Newton Method on Riemannian Manifolds: Covariant Alpha-Theory.

Jean-Pierre Dedieu ${ }^{a}$, Pierre Priouret a, and Gregorio Malajovich ${ }^{c}$
${ }^{a}$ MIP. Département de Mathématique, Université Paul Sabatier, 31062 Toulouse cedex 04, France (dedieu@mip.ups-tlse.fr).
${ }^{b}$ MIP. Département de Mathématique, Université Paul Sabatier, 31062 Toulouse cedex 04, France (priouret@mip.ups-tlse.fr).
${ }^{c}$ Departamento de Matemática Aplicada, Universidade Federal de Rio de Janeiro, Caixa Postal 68530, CEP 21945-970, Rio de Janeiro, RJ, Brazil (gregorio@labma.ufrj.br)

In this talk we consider quantitative aspects of Newton method for finding zeros of analytic mappings $f: M_{n} \rightarrow R^{n}$ and analytic vector fields $X: M_{n} \rightarrow T M_{n}$ defined on a real complete analytic Riemannian manifold $M_{n} ; n$ is its dimension and $T M_{n}$ denotes its tangent bundle. We extend to this case Smale's alpha-theory introduced in [15], [16] and [17].

The Newton operator associated with f is defined by

$$
N_{f}(z)=\exp _{z}\left(-D f(z)^{-1} f(z)\right)
$$

where $\exp _{z}: T_{z} M_{n} \rightarrow M_{n}$ denotes the exponential map. When, instead of a mapping we consider a vector field X, in order to define Newton method, we resort to an object studied in differential geometry; namely, the covariant derivative of vector fields denoted here by $D X$. We let

$$
N_{X}(z)=\exp _{z}\left(-D X(z)^{-1} X(z)\right) .
$$

These definitions coincide with the usual one when $M_{n}=R^{n}$ because $\exp _{z}(u)=z+u$ and also because, in this context, the covariant derivative is just the usual derivative.

The first to consider Newton method on a manifold is Rayleigh 1899 [7] who defined what we call today "Rayleigh Quotient Iteration" which is in fact a Newton iteration for a vector field on the sphere. Then Shub 1986 [8] defined Newton's method for the problem of finding the zeros of a vector field on a manifold and used retractions to send a neighborhood of the origin in the tangent space onto the manifold itself. In our paper we do not use general retractions but exponential maps. Udriste 1994 [19] studied Newton's method to find the zeros of a gradient vector field defined on a Riemannian manifold; Owren and Welfert 1996 [6] defined Newton iteration for solving the equation $F(x)=0$ where F is a map from a Lie group to its corresponding Lie algebra; Smith 1994 [18] and Edelman-Arias-Smith 1998 [3] developed Newton and conjugate gradient algorithms on the Grassmann and Stiefel manifolds. These authors define Newton's method via the exponential map like we do here. Shub 1993 [9], Shub and Smale 1993-1996 [10], [11], [12], [13], [14], Malajovich 1994 [5], Dedieu and Shub 2000 [2] introduce and study Newton's method on projective spaces and their products. Another paper about this subject is Adler-Dedieu-Margulies-Martens-Shub 2001 [1] where qualitative aspects of Newton method on Riemannian manifolds are investigated for both mappings and vector fields with an application to a geometric model for the human spine represented as a 18-tuple of 3×3 orthogonal matrices. Recently Ferreira-Svaiter [4] gave a Kantorovich like theorem for Newton method for vector fields defined on Riemannian manifolds.

Definition 1. Let given a map $f: M_{n} \rightarrow R^{n}$ and a vector field $X: M_{n} \rightarrow T M_{n}$. For any point $z \in M_{n}$ we let

$$
\gamma(f, z)=\sup _{k \geq 2}\left\|D f(z)^{-1} \frac{D^{k} f(z)}{k!}\right\|_{z}^{1 / k-1} \quad \text { and } \gamma(X, z)=\sup _{k \geq 2}\left\|D X(z)^{-1} \frac{D^{k} X(z)}{k!}\right\|_{z}^{1 / k-1}
$$

We also let $\gamma(f, z)=\infty$ when $D f(z)$ is not invertible, idem for $\gamma(X, z)$.
Here $D^{k} f(z)$ (resp. $D^{k} X(z)$) denotes the k-th covariant derivative of f (resp. X) at $z,\|u\|_{z}$ is the norm of $u \in T_{z} M_{n}$ with respect to the Riemannian structure and $\left\|D f(z)^{-1} D^{k} f(z)\right\|_{z}$ (resp. $\left\|D X(z)^{-1} D^{k} X(z)\right\|_{z}$) is the norm of this k-th multilinear operator $\left(T_{z} M_{n}\right)^{k} \rightarrow T_{z} M_{n}$ and d the Riemannian distance on M_{n}.

