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Newton's Method for the Matrix Square Root*
By Nicholas J. Higham

Abstract. One approach to computing a square root of a matrix A is to apply Newton's
method to the quadratic matrix equation F( X) = X2 - A =0. Two widely-quoted matrix
square root iterations obtained by rewriting this Newton iteration are shown to have excellent
mathematical convergence properties. However, by means of a perturbation analysis and
supportive numerical examples, it is shown that these simplified iterations are numerically
unstable. A further variant of Newton's method for the matrix square root, recently proposed
in the literature, is shown to be, for practical purposes, numerically stable.

1. Introduction. A square root of an n X n matrix A with complex elements,
A e C"x", is a solution X e C"*" of the quadratic matrix equation

(1.1) F(X) = X2-A=0.
A natural approach to computing a square root of A is to apply Newton's method to
(1.1). For a general function G: CXn -* Cx", Newton's method for the solution of
G(X) = 0 is specified by an initial approximation X0 and the recurrence (see [14, p.
140], for example)

(1.2) Xk+l = Xk-G'{XkylG{Xk),       fc = 0,1,2,...,

where G' denotes the Fréchet derivative of G. Identifying

F(X+ H) = X2 - A +(XH + HX) + H2

with the Taylor series for F we see that F'(X) is a linear operator, F'(X):
Cx" ^ C"x", defined by

F'(X)H= XH+ HX.
Thus Newton's method for the matrix square root can be written

Xn given,

(1.3) XkHk + HkXk = A-Xf
(1.4) '' Xk+1 = Xk + Hk

Applying the standard local convergence theorem for Newton's method [14, p.
148], we deduce that the Newton iteration (N) converges quadratically to a square
root Xoi A ii \\X - XQ\\is sufficiently small and if the linear transformation F'(X)
is nonsingular. However, the most stable and efficient methods for solving Eq. (1.3),

(N):        Ak"k^"kAk    -     *k\ k = 0,1,2,....
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538 NICHOLAS J. HIGHAM

[1], [6], require the computation of a Schur decomposition of Xk, assuming Xk is
full. Since a square root of A can be obtained directly and at little extra cost once a
single Schur decomposition, that of A, is known, [2], [9], we see that in general
Newton's method for the matrix square root, in the form (N), is computationally
expensive.

It is therefore natural to attempt to "simplify" iteration (N). Since X commutes
with A = X2, a reasonable assumption (which we will justify in Theorem 1) is that
the commutativity relation

XkHk = Hkxk

holds, in which case (1.3) may be written

^Xk^k = 2HkXk = A ~ Xk >

and we obtain from (N) two new iterations

(1.5) (I):        Yk+l = \(Yk+YklA),

(1.6) (II):      Zk+l = h(Zk + AZ-k').

These iterations are well-known; see for example [2], [7, p. 395], [11], [12], [13].
Consider the following numerical example. Using iteration (I) on a machine with

approximately nine decimal digit accuracy, we attempted to compute a square root
of the symmetric positive definite Wilson matrix [16, pp. 93,123]

7     8     7"
5 6     5
6 10     9   '
5     9   10.

for which the 2-norm condition number k2(W) = WWW^W'1^ ~ 2984. Two imple-
mentations of iteration (I) were employed (for the details see Section 5). The first is
designed to deal with general matrices, while the second is for the case where A is
positive definite and takes full advantage of the fact that all iterates are (theoreti-
cally) positive definite (see Corollary 1). In both cases we took Y0 = /; as we will
prove in Theorem 2, for this starting value iteration (I) should converge quadrati-
cally to W1/2, the unique symmetric positive definite square root of W.

Denoting the computed iterates by Yk, the results obtained were as in Table 1.
Both implementations failed to converge; in the first, Y20 was unsymmetric and
indefinite. In contrast, a further variant of the Newton iteration, to be defined in
Section 4, converged to Wl/2 in nine iterations.

