be two Laurent polynomials, and let R = P:Q.

LEMMA 2. 1In multiplication of Laurent polynomials 1) the contractions by any integral
vector g are multiplied: R? = PAQd; 2) the support functions of the Newton polyhedra add:
Ha(R) = Ha(p) + Ha(Q)s 3) the Newton polyhedra add: A(R) = A(P) + A(Q).

Proof. Let C be any point of the torus for which P4(C) = 0 and Q¥(C) = 0 (almost all
points of the torus T% satisfy this condition, since no Laurent polynomial vanishes identi-
cally).

By restricting the Laurent polynomials P and Q to the line Ct%, we find the lowest-order term
of the expansion of the restriction of the polynomial R to this line. This lowest-order term

is pM(C)Qa«)tHAmﬂm+HA@ﬂm.

This computation (together with Lemma 1) proves part 1) and also part 2) for integral
vectors. The support functions are homogeneous and continuous, and hence the assertion of
part 2) extends to rational and then to arbitrary (vectorial) arguments of the support func-
tions. The additivity of the Newton polyhedra follows from the additivity of the support
functions.

2.2. Conditions of Nondegeneracy. A system of equations Py =...= Py = 0 with Laurent
polynomials Pi,...,Px is called regular in the torus TD if at each root of this system the
differentials of the functions Pj are linearly independent.

LEMMA 1. TFor almost all collections of coefficients cé of Laurent polynomials Pj =
Zcéxm with fixed supports the system of equations P; =...=Pg = 0 is regular in TB. More
precisely, in the space of coefficients there exists an algebraic subset of complex codimen-—
sion 21 (real codimensionz=2) in whose complement the corresponding system is regular. More—

over, if for m < k the system P; =...= Py = 0 is regular, then for almost all (in the same
sense) coefficients of the remaining Laurent polynomials Ppt;,...,Px the system Py =... =
Pp+1 =... = P = 0 is regular.

Proof. Suppose the system Py =...= Py = 0 is regular. Then it defines a nonsingular

manifold X<7”. In each of the equations P; = 0 for j > m we separate out a character x™
and represent the equation Pj = 0 in the fornl‘ﬁj==#—cﬁwxm5 where iﬂ::fﬂ——cﬂwxmj. The com-
plete system of equations is equivalent to the system ;Zx_mi==——czj on the manifold X. By

the Sard-Bertini theorem for almost all coefficients C%' this system is nondegenerate on X.
For these collections of coefficients the system Py =...= Px = 0 is regular in the torus.
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The system of equations P1 =...= Pg = 0 with Laurent polynomials Pi,...,Pk is called
a-regular for an integral vector a€R"™* if the system P? =,..= Pﬁ = 0 is regular (thus,
regular systems are a-regular for a = 0).

LEMMA 2. 1In Lemma 1 regularity can be replaced by a-regularity.

For the proof it suffices to use Lemma 1 for the system P§ = .,. = Pﬁ = (.

The system P1 =... =P = 0 is called A-nondegenerate if it is a-regular for any inte-
gral vector g€R™.

LEMMA 3. For a given system Py =...= Py = 0 there exists only a finite number of dif-
ferent conditions for a-regularity. Namely, all distinct conditions are obtained by choosing
one vector @ in the partition A* of the space R1* dual to the polyhedron A = A(P1) + ...+
A(Py) -

Proof. 1In order that for two vectors ¢ and' b the support faces of the polyhedron of the
sum coincide, i.e., in order that A® = AP, it is necessary and sufficient that their support
faces of the polyhedral terms coincide, i.e., that A%(P;) = Ab(Pi) for 1 = 1,...,k. If

Aa(P.)==Ab(Pi) fori=1, ..., k, then the condition of a-regularity does not differ from the
condition of b-regularity.

LEMMA 4. In Lemma 1 regularity can be replaced by A-nondegeneracy.
According to Lemma 3, for the proof it suffices to use Lemma 2 a finite number of times.

2.3. Laurent Polynomials on Toric Manifolds. A Laurent polynomial is a finite linear
combination of characters of the torus. Together with the characters the Laurent polynomials
extend as meromorphic functions to toric manifold.

Let 1)==:S CmX™ be a Laurent polynomial with Newton polyhedron A(P). Let ¢ be a primi-

tive cone in the space R1™. We are interested in how the function P; obtained by extending
P to the manifold M behaves. The situation is especially simple in the case where the support
function Hp(p) of the polyhedron A(P) is linear on the cone ¢. Thus, suppose that on the
cone o the function Hp(p) coincides with the scalar product with a vector m (the vector m is
not uniquely determined if dimo¢ < n; the scalar products with a vector m on the cone ¢ are
uniquely determined).

