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ABSTRACT

Newton's method plays a central role in the development of numerical techniques for
optimization. In fact, most of the current practical methods for optimization can be
viewed as variations on Newton's method. It is therefore important to understand
Newton's nethod as an algorithm in its own right and as a key introduction to the most
recent ideas in this area. One of the aims of this expository paper is to present &nd
analyze two main approaches to Newton's method for unconstrained minimization: the
line search approach and the trust region approach. The other aim is to present some
of the recent developments in the optimization field which are related to Newton's
method. In particular, we explore several variations on Newton's method which are
appropriate for large scale problems, and we also show how quasi-Newton methods can
be derived quite naturally from Newton's method.
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1. Introduction.

Many fundamental problems in science, engineering, and economics can be

phrased in terms of minimizing a scalar valued function of several variables.

Problems that arise in these practical settings usually have constraints placed

upon the variables. Special techniques are required to handle these constraints

but eventually the numerical techniques used must rely upon the efficient solu-

tion of unconstrained minimization problems.

Newton's method plays a central role in the development of numerical tech-

niques for optimization. One of the reasons for its importance is that it arises

very naturally from considering a Taylor approximation to the function.

Because of its simplicity and wide applicability. Newton's method remains an

impLrtant tool for solving many optimization problems. In fact, most of the

current practical methods for optimization (e.g. quasi-Newton methods) can be

viewed as variations on Newton's method. It is therefore important to under-

stand Newton's method as an algorithm in its own right and as a key introduc-

tion to the most recent Ideas in this area.

One of the aims of this paper is to present and anyze two main approaches

to Newton's method for unconstrained minimization: the line search approach

and the trust region approach. The other aim is to present some of the recent

developments in the optimization field which are related to Newton's method. In

particular, we explore several variations on Newton's method which are

appropriate for large scale problems, and we also show how quasi-Newton

methods can be derived quite naturally from Newton's method.

We assume familiarity with some of the basic notions from computational

linear algebra (see, for example, Stewart [1973]), and the calculus of functions

of several variables (see, for example. Chapter 7 of Bartle [1976] or Chapter 3 of
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Ortega and Rheinboldt [1970]), but otherwise the background necessary for this

paper is minimal. We begin our development by reviewing some standard

definitions and results.

Given a function f : R"-R defined in an open set D, the unconstrained

minimization prc, lem is to find z' E D such that

(1.1) f (z*) s f (z), z EN(z'),

for some open neighborhood N (z') of the local mnimizer x'. If z' is the only

minimizer of f in N(z') then z is an isolated minimizer of f . If N(z') is all of

D then z' is a global minimizer of f in D.

The properties of local minimizers are better understood if we focus our

attention on a reasonable class of functions. For our purposes, it is reasonable

to assume that f is twice continuously differentiable. Under this assumption,

the properties of local minimizers can be expressed in terms of the quadratic

function

i(w) = Vf (c)rw + %w7Vrf (z)L

where Vf (z) is the gradient off it z andVf (z) is the Hessian matrix off at

z. Recall that the i-th component of the gradient is 8f (z) and that the (i,j)

element of the Hessian matrix is 8jf (z). Since

(1.2) f (z +w) = f (z) + (w) i. o(I|wII|),

the quadratic f is the local quadratic model at z of the possible reduction in f 

.

Unless otherwise stated, in this paper 11- Iis the Euclidean norm on R", or the

induced operator norm.

Theorem (1.3). Let f : R"R be twice continuously differentiable in an open set

D. If z' E D is a local minimizer of f than V (z') = 0 and Vf (') is positive

semidefinite. If V f (z') = 0 and Vef(z') is positive definite for some z' E D.
then z is an isolated local minimiser off 

.

Proof. Let # be the local quadratc model at x' of the possible reduction in f . If

z' is a local minimizer for f then (1.2) shows that

0s*(ap) + o (a') = aVf (z')rp + aspTYef (z')p + o (a')

for each p E R" and all a sufficiently small. This implies that Vf (z')T p = 0 and

that prV'f (z)p a U. Since p is arbitrary, we must conclude that Vf (z') = f
and that Vef (z') is positive semidefinite. On the other hand, if Vf (z')= 0 and

Of (s') is positive definite then

v(w) =) )w TV f (z)w |w ||R.

where A > 0 is the smallest eigenvalue of 71fj(z'). Now it follows from (1.2) that
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x must be an isolated local minimizer for f 

.

A point z E R" such that Vf (z') = 0 is a critical point off . Critical points

can be divided into local minimizers, local maximizers, and saddle points.

Theorem (1.3) shows, in particular, that if z' is a critical point of f and V2 f (z')

is indefinite then z is a saddle point of f . If, however, V2f (z') is semidefinite

and singular then Theorem (1.3) does not provide any information on the nature

of the critical point. This gap between the necessary and sufficient conditions of

Theorem (1.3) is illustrated by the 2-dimensional function

f(G142)= ( + d

Note that (0,0) is a critical point of f and that the Hessian matrix at (0,0) is

positive semidefinite. However, (0,0) is a saddle point of f and not a local

minimizer.

Algorithms for the unconstrained minimization of a function f : R" -'R are

usually descent methods. Given an initial starting point z0 , a descent method

generates a sequence of approximations jX*I to a local minimizer with the pro-

perty that

(1.4) f (zk.t) < f(xk), k z 0.

This descent condition alone is not sufficient to guarantee that the iterates jz*
approach a local minimizer. Stronger conditions are required to actually force

the sequence into a neighborhood of a local minimizer. Once the iterates are in

such a neighborhood, descent methods usually allow a rapidly convergent local

method to determine the iterates. In this paper, the local method is Newton's

iteration

Zh+1 = zb - VfJ()-'Vf(z), k z 0,

and our concern here is with modifications to this local method that will provide

a general purpose algorithm.

An algorithm that is designed for general use should be analyzed as

thoroughly as possible. The purpose of a convergence analysis is to predict the

behavior of the sequences produced by the algorithm. This involves establishing

properties of limit points and rates of convergence. These features, together

with requirements of storage and computational effort, aid in the selection of an

algorithm for a specific application. At the very least, we expect an uncon-

strained minimization algorithm to produce sequences which satisfy

(1.5) limVf(z)=0.

This condition guarantees that any limit point z of 14; is a critical point of f 

.

For algorithms which only use gradient information this is all that can be
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expected. If an algorithm requires Hessian information, then it is reasonable to

expect that the second order necessary conditions of Theorem (1.3) will be

satisfied. This can be done by ensuring that

(1.6) lim inf X(V2f (zk)) 0,

where X1 (A) is the smallest eigenvalue of a symmetric matrix A. If (1.5) and (1.6)

hold then any limit point z' of Xzk satisfies the necessary conditions of Theorem

(1.3).

In the remainde.rif this paper we shall derive Newton's method in its basic

form and then introduce various modifications which have been devised to

ensure that (1.4), (1.5), and (1.6) are satisfied by the sequences Jzk) produced

by the method. Techniques for forcing convergence from poor starting points is

the subject of two sections. We discuss line search methods and trust region

methods in Sections 4 and 5, respectively. Both approaches are important and

can be applied to other optimization problems. Variations on Newton's method

are discussed in Sections 6 and 7. Since the techniques for forcing strategies are

all designed to bring the sequence into a neighborhood of a local minimizer and

then switch automatically to Newton's method, it is most appropriate to begin,

in Section 2, with a discussion of the unmodified local algorithm.

It will be worthwhile to have a specific problem in mind in order to appreci-

ate some of the concerns we express with respect to implementation of the

methods. The problem we consider is the simplest problem in the calculus of

variations. An excellent introduction to this problem may be found in Fleming

and Rishel [1975]. The problem is to minimize the functional

(1.7) J(us) fL(ru.u)dr
0

over the set W of piecewise continuously differentiable functions u on the inter-

val [0, 1] with specified endpoints u(0) and u(1). We assume that L is twice con-

tinuously differentiable. Two classical problems of this form are the brachisto-

chrone for which L(r,u,v)= (u -a)-(1+v)% for some constant a, and the

minimal surface of revolution for which L(r,u,v) = u (1 +v)%. An accessible

introduction to the many applications related to the minimization of J may be

found in Smith [1974].

The solution techniques available for minimizing J directly Pre very limited.

In most practical settings one would almost surely need to resort to numerical

techniques. One such technique is to discretize the continuous problem and

then construct an approximate solution by solving the discrete problem. To see

how this might be accomplished, consider a family of n-dimensional subspaces

W. c W. If J I is a basis for W,, then we can determine the minimum of J on
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W by setting

f (Z) = f ( 1,- (2 , - G,() = J k= it a Pk

and minimizing f . If Newton's method is used to minimize f , then we must be

able to compute Vf and Vf. These derivatives can be computed by noting that

the i-th component of Vf is

8jf (z) = j{(OeL)SPo + (8 L)@t)d',

and that the (ij) element of the Hessian Vf (z) is

8tgjf (z) = f((8. 2L)pedp, + (O2.sL)(eptj + i pS)+ (3,3L)otO j)dr,

where the partial derivatives of L are all evaluated at (ru (r),u (r)) and

(1.8) u('r) = ( 'a(r).
ami

Once a solution z' is found, the components of z' can be used in (1.8) to con-

struct an approximate minimizer u, of J. Some analysis must be carried out to

ensure that u is near a minimizer of J. An introduction to the type of analysis

that is necessary may be found in Daniel [1971]. We shall only be concerned

with the finite dimensional minimization process that occurs once n and a par-

ticular basis is selected.