Definition 2. We denote by $\mathbf{r}_{z}>0$ the radius of injectivity of the exponential map at z. Thus $\exp _{z}: B_{T_{z}}\left(0, \mathbf{r}_{z}\right) \rightarrow B_{M_{n}}\left(z, \mathbf{r}_{z}\right)$ is one to one $(B(u, r)$ is the open ball about u with radius r).

Definition 3. For any $\zeta \in M_{n}$

$$
K_{\zeta}=\sup \frac{d\left(\exp _{z}(u), \exp _{z}(v)\right)}{\|u-v\|_{z}}
$$

where the supremum is taken for all $z \in B_{M_{n}}\left(\zeta, \mathbf{r}_{\zeta}\right)$, and $u, v \in T_{z} M_{n}$ with $\|u\|_{z}$ and $\|v\|_{z} \leq \mathbf{r}_{\zeta}$), with \mathbf{r}_{ζ} the radius of injectivity at ζ.

Our first main theorem relates the size of the quadratic attraction basin of a zero ζ of f to the invariants $\mathbf{r}_{z}>0, \gamma(f, \zeta)$ and K_{ζ}.

Theorem 1. Let $f: M_{n} \rightarrow R^{n}$ be analytic. Suppose that $f(\zeta)=0$ and $D f(\zeta)$ is an isomorphism. Let

$$
R(f, \zeta)=\min \left(\mathbf{r}_{\zeta}, \frac{K_{\zeta}+2-\sqrt{K_{\zeta}^{2}+4 K_{\zeta}+2}}{2 \gamma(f, \zeta)}\right)
$$

If $d(z, \zeta) \leq R(f, \zeta)$ then Newton sequence $z_{k}=N_{f}^{(k)}(z)$ is defined for all $k \geq 0$, and

$$
d\left(z_{k}, \zeta\right) \leq\left(\frac{1}{2}\right)^{2^{k}-1} d(z, \zeta)
$$

When $M_{n}=R^{n}$ equipped with the usual metric structure, the radius of injectivity is $\mathbf{r}_{\zeta}=\infty$ and $K_{\zeta}=1$. Thus $R(f, \zeta)=(3-\sqrt{7}) / 2 \gamma(f, \zeta)$ like in Smale's point estimates. The second theorem presented here is the following

Definition 4. We let $\beta(f, z)=\left\|D f(z)^{-1} f(z)\right\|_{z}$ and $\alpha(f, z)=\beta(f, z) \gamma(f, z)$. We give to $\beta(f, z)$ and $\alpha(f, z)$ the value ∞ when $D f(z)$ is singular.

Theorem 2. Let $f: M_{n} \rightarrow R^{n}$ be analytic. Let us denote $\sigma=\sum_{k=0}^{\infty} 2^{1-2^{k}}=1.632 \ldots$ Let $z \in M_{n}$ be such that

$$
\beta(f, z) \leq \mathbf{r}_{y} \text { for all } y \in B_{M_{n}}(z, \sigma \beta(f, z))
$$

There is a universal constant $\alpha_{0}>0$ with the following property: if $\alpha(f, z)<\alpha_{0}$ then Newton sequence $z_{0}=z, z_{k+1}=N_{f}\left(z_{k}\right)$ is defined for all integers $k \geq 0$ and converges to a zero ζ of f. Moreover

$$
d\left(z_{k+1}, z_{k}\right) \leq\left(\frac{1}{2}\right)^{2^{k}-1} \beta(f, z)
$$

and

$$
d(\zeta, z) \leq \sigma \beta(f, z) .
$$

The case of vector fields is treated similarly, we have:
Theorem 3. Let $X: M_{n} \rightarrow T M_{n}$ be an analytic vector field. Suppose that $X(\zeta)=0$ and $D X(\zeta)$ is an isomorphism. Let

$$
R(X, \zeta)=\min \left(\mathbf{r}_{\zeta}, \frac{K_{\zeta}+2-\sqrt{K_{\zeta}^{2}+4 K_{\zeta}+2}}{2 \gamma(X, \zeta)}\right) .
$$

If $d(z, \zeta) \leq R(X, \zeta)$ then Newton sequence $z_{k}=N_{X}^{(k)}(z)$ is defined for all $k \geq 0$, and

$$
d\left(z_{k}, \zeta\right) \leq\left(\frac{1}{2}\right)^{2^{k}-1} d(z, \zeta)
$$