LEMMA 1. Suppose that for vectors 5Go the equality Hpa(p)(b) = <b, m> holds; then 1)
the function Py ™ is regular on the manifold Mgz; 2) the restriction of the function Py ™
to the orbit ®[o] is Py ™™ where g 1s any vector lying strictly within o (more precisely, the
value of the function Pgx ™™ at a point c of the orbit ®[c] coincides with the value of the
Laurent polynomial P%x™@ at any point C of the torus T that goes over into c under the factor-
ization homomorphism p:TR - &{c]).

Proof. For each character XZ contained in the Laurent polynomial the scalar product
<b, 1> with the vector b on the cone 0, 660, is not less than the support function of the
polyhedron Hp(p). Therefore, the character XZ—m extends in a regular way to the manifold
Mz. Further, on the orbit ¢[c] those and only those characters x* ™ vanish for which <a,

7 —m> > 0. Characters for which <z, 7 — m> = 0_correspond to points . on the face A%(P) of
the Newton polyhedron, and they extend so that Xa_m(C) = XZ-m(C) where the point C is any

point going over into c under the factorization homomorphism p:T% - &{c].
On a one-dimensional cone the function Hp(p) is always linear.

COROLLARY. The order of a zero of the Laurent polynomial P with Newton polyhedron A(P)
on the unique (n — 1)-dimensional orbit of the manifold Mj, where 0 is the one-dimensional
cone in which the vector ¢ is an integral gemerator, is equal to the value of the support
function of the polyhedron A(P) on the vectora [a zero of negative order on an (n — 1)~dimen-
sional orbit means, as usual, a pole of the corresponding order].

Suppose now that P3,...,Px is a collection of Laurent polynomials with Newton polyhedra
A1,y .+.yAk Whose support functions are linear on the cone o. We shall be interested in how
the manifold X defined in TT by the system P; =... = Pk = 0 behaves near the orbit ®{c] of
the manifold Mj.

LEMMA 2. Suppose that the Laurent polynomials Pi,...,Py are g-regular for some (and

hence for any) vector g lying strictly within o. Then the closure X of the set X in the

2822



manifold Mg in a neighborhood of the orbit ¢[o] is a nonsingular analytic manifold trans-
versally intersecting the orbit @[c¢]. The intersection of the closure X with the orbit &[c]
is hereby given in ®[o] by the system of equations

Pay=mi— . = Py =0,

Proof. In a neighborhood of each point of the orbit ®[ou] the lemma follows from the
implicit function theorem and Lemma 1. To complete the proof it remains to take the union
of these neighborhoods of its points as a neighborhood of the orbit.

Remark. Lemma 2 remains valid not only for Laurent polynomials but also for Laurent
series f; =...= fx = 0 where the summation goes over an infinite set of indices. For the
validity of such a generalization it suffices that the series of fi,...,fx converge in a
neighborhood of the orbit. The generalization of Lemma 2 is especially convenient if all
the contractions f? are Laurent polynomials. 014 considerations suffice to prove the gen—
eralization, since the implicit function theorem is valid for analytic functions as well as
for algebraic functions.

Suppose now that K is an arbitrary primitive conical polyhedron in R™*, Pi,...,Px are
Laurent polynomials, and Py,k5--+»Pk,k are meromorphic extensions of the Laurent polynomials
to the manifold Mg. We summarize the results obtained.

THEOREM. 1) The order of a meromorphic function Pi g on the manifold Mg on the (n —
1)~dimensional orbit corresponding to an edge o1 in K with generator g is equal to Hf(Pi)(Q)'

2) If the support functions HA(Pi) are linear on a cone ¢ of the conical polyhedron K and

the system P; =...= Py is a-regular for ¢ lying strictly within o, then the closure X of
the set X of solutions of the system in T% in a neighborhood of %(¢) is a nonsingular mani-

fold transversally intersecting ®[c]. The equations of the intersection X with ®[co] in the
factor torus ®[o] are Py—m=.,, =Py "t=0.

The proof of the theorem follows automatically from the local computations of Lemmas 1
and 2.

2.4. Compactification (Case of T!). Let P; =...= Py = 0 be a A-nondegenerate system
of equations in TR with polyhedra Ai,...,Ar, and let X be the manifold in T% defined by this
system.