In principle this is all that is required to apply Newton's method to f . How-

ever, some important practical considerations remain. First of all, a reasonable

starting point z0 may be difficult to provide so it becomes important to have an

algorithm which converges from arbitrary starting points. Also, since the dimen-

sion of the approximating subspace W, must increase in order to guarantee that

u, is close to a minimizer of J, it may be necessary to solve large dimensional

problems. This means that the storage of the Hessian and that solutions of linear

systems involving the Hessian matrix may become prohibitively costly. There is

also the matter of evaluating the integrals to sufficient accuracy as well as the

concern over how inaccuracies might affect the performance of the optimization

algorithm. We shall take up some of these problems in this paper.

8. The Local Algorithm.

Newton's method can be studied from a local point of view in which we

assume that the starting point z0 is close to a local minimizer. This point of view

is helpful because it provides information about the ultimate behavior of

Newton's method. In Sections 4 and 5 we shall study Newton's method from a
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global viewpoint.

Let f : R"+R be a twice continuously differentiable function. Nr wton's

method for the unconstrained minimization problem can be derived by assum-

ing that we have an approximation zk to a local minimizer of f and that in a

neighborhood of zk the approximation

f ( Z k+wml f (zk) + *t (W),

is appropriate, where

%t(W) =Vf (zk)Tw +w T9ef (zk )w

is the local quadratic model at zb of the possible reduction in f . If this approxi-

mation is appropriate, then a presumably better approximation zk+1 = zk + s

can be found by requiring that the step sk be a minimizer of fa. Theorem (1.3)

shows that sb must then satisfy

Vak(sk) = Vf (z,) + V2f (zk)sk = 0.

Thus Newton's method takes an approximation zo and attempts to improve it

through the iteration

(2.1) Zuk1l= zb - V2 1f(zk)-'VfI(zk), k It0.
Note that in this derivation the only restriction on the step sh is that it satisfy

the system of linear equations V (w) = 0 . In other words, we only require that

s8 be a critical point of 'fb. As a consequence, the Newton iteration (2.1) has the

same behavior in the neighborhood of any critical point of f regardless of its

type. This seems undesirable since we would like our algorithms to have a predi-

lection towards local minimizers.

As it turns out, however, this behavior is just a consequence of the fact that

Iteration (2.1).is Newton's method for the solution of the system of nonlinear

equations Vf (z) = 0. Since the local properties of iteration (2.1) only depend on

the mapping F(z) = Vf (z), let us consider Newton's method in this more gen-

eral setting.

Let F: R"-W'R" be a mapping with range and domain in R" and consider the

problem of finding the solution to the system of n equations in n unknowns

F(z) = 0, or equivalently,

ft ((, . -- ,(")=0, 1is1 n,

where ft is the i-th component function of F. Newton's method for this problem

can be derived by assuming that we have an approximation zb to the solution of

the system of nonlinear equations F(z) = 0, and that in a neighborhood of zh the

approximation
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F(zh + w) l (w) F(za) + F'(zk)w

is appropriate where F'(z) is the Jacobian matriz of the mapping F at z. The

next approximation z+ 1 = Zk + s can then be obtained by requiring that the

step sk satisfies the system of linear equations 4a(w) = 0. Thus Newton's method

attempts to improve xo by the iteration

(2.2) zk+l = zk - F'(zk)-'F(zk), k 0.

In comparing iterations (2.1) and (2.2), note that (2.1) is a special case of

the Newton iteration (2.2) applied to mapping F(z) = Vf (z). Because of this

relationship, it suffices to study the local behavior of iteration (2.2). The most

important aspects of this local behavior are summarized in the following two

theorems.

Theorem (2.3). Let F : R" -+R" be a continuously differentiable mapping defined

in an open set D, and assume that F(z*) = 0for some z' in D and that F'(z) is

nonsinguLar. Then there is an open set S such that for any zo in S the Newton

iterates (2.2) are well defined, remain, in S, and converge to z.

Proof: Let a be a fixed constant in (0,1). Since F' is continuous at z' and F'(z)

is nonsingular, there is an open bal S = z :|lz -z'1| < e ; and a positive con-

stant such that

|| F'(x)- I l s , I| F'(y) - F'(z) it s 

-

for every z and y in S. Suppose that zb ES. Since zb+1 satisfies (2.2) and

F(z) = 0we have that

+i - x = -F'(&)-' (F(zb) - F(z') - F'(zb)(zh - z')J,

and hence

||xa+, - z'||II sp|IIF(zj,) - F(z*) - F'(z)(za - z' ) I-

Now, the fundamental theorem of integral calculus implies that

i

F( ) -F(Z)-F'(z)( -z') = ([F'(z'+(zh -z')) - F'(Zh)]( -z')d C,

and hence,

(2.4) IIz+l - z' I / nMexPI'(z' C+(( -z')) - F'(zb) i)|llza - z'l.

Thus,

||4,1 -AV '|a|zba -mall
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as long as zk E S. Since a < 1, this last inequality implies that if zo E S then

wk ES for k = 1,2,..., and that jzx converges to z'.

Theorem (2.3) states that Newton's method is locally convergent in the

sense that if the starting point zo is sufficiently close to a solution z then

Newton's method converges to z'. Unfortunately, for many important problems

the domain of attraction S guaranteed by Theorem (2.3) is quite small, and

much research has gone into developing techniques to overcome this weakness

of Newton's method. For systems of nonlinear equations this is a particLarly

active field, and much interest has been generated by the recent global Newton

methods. For an account of some of this work see, for example, Keller [1978].

For the unconstrained minimization problem, the situation is in much better

shape, and we examine two main approaches to globalizing Newton's method in

Sections 4 and 5.

Although Theorem (2.3) is undeniably important, it does not tell the full

story. It is not enough to know that a sequence converges if the rate is so slow

that that we could not afford to see it converge. Generally, when analyzing an

iterative method we are also interested in saying as much as possible about the

expected rate of convergence of a sequence produced by the method. A reason-

able optimization algorithm should be able to generate linearly convergent

sequences Jzk I in the sense that

(2.5) ||xk+, - x011 s allxk - x011, k z 0,

for some constant a in (0,1). If a is small then (2.5) is adequate, but if a is close

tc unity, say a i 0.9, then (2.5) is not reassuring.

For many optimization algorithms which use second order information, it is

possible to establish a stronger result than (2.5). A sequence fXzk converges

qudratically to z' if

(2.6) ||zk+1-x IIs#IIzb - zII2, k 0,

for some constant # > 0. Since

||r *+1 - '|z01 = 128-x01 

,

(IIzII b Zj

1111 1111

quadratic convergence implies that the number of significant digits of xz as an

approximation to z0 double at each iteration. Typically, as soon as two

significant digits are obtained, the next three iterations will produce roughly six-

teen significant digits.

There is a middle ground between (2.5) and (2.6). A sequence IzX i converges

mpwr5nearly to z0 it

(2.7) IIzk+, -x '|| #a lz -xz'1, k a 0,



for some sequence J& ; which converges to zero. It should be clear that a super-

linearly convergent sequence is linearly convergent, and that a quadratically

convergent sequence is superlinearly convergent. Also note that since

I jI -lz k |II| -1|z1k-z'|II| I | 1 k-z'II,

it follows that

imeIIzk~ - zk
S-e+u. ||zk-Iz =1

when IzXk converges superlinearly to z . This is an important property because

it implies that IIzk+1-zk I can be used to estimate the distance of zk from z.

An iterative method is assigned a rate of convergence if it is possible to

show that every convergent sequence produced will have at least this rate. Usu-

ally reasonable restrictions are imposed upon the domain of application for a

method in order to obtain a useful assessment of this rate. Newton's method is

usually quadratically convergent as we now demonstrate.

Theorem (2.8). Let F : R" -'R" satisfy the assumptions of Theorem (2.3). Then

the sequence jXzk ; produced by iteration (2.2) converges superlinearLy to z' 

.

Moreover, if

(2.9) IIF'(z)-F'(z)II s x||z - z'11, x E D,

for some constant Ic> 0 then the sequence converges quadratically to z'.

Proof: Convergence of the sequence jzk was established in Theorem (2.3), so it

only remains to establish the rate of convergence. To this end define

Pk = Ma{xI|F'(z+(Xh z')) - F'(z)||I,

and assume that z0 E S withjs and S defined in the proof of Theorem (2.3). The

hypothesis on F' at s' and the convergence of the sequence to z implies that

1Pk converges to zero. Since inequality (2.4) shows that

this proves that zk j converges superlinearly to z'. Moreover, if (2.9) holds then

Pk 2ps Iczb -z'I|,

and hence 1zb converges quadratically to z'. 

"

Note that the Lipschitz condition (2.9) is necessary in order to guarantee

that Newton's method is quadratically convergent. For example, Newton's

method applied to the 1-dimensional problem defined by

S(t) = [ 1+ log(I(l)], fo , f (o) = 

,
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is precisely superlinearly convergent at r' = 0; that is, if ( is a sequence gen-

erated by Newton's method, then the ratio

I"k+tI

t k IP

is unbcanded for any p > 0.