The invariants β and α for vector fields are defined similarly:
Definition 5. We let

$$
\beta(X, z)=\left\|D X(z)^{-1} X(z)\right\|_{z}
$$

and

$$
\alpha(X, z)=\beta(X, z) \gamma(X, z) .
$$

We give to $\beta(X, z)$ and $\alpha(X, z)$ the value ∞ when $D X(z)$ is singular.
Theorem 4. Let $X: M_{n} \rightarrow T M_{n}$ be an analytic vector field. Let $z \in M_{n}$ be such that

$$
\beta(X, z) \leq \mathbf{r}_{y} \text { for all } y \in B_{M_{n}}(z, \sigma \beta(X, z)) .
$$

There is a universal constant $\alpha_{0}>0$ such that: if $\alpha(X, z)<\alpha_{0}$ then Newton sequence $z_{0}=z, z_{k+1}=N_{X}\left(z_{k}\right)$ is defined for all integers $k \geq 0$ and converges to a zero ζ of X. Moreover

$$
d\left(z_{k+1}, z_{k}\right) \leq\left(\frac{1}{2}\right)^{2^{k}-1} \beta(X, z)
$$

and

$$
d(\zeta, z) \leq \sigma \beta(X, z) .
$$

Acknowledgments. Part of this work was carried out when J.-P. Dedieu and G. Malajovich were visiting City University of Hong-Kong.

References

[1] Adler R., J.-P. Dedieu, J. Margulies, M. Martens and M. Shub, Newton Method on Riemannian Manifolds and a Geometric Model for the Human Spine. To appear in IMA Journal on Numerical Analysis.
[2] Dedieu, J.-P. and M. Shub, Multihomogeneous Newton's Method. Mathematics of Computation, 69 (2000) 1071-1098.
[3] Edelman, A., T. Arias and S. Smith, The Geometry of Algorithms with Orthogonality Constraints, SIAM J. Matrix Anal. Appl. 20 (1998) 303-353.
[4] Ferreira O., B. Svaiter, Kantorovich's Theorem on Newton's Method in Riemannian Manifolds, to appear in: Journal of Complexity.
[5] Malajovich, G., On Generalized Newton Algorithms, Theoretical Computer Science, (1994), vol. 133, pp.65-84.
[6] Owren, B. and B. Welfert, The Newton Iteration on Lie Groups, Preprint, 1996.
[7] Rayleigh, J. W. Strutt On the Calculation of the Frequency of Vibration of a System in its Gravest Mode, with Examples from Hydrodynamics. The Philosophical Magazine 47 (1899) 556-572.
[8] Shub, M., Some Remarks on Dynamical Systems and Numerical Analysis, in: Dynamical Systems and Partial Differential Equations, Proceedings of VII ELAM (L. Lara-Carrero and J. Lewowicz eds.), Equinoccio, Universidad Simon Bolivar, Caracas, 1986, 69-92.
[9] Shub, M., Some Remarks on Bezout's Theorem and Complexity, in From Topology to Computation: Proceedings of the Smalefest, Marsden, J.E., M. W. Hirsch and M. Shub eds. Springer, 1993, pp. 443-455.
[10] Shub, M., S. Smale, Complexity of Bézout's Theorem I: Geometric Aspects, J. Am. Math. Soc. (1993) 6 pp. 459-501.
[11] Shub, M., S. Smale, Complexity of Bézout's Theorem II: Volumes and Probabilities in: Computational Algebraic Geometry, F. Eyssette and A. Galligo eds., em Progress in Mathematics, vol. 109, Birkhäuser, 1993, 267-285.
[12] Shub, M., S. Smale, Complexity of Bézout's Theorem III: Condition Number and Packing, J. of Complexity (1993) vol. 9, pp 4-14.
[13] Shub, M., S. Smale, Complexity of Bezout's Theorem IV: Probability of Success, Extensions, SIAM J. Numer. Anal. (1996) vol. 33, pp. 128-148.
[14] Shub, M., S. Smale, Complexity of Bézout's Theorem V: Polynomial Time, Theoretical Computer Science, (1994) vol. 133, pp.141-164.
[15] Smale, S., On the Efficiency of Algorithms of Analysis, Bull. A.M.S. (1985) vol. 13 pp. 87-121
[16] Smale, S., Algorithms for Solving Equation, in: Proceedings of the International Congress of Mathematicians, A.M.S. pp. 172-195 1986.
[17] Smale, S., Newton's Method Estimates from Data at One Point in: The Merging of Disciplines: New Directions in Pure, Applied and Computational Mathematics (R. Ewing, K. Gross, and C. Martin eds.), Springer 1986.
[18] Smith, S., Optimization Techniques on Riemannian Manifolds, in: Fields Institute Communications, vol. 3, AMS, 113-146, 1994.
[19] Udriste, C., Convex Functions and Optimization Methods on Riemannian Manifolds, Kluwer, 1994.