Clearly, iteration (I) is in some sense "numerically unstable". This instability was
noted by Laasonen [13] who, in a paper apparently unknown to recent workers in
this area, stated without proof that for a matrix with real, positive eigenvalues
iteration (I) " if carried out indefinitely, is not stable whenever the ratio of the largest
to the smallest eigenvalue of A exceeds the value 9". We wish to draw attention to
this important and surprising fact. In Section 3 we provide a rigorous proof of
Laasonen's claim. We show that the original Newton method (N) does not suffer
from this numerical instability and we identify in Section 4 an iteration, proposed in
[4], which has the computational simplicity of iteration (I) and yet does not suffer
from the instability which impairs the practical performance of (I).

W =
10
7
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NEWTON'S METHOD FOR THE MATRIX SQUARE ROOT 539

Table 1
Implementation 1, Implementation 2

k Wl/2 - Yk\\x \\W^2 - Yk\\x
0 4.9 4.9
1 1.1 X 101 1.1 X 101
2 3.6 3.6
3 6.7 X 10"1 6.7 X 10_1
4 3.3 X 10"2 3.3 X 10"2
5 4.3 X 10"4 4.3 X 10'4
6 3.4 X 10"5 6.7 X 10~7
7 9.3 X 10"4 1.4 X 10"6
8 2.5 X 10"2 1.6 X 10"5
9 6.7 X 10"1 2.0 X 10"4

10 1.8 X 101 2.4 X 10"3
11 4.8 X 102 2.8 X HT2
12 1.3 X 104 3.2 X 10"1
13 3.4 X 105 Error: Yk not positive definite
20 1.2 X 106

We begin by analyzing the mathematical convergence properties of the Newton
iteration.

2. Convergence of Newton's Method. In this section we derive conditions which
ensure the convergence of Newton's method for the matrix square root and we
establish to which square root the method converges for a particular set of starting
values. (For a classification of the set {X: X2 = A) see, for example, [9].)

First, we investigate the relationship between the Newton iteration (N) and its
offshoots (I) and (II). To begin, note that the Newton iterates Xk are well-defined if
and only if, for each k, Eq. (1.3) has a unique solution, that is, the linear
transformation F'(Xk) is nonsingular. This is so if and only if Xk and -Xk have no
eigenvalue in common [7, p. 194], which requires in particular that Xk be nonsingu-
lar.

Theorem 1. Consider the iterations (N), (I) and (II).  Suppose X0= Y0 = Z0
commutes with A and that all the Newton iterates Xk are well-defined. Then

(i) Xk commutes with A for all k,
(ii)Xk= Yk = Zkforallk.

Proof. We sketch an inductive proof of parts (i) and (ii) together. The case k = 0
is given. Assume the results hold for k. From the remarks preceding the theorem we
see that both the linear transformation F'(Xk), and the matrix Xk, are nonsingular.
Define

Gk = h{XklA-Xk).

Using XkA = AXk we have, from (1.3),

F'(Xk)Gk = F'(Xk)Hk.
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Thus Hk = Gk, and so from (1.4),

(2.1) Xk+x-Xk + Gk = ^Xk + XkU),
which commutes with A. It follows easily from (2.1) that Xk+1 = Yk+1 = Zk+1. D

Thus, provided the initial approximation X0 = Y0 = Z0 commutes with A and the
correction equation (1.3) is nonsingular at each stage, the Newton iteration (N) and
its variants (I) and (II) yield the same sequence of iterates. We now examine the
convergence of this sequence, concentrating for simplicity on iteration (I) with
starting value a multiple of the identity matrix. Note that the starting values Y0 = I
and Y0 = A lead to the same sequence Yx = \(I + A), Y2,_

For our analysis we assume that A is diagonalizable, that is, there exists a
nonsingular matrix Z such that
(2.2) Z-1/lZ = A = diag(A1,...,An),
where \x,...,Xn are the eigenvalues of A. The convenience of this assumption is
that it enables us to diagonalize the iteration. For, defining

(2.3) Dk = ZxYkZ
we have from (1.5),

(2.4) Dk+1 = \(z-lYkZ+(Z-xYkZ)-lZ'xAz) = \(Dk + D?A),

so that if D0 is diagonal, then by induction all the successive transformed iterates Dk
are diagonal too.