Rate of convergence results are sometimes used to compare algorithms by

claiming that the superior algorithm is the one with the highest rate of conver-

gence. Claims of this type should be made with care because these results are

asymptotic and thus it is usually not possible to establish the magnitude of the

constants that appear in expressions like (2.5), (2.6) and (2.7). Moreover, rate of

convergence results do not measure the work necessary to compute zk+1 from

Zh, and in many cases this information is decisive in the choice of algorithm.

For example, consider the class of quasi-Newton methods as described in Sec-

tion 7. Sequences generated by these methods are known to be superlinearly

convergent, and usually not quadratically convergent. However, since they do

not require the computation of the Hessian matrix, quasi-Newton methods are

often regarded as being superior to the quadratically convergent Newton

methods.

3. Properties of Quadratic Functions.

Quadratic functions play an important role in the development of algo-

rithms for optimizat' . problems. For example, we have seen in Section 2 that in

a neighborhood of a local minimizer of a function f : R" -R, Newton's method

can be derived by requiring that the step be the minimizer of the local quadratic

model

(3.1) #b (w) = VfI(zh)rw + 3YwTV2f(z)w

of the expected reduction inf . It is therefore important to understand the pro-

perties of quadratic functions and to provide numerically stable algorithms for

minimizing them.

Our first result completely describes the unconstrained minimization of

quadratic functions.

Lemma (3.2). Let o : R" -fR be the quadratic function

(3.3) .(w) = g9Tw + iw TBw

aIIre g CR" and B E R ' is a symmetric matriz.
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a) The quadratic 0 has a minimum if and only if B is positive semidefinite

andg isin the range of B.

b ) The quadratic 0 has a unique minimizer if and only if B is positive

definite.

c) If B is positive semideftnite then every solution to the equation Bp = -g is

a global minimizer.

Proof: Suppose B is positive semidefinite with g in the range of B. Then Bp = -g

has a solution, and thus

(3.4) f(p +w) =''(p) + (Bp + g)rw + 3wTBw ='1(p) + yTBwz (p)

for every w E R". On the other hand, if p is a minimizer of ' then Theorem (1.3)

implies that Bp + g = V#(p) = 0, and that B = V (p) is positive semidefinite.

To establish b) and c) note that (3.4) holds whenever Bp = -g and B is positive

semidefinitL, and that strict inequality holds for w 0 0 if and only if B is positive

definite. 

"

Given the quadratic ', there is an excellent numerical procedure for finding

its minimizer. First an attempt is made at computing the Cholesky factorization

of B. This factorization exists if and only if B is positive semidetinite, and in this

case it leads to an upper triangular matrix R such that

B =RT R.

If a negative diagonal is encountered during the factorization process, then B is

not positive semidefinite and hence Lemma (3.2) shows that the quadratic * has

no minimum. If the factorization is successful and R is nonsingular, then the

minimizer is computed by solving the system Bp = -g, or equivalently,

Rr,= gP =1.

If the factorization is successful but R is singular then B is positive semidefinite

and singular. It still may be possible to compute a solution p, but from a numer-

ical point of view, this computation is unstable because arbitrarily small pertur-

bations can transform B into a positive definite matrix or ar. indefinite matrix.

Theorem (1.3) shows that in a neighborhood of a local minimizer of f, we

can expect the Hessian matrix to be positive definite and then Lemma (3.2)

shows that the local quadratic model (3.1) has a unique minimizer. Thus, in this

case, the minimizer of the local quadratic model is a reasonable step for a

minimization algorithm. However, away from a local minimizer the Hessian

matrix Vf (z) may have a negative egenvalue and then Lemma (3.2) tells us

that this local quadratic model does not have a minimum. In fact, the model is

not even bounded below. There are several remedies to this difficulty. One pos-

sibility is to modify the quadratic model by adding a positive semidefinite matrix
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E(s) so that

V2f (z) + E(z)

is positive definite. When B is replaced by this matrix the step calculation can

proceed as described above. An algorithm based upon this step calculation is

described in Section 4.

Another possible remedy is to restrict the region in which we assume that

the local quadratic model is appropriate. Locally the model still provides an

excellent approximation to the expected reduction in f , so it is reasonable to

restrict ' to a ball jw :|| 1w 1 Al for some A > 0, and to compute a step as the

minimizer of f on this ball. An algorithm based upon this step calculation is

described in Section 5. The following result characterizes the solutions to the

problem of minimizing a quadratic func ion on this restricted region.

Lemma (3.5). Let 'r: R" -R be the quadratic furwiion (3.3) and let L > 0 be

given. A point p E R" solves the problem

(3.6) min I #(w): 11 w ||! A ;

f and onlyif there is A 0 such that

(3.7) (B + AI)p = -g . A(A- IIp |I) = 0,

with B + Al positive semideflnite.

Proof: Suppose that A and p satisfy (3.7) with B + k positive semidefinite. Then

lemma (3.2) implies the t p minimizes the quadratic funton

"(w)=gpr w+3yiA(B +AI)w.

Thus f(w) Z(p) which implies that

(3.8) gpw + %3t,Tj gr p + "Bp +Pp - w w)

for all w c R". Since Ap tp = AAM and A z 0, it follows from (3.8) that #(w) wef(p)
whenever 11w || ,sA. sop must solve (3.6).

Now suppose that p solves (3.6). If |II II <A then p is an unconstrained

minimizer of ', so Lemma (3.2) implies that (3.7) holds with A = 0, and that B is

positive semidefinite. If IIp I|= A then p must also solve the equality constrained

problem mini, (w) : 11 w != A ;. Therefore, the method of Lagrange ensures the

existence of A such that

VL(p) = 0, where L (w)w= (w)4+ +2wrw -o).

This implies that (3.7) holds for this A and p. Moreover, since p solves (3.8) we

have that (3.8) is valid for this A and p whenever 11w II= !!p !1. Usng (3.7) to
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replace g and then rearranging terms in (3.8) shows that

t(w--p)T(B +XI)(w-p) 0

for every w with norm Ip II. It follows readily from this inequality that B + AJ is

positive semidefinite. To show that A z 0, note that Lemma (3.1) implies that

(3.8) is valid for every w E R". Now, if A is not positive then (3.8) implies that

i(w) d(p) whenever |1w II IIp II. Since p solves (3.6) we must have that p is an

unconstrained minimizer of * and then Lemma (3.1) implies that. A = 0. Hence,

A z 0 as claimed.

Those familiar with various multiplier rule. associated with mathematical

programming will of course recognize that most of Lemma (3.5) could be

obtained through direct application of these rules. At the very least one could

invoke the Karush-Kuhn-Tucker conditions to avoid having to argue that the A

obtained from the Lagrange theory for equality constraints must be non-

negative. Unfortunately, the multiplier theory for inequality constraints is not

treated in most advanced calculus texts. McShane [1973] has an elementary

treatment of the standard results, and Pourciau [1980] surveys the most recent

results. It is interesting, however, that Lemma (3.5) cannot be obtained through

direct application of the standard second order multiplier rules. The gap

between necessary and sufficient second order conditions precludes this possi-

bility since there is no such gap in this result.

Computing a numerical approximation to a solution of (3.6) requires some

care. One immediate complication is tht t, due to the nonlinear constraint, there

cannot be any general direct method for solving (3.6). In fact, when g = 0 a

solution p to (3.6) must be an eigenvector of norm A corresponding to the smal-

lest eigenvalue of B. Therefore,a general method for solving (3.6) must solve a

symmetric eigenvalue problem in this special case.

The solution of (3.8) is straightforward if there are no solutions on the boun-

dary of Ew :11w II| Al. In fact, it is not difficult to prove that (3.6) has no solution

with Ip II = a if and only if B is positive definite and 11 B-'g II< <A.

If (3.6) has a solution on the boundary of jw :I|w|11A lj, then Lemma (3.5)

shows that it is reasonable to expect that the nonlinear equation

(3.9) IIp.I=a

where

p= -(B + a)-'g,

has a solution A z 0 in (-A 1 ,.) where Al is the smallest egenvalue of B. Note

that (3.9) is a 1-dimensional zero finding problem in a that can be solved, for

example, by Newton's method. However, since each evaluation of p. requires the
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solution of a system of linear equations, it is important to solve (3.9) with very

few evaluations of p..

To solve (3.9), Reinsch [1967,1971] and Hebden [1973] observed indepen-

dently that great advantage could be taken of the fact that the functionlp.12 is

a rational function in a with second order poles on a subset of the negatives of

the eigenvalues of the symmetric matrix B. To see this consider the decomposi-

tion

B =QAQr with A=ding (, A2, -- , An ) and QTQ =,

and observe that

(3.10) 1IpI = IIQ(A+ aI)-irg 112 = J

where *It is the i-th component of Q tg. Knowledge of the functional form (3.10)

shows that Newton's method may not be very efficient if it is applied to the func-

tion

9o)= Il1l- A

A reason for this is that pa has a pole at -XI, and thus Newton's method tends to

perform poorly when the solution of (3.9) is near -A1 . This point is clear from

Figure 3.1 which shows a typical sketch of I p|| with Al = -7.5.

NORM(P)

'

ql
.4-
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V
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Figure 3.1

Reinsch and Hebden suggested that It is more efficient to apply Newton's

method to the function

L
i

I



1011(a) = 1-.
A iPaII

This function has no poles, and is almost linear near a solution of (3.9). This is

illustrated quite well in Figure 3.2. This graph shows (Iip II)1' where ip|II
appears in Figure 3.1. Note that (lp.a)-1 is almost linear for X > -A1.