Let K be an arbitrary primitive conical polyhedron giving a subdecomposition of the poly-—
hedron A* in RD* dual to the polyhedron A = A1 +... + A . The imbedding g of the torus TU in
the toric manifold My is called a compactification resolving the collection of polyhedra
Ay...,0r. We shall identify the image of the torus under the imbedding g with the original
torus and the image of the manifold X with the original manifold X.

THEOREM. The closure X of the manifold X in the toric manifold is compact, nonsingular,
and transversally intersects all orbits of the manifold Mg.

Proof. By the implicit function theorem the manifold XcT® 1is nonsingular in T!. Near
each orbit ®[o] of the manifold Mg the set X is an analytic manifold transversally intersect=-
ing the orbit ®{o]. This was proved in the theorem of part 2.3.

Remark 1. The Laurent polynomials Pi,...,Px are meromorphic functions on the manifold
Mg. The orders of these functionson (n — 1)-orbits of the manifold My are determined in the
theorem of part 2.3. The equations of the intersection of the manifold X with an orbit of .
any dimension of the manifold Mg are also determined in that theorem.

Remark 2. It is possible to explicitly construct a compactification resolving a given
collection of polyhedra Ay,...,Ac. For this it suffices to use the explicit algorithm for a
simple subdecomposition of the polyhedron A* presented in the theorem of part 1.2.

Remark 3. It follows from the theorem that the discrete characteristics of the manifold
X depend only on the Newton polyhedra (and do not depend on the prescription of concrete co-—
efficients of a A-nondegenerate system). Indeed, the A-nondegenerate systems form a set of
real codimension no less than two in the space of systems with given Newton polyhedra. There-
fore, it 1s possible to pass continuously from one A-nondegenerate system to another without
passing through degenerate systems. The corresponding manifolds X will be deformed while
remaining compact, analytic, and transversal orbits of the manifold Mg. A considerable part
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of the discrete invariants of a manifold X does not change under such deformations. Computa-
tions show that the main discrete invariants can be explicitly and rather simply expressed

in terms of Newton polyhedra. 1In the expressions for the invariants such geometric char-
acteristics of polyhedra as the number of integer points lying on their faces, the volumes

of the polyhedra, etc. are encountered.

2.5. Compatibility Conditions. A collection of 7 + 1 polyhedra in R" is called degen-
erate if there exists an /-dimensional subspace in which it is possible to parallel trans-
port all the polyhedra. For example, the collection of one polyhedron consisting of a single
point, the collection of two polyhedra consisting of two parallel segments, etc. are degen-
erate.

Definition. A collection of polyhedra in R"™ is called dependent if it contains a de-
generate subcollection.

THEOREM 1. A A-nondegenerate system of equations P1 =...= P, = 0 with Newton poly-
hedra A1,...,A; i1s incompatible in TR if the Newton polyhedra Ai,...,Ap are dependent. Other-—
wise it defines in TD' an analytic (n — k)-dimensional manifold.

Proof. Let Ai,...,A74, be a degenerate collection of polyhedra. Then the system of
equations Py =.., = P74; = 0 actually depends on . variables. Therefore, by an arbitrarily
small chauge of its coefficients (in order to make this subsystem regular) it is possible
to arrange that this subsystem, and hence also the entire system, becomes incompatible. The
origina. (unperturbed) system cannot be compatible. Indeed, if it were compatible, then by
the implicit function theorem under a small perturbation of the coefficients the manifold
of solutions of the original system would not vanish but only be slightly deformed.

To prove the second part of the theorem we need Bernshtein's theorem on the number of
roots [4]. We add to the system P; =...= Pg = 0 the equations Py41 =...= Py = 0 with New-
ton polyhedra Ap4q,...,0n of full dimension so that the total system remains A-nondegenerate
(this can be done by Lemma 4 of part 2.2). The systemof equationsP, = ... = Pk =Pg41=...= Pp =
0 is compatible in TR, since the number of its solutions by Bernshtein's theorem is equal to
the mixed volume of the Newton polvhedra Ai,...,An multiplied by n!, and the mixed volume of
independent polyhedra is not equal to zero.

Let Py =...= P = 0 be a A-nondegenerate system in the torus TP which is invariant
under the action of a gq-dimensional subgroup of the torus. Such a situation arises if all
the newton polyhedra A(P1),...,A(Pg) lie in an (n — q)-dimensional plane Lp~q of the space
R? orthogonal to a g~dimensional plane =nicR™ corresponding to a q-dimensional subgroup of
the torus. By multiplying the equations of the system by characters, the system P1 =...=
Pr = 0 whose Newton polyhedra lie in planes parallel to the plane Lp-q can be reduced to
this situation. We consider the new A-nondegenerate system P; =...= P = Pr41 =...=Pp =
0 containing the old equations and some new equations.

