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NEWTON-TYPE METHODS FOR OPTIMIZATION PROBLEMS
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Abstract. We consider equality-constrained optimization problems, where a given solution
may not satisfy any constraint qualification but satisfies the standard second-order sufficient con-
dition for optimality. Based on local identification of the rank of the constraints degeneracy via
the singular-value decomposition, we derive a modified primal-dual optimality system whose solu-
tion is locally unique, nondegenerate, and thus can be found by standard Newton-type techniques.
Using identification of active constraints, we further extend our approach to mixed equality- and
inequality-constrained problems, and to mathematical programs with complementarity constraints
(MPCC). In particular, for MPCC we obtain a local algorithm with quadratic convergence under
the second-order sufficient condition only, without any constraint qualifications, not even the special
MPCC constraint qualifications.
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1. Introduction. We consider the mathematical programming problem

minimize f(x)
subject to F (x) = 0, G(x) ≤ 0,

(1.1)

where f : Rn → R is a smooth function, and F : Rn → Rl and G : Rn → Rm

are smooth mappings. Let x̄ ∈ Rn be a local solution of (1.1). For the superlinear
convergence of the method presented below, we shall need the problem data to be
twice differentiable near x̄, with the second derivatives being continuous at x̄. For
quadratic convergence, second derivatives should be Lipschitz continuous near x̄.

The stationary points of problem (1.1) and the associated (normal) Lagrange
multipliers are characterized by the Karush–Kuhn–Tucker (KKT) optimality system

∂L

∂x
(x, λ, µ) = 0, F (x) = 0, µ ≥ 0, G(x) ≤ 0, 〈µ, G(x)〉 = 0,(1.2)

where

L : Rn × Rl × Rm → R, L(x, λ, µ) = f(x) + 〈λ, F (x)〉 + 〈µ, G(x)〉

is the standard Lagrangian function of problem (1.1).
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For a local solution x̄ of (1.1), let Ȳ be the set of Lagrange multipliers associated
with x̄; that is,

Ȳ = Ȳ (x̄) =

{

(λ, µ) ∈ Rl × Rm

∣

∣

∣

∣

∂L

∂x
(x̄, λ, µ) = 0, µ ≥ 0, 〈µ, G(x̄)〉 = 0

}

.

If nonempty, Ȳ is a convex polyhedral set. As is well known, Ȳ is nonempty and
bounded if and only if the Mangasarian–Fromovitz constraint qualification (MFCQ)
holds:

rankF ′(x̄) = l(1.3)

and

∃ ξ̄ ∈ kerF ′(x̄) such that G′
Ī(x̄)ξ̄ < 0,

where Ī = Ī(x̄) = {i = 1, . . . ,m | Gi(x̄) = 0} is the set of indices of inequality
constraints active at x̄. If the stronger linear independence constraint qualification
(LICQ) holds, i.e.,

the rows of F ′(x̄), G′
Ī(x̄) are linearly independent,

then Ȳ is a singleton. At the same time, as is well known, violation of MFCQ can
give rise to the situation when Ȳ = ∅.

In this paper, we are concerned with problem (1.1) (or system (1.2)) in the fol-
lowing setting: We do not assume any constraint qualification (CQ) to hold at the
solution x̄; at the same time, we assume the existence of a pair of Lagrange multipliers
(λ̄, µ̄) ∈ Ȳ and the standard second-order sufficient condition (SOSC) with this pair
of multipliers:

〈

∂2L

∂x2
(x̄, λ̄, µ̄)ξ, ξ

〉

> 0 ∀ ξ ∈ K̄ \ {0},(1.4)

where K̄ is the critical cone of problem (1.1) at x̄; that is,

K̄ = K̄(x̄) = {ξ ∈ kerF ′(x̄) | 〈f ′(x̄), ξ〉 ≤ 0, G′
Ī(x̄)ξ ≤ 0}.

The case of possible violation of standard CQs has recently received much atten-
tion in the literature [40, 20, 21, 16, 35, 1, 2, 3, 23, 17, 5, 4, 24, 41, 42, 43]. As dis-
cussed in some of those references, the motivation for considering such irregular cases
comes from various problems, where either standard CQs are inherently violated (e.g.,
mathematical programs with equilibrium constraints (MPEC) [34, 37, 3, 36, 38, 18])
or constraints tend to be degenerate or “nearly” (numerically) degenerate (e.g., some
classes of large-scale problems). Of interest are both theoretical properties of irregular
problems as well as convergence of optimization algorithms applied to such problems
(and possible modification of the algorithms to improve robustness). We note that
most of the cited non-MPEC literature (actually, all except for [21, 20, 2, 17]) deal
with the case when LICQ can be violated (or, more generally, the multiplier can be
nonunique), but MFCQ still holds. We comment on those issues in more detail in
section 5, where some comparisons are also given.