1/NORM (P)

"

Figure 3.2

It is clear from Figure 3.2 that Newton's method is bound to perform well on Sp.

The Newton iteration applied to finding a zero of ft takes the following form.

Algorithm (3.11).

1) let 4 and A> 0 be given.

2) For k = 0,1,... until "convergence"

a)FactorB + 4I =RIR.:

b) Solve R2Rp, = -g;

o) Solve RlZq = Pr ;

d) .1 =?.+- +A

It certain precautions are taken, then this basic iteration can be used to

solve (3.6) in most cases. However, when B is indefinite there are cases in which

the equation (3.9) has no solutions in (-.,m), and then Algorthm (3.11) fails.

This happens, for example, when g = 0 and B is Indefinite. It may also happen
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when g 0 0, as illustrated by the following simple example. If

B-= 0 11 ' g = 1 

.

then al = -1, and if a > 1 then Ip jj2T<)J. In our examples g is orthogonal to the

eige:ispace nf B corresponding to the smallest eigenvalue. This is typical; g

must be orthogonal to the eigenspace

S 1  z B: Bz = X, z X01

corresponding to the smallest eigenvalue of B whenever (3.9) has no solutions in

( ) To see this it suffices to note that if g is not orthogonal to S, then

$l i 0in(3.10), and hence

Irn |IIP | = I, U IPaII = 0.

Since small perturbations of g lead to a nonzero y1, it is tempting to ignore

the case when g is orthogonal to S. However, in many cases g is almost orthog-

onal to S1, and in these cases an algorithm based completely on Newton's

method would require a large number of iterations. This is nt acceptable since

a matrix factorization is required for each of these iterations.

Several algorithms have been proposed for the numerical solution of (3.6),

but Gay [1981] was the first to show that his algorithm produced a nearly

optimal solution. Gay's algorithm, however, may require a large number of itera-

tions when g is orthogonal to S1 , and fails when g = 0 and B is indefinite. Mure

and Sorensen [1981] have improved on Gay's algorithm, and their numerical

results show that it is possible to produce a nearly optimal solution to (3.6) in all

cases and with only a few iterations.

We have dealt with problem (3.6) at length because it arises in a variety of

applications. For example, the solution of ill-posed problems in linear algebra

usually requires the solution of (3.6) for a positive definite B. The literature on

just this problem is extensive; for more information consult EldEn [1977],

Gander [1978], and Varah [1979].

4. JAne Search Methods.

In Section 2 we mentioned the difficulty of providing a starting point z0 for

Newton's method which is sufficiently close to a local minimizer. Overcoming

this difficulty has been the subject of a considerable amount o' recent research

in numerical optimization, and in this section we discuss the line search

approach to thli problem. In discussing this approach it is best to consde: gen-

eral line search methods first, and then specialize to Newton's method.
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Given an iterate zh, the basic idea of a line search method is to compute a

direction pt and a parameter at > 0 such that the next iterate zh..1 = zX + aCpk

has a lower function value. Convergence of the iterates to a minimizer depends

on the choice of ph and a.

A direction p E R" is a descent direction for a function f : R" -+R at a point

z E R" if there is a constant & > 0 such that

(4.1) f (z + ap) < f (z), a E(0,a].

For differentiable functions, the easiest way to guarantee that (4.1) holds is to

require that

(4.2) Vf (z)Tp < 0.

In particular, the steepest descent choice p = -Vf (z) satisfies (4.2). Conditic n

(4.2) requires that the angle between -Vf (z) and p be acute, and is equivale it

to requiring that there is a positive definite matrix B such that

(4.3) p = -B-'Vf (z).

This is not difficult to prove. If (4.3) holds then certainly (4.2) follows. Con-

versely, if (4.2) holds then

P P
B =1I- --Pr -P, g =Vf (z),

ii positive definite and satisfies (4.3). Thus descent directions differ only in the

choice o .he positive definite matrix B in (4.3). The steepest descent method

chooses B as the identity matrix and Newton's method chooses B as the Hessian

matrix; the choice of B made in a quasi-Newton method (described in Section 7)

is a compromise between these two choices.

Line search methods for differentiable functions assume that (4.2) holds.

Note that if (4.2) does not hold then (4.1) can fail and then It may not be possible

to make further reductions in f . Later on in this section we shall see that for

convergence purposes it is necessary to require that p is not even nearly

orthogonal to Vf (z). This can be achieved by imposing a bound on the condition

number of B in (4.3).

A ine search algorithm examines points along the ray Ix + ap : a z 0 in

search of a steplength a such that f (z + ap) < f (z). If p is a descent direction

then such a point exists. In fact, the smallest positive local minimizer a of the

univarlate function

(4.4) p(a)ma f (z +ap), a Z 0,

is such an a. However, it would not be practical to search for this point. Indeed,

a line search algorithm Is usually an iterative schem for 1-d'mcnsional



~ 18-

minimization, but the search process is usually terminated long before an accu-

rate minimizer is found. Finding an accurate minimizer along a given ray usually

does not yield a significantly larger reduction in f than a crude search, and

better progress can often be made by making a reasonable reduction in the

function f and then exploring other directions. These considerations have led

to the development of stopping rules which terminate the line search process as

soon as some minimal requirement is satisfied.

Given parameters yME (0, %) and 77 E ( . 1), and a descent direction p E R"

which satisfies (4.2), the steplength a > 0 belongs to SR(,7) if

f(z + ap) sf(z) + apVf(z)rp,

and

IVf (z +cap)Tp 1 s 7I Vf (z)TP

In other words, the set SR(pu) specifies the stopping rule. In terms of the func-

tion p defined by (4.4), a steplength a belongs to SR(p,7) if and only f

(4.5) p(at) p(0) + ap'(0),

and

(4.8) k .'(a)I ,I| '(O)I. 

*

For a typical function p, the set SR(p,77) is shown in Figure 4.1.

f t t op

/1

Figure 4.1

- I i i__i,-
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The intuitive nature of these rules should be clear. If a is not too small, then the

first condition of the stopping rule SR(p,g) forces a sufficient decrease in the

function. However, (4.5) allows arbitrarily small choices of a > 0, so this condi-

tion is not sufficient to guarantee convergence. The second condition rules out

arbitrarily small choices of a > 0 and usually implies that a is near a local

minimizer of p.

We assume that u < because if p is a quadratic riith p'(0) < 0 and p"(0) > 0

then the global minimizer a' of p satisfies

p(a') = p(0) + }a'p'(0),

and thus a' satisfies (4.5) only if As !g. The restriction y < 4 also allows a = 1 to

be ultimately acceptable to Newton and quasi-Newton methods; failure to take

< prevents these methods from converging superlinearly.

The restriction y <'? guarantees that under reasonable conditions SR(ps7)

contains a non-trivial interval. For example, suppose that p is bounded below.

Then there is a P > 0Osuch that

(4.7) p(P) p(o0) + /Lpfp'(0).

Now let a' be the smallest a in (0,P] such that

p(a) = p(0) + pcacp'(0).

Then the mean value theorem shows that there is a r such that

90'(r) =ypp' (0) > fOp' (0) , 0 <,r < a*.

In particular, since p'(0) < 0 we must have that p'(r) < 0. Hence, r satisfies (4.6).

Moreover, ,r < a* implies that

p(r) s; p(0) + Mrp'(0),

and thus r also satisfies (4.5). Continuity of p' now shows that SR spi) contains a

non-trivial interval.

The algorithms for selecting the steplength a are usually based upon

minimizing a univariate quadratic or cubic model to p defined by interpolation

of function and first derivative at trial values of a. It is important to realize that

it is possible to safeguard these algorithms so that they terminate in a finite

number of steps.

Safeguarding a line search algorithm requires that we determine and

update an internal of uncertainty I which contains points in SR(,t). The

updating process must guarantee that the length of I tends to zero and that

eventually I is contained in SR(ps).
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To define the interval of uncertainty I, it is helpful to use an auxiliary func-

tion i' defined by

f(a) = po(a) - Sp(0) - parp'(0),

and require that I be a closed interval with endpoints a and a such that

i'(at)(a - a) < 0 , (a) s f(a)}, f(a) s 0 

.

We now prove that ip'(a') = 0 and (a') < 0 for some a* in I. As a consequence,

if I is sufficiently small then

I '(a) 1 <('r-y)jI '(0)j, f( ) 0,

for all a EI, and thus I is contained in SR(A,fl). If we let a be a global minimizer

of 0 on I then a' cannot be an endpoint of I becaue this contradicts the above

requirements on at and au . Hence, a' is interior to I and thus jP'(a') = 0. More-

over, since 'i(a5) s 0 we must also have that '(a") <0.

We now show how to update I. Given a trial value a8 in I, we can determine a

new interval I4 with endpoints at and au as follows-

If '(as) (a1) then at = a1 and a, = as.

If j(a8 ) <%*(a5) and O'(a)(ag -a1) < 0 then at = a and au = a.

If #(as) < #(a) and#'(aX)(at -a) > 0 then at = at and a = a1.