When is there at least one root of the extended system P1 =...= Py = 0 in each orbit
of the action of the q-dimensional group T(m) on the manifold of solutions of the original
system P1 =...= Px = 0?7 The next theorem provides an answer to this question.

THEOREM 2. On each orbit there is a root of the extended system if and only if the
polyhedra A1,...,Ay are independent (the case in which the polyhedra A1,...,J5, are dependent
is an exception; in this case the set.*

Proof. The restriction of the equations Pp4; =...= Py = 0 to an orbit of the group
T(r) lying in the manifold of solutions of the system Py =...= P, = 0 is a A-nondegenerate
system in the torus T% whose Newton polyhedra are the images of the polyhedra Ag4i,...,0n

under the factorization of the space RR by the subspace Lp-gq- Theorem 2 now follows from
Theorem 1.

2.6. Resolution of Singularities and Compactification (Case C%). In this subsection
a resolution of singularities and a compactification of the resolved manifold are constructed
for manifolds defined in C™ by a A-nondegenerate system of equations. The construction is
entirely determined by the collection of Newton polyhedra of the system of equations. The
cross of the singularity — the union of several coordinate planes along which it is neces-
sary to blow up C! in resolving singularities — is determined by the collection of Newton
polyhedra. The cross of a singularity decomposes into orbits of three types: unnecessary

#*Omission in Russian original — Publisher.

2824



orbits, attainable orbits, and unattainable orbits. This decomposition is determined by the
collection of Newton polyhedra and possesses the following properties. First of all, the
manifold defined by a A~nondegenerate system does not intersect unnecessary orbits. Secondly,
each point of the intersection of this manifold with an attainable orbit is a limit point for
the toric part of the manifold (i.e., for the subset of points of the manifold lying on the
torus). Third, all points of the manifold lying on unattainable orbits do not belong to the
closure of the toric part of the manifold.

The space C% is a toric manifold whose conical polyhedron is the positive octant in RD¥,
The characters whose degrees lie in the positive octant of RD extend holomorphically to the
space C! and are ordinary monomials. Their linear combinations are the polynomials on CM.

With each polynomial on C® there is connected a Laurent polynomial: the restriction of
this polynomial to the torus TP, Admitting some liberty of speech, we shall call the Newton
polyhedron of this Laurent polynomial, the contraction of this Laurent polynomial etc. the
Newton polyhedron of the polynomial, the contraction of the polynomial, etc.

Let A1,...,Ax be polyhedra lying in the positive octant of the space RP. We restrict
the support functions of the polyhedra Ai1,...,A; to the positive octant in R?*. A face o of
the positive octant in RP* is called nonsingular for the collection of polyhedra Aryevn, By
if the support functions of all the polyhedra of the collection are identically equal to zero
on 0. All the remaining faces of the octant are called singular.

It follows from the definition that all faces of the octant (including the octant it-—
self) are nonsingular if and only if all polyhedra contain the point 0€R™

A singular face o of the octant in R is called unnecessary in the following case. We
consider all polyhedra of the collection Aj,...,Ax for which the support function on the face
¢ is identically equal to zero, and we consider their support faces for which the support
function is equal to zero. If the collection of support faces obtained is dependent, then
the face is called unnecessary.

A singular face o is called attainable if there exists a vector g lying strictly within
the face ¢ such that the support faces Ag,...,Ag are independent.

A singular face is called unattainable if it is not unnecessary and 1s not attainable.

An orbit of the toric manifold €U (i.e., a coordinate plane from which all smaller co-
ordinate planes have been eliminated) is called singular (nonmsingular, unnecessary, attain-
able, unattainable) for the Newton polyhedra Ai,...,A;x if the cone corresponding to this orbit
(which is a face in R0*) is singular (nonsingular, unnecessary, attainable, unattainable) for
these polyhedra. The union of all singular orbits fills the union of several coordinate
planes and is called the cross of the singularity for the polyhedra Ai,...,Ak.

We connect with a collection of polyhedra A1,...,A a decomposition A* of the space
RD* dual to the polyhedron A = Ay + ...+ A and the decomposition A} of the positive octant
in R%* induced by the decomposition A%,

‘ We call a simple subdecomposition K¥ of the polyhedron Ai a resolving subdecomposition
for the collection of polyhedra Ai,....A,. We call a pair of primitive polyhedra K*cK ,
where K* is a subpolyhedron of K, a compactifying pair for the collection of polyhedra {A}
if Kt is a resolving polyhedron for these polyhedra and K is a primitive subdecomposition of
the polyhedron A%.