We emphasize that in this paper, we do not assume any CQ. Hence, the existence
of multipliers is not automatic. At the same time, our development relies on the
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existence of the pair of multipliers (λ̄, µ̄). We point out that the situation when CQs
are violated but the multipliers exist is not unusual and deserves special consideration.
For instance, it is known that for purely equality-constrained problems, multipliers
exist generically, provided the number of variables is large enough with respect to
the number of constraints [6]. Also, much of the MPEC literature (see, for example,
[36, 18]) is concerned with the case of normal Lagrange multipliers. Even though their
existence cannot be guaranteed, it turns out that in many cases of MPEC interest the
multipliers do exist.

The rest of the paper is organized as follows. In section 2, we introduce the main
ideas for the purely equality-constrained problem. The local algorithm we propose
is well defined and attains superlinear/quadratic convergence under the sole assump-
tion of SOSC. It is based on the local analysis of the constraints degeneracy via the
singular-value decomposition, and on using this information to construct a modified
(optimality) system of nonlinear equations whose solution is locally unique and non-
degenerate. In section 3, we extend the method to the case of mixed equality and
inequality constraints via the identification of constraints active at a solution. We
note that SOSC is again sufficient for this construction. An application to mathemat-
ical programs with complementarity constraints (MPCC) is discussed in section 4,
together with two examples to illustrate this application. In particular, we show that
our approach leads to a local quadratically convergent algorithm even if the special
MPCC constraint qualifications do not hold (classical CQs are automatically violated
in MPCC). In section 5, we compare our approach with some other algorithms, which
either do not require CQs or use some relaxed CQs.

2. Equality-constrained problems. We start our discussion with the special
case of the purely equality-constrained problem

minimize f(x)
subject to F (x) = 0.

(2.1)

In this case,

L(x, λ) = f(x) + 〈λ, F (x)〉, x ∈ Rn, λ ∈ Rl,

and the KKT system (1.2) reduces to the Lagrange system of nonlinear equations

Φ(x, λ) = 0,(2.2)

where

Φ : Rn × Rl → Rn × Rl, Φ(x, λ) =

(

∂L

∂x
(x, λ), F (x)

)

.

The set of Lagrange multipliers associated with a local solution x̄ of (2.1) is the
solution set of the system of linear equations:

Ȳ =
{

λ ∈ Rl
∣

∣ (F ′(x̄))Tλ = −f ′(x̄)
}

.(2.3)

For (2.1), MFCQ and LICQ are the same: They both reduce to (1.3). Furthermore, we
have that Ȳ is a singleton if and only if (1.3) holds. Thus, without (1.3), Ȳ cannot be a
singleton (in which case Ȳ is a plane parallel to ker(F ′(x̄))T = (imF ′(x̄))⊥). It follows
that without (1.3), a solution (x̄, λ̄) of (2.2) cannot be isolated, Φ′(x̄, λ̄) is necessarily
singular, and one cannot use standard Newton-type methods for solving (2.2) (or
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(2.1)). For future discussion, recall that a Newton method for (2.2) is equivalent to
the sequential quadratic programming (SQP) algorithm applied to (2.1); see, e.g., [8].

Thus, we face the situation where any solution of (2.2) of the form (x̄, λ), λ ∈ Rl,
is expected to be degenerate. It is important to comment that a class of methods de-
veloped for computing degenerate solutions of general systems of nonlinear equations
(see [27, 9]; see also [26, section 2] and the references therein) is not applicable in this
context for some principal reasons. Specifically, it can be shown that the so-called
nonsingularity of the second differential [9] is automatically violated for the Lagrange
optimality system (2.2) in the situation where SOSC holds but (1.3) does not. Thus,
while this class of methods for solving degenerate equations can be useful elsewhere,
it does not help in solving (2.2) (or (2.1)) when LICQ is violated. Another possibility
is to use the regularization methods, e.g., of the Levenberg–Marquardt type, such as
those in [17]. This class of methods can attain the superlinear convergence under the
stated assumptions. However, the regularization parameter has to be driven to zero,
thus making the subproblems locally numerically ill-conditioned whenever standard
regularity conditions do not hold. In this paper, we propose a different approach, one
not based on the Levenberg–Marquardt type of regularization.