It is straightforward to show that at and a. still define an interval of uncer-

tainty unless #'(ag) = 0 and *(as) <'O(aj). Of course, in this case a belongs to

SR(,i) and there is no need to update I. Also note that these updating rules

can be used to determined an initial interval of uncertainty. If we set a = 0 then

at > 0 defines an interval of uncertainty if *(a) 0 or if -i'(ag) <0. For a

sufficiently large, we must have that bi(ag) 0 unless Sp is not bounded below.

There are many ways to compute the trial value of a8; the only requirement

on at is that the length of I tends to zero. This can be done by monitoring the

length of I, and if say, the length of I is not reduced by a factor of 0.5 after two

trials, then a bisection step can be used for the next trial as.

Theorem (4.8). Let f : R" -.R be continuously differentiable and bounded below

on R"R, and assume that the starting point zo is such that V f is uniformly con-

tinuous on the level set

(4.9) 0 = I z ER": f(z) s (zo)(.

If the sequence Izej is defInrd byxz+ 1 = z_ + ak p where Vf (z) 7 p < 0 and ac

is any steplength in SR(jn) then

(4.10) JimP = 0.
"-"+" |!Ph ||



-21-

Proof: Since Vf (zk)Tpk < 0 and since f is bounded below, the sequence 'zkXj is

well defined and lies in 0. Moreover, if (zx); is decreasing and hence converges.

The proof is by contradiction. If (4.10) does not hold then there is an r > 0

and a subsequence with index set K such that

VfI(zk)Tp kEK.
IIPk II s K

The first condition of the stopping rule SR(M,77) shows that

f (zn) - f (z+1) yklPk r Vf(z) 1 zpa |II!I e, k EK,I IIPk II J
and since ifJ(z); is a convergent sequence, jXhph : k EK; converges to zero.

Now, the second condition of the stopping rule SR(p,i7) yields the inequality

(1. -)(-Vf (zk)Tpk) S (Vf (Zx + capk) - Vf (xb))Tp , k z 0,
and hence

VI(-)Tp 1] -IVf (zk + c*ph) -VfI(zh)II, k &K.

However, since we have already shown that fapk : k EKI converges to zero, this

contradicts the uniform continuity of Vf on 0.

Wolfe [1969] proved Theorem (4.8) under various choices of steplength

rules, while Gill and Murray [1973] obtained a variation o Theorem (4.10) with

the steplength chosen by a safeguarded algorithm designed for 1-dimensional

minimization. Note, however, that 1-dimensional minimization algorithms must

be modified in order to find points in SR(p,7) because the first condition of this

rule may exclude all 1-dimensional local minimizers. Also note that Theorem

(4.8) holds under the hypothesis that f : R" -R is continuously differentiable in

an open set D and that the level set

(4.11) f0=1zED:f(z)sf (z)j

is compact. The proof is almost identical to that of Theorem (4.8); the only

difference occurs in proving that SR(p,7) is not empty.

The specialization of Theorem (4.8) to algorithms of the Newton class is

almost immediate. In this case,

(4.12) Pk = -B -'Vf (z 

)

where fBb jis a sequence of positive definite matrices with uniformly bounded

condition numbers; that is, there is a constant x > 0 such that

(4.13) ||B, ||||Ba 1 l , k ; 0 

.
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Under this assumption we have that

- of k) k 1| f (Zk) I 

,

IIPkII 1j1fh~~I

and thus (4.10) implies that JVf (zk); converges to zero. In particular, every

limit point of j is a critical point of f 

.

For a line search method, this is the strongest type of result possible. It is

not possible to prove that the limit points of jzk) are local minimizers because,

for example, if zo is any critical point of f then a line search method terminates

at Zx.

The choice of Bk in (4.12) is guided by a desire to satisfy (4.13) and still

guarantee a fast rate of convergence. In the steepest descent method B is the

identity matrix. For this method (4.13) is satisfied but convergence can be quite

slow. The convergence of Newton's method is quite rapid when it occurs, but

since Bk = V2 (z) is not necessarily positive definite, there is no guarantee of

convergence. Modifications to Newton's method have been designed to overcome

this problem. They set

(4.14) Bk = V2f(zk) + E

where Ek is chosen so that Bk is positive definite and satisfies (4.13). There are

many ways to do this, but one of the most effective methods is due to Gill and

Murray [1974b].

Given a symmetric matrix A and parameters e z 0 and P > 0, Gill and

Murray's method produces an upper triangular matrix R and a diagonal matrix

E = diag(et) z 0 such that A + E = RT R. The i-th step of the algorithm sets

&1

au- 7 rk, ! n

p = maxi 7q |:i< j sn

r = maxi e , |I y|I, I,

Note that if e = 0 then it is possible that r = 0, but in this case set r = 0.

The idea behind the Gill and Murray algorithm is to increase the diagonal

elements o' A so that A + E has a Cholesky decomposition. The increase in ru is

designed to ensure that rq is bounded relative to 11A 1! , and that if .A is

sufficiently positive definite then A is not modified. Note that the increase in
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-

due to the term pA/ Pforces I rU 1s 8for i < j. Hence,

I7Vs I I+ Pn, i!j.

This shows that /A. / P is bounded in terms of P and I a. I. It is sensible to choose

# so that this bound on p/ P is as small as possible, and this leads to a choice of

9= maxjI la,:i #ji.

This choice, however, may conflict with the desire to leave A unmodified when-

ever A is sufficiently positive definite. The definition of r shows that in order to

accomplish this P cannot be too small. It is sufficient to require that

PO X-maxi I au |:14 i sn;.

To establish this claim we first show that if A is positive definite then 'yj > 0. The

proof is easy. Given an index j, define p E R" by letting Rp = rfe. Then p = 1

and

0 < pTr 4 =" r -prE'p sr, -sj =y.

Now, since 7y, > 0, it follows that

kal

and since 79 = r r, we have that j4p < rJ. Hence, if A is positive definite

then re = maxi c, ,7 . This shows that if A is sufficiently positive definite then

r= 7, and thus E = 0.

A reasonable way to guarantee that r is bounded and that E = 0 whenever

A is sufficiently positive definite, is to choose

P= max -max |J L% |: i j , maxi Ia1:1 s i s n 

.

For this choice of f it is not difficult to prove that

i s Ir, | s maxj e, 2nP j, |r I &P, i < j.

For > 0, these inequalities show that if the Gill and Murray algorithm is applied

to a bounded sequence A4 1 of symmetric matrices, then (4.13) is satisfied.

We now have all the ingredients for a modified Newton's method with a line

search. In this method, we compute p, via (4.12) and (4.14), and determine Eb

by Gill and Murray's modification of the Cholesky factorization with some s > 0.

Theorem (4.15). Let f : R" -R be twice continuously differentiable on an open

set D, and assume that the starting point zo is such that the level set (4.11) is

compact. If the sequence zj is defined by zk+l = zb + a Ph kere p is
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computed by the modified Newton's method and at is any steplength in SR(yn)

then

lim Vf (zk) = 0.

Proof: We have already noted that if r > 0 and J4 I is bounded then (4 13) holds.

In this case 4 = Vff (zk), and since 0 is compact, 4 is bounded. Thus our

result is a consequence of Theorem (4.8).

There is an interesting variation of Theorem (4.15) which shows that the

iterates (zk usually converge. In this variation the stopping rule SR(p,77) is

modified by the addition of an upper bound P on the steplength. We accept P as

the steplength only if

f(z + Pp) f(z) +pVf(z)rT p

Note that if this condition is not satisfied then (4.7) holds, and then there is an a

in (0,p) which satisfies SR(p,i). It is not difficult to show that Theorem (4.15)

holds with this variation, and moreover, that

(4.16) lirn xzh+.-zklIt = 0.

This shows that if fz I has an isolated limit point z' then fzk 3 converges to z . In

particular, note that if Vf (z') is nonsingular at a limit point z', then z' is an

isolated solution of Vf (z) = 0 and hence:x' is also an isolated limit point of fzXk.

The structure of the set of limit points of fzk ( is further restricted by a result of

Ostrowski [1966], page 203, which states that if fzrk is a bounded sequence and

(4.16) holds, then the set of limit points of frh I is connected.

To investigate the rate of convergence of the modified Newton's method,

assume that the sequence JZk; converges to a point z' at which Vf (z') is

sufficiently positive definite in the sense that E = 0 for all k sufficiently large.

Then

(4.17) p = pe = -Vfi(zk)-1 Vf (z),

and it can then be shown that there is a k0 such that the steplength a = 1 is in

SR(,7) for k L ko. With this choice of ak, the rate of convergence is given by

Theorem (2.8).

The above argument relies on the fact that ar = 1 is evenLual!y in SR(p,t).

To establish this result it is only necessary to assume that pk tends to the New-

ton step in both length and direction; that is,

im -F = 0,
k-++- ||Pk ||
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where p' is the Newton step (4.17). For a proof of this result, and a discussion of

its relationship to quasi-Newton methods, see Dennis and More [1977].

5. 'rust Region Methods.

In Newton's method with a line search the Hessian is modified when it is not

sufficiently positive definite. This modification to the quadratic model guaran-

tees convergence but seems to ignore the role of the quadratic model as a local

approximation to the objective function. We now consider an alternative

approach in which the quadratic model is not modified but instead, the qua-

dratic model is only considered in a restricted trust region. We mentioned this

technique briefly in Section 3 as motivation for Lemma (3.5); its use for globaliz-

ing Newton's method has resulted in reliable algorithms with strong convergence

properties. In this section we introduce the main ideas of this approach and

establish some of the basic convergence properties.