LEMMA 1. On the basis of polyhedra Ai,...,Ax it is possible to explicitly construct
some resolving polyhedra and compactifying pairs of the polyhedra.

Proof. To construct resolving polyhedra it 1is necessary to apply the theorem of part
1.2 for the polyhedron Af. To construct compactifying pairs of polyhedra it suffices to
apply this same theorem to the polyhedron AX dual to the polyhedron A, = Ag + A1 + ... + N
where Ao is a standard simplex (defined by the inequalities 0 < xj; Ix; < 1).

Definition. A toric manifold Mg+ together with the projection g:Mgs+ > c" is called a
resolution for the polyhedra Ai,...,A if K'¥ is a resolving polyhedron for these polyhedra;
toric manifolds Mg+, Mg with projection g:My+ +~ €1 and imbedding go:Mg+ > My are called a
resolution with compactification for the polyhedra Ai,...,A if the polyhedra K*, K form a
compactifying pair.
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LEMMA 2. 1) A resolution g:Mg+ > C% is a proper mapping which is single-valued away
from the cross of a singularity of the collection of polyhedra Ai,...,Ax. In particular, the
mapping i1s one-to-one if all the polyhedra contain the point OfR” . 2) The imbedding go:

Mg+ > Mg is a compactification of the space Mg+. The complement of the image of Mg+ consists
of transversally intersecting divisors in Mg.

Proof. By definition, support functions of polyhedra are equal to zero on nonsingular
faces of the positive octant in R0*, These faces are primitive and are contained in the poly-
hedron A Since K, is a simple decomposition, these faces do not subdecompose further, and
the mapplng g Mg+ +~ €' is one-to-one on nonsingular orbits. The second part of the assertion
follows from general properties of toric manifolds.

We proceed to the connection of a resolution for polyhedra Ai,...,Ax with A-nondegenerate
systems with the same Newton polyhedra. Let Py =...= P = 0 be a system of polynomial equa-
tions in C! with Newton polyhedra Aj,...,Ax; let XcCr be the manifold defined by this sys-
tem; let X, be the intersection of this manifold with the cross of a singularity for the
polyhedra Ai,...,Ar. Let g:Mg+ + C be a resolution, and let g tMp+ > CI, go:Mg+ » Mg be a
resolution with compactification for the polyhedra Ai,...,A;. We denote by X; the preimage
of the set X\ X, in Mg+, by X* its closure in Mg+, and by X* the closure of its image in Mg.

THEOREM. Under the conditions formulated below on the coefficients of the equations
P1,...,Pr, which are almost always satisfied, the following assertions hold: 1) Xt is an
analytic manifold in Mg+ intersecting its orbits transversally; 2) Xy is obtained from X7
by eliminating. its intersections with the collection of transversally intersecting hyper-
surfaces which represent the preimage of the cross of the singularity under the projection
g; 3) the projection g establishes a mutually analytic correspondence between the manifolds
Xo and the set X\ ZXq; 4) the projection g maps X* onto the manifold X from which intersec-
tions with all orbits of unattainability for the polyhedra {A;} have been eliminated; 5) if
the polyhedra K*, K form a compactifying pair, then the closure X* of the manifold X* is a
nonsingular compact manifold transversally intersecting the "infinitely distant" hypersur-
faces of the manifold Mg, and X* is obtained from X' by eliminating these intersections.

We shall formulate the conditions on the coefficients under which the theorem is wvalid.
Let RI be any coordlnate plane in R% (the space RM is also considered a coordinate plane).
We denote by {al } the collection of polyhedra A = A5 N RL (in which empty polyhedra are

deleted). We connect with the plane R the system {p; 1L oof equations P} =...= P = 0 where
P% is the contraction of the polynomial P;{ on the face A%. Parts 1-4) of the theorem are

satisfied for systems of equations for which the systems {Pi}I for all planes of Rl are a-
regular for all vectors of the positive octant aeRf . For the validity of part 5) it is
necessary to require that this condition be satisfied for all vectors aR™.

Remark. The orders of the function g*P; on (n — 1)-dimensional orbits of the manifolds
Mg+ and My are determined by means of the theorem of part 2.3. By means of this same theo-
rem we determine the equations of the intersection of the manifolds X* and X%, respectively,
with the orbits of the manifolds Mg+ and Mg.