Suppose, for a moment, that x̄ and λ̄ ∈ Ȳ are known. Let Π̄ be the orthogonal
projector in Rl onto (imF ′(x̄))⊥ = ker(F ′(x̄))T, i.e.,

Π̄2 = Π̄, im Π̄ = ker(F ′(x̄))T, ker Π̄ = imF ′(x̄),(2.4)

and consider the following modification of system (2.2):

(F ′(x))Tλ = −f ′(x),

F (x) + Π̄(λ− λ̄) = 0.
(2.5)

Obviously, (x̄, λ̄) is a solution of (2.5). Let (x̄, λ) be any other solution. Then it holds
that

λ− λ̄ ∈ ker(F ′(x))T = (imF ′(x̄))⊥

λ− λ̄ ∈ ker Π̄ = imF ′(x̄)

}

⇒ λ− λ̄ = 0.

Hence, λ̄ is the unique solution of (2.5) associated with x̄.
Of course, x̄ and Ȳ are unknown. The idea is to construct a suitable approxima-

tion of the system (2.5) using the information available at some (x̃, λ̃) ∈ Rn × Rl,
which is close enough to x̄ and some λ̄ ∈ Ȳ . We shall modify the system (2.2) in

such a way that the new system will have an isolated solution of the form (x̄, λ̂)

with some λ̂ ∈ Ȳ close to λ̄. This general idea goes back to [22, 27]. However, the
proposals in [22, 27] have some drawbacks when compared to the approach developed
here. First, the regularized system proposed in the cited work is different and, in
particular, it is overdetermined. Second, the initial guess close enough to the specific
multiplier is required. And even more importantly, no procedure for approximating
Π̄ was suggested in [22, 27], nor were conditions that are necessary for a suitable
approximation discussed. Here, we give these questions a thorough consideration.
Furthermore, we extend the approach to mixed constraints, including the important
case of complementarity constraints.

Let a pair (x̃, λ̃) close enough to (x̄, λ̄) be given, and consider the “regularized”
system

Φx̃, λ̃(x, λ) = 0,(2.6)
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where

Φx̃, λ̃ : Rn × Rl → Rn × Rl, Φx̃, λ̃(x, λ) =

(

∂L

∂x
(x, λ), F (x) + Π(x̃, λ̃)(λ− λ̃)

)

,

and Π(x̃, λ̃) is a projector in Rl; that is,

(Π(x̃, λ̃))2 = Π(x̃, λ̃),(2.7)

satisfying

Π(x̃, λ̃) → Π̄ as x̃ → x̄, λ̃ → λ̄.(2.8)

In what follows, we shall show how an appropriate Π(x̃, λ̃) can be constructed using
the singular-value decomposition of F ′(x̃). But first, we show that the general idea
outlined above indeed resolves the problem of nonisolated multipliers.

Proposition 2.1. Let (x̄, λ̄) ∈ Rn × Rl be a solution of (2.2).
Then for every (x̃, λ̃) ∈ Rn × Rl close enough to (x̄, λ̄), there exists a unique

element λ̂ = λ̂(x̃, λ̃) ∈ Rl such that (x̄, λ̂) is a solution of (2.6) (that is, λ̂ is the

unique element in Ȳ satisfying Π(x̃, λ̃)(λ̂− λ̃) = 0). Moreover,

λ̂ → λ̄ as x̃ → x̄, λ̃ → λ̄.(2.9)

Proof. Consider the linear system of equations

(F ′(x̄))Tλ = −f ′(x̄), Π̄Π̃λ = Π̄Π̃λ̃,(2.10)

where λ ∈ Rl is the unknown, and λ̃ ∈ Rl and the projector Π̃ : Rl → Rl are
parameters. One can think of the image space of the operator associated with
(2.10) as the l-dimensional space im(F ′(x̄))T×(imF ′(x̄))⊥ (recall that (imF ′(x̄))⊥ =
ker(F ′(x̄))T = im Π̄). Note also that the right-hand side of (2.10) certainly belongs
to im(F ′(x̄))T × (imF ′(x̄))⊥, since −f ′(x̄) = (F ′(x̄))Tλ̄.

We first show that for the choice of Π̃ = Π̄, the operator of the system (2.10) is
nonsingular. Take an arbitrary η ∈ Rl satisfying

(F ′(x̄))Tη = 0, Π̄2η = 0.

Taking into account the definition of Π̄ (and, in particular, the equality Π̄2 = Π̄),
from the second equation it follows that η ∈ ker Π̄ = imF ′(x̄). On the other hand,
the first equation can be written in the form η ∈ ker(F ′(x̄))T = (imF ′(x̄))⊥. We
conclude that η = 0, which establishes the assertion.