Theorem 2. Let A E C"Xn be nonsingular and diagonalizable, and suppose that
none of A 's eigenvalues is real and negative. Let

Y0 = ml,       m > 0.
Then, provided the iterates {Yk} in (1.5) are defined,

lim   Yk = X
£->oo

and

(2-5) \\Yk+l-X\\^^Ykx\\\\Yk-X\\2,
where X is the unique square root of A for which every eigenvalue has positive real part.

Proof. We will use the notation (2.2). In view of (2.3) and (2.4) it suffices to
analyze the convergence of the sequence {Dk}. D0 = ml is diagonal, so Dk is
diagonal for each k. Writing Dk = dmg(djk)) we see from (2.4) that

that is, (2.4) is essentially n uncoupled scalar Newton iterations for the square roots
(ht, 1 < /' < n.

Consider therefore the scalar iteration

z* + i - i(**+ «/**)•
We will use the relations [17, p. 84]

(2.6) zk + l±Ja~={zk±Ja-)2/(2zk),

(2.7) zi±i-^ = /f0_-J^\2i+1 = Y2t+1_

zk + 1 + fa       \z0+ fa
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NEWTON'S METHOD FOR THE MATRIX SQUARE ROOT 541

If a does not lie on the nonpositive real axis then we can choose 4a to have positive
real part, in which case it is easy to see that for real z0 > 0, |y| < 1. Consequently,
for a and z0 of the specified form we have from (2.7), provided that the sequence
{ zk} is defined,

lim zk = fa ,       Reyfa > 0.
&-»oo

Since the eigenvalues X¿ and the starting values dj0) = m > 0 are of the form of a
and z0, respectively, then

(2.8) lim Dk = A1/2 = diag(\y2),       ReX1/2 > 0,
k -»oo

and thus
hm  Yk = ZA1/2Z"1 = X

k -»oo

(provided the iterates {Yk} are defined), which is clearly a square root of A whose
eigenvalues have positive real part. The uniqueness of X follows from Theorem 4 in
[9].

Finally, we can use (2.6), with the minus sign, to deduce that

Dk+l-^2 = \Dk\Dk-^2)2;

performing a similarity transformation by Z gives

^k +1 ~ % =  2 *k    {Yk ~ X)  >

from which (2.5) follows on taking norms.   D
Theorem 2 shows, then, that under the stated hypotheses on A iterations (N), (I)

and (II) with starting value a multiple of the identity matrix, when defined, will
indeed converge: quadratically, to a particular square root of A the form of whose
spectrum is known a priori.

Several comments are worth making. First, we can use Theorem 4 in [9] to deduce
that the square root X in Theorem 2 is indeed a function of A, in the sense defined
in [5, p. 96]. (Essentially, B is a function of A if B can be expressed as a polynomial
in A.) Next, note that the proof of Theorem 2 relies on the fact that the matrix
which diagonalizes A also diagonalizes each iterate Yk. This property is maintained
for Yq an arbitrary function of A, and under suitable conditions convergence can
still be proved, but the spectrum ( + \j\,..., ± ^X7} of the limit matrix, if it exists,
will depend on Y0. Finally, we remark that Theorem 2 can be proved without the
assumption that A is diagonalizable, using, for example, the technique in [13].

We conclude this section with a corollary which applies to the important case
where A is Hermitian positive definite.

Corollary 1. Let A & C"Xn be Hermitian positive definite. If Y0 = ml, m > 0,
then the iterates {Yk} in (1.5) are all Hermitian positive definite, limjfe_00 Yk = X,
where X is the unique Hermitian positive definite square root of A, and (2.5) holds.