Let f : R" -R be a twice continuously differentiable function. In Newton's

method with a trust region strategy, each iterate zb has a bound 4 such that

f (sk + W) R' f (zk) + fk (W), 11 w 11!g 

,

where

f(W)= Vf (zh)Tw + w 3VafI(zh)'W

is the quadratic model of the possible reduction in f within a neighborhood of

the iterate zk. This suggests that it may be desirable to compute a step sh

which approximately solves the problem

(5.1) mini[#k (w):IIwII9 4.

If the step is satisfactory in the sense that zr + s produces a sufficient reduc-

tion in f , then 4 can be increased; if the step is unsatisfactory then 4 should

be decreased. The following algorithm expresses these ideas in more detail.

Algorithm (5.2). Let 0 < < i<1 and 0 <y,<yA <1 <y, be specified constants.

1)Lat zoE R" and 4 >0 be given.

2) For k = 0,1,... until "convergence"

a) Compute Vf (zh) and Vf (=b).

b) Determine an approximate solution s# to problem (5.1).
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= f(zh +sk) - f(zk)
c) Compute P k (S

d) If pA ts then b :A= A E[71,7 2A ]and go to b).

e) zk+1 = zk + sk.

f)If pt s 7 then 4+ 1 E [7zA] elseA4+1 E [A.7sk].

This is a basic form of a trust region Newton's method. An interesting variant of

this algorithm includes a scaling matrix for the variables. In this variation sub-

problem (5.1) is replaced by

min f(w): IIDw 1|1 !9 A

where Db is a nonsingular matrix. We shall not discuss this generalization here;

however, it is important to note that all of the results presented here hold for

this variant if DJ j has uniformly bounded condition numbers. Such a

modification can be very important in practice when the units of the variables

are on widely different scales. Another variation is to use the hypercube

jw :11w |I.. s A as the trust region in (5.1). In this variation subproblem (5.1) is

replaced by the quadratic programming problem

(5.3) minif,k(w) : | w Teti I s fi , 1 s i s n 1.

A difficulty with the hypercube approach is that it is quite expensive to compute

a reasonable approximation to the global minimizer of (5.3). This is not the case

with (5.1), and thus we shall only consider (5.1) in this section.

Just as in the case of a line search we are not interested in solving the

model problem (5.1) with great accuracy. Instead, we are interested in providing

relaxed conditions for accepting an approximate solution sk to problem (5.1)

which are sufficient to force convergence of the sequence j zkI generated by

Algorithm (5.2). In fact, there are conditions which guarantee much more than

convergence of the method. If %' is the optimal value of (5.1), and if the approxi-

mate solution sk to (5.1) satisfies

(5.4) -'(s)PII#I with IIs l sI&24.

for specified constants fi > 0 and Ps > 0, then it is possible to prove that under

suitable conditions on f , the sequence zuk is convergent to a point z' with

Vf (z ) = 0 and Vef (z') positive semidefinite.

It is not difficult to obtain a vector sb which satisfies (5.4), although as mcn-

tioned at the end of Section 3, this requires attention to a number of details.

Given a in (0,1), the algorithm of Mord and Sorensen [1981], f or example, finds a

vector s1 such that
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*k (sk) - yfc'S a(2 -a) I a', ,|111SA: is (1 + a)hk 

,

provided Va'# 0. Of course, if Pi = 0, then Vf (r) = 0 and V2f (zk) is positive

semidefinite, so Algorithm (5.2) terminates at TA. It is also worthy of mention,

that if a = 0.1 then the cost of this algorithm is quite reasonable. On the aver-

age the approximate solution of each model problem requires less than two fac-

torizations of a symmetric positive definite matrix of order n.

Condition (5.4) can be expressed in an alternate form which is more con-

venient for proofs of convergence. If pt E R" is a solution to problem (5.1) then

Lemma (3.5) implies that there is a parameter X z 0 such that

(V 2f (zk) + X*I)pA = -VfI(zb), A*(A -I1PkI) = 0 

.

Now let RZ'Rk be the Cholesky factorization of V f (zb) + A*I. Then

(5.5) | $$|* = )(I||Rp ||a + 64)

This expression for ik shows that if (5.4) holds then

(5.8) -%0.(s) z M(IIRbpb 112 + 2),

and thus the iterates fzb j generated by Algorithm (5.2) satisfy

(5.7) f(z) -f(zk+1) z T4l(IRkpk II + X ).

These two inequalities are essential to the proof of our next result.

Theorem (5.8). Let f : R" -R be twice continuously differentiable on an open set

D, and assume that the starting point zo is such that the level set

0 IzED:f(z)sf(zo)I

is compact. If the sequence zk j is produced by Agorithm (5.2) where sh

satisfies (5.4), then either the algorithm terminates at za E f) bec use Vf (z) = 0

and V f (z) is positive semidefinite , or zk j has a limit point z in n with

Vf (z') = 0 and V f (z') positive semidefinite.

Proof: If Vf (zj) = 0 and V'f (zn) is positive semidefinite for some iterate z in fl

then the algorithm terminates; otherwise (5.4) implies that yk (se) < 0 for k z 0

and thus IZb j is well defined and lies in 0.

Let us now prove the result under the assumption that Ja y is not bounded

away from zero. If some subsequence of f X converges to zero then since 0 is

compact we can assume, without loss of generality, that the same subsequence

of Izb j converges to some z' in the level set 0. Since V'f (k) + Ab Is positive

semidefinite, Yef (z') is also positive semidefinite , and Vf (z') = 0 follows by

noting that

I IIf (4)II+
||94f (z)II+A1
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and that (5.7) implies that f1Rp li converges to zero.

We can show that iA is not bounded away from zero by contradiction. If

?* z r > 0 then (5.4) and (5.6) yield that

-k)(sb) Z 414 z -]iis 112.

Now, a standard estimate is that

(5.9) |f (zb + sb) -f (z) -%sa (sb) I I||sI|Imax Vf (z +s -V f(z)II.

and thus the last two inequalities show that

(5.10) p - 1 1 maxIV2f (zb+(sb) - V1f(zk)lIl.
1'rLfii~J 

'

Inequality (5.7) implies that fA converges to zero and hence |ilsI ll also con-

verges to zero. Thus the uniform continuity of V2j on 0 together with (5.10)

implies that pb > 77 for all k sufficiently large and then the updating rules for A*

yield that f 3 is bounded away from zero. This is in contradiction of the fact

that J 4 I converges to zero.

The result we have just established is only a sample of the available conver-

gence results for Algorithm (5.2) under assumption (5.4) for sb. This theorem

extends results of Fletcher [1980] and Sorensen [1980] by admitting inexact

solutions to the model problem (5.1). The following additional results are known.

a) The sequence iVf (zb)j converges to zero.

b) If z' is an isolated limit point of Jzb 3 then Vf (z') is positive semidefinite.

c) If V'f (z') is nonsingular for some limit point zx of Jxb J then JZb converges

to z'.

Thomas [1975] proved a), while More and Sorensen [1981] established b) and c)

as extensions of results due to Sorensen [1980]. Of these results, b) is charac-

teristic of the trust region approach, and is the only result that does not hold for

Newton's method with a line search. This difference between the two approaches

is of theoretical importance. From a practical viewpoint, however, it can be

argued that a more important diference is that with a line search approach the

search for a lower function value occurs in a 1-dimensional subspace, while with

a trust region approach the search is not restricted to a lower dimensional sub-

space.

An additional result which is helpful in establishing rate of convergence

results is that if frb I converges to z' and V'f (z') is positive definite, then the

sequence IN is bounded away from zero. To prove this first note that if cc> 0 is

a lower bound on the eigenvalues of VP/ (Zb) then (5.5) shows that
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Ia' Y reomin .It sf'I 2 1

where

(5.11) s'- -Vf(z)-'VI(zk).

Now, since *k(sb) s 0, we have that

||kI 1|II III V f (k)-II I!V f (z*)ll.

and thus %} II s IclsfII where x is an upper bound on the condition number of

f (z). Hence, assumption (5.4) shows that there is a constant e > 0 with

-*k(sk) 2 ell' .:.

This estimate and (5.9) then yield that

pA -1 F' []m a|I Vf(z+Csb) - V'f(zh)I,

and thus pt*> 1 for all k sufficiently large. It follows that J4 I is bounded away

from zero as desired.

Rate of convergence results can be obtained with the additional - but mild 

-

assumption that there is a constant #s > 0 such that if Isah Is RskA then Vf' (Z)

is positive definite and s8 = a1 where sj is the Newton step (5.11). With this

assumption in mind, suppose that jzb I converges to z' and that Vf (z') is posi-

tive definite. Then f'jI converges to zero, and hence IIsk 11 s P for all k

sufficiently large. Thus there is a ko a 0 such that s = s for k a ko, and then

the rate of convergence results are provided by Theorem 2.8.

6. 11matinos tothe Heman Matrix.

The methods we have described in the previous sections all require the

computation of the Hessian matrix. This can be a difficult and error prone task,

and in some cases analytic expressions for the entries of the Hessian matrix

may not even be available. What can be done in these cases?

An obvious way to overcome these difficulties is to approximate the Hessian

matrix with differences of gradients. However, there are several things to con-

Sider. Which difference approximation should be used ? How large should the

difference parameter be ? How is the performance of the minimization method

affected when difference approximations are used ?