Next, note that the system (2.10) with Π̃ = Π̄ and λ̃ = λ̄ has a solution λ̄, and
according to what we have already proved, this solution is unique. Now, according
to the standard stability theorem for linear systems with nonsingular matrices, we
conclude that for every (Π̃, λ̃) close enough to (Π̄, λ̄) (in the appropriate space),

(2.10) has a unique solution λ̂ and, moreover,

λ̂ → λ̄ as Π̃ → Π̄, λ̃ → λ̄.(2.11)

Furthermore, taking into account the equality Π̃2 = Π̃, from the second equation
in (2.10) we have

0 = Π̄Π̃(λ̂− λ̃)

= Π̃2(λ̂− λ̃) + (Π̄ − Π̃)Π̃(λ̂− λ̃)

= (E + (Π̄ − Π̃))Π̃(λ̂− λ̃),
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where E + (Π̄ − Π̃) is nonsingular provided that Π̃ is close enough to Π̄ (E denotes

the identity operator). Hence, for such Π̃, it must hold that Π̃(λ̂− λ̃) = 0. Combined

with the first equation in (2.10), this equality means that (x̄, λ̂) is a solution of the
system

∂L

∂x
(x, λ) = 0, F (x) + Π̃(λ− λ̃) = 0.(2.12)

Suppose now that there exists some other λ ∈ Rl such that (x̄, λ) also solves
(2.12). Then λ ∈ Ȳ and Π̃(λ− λ̃) = 0. As is easy to see, it follows that (x̄, λ) satisfies
(2.10). But the solution of the latter system is unique, as established above. Hence,

(x̄, λ̂) is the unique solution of (2.12).
To complete the proof, it remains to recall (2.8). In particular, the relation (2.9)

follows from (2.11).
We next show how the linear operator satisfying (2.7), (2.8) can be constructed

using the singular-value decomposition of F ′(x̃) for any x̃ close enough to x̄. The
construction is based on the identification of the rank of F ′(x̄), using information at
(x̃, λ̃) only, and a certain error bound.

Recall that the singular-value decomposition of F ′(x) is

F ′(x) = U(x)Σ(x)(V (x))T,

where Σ(x) is the diagonal l × n matrix with singular values σj(x) as the diagonal
entries, j = 1, . . . , s, s = min{n, l}, σ1(x) ≥ σ2(x) ≥ · · · ≥ σs(x) ≥ 0, while U(x) and
V (x) are the orthogonal l × l and n× n matrices, respectively. Evidently, rankF ′(x)
coincides with the number of positive singular values, and imF ′(x) is spanned by the
columns of U(x) corresponding to these values (the columns of U(x) are called left
singular vectors).

The error bound to be used below holds under the SOSC. For (2.1), the SOSC
(1.4) takes the form

〈

∂2L

∂x2
(x̄, λ̄)ξ, ξ

〉

> 0 ∀ ξ ∈ kerF ′(x̄) \ {0}.(2.13)

By [21, Lemma 2], (2.13) implies that there exists a constant M > 0 such that

‖x− x̄‖ + dist(λ, Ȳ ) ≤ M‖Φ(x, λ)‖(2.14)

for all (x, λ) ∈ Rn × Rl close enough to (x̄, λ̄).
Proposition 2.2. Let (x̄, λ̄) ∈ Rn × Rl be a solution of (2.2), and assume that

the error bound (2.14) holds with some M > 0 for all (x, λ) ∈ Rn × Rl close enough
to (x̄, λ̄). Let θ ∈ (0, 1).

Then for every (x̃, λ̃) ∈ Rn × Rl close enough to (x̄, λ̄), the integer

r(x̃, λ̃) = max{0, max{j = 1, . . . , s | σj(x̃) > ‖Φ(x̃, λ̃)‖θ}}(2.15)

coincides with rankF ′(x̄).
Proof. Let θ ∈ (0, 1) be fixed, and let r̄ = r̄(x̄) = rankF ′(x̄). By the well-known

results of the perturbation theory for linear operators [30, 31], if F is sufficiently
smooth, then it holds that

|σj(x̃) − σj(x̄)| ≤ ‖F ′(x̃) − F ′(x̄)‖
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for all j = 1, . . . , s. Then for (x̃, λ̃) close enough to (x̄, λ̄), and for every j = r̄ +
1, . . . , s, we have that

σj(x̃) = |σj(x̃) − σj(x̄)|

≤ ‖F ′(x̃) − F ′(x̄)‖

≤ N‖x̃− x̄‖

≤ MN‖Φ(x̃, λ̃)‖

≤ ‖Φ(x̃, λ̃)‖θ,

where the second inequality follows from the local Lipschitz-continuity (with some
modulus N > 0) of F ′, and the third inequality is by (2.14).

The right-hand side of the last inequality tends to zero as (x̃, λ̃) → (x̄, λ̄) and
hence, separates the first r̄ singular values of F ′(x̃) from the other singular values. In
particular, it is easily seen that r(x̃, λ̃) = r̄, where r(x̃, λ̃) is defined by (2.15).