3. Stability Analysis. We now consider the behavior of Newton's method for the
matrix square root, and its variants (I) and (II), when the iterates are subject to
perturbations. We will regard these perturbations as arising from rounding errors
sustained during the evaluation of an iteration formula, though our analysis is quite
general.
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542 NICHOLAS J. HIGHAM

Consider first iteration (I) with Y0 = ml, m > 0, and make the same assumptions
as in Theorem 2. Let Yk denote the computed kth iterate, Yk~ Yk, and define

A* = Yk - Yk.
Our aim is to analyze how the error matrix Ak propagates at the (k + l)st stage
(note the distinction between A¿ and the "true" error matrix Yk - X). To simplify
the analysis we assume that no rounding errors are committed when computing
Yk+1, so that

(3.1) Yk+1 = \{Yk + YklA) = l(y, + A, +(Yk + Aj"1^).

Using the perturbation result [15, p. 188 ff.]

(3.2) (A + EX1 = A-1 - A-lEA~l + o(\\E\\2),

we obtain

Yk+1 = 2-{Yk + A, + YkU - YkAkYkxA) + 0(||AJ|2).

Subtracting (1.5) yields

(3-3) àk+1 = 1(A4 - Yk%kYkU) + 0(||AJ|2).

Using the notation (2.2) and (2.3), let

(3.4) Ak = ZxAkZ,

and transform (3.3) to obtain

(3-5) A,+1 = |(ÄÄ - D-k%kD^A) + 0(\\~Ak\\2).

From the proof of Theorem 2,

(3.6) Dk = diag(¿,<*>),

so with

(3-7) A,= (o,(f>),
Eq. (3.5) can be written elementwise as

%k+1) = *P*iP + 0(\\Rkf),       l<i,j*n,
where

w¿*>-i(l-X/(rf/*>J}*))).
Since Dk -* A1/2 as k -» oo (see (2.8)) we can write

(3.8) </<*> = A1/2 + t\k\

where e\k) -» 0 as k -* oo. Then,

(3.9) ^ = ¿(l-(X/X,.)l/2) + 0(£<*>),

where

(3.10) e^-maxle^l.
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To ensure the numerical stability of the iteration we require that the error amplifica-
tion factors it¡-k) be bounded in modulus by 1; hence we require, in particular, that

(3.11) i|l-(X/X,)1/2|<l,       1 </,;<«.

This is a severe restriction on the matrix A. For example, if A is Hermitian positive
definite the condition is equivalent to (cf. [13])

(3.12) k2(A)<9,

where the condition number k2(A) = H^IMM-1^-
To clarify the above analysis it is helpful to consider a particular example.

Suppose A is Hermitian positive definite, so that in (2.2) we can take Z = Q where
Q = (qv ...,qn)is unitary. Thus,

(3.13) ßMß = A = diag(A1,...,AI)),       Q*Q = I

and (cf. (2.3))

(3.14) Q*YkQ = Dk = diag(d¡k>).

Consider the special (unsymmetric) rank-one perturbation

A^ = e^*,       i+j\       ||Aj2 = e>0.

For this Lk the Sherman-Morrison formula [7, p. 3] gives

{Yk + Ak)-l = Yk'-Yk^kYk-\

Using this identity in (3.1) we obtain, on subtracting (1.5),

(3.15) Afc+1 = |(A, - Yk^kYklA),

that is, (3.3) with the order term zero. Using (3.13) and (3.14) in (3.15), we have

A* + i = \(Ak-{QD?Q*){eqiq*){QDklQ*)(QkQ*))

= \{Ak-eQD-k'e¡ej*DklAQ*)
I i   ,      \i  \        \\1
^-idY^idf-^

-       Xj
~2\       d^d^fk'

Let Yk = A1/2 (the Hermitian positive definite square root of A), so that Dk = A1/2,
and choose /', j so that X7/X¿ = k2(A). Then

\k+l = h(\-K2(A)l/2)Ak.

Assuming that Yk+2, Yk+3,..., like Yk+l, are computed exactly from the preceding
iterates, it follows that

Yk+r = A^ + \h(l-K2{Af/2)\Lk,        r> 0.