The two most common type of difference approximations use the forward

difference and central difference formulas. The forward difference approxima-

tion is based on the Taylor's series expansion

(6.1) ()[Vf(z +ap)-Vf(z)]=f(z)p + 0(a),
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while the central difference approximation is based on

( )[Vf (z + ap) - 2Vf (z) + V0,(z -ap)] = Vf(z)p + O(a).

In optimization work, forward differences are quite common because they

require fewer gradient evaluations and usually provide the necessary accuracy.

If forward differences are used, an approximation A(z) to the Hessian matrix at

some z E R" can be obtained by setting

A(z)eu = (-a-)[Vf (z+ae)-Vf (z)], 1 sj s n 

.

for some difference parameter a1 0. Unfortunately, this approximation does

not necessarily provide a symmetric matrix. This important feature of the Hes-

sian can be obtained by using the symmetric matrix

W[tA(z) + A(z) 1 ]

as the approximation to the Hessian matrix at z.

The choice of difference parameter presents a dilemma. In order to

preserve the superlinear rate of convergence enjoyed by Newton's method it is

necessary to force the difference parameter to zero. However, as the difference

parameter a1 becomes small, the differences loose significance due to cancella-

tion. To prevent this loss of significance, the difference parameter must stay

above a certain threshold value. This dilemma can usually be resolved in prac-

tice because it is not necessary to provide a Hessian approximation of high

accuracy. If the Hessian approximation has an accuracy comparable to the

desired accuracy in the solution to the optimization problem, then convergence

usually takes place at practically a quadratic rate. Less accurate Hessian

approximations decrease the rate of convergence but do not prevent conver-

gence. These remarks assume that the gradient is evaluated accurately; if this is

not the case, we may not even be able to compute a descent direction.

Techniques for choosing the difference parameter in (6.1) require informa-

tion about Vf in a neighborhood of z which is obtained by evaluating Vf at

several points near z. For many practical problems it would be too expensive to

acquire this information at each iterate. A sensible strategy for an optimization

algorithm is to choose the difference parameter at a typical z (possibly the

starting point z0 ), and to use this choice until it is deemed unsuitable. The

difference parameter is only recomputed when the quality of the difference

approximation starts to degrade.

There are several algorithm for choosing the difference parameter at a

point. Discussing these algorithms In detail is not within the scope of this paper,

but we want to mention some of the ideas behind these algorithms. The main
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ideas are clear in the 1-dimensional case, so consider a differentiable function

p: R-iR, let o,(a) denote the computed value of c(a), and let

e(a) = ,c (a) - P(a),

be the (absolute) error in the computed value. The smoothness of p. depends on

the method !.:sed to evaluate p on the computer, but in all cases So is a step

function A reason for this is that a computer with L decimal digits of accuracy

does not distinguish between numbers with the same first I digits. We mention

this fact be use it implies that P, is not differentiable. With these remarks in

mind, note that our problem is to determine an a such that

(6.2) (L)[Pc(a) - p, (O)]

is close to p'(O). If we assume that we have an open neighborhood I of a = 0, and

a bound cc such that

| t(a)| 5to, a EI,

then it is not difficult to determine the difference parameter. Note that a

Taylor's expansion of Sp shows that

pfe(a) - p, (0) - ap'(0) = "p(()a2 + [e(a) - e(0)]

for some C with IC 1< I a I, and hence

I( )[90,(a) - p,(6)]- '(0)| S rlola |+ 

,

where )o is a bound for p" on I. This bound on the error between (6.2) and p'(0)

has the correct qualitative behavior. If a is too small then the error is dom-

inated by to, while if a is too large then the error is determined by the curvature

of p. It is reasonable to choose a so that this bound is minimized, and this leads

to a choice of

(6.3) a = 2 

.

An algorithm for determining to and no can be based on the work of Hamming

(1971], pages 163-173. The basic idea is that the 4th and 5th order differences

of p9 are a measure of co and that the 2nd order diferences can be used to esti-

mate 17. It is necessary to take some precautions, but in general we have found

that an algorithm based on these ideas and (6.3) is quite effective.

Another way to overcome the difficulties mentioned at the beginning of this

section is to approximate the Hessian matrix directly. As an illustration, recall

that in the example of Section 1, the (i.j) element of the Hessian Of (z) is
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8t.5f (z) = f((8 2 2L)coj, + (O2. 3L)(opj 1 + c c,)+ (83 .3L)inOj)cdrT.

where the partial derivatives of L are all evaluated at (r,u (r),u (r)) and

(6.4) u(T) - 2 6 pa (T).
k=1

In principle, these integrals can be evaluated with an appropriate quadrature,

and the results used to define an approximation to the Hessian matrix. This

requires the storage of a symmetric matrix of order n and the evaluation of

n(n+1)/ 2 integrals over [0,1]. Since the dimension n must increase in order to

refine the accuracy of u as an approximation to the continuous problem, it is

usually necessary to solve large dimensional problems, and clearly, the cost of

these requirements can then be prohibitive even for moderate values of n.

The above problems can be greatly reduced if we choose a basis lyd whose

elements venish on most of the interval [0,1]. For example, we could choose a

B-spline basis. To illustrate this possibility, let rT = jh = j/n, and define

r(r) = 1 - 1 'r[ 1,T 1 ], (r)=0 otherwise.

These functions are smooth B-splines of order 2. It is a simple matter to verify

that

p0t =P p e9 =,01 = 0, i -j I > 1,

and therefore the Hessian matrix is tridiagonal. Thus the storage is now of order

n, and it is only necessary to evaluate 2n integrals over intervals of length 1/n.

Similar remarks hold for the computation of the gradient. If we had chosen a

basis of smooth B-splines of order k then the Hessian has bandwidth 2k -1. The

computation of the gradient and Hessian is now more expensive, but there is an

increase in the accuracy of (6.4) as an approximation to the continuous prob-

lem. For more information, see de Boor [1978] on splines, and Gill and Murray

[1973] on the numerical solution of problems in the calculus of variations.

Large scale optimization problems frequently exhibit special structure such

as sparsity in the Hessian matrix. Approximation of sparse Hessians by

differences is attractive because the number of gradient differences required is

often small compared to i. For example, if the Hessian matrx is tridiagov das

in the above example), then 3 gradient differences suffice to approximate the

Hessian.

A technique for estimating general sparse Hessian matrices is based on the

work of Curtis, Powell, and Reid [1974]. They pointed out that a group of

columns of dif (z) can be approximated with one gradient difference if columns
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in this group do not have a nonzero in the same row position. To see this, let I

be the indices of a group of columns with this property, and let p be a vector

with component p = 0 if j belongs to I and p3  0 otherwise. Then

2f (z)p = Ep 2ff(z)e1,

and since the columns with indices inI do not have nonzeroes in the same row

position, for each (ij) element of V'f (z) with j E I we have that

(Vf (x)p) = p, etVbf (z)e,.

In view of (6.1), it follows that we can approximate all the columns with indices in

I with just one gradient difference.

For a tridiagonal m' trix, it is easy to see that columns with indices of the

form I mud 3 can be placed in the L-th group. Hence, as noted above, a tridiago-

nal matrix can be estimated with 3 gradient differences.

For general sparsity patterns it is not straightforward to partition the

columns of the matrix into the least number of groups so that columns in a

group do not have a nonzero in the same row position. Curtis, Powell, and Reid

[1974] suggested an algorithm but did not analyze the problem. Coleman and

Mord [1981] have approached this partitioning problem through its equivalence

to certain graph coloring problems, and have used this point of view to analyze

the partitioning problem and to suggest improved algorithms. Their numerical

results show that these improved algorithms are nearly optimal on practical

problems.

The partitioning technique that we have described for estimating sparse

Hessians does not make any use of the symmetry of the matrix. Po eli and

Toint [1979] have pointed out that it is often possible to use symmetry to reduce

the number of required gradient differences. They proposed several ways of

doing this, and with one of their methods it is possible to estimate a tridiagonal

Hessian matrix with 2 gradient differences. It turns out that their methods can

also be analyzed with graph theory techniques; a treatment from this point of

view is given by Coleman and More [1982].

7. Quam-Newton Methods.

For some problems the objective function and its gradient are so expensive

to calculate that we are not willing to compute a difference approximation to the

Hessian matrix. These are not necessarily large dimensional problems. For

example, the problem might be to minimize the L-norm of the solution to a

differential equation that depends on a few parameters. In this case each func-

tion evaluation required by the optimization method actually involves a numeri-

cal solution of a differential equation.
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In an effort to reduce the computational requirements of Newton's method,

Davidon [1959] introduced a revolutionary idea which provides a way to approxi-

mate the Hessian matrix using only the gradient information gathered at each

iterate. This idea has led to a highly successful class of methods which today are

usually called quasi-Newton methods. There is a huge literature on quasi-Newton

methods; our purpose in this section is to provide a brief introduction to the two

most powerful members of this class and to contrast quasi-Newton methods with

methods in the Newton class. For a thorough discussion of various aspects of

quasi-Newton methods, see the survey paper of Dennis and More [1977].