Proposition 2.2 provides all the information necessary for defining the operator
Π(x̃, λ̃).

Proposition 2.3. Suppose that the assumptions of Proposition 2.2 hold. Let
Π(x̃, λ̃) be defined as the orthogonal projector onto the linear subspace in Rl spanned
by the last l − r(x̃, λ̃) left singular vectors of F ′(x̃).

Then conditions (2.7) and (2.8) hold.
Proof. Condition (2.7) follows immediately by the definition of Π(x̃, λ̃).
Condition (2.8) follows from the fact that for each λ̃ close enough to λ̄, Π(·, λ̃)

is the so-called total projector of the 0-group of the symmetric operator F ′(·)(F ′(·))T

near the point x̄, and from the continuity properties of total projectors [30]. (Singular
vectors can behave quite chaotically, while total projectors are continuous, and even
smooth, under natural assumptions.)

Throughout the rest of the paper, we assume that Π(x̃, λ̃) is chosen according to
the presented procedure. A linear operator Π(x̃, λ̃) possessing the required properties
can be defined differently from the choice presented above [9]. We do not consider
those other possibilities here in order to simplify the presentation. We also note
that other identification functions could be used in (2.15), similar to techniques for
identification of active constraints in [13].

We are now ready to state our local algorithm. The starting point (x̃, λ̃) is
supplied as the input information for the algorithm, together with the problem data.

Algorithm 2.1. Preliminary step. Fix θ ∈ (0, 1).
Initialization step. Compute r(x̃, λ̃) according to (2.15). Define Π(x̃, λ̃) as the

orthogonal projector onto the linear subspace in Rl spanned by the last l − r(x̃, λ̃)
left singular vectors of F ′(x̃).

Main step. Generate the sequence {(xk, λk)} by the Newton method applied to
the system (2.6), starting from the initial point (x0, λ0) = (x̃, λ̃):

(xk+1, λk+1) = (xk, λk) − (Φ′
x̃, λ̃

(xk, λk))−1Φx̃, λ̃(xk, λk), k = 0, 1, . . . .

We note that although Algorithm 2.1 is a completely implementable local scheme,
some issues still need to be resolved before its successful numerical realization can be
possible. The most important question is how to couple it with some globally conver-
gent method so that the switch to the fast locally convergent iterations can be done
efficiently (for example, it is important to avoid an excessive number of singular-value
decompositions when we are far from a solution, and so the local Newton steps are not
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yet acceptable). Also, it should be verified in practice how large or small is the neigh-
borhood of a solution where (2.15) gives correct identification, and how this depends
on the choice of the identification function. We next provide an example showing that
the region where (2.15) gives correct identification and where the resulting Newton
method applied to (2.6) attains quadratic convergence can be quite large. Of course,
this example is very simple and does not warrant any general conclusions.

Example 2.1. Let n = 1, l = 1, f(x) = x2/2, F (x) = x2/2.
Obviously, x̄ = 0 is a solution of (2.1) with Ȳ = R. LICQ is violated, while SOSC

(2.13) holds for any λ̄ > −1.
If we apply the standard Newton method to the Lagrangian system (2.2) starting

at some (x0, λ0) ∈ R × R, then the resulting sequence is given by

xk+1 = xk/2, λk+1 = (λk − 1)/2,

which evidently converges to (x̄, λ̄) = (0, −1), but only linearly. Note also that {λk}
is attracted by the multiplier for which SOSC does not hold.

Take any x̃ ∈ (0, 1) and, for example, λ̃ = 0. Applying Algorithm 2.1, singular-
value decomposition of F ′(x̃) gives Σ(x̃) = x̃, U(x̃) = 1, V (x̃) = 1. Furthermore, for
any θ ∈ (0, 1),

‖Φ(x̃, λ̃)‖θ =
(

(1 + λ̃)2x̃2 + x̃4/4
)θ/2

> x̃θ > x̃ = σ1(x̃).

Hence, (2.15) implies that

r(x̃, λ̃) = 0, Π(x̃, λ̃) = 1,

which results in the modified optimality system

0 = Φx̃, λ̃(x, λ) = (x + λx, x2/2 + λ).

This system has the unique solution λ̂ = 0 associated with x̄, and the Jacobian of this
system at (x̄, λ̂) is the identity matrix. Thus, Algorithm 2.1 generates a quadratically
convergent sequence.