We note three special cases of Theorem 1.

1. All Newton polyhedra contain the origin. In this case the cross of the singularity
is empty, the manifold Mg coincides with CPR, and the manifold X* coincides with the
original manifold X. In this case Theorem 1 sets forth a toric compactification of
the space C% in which the closure X of the manifold X is nonsingular and intersects
the infinitely distant orbits transversally. In this case Theorem 1 is altogether

analogous to the theorem on compactification for T! (see part 2.4).

2. The cross of a singularity for Newton polyhedra contains only unnecessary orbits.
For this case Theorem 1 sets forth a blow-up Mg of the space CP containing the mani-
fold X* which is bianalytically equivalent to the manifold X and a compactification
of the space Mg+ in which the closure X of the manifold X is nonsingular and trans-—
versally intersects infinitely distant orbits.

3. The cross of a singularity for the Newton polyhedra contains only unnecessary and
attainable orbits. This case differs from the preceding case in that the nonsingular
manifold X is not equivalent to the (singular) manifold X but maps onto the manifold
X in one-to-one fashion on an open, dense set.
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We proceed to the proof of the theorem. Parts 1)-3) and 5) are proved in the same way
as in the theorem of part 2.4. The only part needing verification is part 4. Tt is neces-
sary to prove that no point of the set X lying on an unattainable orbit is a limit point for
the manifold X\ X, and that any point of the set X lying on an attainable orbit is a limit
point for this set.

If a point on an unattainable orbit lies in the closure of X\ X,, then there exists a
meromorphic curve in X\ Xc tending to this point (by the theorem on the selection of curves
[17]). Let z(t) = Ct% x (1 + O(t)) be this curve. Then the vector a lies inside the dual
cone to an unattainable face, while the point C is a root of the system of equations F§=...=
Pﬁ = 0 [the latter condition is obtained by separating out the leading terms in the identities
P;(z(t)) = 0]. However, by the condition of unattainability the polyhedra A?,...,Aﬁ are de-
pendent, and the nondegenerate system P? = ... = Pﬁ = 0 is incompatible (Theorem 1 of part
2.5).

Suppose now that x is an arbitrary point of the_set X lying on an attainable orbit.
Since x lies on X, it follows that P}(X) = 0 (here P% are the restrictions of the polynomials

P; to the coordinate plane which is the closure of an attainable orbit). By hypothesis there
exists a vector a lying within the dual cone to this orbit for which the polyhedra A%,...,Ag
are independent. We consider the toric manifold Mg, where o1 is the one—-dimensional cone

generated by the vector a. We consider the closure X5, in M5, of the manifold defined in T
by the system Py =...= P = 0. According to the theorem of part 2.3, this closure is an

analytic manifold, and its intersection with the orbit ®[o1] on ®[v1] is given by the system

P% = 0. According to Theorem 2 of part 2.5, for each solution x of the system P% = 0 there

is a solution of the system P? = 0 equivalent to it relative to the action of the group T(m)
(here 7 is the plane containing the cone ¢ corresponding to the attainable orbit). Let x be
this solution. The manifold Xg, transversally intersects the orbit ®[o1] of the manifold
Mg, s therefore, there exists a curve issuing from the point x in TR and lying in Xg;. The
projection of this curve under the mapping g:Mg, -+ C1 issues from the point x and lies in
X\ Xo. The proof of the theorem is complete.

2.7. Resolution of Singularities (Local Version). 1In this subsection we discuss a
local version of the global constructions presented above. A conical Newton polyhedron is
defined for a germ of an analytic function in (CR, 0). For a system of analytic equations

given in a neighborhood of zero the condition of A-nondegeneracy is defined which is satis-—
fied for almost all systems of equations with fixed conical Newton polyhedra. The main re-
sult of the subsection is the resolution of singularities of a A-nondegenerate system of
equations by means of a suitable toric manifold.

A we call an infinite, closed, convex polyhedron A conical if, first, A lies in the
positive octant RE, second, A with each point m contains the translated positive octant
m + R} with vertex at the point m, and, third, if all the vertices of A are integral points.

An analytic function f in a neighborhood of the point 0gC? can be expanded in the Taylor
series _f(z)==250mxm(z) where the summation goes over the set of all vectors m lying in the

positive octant RY, and xm(z)==th...-2f”. The support supp (£) of the germ of an analytic

function is the set of points mER,» for which the coefficient ¢y # 0. The conical Newton
polyhedron A(f) of the germ of an analytic function f is the convex hull of the set of trans-
lated positive octants with vertices at all points of the support of the function £, i.e.,

the convex hull of the set U {m-+Rpy
m@supp(f)

LEMMA 1. The conical polyhedron has only a finite number of vertices.