In very simplistic terms a quasi-Newton method might be termed as an

"earn while you learn" method. It is to be contrasted with methods in the Newton

class through the manner of maintaining an approximate Hessian. In quasi-

Newton methods, the approximate Hessian must satisfy the quasi-Newton equa-

tion. To derive this equation, suppose that we have a positive definite approxima-

tion B to the Hessian of f at zh. We can then compute a descent direction p,

via

(7.1) Ph = -B-1Vf (zk),

and a steplength a in SR(,,7). This defines the step sh = acpx and the next

iterate zk4+1 = zh + s. Since

V[fvhJ (Z +(sh)d ]sh = Vf (ZA1) - VfI(zh),

it might be reasonable to seek an update to the approximate Hessian which

satisfies

(7.2) Bh+lsh = Yk = Vf (zh+1) - Vf(zh).

This is the quasi-Newton equation and a method for generating Bh.1 from B so

that (7.2) holds is a quasi-Newton update. The quasi-Newton equation is essen-

tially a gradient difference along the most recent search direction. Thus, quasi-

Newton methods only use the search direction to obtain curvature information,

while methods in the Newton class use n directions.

Various specific formulas exist for updating the matrix B, and we shall con-

centrate on those updates which guarantee that B+1 is symmetric and positive

definite. Note that if Bh+I is positive definite then (7.2) implies that ysS is posi-

tive. This condition is satisfied whenever a4 is in SR(,,) because then

y 2s'h Vf (zh+1)sh - VI (zh)sh a(1 -)IVf (zh)"sh

We shall show b::ow that if y2lsk is positive, then there are symmetric and posi-

tive definite matrices which satisfy the quasi-Newton equation.
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In a discussion of quasi-Newton updates, it is customary and convenient to

drop subscripts. Assume, therefore, that we have an approximate Hessian B,

and vectors s and y with yrs positive. We then want to obtain update formulas

that produce matrices B+ according to the quasi-Newton equation

(7.3) Bis = y.

The simplest derivatica of such a formula is to ask for the nearest matrix to B

which satisfies (7.3). If B+ = B + E, then our problem is to find a solution to

(7.4) mint 11E II: (B + E)s = y ;,

where -- is a suitable matrix norm. It is natural to choose the Frobenius norm

defined by

||A|II= $||jAv{ 12 = trace (A"A),
{=1

for any set v 1 , - - - ,v, of orthonormal vectors, because this is the Euclidean

norm in the space of matrices. With the Frobenius norm it is a simple matter to

verify that

E =
ST'S

solves problem (7.4). Just note that E satisfies (B + E)s = y and that if E is any

other matrix that satisfies this equation then

|| E|| IF=||1 ST S 1Y -srli -1S1-, s II F I I S r 'F =1I $ F-

This E is the unique solution to (7.4) since II -|r is convex and the constraint in

(7.4) is linear. The explicit updating formula for B is therefore given by

B+=B+ 

.

s s

This is Broyden's [1985] rank-1 update formula; it is a rank-1 update because

rak (E) ! 1. Broyden's update is the most powerful quasi-Newton update for

the solution of systems of nonlinear equations. For minimization, however, there

are more suitable updates. A reason for this is that B is usually neither sym-

metric nor positive definite even though B might possess these properties. In

Section 4 we saw the importance of these properties in obtaining convergence

for descent methods. Therefore, we are very interested in updating formulas

which maintain symmetry and positive definiteness in the matrices B. One way

to obtain these properties is to require that B = RrR and obtain R+ = R + E

such that B+ = RrRf satisfies (7.3). It would be quite natural to seek the correc-

tion E as a solution to the problem
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(7.5) mini IIE lIF: (R + E) (R + E)s = y;J.

Variational techniques can be used to show that the correction E which solves

this problem is a rank-2 update to R. To our knowledge this approach has not

been tried in practice because there is a rank-1 correction E which meets our

requirements and has proven to be extremely successful. We might motivate a

derivation of this rank-1 update by considering the implications of the quasi-

Newton equation on the factors of B+. If B+ = RTR+ satisfies (7.3) then E must

satisfy

(7.6) (R+E)T v = y , (R+E)s =v , v Tv =yTs >0.

Conversely, if E satisfies (7.6) for a given vector v, then B = R+R+ satisfies

(7.3). Thus a reasonable alternative to solving problem (7.5) is to specify a vec-

tor v of norm (y s) and then obtain a correction matrix E which satisfies (7.6)

as well as

The solution to (7.7) for a given v is

E v (y - RTv 

)

Sv

and it follows that this E satisfies (7.6) if and only if v = TRs for some T. Since

we must have v Tv = y1 s, this condition determines r. We have thus shown that

(7.8) R+ = R + v(y -Rv)' , v = (ys) RsSv I||Rs ||1

induces a symmetric positive definite quasi-Newton update.

The updating formula we have just derived was discovered independently by

Broyden[1969,1970], Fletcher[1970], Goldfarb[1970], Shanno[1970], and is often

referred to as the BFGS formula. We have concentrated upon this particular

update because it appears to work best in practice. The derivation of the BFGS

update which we have presented is due to Dennis and Schnabel [1981]. Davidon

and Sorensen [1980] have provided another derivation of the BFGS update by

obtaining the quasi-Newton equation (7.6) as interpolation conditions on the gra-

dient of the local quadratic model, and then showing that v = rRs is a con-

sistent choice. However, while numerous derivations of this update formula have

been given, the superior performance of the BFGS update has not yet received a

satisfactory explanation.

A quasi-Newton method based on the BFGS update would generate a

sequence zx defined by xb+i = zk + pt where pt is the direction (7.1) and fBkij

is chosen by the BFGS formula. If Bo is symmetric and positive definite, and if a

satisfies the stopping rules SR(,?7), then ylsb is positive and thus tb is well
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defined and positive definite for k > 0. For this method Powell [1975] has shown

that if f .R"-R satisfies the assumptions of Theorem (4.15), and if f is convex

on the level set 0, then Vf (zk)j converges to zero. Moreover, if xk j converges

to z' and V2f (z') is positive definite, then Jxk j converges superlinearly to x'. In

practice this method converges for general functions f , so there is a wide gap

between this result and what is observed in practice.

At first sight, it would seem that Powell's result is a rather straightforward

extension of the analysis of Newton's method. However, this would be the case

only if we could show that the condition numbers of fBk are uniformly bounded.

Interestingly enough, Powell shows this, but only after convergence has been

established.

The form of the update (7.8) is quite amenable to stable numerical compu-

tation. In particular, it is possible to maintain the matrices R in triangular form.

This facilitates the solution of the system (7.1) and reduces the storage. The

reduction to triangular form can be accomplished by standard (see, for exam-

ple, Gill, Golub, Murray, and Saunders [1974]) matrix updating techniques. If R

is upper triangular, then a product of elementary rotations Q = Q1Q '''Q~

can be constructed in such a way that

(7.9) J+ = QR =R + vy - Riv

is also upper triangular. Since Q is orthogonal,

N+'I+= RQT QR+ = R+R.

and thus R+ is the required factor of B+. Since Q is the product of 2n elemen-

tary rotations, the arithmetic required in (7.9) is on the order of n2 floating

point operations. This is to be compared to the order of n operations required

to form B+ and then factor. Another advantage of keeping R in triangular form

is that the condition number of triangular matrices can easily be monitored.

This provides the opportunity to alter these matrices when extreme ill-

conditioning occurs.

8. Current Research.

It is fairly safe to say that Newton's method and quasi-Newton methods are

understood well enough to provide reliable software for general sma.l tc medium

size unconstrained minimization problems. Several subroutines are available

through software libraries and others are under development.

Currently, researchers are focusing much of their attention upon large

scale problems. The ground rules for what constitutes an effective algorithm can

change drastically when the number of variables becomes large. We have tacitly
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assumed that the solution of a linear system of order n is, at worst, comparable

in cost to the evaluation of the gradient and Hessian. This assumption may not

be valid in large scale problems, and then it is necessary to take advantage of

the special structure of the problem. With suitable modifications, Newton's

method can still be an effective tool for large scale problems. We have already

mentioned, in Section 6, one possible modification in connection with the esti-

mation of sparse Hessian matrices by gradient differences. Modifications can

also be made to the algorithms for determining the Newton direction. For exam-

ple, since the Newton methods of this paper only require the Cholesky decompo-

sition of a symmetric matrix, for sparse problems it is possible to reduce the

amount of work and storage required by this decomposition. This is a well under-

stood problem; see, for example, George and Liu [1979]. Another possibility is to

only determine an approximation to the Newton direction. This possibility is

explored, for example, by Dembo and Steihaug [1980].

So far modifications of quasi-Newton methods to account for sparsity have

not had the resounding success that these methods have had in the dense case.

This is despite intensive effort in this area. There may be fundamental reasons

for this as noted by Sorensen [1981]. However, it would seem that this subject is

just not fully understor'd at present, and thus this is still a very active research

area. The interested reader should consult Steihaug [1980] and Toint [1981] for

information and additional references.

The situation in greatest need of research at present arises when the Hes-

sian matrix cannot be stored in fast memory. Currently the method of choice for

this situation is a conjugate direction method. It would take a full article to

describe these methods. Fletcher [1980] has a nice introduction to the basic

ideas behind conjugate direction methods, while Buckley [1978a, 1978b] and Gill

and Murray [1979] describe some of the recent work in this area.

The development of methods for these very difficult and highly practical

situations hinges upon a thorough understanding of Newton's method. It is our

hope that this paper will provide a basis for work in these areas.
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