Note that in this example, (2.15) defines the correct modified optimality system
for any x̃ ∈ (0, 1), which is the largest region for which it makes sense to speak about

quadratic convergence to (x̄, λ̂).
We proceed to establish the convergence properties of Algorithm 2.1.
Theorem 2.4. Let x̄ ∈ Rn be a local solution of (2.1), and assume that λ̄ ∈ Ȳ

is such that the SOSC (2.13) is satisfied.
Then for every neighborhood U of (x̄, λ̄), and for every (x̃, λ̃) ∈ U close enough

to (x̄, λ̄), Algorithm 2.1 is well defined and generates the sequence {(xk, λk)} such
that

(a) {(xk, λk)} remains in U ;
(b) {(xk, λk)} converges superlinearly/quadratically (depending on the smooth-

ness of f and F ) to (x̄, λ̂), where λ̂ is defined in Proposition 2.1.
Proof. Essentially, we have to show that the matrix

Φ′
x̄, λ̄(x̄, λ̄) =

(

∂2L
∂x2 (x̄, λ̄) (F ′(x̄))T

F ′(x̄) Π̄

)

is nonsingular. Once this fact is established, the assertions follow from the theorem
on small perturbations of nonsingular matrices and from the standard argument for
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proving local convergence of the Newton method (taking into account Propositions 2.1
and 2.2, and [21, Lemma 2]).

Take an arbitrary pair (ξ, η) ∈ ker Φ′
x̄, λ̄

(x̄, λ̄), i.e.,

∂2L

∂x2
(x̄, λ̄)ξ + (F ′(x̄))Tη = 0, F ′(x̄)ξ + Π̄η = 0.(2.16)

Recall that F ′(x̄)ξ and Π̄η belong to the complementary subspaces. Hence, the second
equality can be decoupled into two equations:

F ′(x̄)ξ = 0, Π̄η = 0.(2.17)

By the first equalities in (2.16) and (2.17),

〈

∂2L

∂x2
(x̄, λ̄)ξ, ξ

〉

= −〈(F ′(x̄))Tη, ξ〉

= −〈η, F ′(x̄)ξ〉

= 0.

Taking into account again the first equality in (2.17), the SOSC (2.13) implies that
ξ = 0. Now, from the first equality in (2.16), it follows that η ∈ ker(F ′(x̄))T =
(imF ′(x̄))⊥. On the other hand, the second equality in (2.17) implies the inclusion
η ∈ ker Π̄ = imF ′(x̄). We conclude that η = 0. We thus established that Φ′

x̄, λ̄
(x̄, λ̄)

is nonsingular.
Remark 2.1. A more accurate investigation of the iteration of Algorithm 2.1 leads

to the following estimate of the rate of convergence (under the appropriate smoothness
assumptions):

‖(xk+1 − x̄, λk+1 − λ̂)‖ = O(‖xk − x̄‖‖λk − λ̂‖ + ‖xk − x̄‖2).

3. Mixed constraints. We now turn our attention to the general problem (1.1).
As before, we assume that we have good initial approximations to a local solution x̄
of (1.1) and some (λ̄, µ̄) ∈ Ȳ satisfying the SOSC (1.4).

3.1. Using identification of active constraints. As is well known, the KKT
system (1.2) can be written in the form

Ψ(x, λ, µ) = 0,(3.1)

where Ψ : Rn × Rl × Rm → Rn × Rl × Rm,

Ψ(x, λ, µ) =

(

∂L

∂x
(x, λ, µ), F (x), min{µ, −G(x)}

)

,

with the minimum operation taken componentwise. According to [21, Lemma 2] (see
also [17, Lemma 5]), the residual of (3.1) can be used to estimate the distance from a
given (x̃, λ̃, µ̃) ∈ Rn×Rl×Rm to the set {x̄}×Ȳ . Specifically, under our assumptions
there exists a constant M > 0 such that

‖x− x̄‖ + dist((λ, µ), Ȳ ) ≤ M‖Ψ(x, λ, µ)‖(3.2)

for all (x, λ, µ) ∈ Rn ×Rl ×Rm close enough to (x̄, λ̄, µ̄). This error bound can be
further used to identify the constraints active at x̄, following the approach of [13].
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Proposition 3.1. Let (x̄, λ̄, µ̄) ∈ Rn × Rl × Rm be a solution of (1.2), and
assume that the error bound (3.2) holds with some M > 0 for all (x, λ, µ) ∈ Rn ×
Rl × Rm close enough to (x̄, λ̄, µ̄). Let τ ∈ (0, 1).