In this example, Yk is an arbitrary distance e > 0 away from A1/2 in the 2-norm, yet
if k2(A) > 9 the subsequent iterates diverge, growing unboundedly.
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Consider now the Newton iteration (N) with X0 = ml, m > 0, so that by
Theorem 1, Xk s Yk, and make the same assumptions as in Theorem 2. Then
(3.16) Xk-X^0   ask ^oo
(quadratically), where X is the square root of A defined in Theorem 2. Let Xk be
perturbed to Xk = Xk + Ak and denote the corresponding perturbed sequence of
iterates (computed exactly from Xk) by {Xk+r)r>0. The standard local convergence
theorem for Newton's method implies that, for \\Xk — X\\ sufficiently small, that is,
for k sufficiently large and ||A¿|| sufficiently small,

(3.17) Xk+r - X -+ 0    as r -* oo
(quadratically). From (3.16) and (3.17) it follows that

At+r = Xk+r - Xk+r -* 0    asr^oo.

Thus, unlike iteration (I), the Newton iteration (N) has the property that once
convergence is approached, a suitable norm of the error matrix Ak = Xk — Xk is not
magnified, but rather decreased, in succeeding iterations.

To summarize, for iterations (N) and (I) with initial approximation ml (m > 0),
our analysis shows how a small perturbation Ak in the A:th iterate is propagated at
the (k + l)st stage. For iteration (I), depending on the eigenvalues of A, a small
perturbation Ak in Yk may induce perturbations of increasing norm in succeeding
iterates, and the sequence {Yk} may "diverge" from the sequence of true iterates
{Yk}. The same conclusion applies to iteration (II) for which a similar analysis
holds. In contrast, for large k, the Newton iteration (N) damps a small perturbation
A, in Xk.

Our conclusion, then, is that in simplifying Newton's method to produce the
ostensibly attractive formulae (1.5) and (1.6), one sacrifices numerical stability of the
method.

4. A Further Newton Variant. The following matrix square root iteration is derived
in [4] using the matrix sign function:

P0 = A,Q0 = I,

(4.1) Pk,i = HPk + Q-k1)\ ,     ni ,(4-2) (m)- ß^Hß^-1))'        *-°'1-2--

It is easy to prove by induction (using Theorem 1) that if {Yk} is the sequence
computed from (1.5) with Y0 = I, then

(4.3) Pk = Yk

(4-4) Qk = A-%
k     1,2,-

Thus if A satisfies the conditions of Theorem 2 and the sequence {Pk,Qk} is
defined, then

hm Pk = X, Urn  Qk = X'1,
k—* oo k —» oo

where X is the square root of A defined in Theorem 2.
At first sight, iteration (III) appears to have no advantage over iteration (I). It is in

general no less computationally expensive; it computes simultaneously approxima-
tions to X and X~x, when probably only X is required; and intuitively the fact that
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NEWTON'S METHOD FOR THE MATRIX SQUARE ROOT 545

A is present only in the initial conditions, and not in the iteration formulae, is
displeasing. However, as we will now show, this "coupled" iteration does not suffer
from the numerical instability which vitiates iteration (I).

To parallel the analysis in Section 3 suppose the assumptions of Theorem 2 hold,
let Pk and Qk denote the computed iterates from iteration (III), define

Ek=   "k ~~ 'k> ?k~ Qk ~ Qk>
and assume that at the (k + l)st stage Pk + l and Qk+1 are computed exactly from
Pk and Qk. Then from (4.1) and (4.2), using (3.2), we have

h+i = ite + Ek + Qkl - ß^ß,-1) + o(i|iy2),

Qk + i = \{Qk + Fk + Pkl - Pk-lEkPkl) + 0(\\Ekf).