Proof. A conical polyhedron with an infinite number of vertices has an infinite in-.
creasing sequence of imbedded conical polyhedra. We assign to each conical polyhedron the
ideal in the ring of convergent power series in a neighborhood of the point 0 of the space
CD consisting of all analytic functions with supports contained in the given conical
polyhedron. Under this correspondence to a large polyhedron there corresponds a large
ideal. Therefore, the existence of a conical polyhedron with an infinite number of vertices
contradicts Hilbert's theorem on the breaking off of an increasing chain of ideals [10]. - Of
course, Lemma 1 can also be proved geometrically without appealing to Hilbert's theorem.
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COROLLARY. The conical polyhedron has a finite number of compact faces.
The union of the compact faces of the conical polyhedron is called its diagram.

The conical polyhedron is called favorable if it has a vertex on each edge of the posi-
tive octant.

The support function of the conical polyhedron is defined for vectors in the positive
octant R}™: the minimum over x €A of the scalar product <a, x> of a vector g€R™ with non-
negative components is achieved at one of a finite number of vertices (if at least one co-
ordinate of the vector a is negative, then this minimum is equal to —»). We note that on a
face of the positive octant of RB* the support function is equal to zero if and only if the
conical polyhedron intersects the dual face of the positive octant in RT.

Let f1 =...= fyx = 0 be a system of analytic equations in a neighborhood of 0 with the
conical Newton polyhedra Al,...,Ak. For each vector a€R™ with positive coordinates there
are defined compact faces Al,...,Ag of the conical Newton polyhedra A;,...,Ax. The defini~-

tion of the contraction f of the analytic function fj to order a literally repeats the defi-
nition of the contraction of a Laurent polynomial.

The system of equations f; =...= fx = 0 is called g-regular if the system of equations
fi =...= fﬁ = 0 (in which f? are already Laurent polynomials) is regular in TZ.
The system of equations f; =...= fx = 0 is called A-nondegenerate if it is aq-regular

for any vector a with positive coordinates.

The conditions of g-regularity and A-nondegeneracy are satisfied for almost all systems
of analytic functions with given conical polyhedra.

Conical Newton polyhedra Al,...,Ak are called dependent if for any vector a with posi-
tive coefficients the polyhedra Al,... are dependent.

"k
THEOREM 1. The germ X of an analytic set which is defined near the point 0€C* by a A-
nondegenerate system of analytic equations fi1 =...= fyx = 0 lies entirely in the union of

coordinate planes if the conical Newton polyhedra of these equations are dependent. If the
conical Newton polyhedra are independent, then the germ X, after eliminating its intersec—
tions with the coordinate planes, becomes an analytic (n — k)-dimensional manifold.

Proof. We shall show that for dependent conical polyhedra the germ X lies entirely
in coordinate planes.

Indeed, we suppose that the point 0 is a limit point of the set obtained from the germ
X after eliminating its intersections with coordinate planes. Then by the theorem on the
selection of curves [17] there exists an analytic curve z(t) = Ct?(1 + O(t)) lying in the set
constructed and tending to zero as t > 0. The identities f;(z(t)) = O are hereby satisfied.
Separating out the lowest—order terms in these identities, we find that the point C is a
joint root of the system fi%=... fk 0.

However, by Theorem 1 of part 2.5 the system f1 =... = fg = 0 is incompatible in the
torus T, since the polyhedra Al,...,Ak are dependent. The second part of the theorem can
be deduced from the theorem on resolution of singularities.

We proceed to the resolution of singularities of a manifold defined in a neighborhood
of the point zero in C% by a A-nondegenerate system of analytic equations. The construction
is entirely determined by the collection of conical Newton polyhedra and is a local modifica-
tion of the construction of part 2.6. 4

The support functions of the conical manifolds are defined in the positive octant of
space R1*. 1In part 2.6, in particular, the singular and nonsingular faces of the positive
octant in RP*, the resolving polyhedrons K¥, the cross of the singularity, and the resolution
consisting of a toric manifold Mg+ together with the projection g:Mg+ > C" were determined
on the basis of the collection of Newton polyhedra. The definition of all these objects car-
ries over literally to the case of conical polyhedra. The definition of unnecessary, attain-
able, and unattainable orbits of the cross of a singularity needs modification.

We recall that conical polyhedra are called dependent if for any covector with positive
coordinates the support faces of these polyhedra corresponding to the covector.are dependent.