Then for every (x̃, λ̃, µ̃) ∈ Rn×Rl×Rm close enough to (x̄, λ̄, µ̄), the index set

I(x̃, λ̃, µ̃) = {i = 1, . . . ,m | −Gi(x̃) ≤ ‖Ψ(x̃, λ̃, µ̃)‖τ}(3.3)

coincides with Ī.
Remark 3.1. As remarked by a referee, there exist some conflicting opinions

about the value of the identification technique proposed in [13] (the possible criticism
is that the neighborhood of correct identification is difficult to characterize, and in
some cases can be rather small). That said, satisfactory computational experience
with some algorithms which employ this technique is reported in [29, 10], and it is
also used, for example, in [14, 43] (although there are no numerical results for the
latter two references).

Once the set I = Ī is identified, we can consider instead of (1.1) the purely
equality-constrained problem

minimize f(x)
subject to F (x) = 0, GI(x) = 0.

(3.4)

Obviously, violation at x̄ of LICQ for (1.1) means that (3.4) also does not satisfy
LICQ. To apply the approach developed in section 2, we need to make sure that
SOSC for (3.4) holds whenever we have SOSC for the original problem (1.1). It is
easy to see that this is indeed the case.

Proposition 3.2. Let x̄ ∈ Rn be a local solution of (1.1), and assume that
(λ̄, µ̄) ∈ Ȳ is such that the SOSC (1.4) is satisfied.

Then x̄ is a local solution of problem (3.4) with I = Ī, and (λ̄, µ̄Ī) is a Lagrange
multiplier associated with this solution, i.e.,

f ′(x̄) + (F ′(x̄))Tλ̄ + (G′
Ī(x̄))Tµ̄Ī = 0.(3.5)

Furthermore, SOSC for (3.4) holds with this multiplier:

〈f ′′(x̄)ξ, ξ〉 + 〈λ̄, F ′′(x̄)[ξ, ξ]〉 + 〈µ̄Ī , G
′′
Ī
(x̄)[ξ, ξ]〉 > 0

∀ ξ ∈ (kerF ′(x̄) ∩ kerG′
Ī
(x̄)) \ {0}.

(3.6)

Proof. The equality (3.5) obviously follows from the definition of Ȳ . Furthermore,

since µ̄i = 0 for all i ∈ Ī, the left-most expression in (3.6) equals 〈∂
2L

∂x2 (x̄, λ̄, µ̄)ξ, ξ〉.
Since we also have that kerF ′(x̄) ∩ kerG′

Ī
(x̄) ⊂ K̄, it follows that (1.4) implies

(3.6).
We complete this section with a formal statement of the local algorithm for mixed-

constrained problems. The starting point (x̃, λ̃, µ̃) is supplied as the input information
for the algorithm.

Algorithm 3.1. Preliminary step. Fix τ ∈ (0, 1).
Initialization step. Define the index set I(x̃, λ̃, µ̃) according to (3.3).
Main step. Apply Algorithm 2.1 to problem (3.4) with I = I(x̃, λ̃, µ̃), using

(x̃, λ̃, µ̃I) as the starting point.
The following theorem is a direct consequence of Theorem 2.4 and Propositions 3.1

and 3.2.
Theorem 3.3. Let x̄ ∈ Rn be a local solution of (1.1), and assume that (λ̄, µ̄) ∈

Ȳ is such that the SOSC (1.4) is satisfied.



220 A. F. IZMAILOV AND M. V. SOLODOV

Then for every (x̃, λ̃, µ̃) ∈ Rn×Rl×Rm close enough to (x̄, λ̄, µ̄), Algorithm 3.1
is well defined and generates a sequence {(xk, λk, µk

Ī
)}, which converges superlinearly/

quadratically (depending on the smoothness of f , F , and G) to (x̄, λ̂, µ̂Ī), with some

λ̂ ∈ Rl and µ̂Ī ∈ R|Ī| such that

(λ̂, µ̂Ī) → (λ̄, µ̄Ī) as x̃ → x̄, λ̃ → λ̄, µ̃ → µ̄.

3.2. Reformulation with slack variables. Instead of identifying active con-
straints, one could transform (1.1) into the purely equality-constrained problem using
slack variables:

minimize f(x)
subject to F (x) = 0, gi(x) + σ2

i = 0, i = 1, . . . ,m,
(3.7)

where g1, . . . , gm are the components of G. As is well known, local solutions of (1.1)
and (3.7) are in correspondence with each other: x̄ is a local solution of (1.1) if and
only if (x̄, σ̄) with σ̄ = (

√

−g1(x̄), . . . ,
√

−gm(x̄)) is a well-defined local solution of
(3.7).

This approach is quite attractive because of its universality and simplicity. How-
ever, it requires stronger assumptions. Specifically, it is known that to guarantee
SOSC for (3.7) at (x̄, σ̄) with multiplier (λ̄, µ̄), one needs not only SOSC for the
original problem (1.1), but also the strict complementarity condition (SCC), i.e.,
µ̄i > 0 for all i ∈ Ī (see [7, Theorem 1.32]). We note that the SCC is regarded
as a somewhat restrictive (and hence, undesirable) assumption.