Subtracting (4.1) and (4.2), respectively, gives

(4-5) Ek+1 = \{Ek - QllFkQll) + 0{g2),

(4-6) Fk+1 = \{Fk - PklEkPk') + 0{g2),

where gk = max{||£t||, \\Fk\\}.
From (2.2), (2.3), (4.3), (4.4) and (3.6),

ZlPkZ = Dk,    ZxQkZ = A~lDk,    Dk = dmg{d^);
thus, defining

Ek — Z   EkZ,       Fk = Z   FkZ,
we can transform (4.5) and (4.6) into

Ëk+1 = \{Ék - D-kAFkD-kxA) + 0{g2),

Fk+l = h(Fk-D-k%D?) + 0(g2).
Written elementwise, using the notation

Ëk={èjp),       Fk=(f^),
these equations become

(4.7) *it+n - i(W-<$%*>) +o(á).
(4-8) f^'^Ur-ß^e^ + Oig2),
where

g(*> =    X'Xj    = (AX )1/2+ 6>(e(i))
'      dfk)d(k) J

and

ß.w =-=---+ 0(ew)
d¡k)d^     (Xt\jf

using (3.8) and (3.10). It is convenient to write Eqs. (4.7) and (4.8) in vector form:
(4.9) h\k+» = M{kW» + 0(gt),
where

•j
U
(k)f,
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and

M.<*> = -ij       2
-a (*)

-ß (*) 1
(A,Xy)

1/2

-(A,Xy)

1

1/2

+ 0(e<*>)

= M¡j + 0(e<*>).
It is easy to verify that the eigenvalues of Mtj are zero and one; denote a
corresponding pair of eigenvectors by x0 and Xj and let

If we make a further assumption that no new errors are introduced at the (k + 2)nd
stage of the iteration onwards (so that the analysis is tracing how an isolated pair of
perturbations at the kth stage is propagated), then for k large enough and gk small,
we have, by induction,
(4.10)       h\kj+r) « M¡jh\f M,r(a (k)x„ + a (k)

*)
,(*), r> 0.

While \\h{kj + 1)||j may exceed \\h^\ by the factor \\M$\ » W^ > 1 (taking
norms in (4.9)), from (4.10) it is clear that the vectors h\k+x U(k + 2)

U remain
approximately constant, that is, the perturbations introduced at the k th stage have
only a bounded effect on succeeding iterates.

Our analysis shows that iteration (III) does not suffer from the unstable error
propagation which affects iteration (I) and suggests that iteration (III) is, for
practical purposes, numerically stable.

In the next section we supplement the theory which has been given so far with
some numerical test results.

5. Numerical Examples. In this section we give some examples of the performance
in finite-precision arithmetic of iteration (I) (with Y0 = I) and iteration (HI).

When implementing the iterations we distinguished the case where A is symmetric
positive definite; since the iterates also possess this attractive property (see Corollary
1) it is possible to use the Choleski decomposition and to work only with the "lower
triangles" of the iterates.

To define our implementations, it suffices to specify our algorithm for evaluating
W = BlC, where B = Yk, C = A in iteration (I), and B = Pk or Qk, C = I in
iteration (III). For general A we used an LU factorization of B (computed by
Gaussian elimination with partial pivoting) to solve by substitution the linear
systems BW = C. For symmetric positive definite A we first formed B1, and then
computed the (symmetric) product B~lC; B~l was computed from the Choleski
decomposition B = LLT, by inverting L and then forming the (symmetric) product
B-i = LTL\

The operation counts for one stage of each iteration in our implementations,
measured in flops [7, p. 32] are as follows.

Table 2
Flops per stage: /feR" General A       Symmetric positive definite A

Iteration (I)
Iteration (III)

4n3/3
2«3
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The computations were performed on a Commodore 64 microcomputer with unit
roundoff [7, p. 33] u = 2"32 ~ 2.33 X 10-10. In the following X(A) denotes the
spectrum of A.