A coordinate plane RI in the space RP 1sIcalled unnecessary for the conlcal polyhedra
Ai1,...,Ax if the nonempty conical polyhedra Aj,... Ak, where AI Ay N rE , are dependent.
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A coordinate plane Rl is called counnecessary for the conical polyhedra Ai,...,Ax if
the conical polyhedra in the complementary coordinate plane of RL, which are the projections
of those polyhedra of Ai,...,Ar for which the intersection with the plane Rl are empty, are
dependent.

A singular orbit of the space CU for a collection of conical polyhedra is called un-
necessary if the coordinate plane ascribed to the orbit in R" is unnecessary for these poly-—
hedra. A singular orbit is called unattainable if it is unnecessary and the coordinate plane
ascribed to it is counnecessary. The remaining singular orbits (for which the corresponding
planes are independent and are not codependent) are called attainable. The coordinate plane
Rl ascribed to an orbit of the space C® is determined as follows. To the orbit there corre-
sponds a simplicial face of the positive octant in R2*. A cone in R is dual to this space.
We call the coordinate plane ascribed to the orbit the maximal linear subspace contained in
this cone.

We proceed to the connection of the resolution for conical polyhedra Ai,...,Ax with A-
nondegenerate systems of analytic equations with the same Newton polyhedra. Let f; =...=
fr = 0 be a system of germs of analytic equations in a neighborhood of the point 0 in CR
with conical Newton polyhedra Ai,...,Ax, let X be the germ of the manifold defined by this
system, and let Xc be the intersection of this germ with the cross of the singularity for the
conical manifolds A1,...,Ak. Let g:Mg+ =~ CP be the resolution for this collection of poly-
hedra. We denote by X the preimage of the germ X\ X, in Mg+ and by Xy its closure in Mg+

THEOREM. The following assertions hold under the conditions on the coefficients of the
initial segments of the Taylor series of the functions f; which are almost always satisfied:

1) X¢ is the germ of an analytic manifold in Mg+ transversally intersecting its orbits;

2) Xo is obtained from X; by eliminating intersections with the collection of trans-
versally intersecting hypersurfaces — the preimages of the cross of the singularity
for the projection g;

3) the projection g establishes a mutual analytic correspondence between X, and X\ Xq3

4) the projection g gives a proper mapping of X; onto the germ of the manifold X from
which intersections with all orbits in C® which are unattainable for the polyhedra
{Ai} have been eliminated;

5) assertions 1)-4) remain in force if by X and X. we understand the parts of the corre-
sponding analytic manifolds lying in a sufficiently small ball about the point zero,
by X, we understand the preimage of X\ X;, and by X; we understand its closure.

We shall formulate conditions on the coefficients under which the theorem holds. We

connect with the coordinate plane RI the system of equations fI =...=fl = 0, where f is
the restriction of f; to the coordinate plane ¢l in CD (restrlctlons identically equal to
zero are not considered). The theorem holds for systems of equatlons which, first of all,

are themselves A-nondegenerate and, secondly, all systems {f } are A-nondegenerate.

The proof of the theorem is similar to the proofs of the theorems of parts 2.4 and
2.6, and we shall therefore not comnsider it. We note interesting special cases.

1. All conical Newton polyhedra are favorable, and hence the cross of the singularity
consists of the single point 0. 1In this case the theorem shows that the manifold X
has the isolated singular point O and gives a resolution of singularities g:Mg+ - CI
blowing up only this point O.

2. The cross of the singularity for the conical Newton polyhedra, with the exception of
the point zero, contains only unnecessary orbits. In this case the theorem shows
that the manifold X has the isolated singular point 0. The resolution of singulari-
ties g:Mg+ > C" blows up in C™ more than the point 0. However, the restriction of
g to the manifold Xo blows up only the singular point 0 on the manifold X.

3. The cross of the singularity contains only unnecessary and attainable orbits. In
this case the theorem gives a nonsingular manifold X; together with the proper pro-
jection g:Xg > X which is an isomorphism on an open, dense set. This case differs
from the preceding case in that the singular point O of the manifold X, generally
speaking, is not isolated. The mapping g:Xo - X is a mapping "onto" and is an iso-
morphism away from a proper analytic set.
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Remark. Under the conditions of the theorem the orders of the functions g#*f; on hyper-

planes lying in the preimage of zero are determined by means of the theorems of part 2.3.
The equations of the intersection of the manifold Xy with orbits of the manifold Mgy lying
in the preimage of zero are determined in a similar way.
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