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aMIP. Département de Mathématique, Université Paul Sabatier, 31062 Toulouse cedex 04, France
(dedieu@mip.ups-tlse.fr).
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In this talk we consider quantitative aspects of Newton method for finding zeros of analytic
mappings f : Mn → Rn and analytic vector fields X : Mn → TMn defined on a real
complete analytic Riemannian manifold Mn; n is its dimension and TMn denotes its
tangent bundle. We extend to this case Smale’s alpha-theory introduced in [15], [16] and
[17].

The Newton operator associated with f is defined by

Nf (z) = expz(−Df(z)−1f(z))

where expz : TzMn → Mn denotes the exponential map. When, instead of a mapping
we consider a vector field X, in order to define Newton method, we resort to an object
studied in differential geometry; namely, the covariant derivative of vector fields denoted
here by DX. We let

NX(z) = expz(−DX(z)−1X(z)).

These definitions coincide with the usual one when Mn = Rn because expz(u) = z+ u
and also because, in this context, the covariant derivative is just the usual derivative.

The first to consider Newton method on a manifold is Rayleigh 1899 [7] who defined
what we call today ”Rayleigh Quotient Iteration” which is in fact a Newton iteration for
a vector field on the sphere. Then Shub 1986 [8] defined Newton’s method for the prob-
lem of finding the zeros of a vector field on a manifold and used retractions to send a
neighborhood of the origin in the tangent space onto the manifold itself. In our paper we
do not use general retractions but exponential maps. Udriste 1994 [19] studied Newton’s
method to find the zeros of a gradient vector field defined on a Riemannian manifold;
Owren and Welfert 1996 [6] defined Newton iteration for solving the equation F (x) = 0
where F is a map from a Lie group to its corresponding Lie algebra; Smith 1994 [18]
and Edelman-Arias-Smith 1998 [3] developed Newton and conjugate gradient algorithms
on the Grassmann and Stiefel manifolds. These authors define Newton’s method via the
exponential map like we do here. Shub 1993 [9], Shub and Smale 1993-1996 [10], [11],
[12], [13], [14], Malajovich 1994 [5], Dedieu and Shub 2000 [2] introduce and study New-
ton’s method on projective spaces and their products. Another paper about this subject
is Adler-Dedieu-Margulies-Martens-Shub 2001 [1] where qualitative aspects of Newton
method on Riemannian manifolds are investigated for both mappings and vector fields
with an application to a geometric model for the human spine represented as a 18−tuple
of 3×3 orthogonal matrices. Recently Ferreira-Svaiter [4] gave a Kantorovich like theorem
for Newton method for vector fields defined on Riemannian manifolds.
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Definition 1. Let given a map f : Mn → Rn and a vector field X : Mn → TMn. For any
point z ∈Mn we let

γ(f, z) = sup
k≥2

∥∥∥∥∥Df(z)−1D
kf(z)
k!

∥∥∥∥∥
1/k−1

z

and γ(X, z) = sup
k≥2

∥∥∥∥∥DX(z)−1D
kX(z)
k!

∥∥∥∥∥
1/k−1

z

.

We also let γ(f, z) =∞ when Df(z) is not invertible, idem for γ(X, z).

Here Dkf(z) (resp. DkX(z)) denotes the k−th covariant derivative of f (resp. X)
at z, ‖u‖z is the norm of u ∈ TzMn with respect to the Riemannian structure and
‖Df(z)−1Dkf(z)‖z (resp. ‖DX(z)−1DkX(z)‖z) is the norm of this k−th multilinear
operator (TzMn)k → TzMn and d the Riemannian distance on Mn.

Definition 2. We denote by rz > 0 the radius of injectivity of the exponential map at z.
Thus expz : BTz(0, rz) → BMn(z, rz) is one to one (B(u, r) is the open ball about u with
radius r).

Definition 3. For any ζ ∈Mn

Kζ = sup
d(expz(u), expz(v))

‖u− v‖z

where the supremum is taken for all z ∈ BMn(ζ, rζ), and u, v ∈ TzMn with ‖u‖z and
‖v‖z ≤ rζ), with rζ the radius of injectivity at ζ.

Our first main theorem relates the size of the quadratic attraction basin of a zero ζ of
f to the invariants rz > 0, γ(f, ζ) and Kζ .

Theorem 1. Let f : Mn → Rn be analytic . Suppose that f(ζ) = 0 and Df(ζ) is an
isomorphism. Let

R(f, ζ) = min

rζ ,
Kζ + 2−

√
K2
ζ + 4Kζ + 2

2γ(f, ζ)

 .
If d(z, ζ) ≤ R(f, ζ) then Newton sequence zk = N

(k)
f (z) is defined for all k ≥ 0, and

d(zk, ζ) ≤
(

1
2

)2k−1

d(z, ζ).

When Mn = Rn equipped with the usual metric structure, the radius of injectivity is
rζ = ∞ and Kζ = 1. Thus R(f, ζ) = (3 −

√
7)/2γ(f, ζ) like in Smale’s point estimates.

The second theorem presented here is the following

Definition 4. We let β(f, z) = ‖Df(z)−1f(z)‖z and α(f, z) = β(f, z)γ(f, z). We give to
β(f, z) and α(f, z) the value ∞ when Df(z) is singular.

Theorem 2. Let f : Mn → Rn be analytic. Let us denote σ =
∑∞
k=0 21−2k = 1.632 . . . Let

z ∈Mn be such that

β(f, z) ≤ ry for all y ∈ BMn(z, σβ(f, z)).
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There is a universal constant α0 > 0 with the following property: if α(f, z) < α0 then
Newton sequence z0 = z, zk+1 = Nf (zk) is defined for all integers k ≥ 0 and converges to
a zero ζ of f . Moreover

d(zk+1, zk) ≤
(

1
2

)2k−1

β(f, z)

and
d(ζ, z) ≤ σβ(f, z).

The case of vector fields is treated similarly, we have:

Theorem 3. Let X : Mn → TMn be an analytic vector field. Suppose that X(ζ) = 0 and
DX(ζ) is an isomorphism. Let

R(X, ζ) = min

rζ ,
Kζ + 2−

√
K2
ζ + 4Kζ + 2

2γ(X, ζ)

 .
If d(z, ζ) ≤ R(X, ζ) then Newton sequence zk = N

(k)
X (z) is defined for all k ≥ 0, and

d(zk, ζ) ≤
(

1
2

)2k−1

d(z, ζ).

The invariants β and α for vector fields are defined similarly:

Definition 5. We let
β(X, z) = ‖DX(z)−1X(z)‖z

and
α(X, z) = β(X, z)γ(X, z).

We give to β(X, z) and α(X, z) the value ∞ when DX(z) is singular.

Theorem 4. Let X : Mn → TMn be an analytic vector field. Let z ∈Mn be such that

β(X, z) ≤ ry for all y ∈ BMn(z, σβ(X, z)).

There is a universal constant α0 > 0 such that: if α(X, z) < α0 then Newton sequence
z0 = z, zk+1 = NX(zk) is defined for all integers k ≥ 0 and converges to a zero ζ of X.
Moreover

d(zk+1, zk) ≤
(

1
2

)2k−1

β(X, z)

and
d(ζ, z) ≤ σβ(X, z).
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