Example 1. Consider the Wilson matrix example given in Section 1. W^ is
symmetric positive definite and (k2(W)1/2 - l)/2 « 27, so the theory of Section 3
predicts that for this matrix iteration (I) may exhibit numerical instability and that
for large enough k

\Yk+i - Yk + 1\\x < 21\\Yk '/till = 27 y. H/l/2 1(5.1) \\Yk+1-W^2\\^\
Note from Table 1 that for Implementation 1 there is approximate equality
throughout in (5.1) for k > 6; this example supports the theory well. Strictly, the
analysis of Section 3 does not apply to Implementation 2, but the overall conclusion
is valid (essentially, the error matrices A¿ are forced to be symmetric, but they can
still grow as k increases).

Example 2 [8].

A = X(A) = {1,2,5,10}, k2(A) = 10.

Iterations (I) and (III) both converged in seven iterations.
Note that condition (3.12) is not satisfied by this matrix; thus the failure of this

condition to hold does not necessarily imply divergence of the computed iterates
from iteration (I).

Example 3.

A =
1

-1
1

-1

0
.01
-1
-1

0
0

100
-100

0
0

100
100

X(A)= {.01,1,100 ± 100/}.
Note that the lower quasi-triangular form of A is preserved by iterations (I) and
(III). Iteration (I) diverged while iteration (III) converged within ten iterations.
Briefly, iteration (I) behaved as follows.

Table 3

\Yk~ *-iiu
1
6
7
8
9

12

9.9 X 101
2.3 X 10"1
2.1 X 10"3
4.0 X 10"2
2.1
4.8 X 105

Example A [3].
0

1.31
1.06

-2.64

.07
-.36
2.86

-1.84

.27
1.21
1.49
-.24

-.33
.41

-1.34
-2.01

\(A)= {.03,3.03,-1.97 ± i
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Iteration (I) diverged, but iteration (III) converged in eight iterations to a real square
root (cf. [3] where a nonreal square root was computed).

Example 5 [8].

A =
4 1 1
2 4 1
0   1    4

X(A) = {3,3,6}; A is defective.

Both iterations converged in six steps.
We note that in Examples 3 and 4 condition (3.11) is not satisfied; the divergence

of iteration (I) in these examples is "predicted" by the theory of Section 3.

6. Conclusions. When A is a full matrix, Newton's method for the matrix square
root, defined in Eqs. (1.3) and (1.4), is unattractive compared to the Schur decom-
position approach described in [2], [9]. Iterations (I) and (II), defined by (1.5) and
(1.6), are closely related to the Newton iteration, since if the initial approximation
X0= Y0 = Z0 commutes with A, then the sequences of iterates {A^}, {Yk} and
{ Zk} are identical (see Theorem 1). In view of the relative ease with which Eqs. (1.5)
and (1.6) can be evaluated, these two Newton variants appear to have superior
computational merit. However, as our analysis predicts, and as the numerical
examples in Section 5 illustrate, iterations (I) and (II) can suffer from numerical
instability—sufficient to cause the sequence of computed iterates to diverge, even
though the corresponding exact sequence of iterates is mathematically convergent.
Since this happens even for well-conditioned matrices, iterations (I) and (II) must be
classed as numerically unstable; they are of little practical use.

Iteration (III), defined by Eqs. (4.1) and (4.2), is also closely related to the Newton
iteration and was shown in Section 4 to be numerically stable under suitable
assumptions. In our practical experience (see Section 5) iteration (III) has always
performed in a numerically stable manner.

As a means of computing a single square root, of the form described in Theorem
2, iteration (III) can be recommended: it is easy to code and it does not require the
use of sophisticated library routines (important in a microcomputer environment, for
example). In comparison, the Schur method [2], [9] is more powerful, since it yields
more information about the problem and it can be used to determine a " well-condi-
tioned" square root (see [9]); it has a similar computational cost to iteration (III) but
it does require the computation of a Schur decomposition of A.

Since doing this work, we have developed a new method for computing the square
root Ax/1 of a symmetric positive definite matrix A; see [10]. The method is related
to iteration (I) and the techniques of this paper can be used to show that the method
is numerically stable.
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