4. Application to MPCC. An interesting application of the approach devel-
oped in this paper is concerned with MPCC, the mathematical programs with com-
plementarity constraints. Here, we consider the problem of the form

minimize f(x)
subject to F (x) = 0, G(x) ≤ 0,

H1(x) ≥ 0, H2(x) ≥ 0, 〈H1(x), H2(x)〉 = 0,
(4.1)

where H1, H2 : Rn → Rs are smooth mappings. Of course, (4.1) can be considered
as a usual mixed-constrained optimization problem. Recall, however, that MFCQ is
violated at every feasible point of this problem (since there exists no feasible point
strictly satisfying the inequality constraints). Therefore, this class of problems is of
particular interest in the context of our development.

The Lagrangian for (4.1) is given by

L(x, λ, µ, µ1, µ2, ν) = f(x) + 〈λ, F (x)〉 + 〈µ, G(x)〉

−〈µ1, H1(x)〉 − 〈µ2, H2(x)〉 + ν〈H1(x), H2(x)〉,

x ∈ Rn, λ ∈ Rl, µ ∈ Rm, µ1, µ2 ∈ Rs, ν ∈ R,

and the set Ȳ associated with a local solution x̄ of (4.1) consists of tuples (λ, µ, µ1, µ2,
ν) ∈ Rl × Rm × Rs × Rs × R such that

(F ′(x̄))Tλ+ (G′(x̄))Tµ−(H ′
1(x̄))T(µ1−νH2(x̄))−(H ′

2(x̄))T(µ2−νH1(x̄))) = − f ′(x̄),

µ ≥ 0, 〈µ, G(x̄)〉 = 0,

µ1 ≥ 0, 〈µ1, H1(x̄)〉 = 0, µ2 ≥ 0, 〈µ2, H2(x̄)〉 = 0.
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It is easy to see that x̄ is a stationary point in (4.1) in the sense that Ȳ = ∅ if and
only if it is strongly stationary in the terminology of [36]. Moreover, the multipli-
ers corresponding to these stationarity concepts are related by explicit formulas (see
[18, Proposition 4.1]). We note that strong stationarity is regarded as a reasonable
stationarity concept in the context of Newton-type methods for MPCC.

As is easy to see,

K̄ =

⎧

⎪

⎨

⎪

⎩

ξ ∈ kerF ′(x̄)

∣

∣

∣

∣

∣

∣

∣

〈f ′(x̄), ξ〉 ≤ 0, G′
I(x̄)ξ ≤ 0,

(H1)
′
I1\I2

(x̄)ξ = 0, (H2)
′
I2\I1

(x̄)ξ = 0,

(H1)
′
I0

(x̄)ξ ≥ 0, (H2)
′
I0

(x̄)ξ ≥ 0

⎫

⎪

⎬

⎪

⎭

,(4.2)

where

I = {i = 1, . . . ,m | Gi(x̄) = 0},

I1 = {i = 1, . . . , s | (H1)i(x̄) = 0}, I2 = {i = 1, . . . , s | (H2)i(x̄) = 0}, I0 = I1∩I2.

Note that necessarily I1 ∪ I2 = {1, . . . , s}. For (4.1), the SOSC (1.4) takes the form

〈

∂2L

∂x2
(x̄, λ̄, µ̄, µ̄1, µ̄2, ν̄)ξ, ξ

〉

> 0 ∀ ξ ∈ K̄ \ {0},(4.3)

with K̄ defined in (4.2) and a tuple of multipliers (λ̄, µ̄, µ̄1, µ̄2, ν̄) ∈ Ȳ . This condition
is exactly the same as SOSC for MPCC in [18, Definition 3.4] if we take into account
the relation between multipliers corresponding to the two different (but equivalent)
stationarity concepts. Recall also that the MPCC-LICQ [36, 38, 18] consists of saying
that

the rows of F ′(x̄), G′
I(x̄), (H1)

′
I1(x̄), (H2)

′
I2(x̄) are linearly independent.(4.4)

If we have a good approximation to x̄ and (λ̄, µ̄, µ̄1, µ̄2, ν̄) ∈ Ȳ satisfying (4.3),
then Algorithm 3.1 can be directly applied to (4.1), and its local convergence is
characterized by Theorem 3.3. Note that no CQ is needed, as compared to other
methods for MPECs which typically need special CQs, such as MPCC-LICQ (4.4).
We comment more on this issue in section 5.

We complete this section with two examples that illustrate Algorithm 3.1 when
applied to MPCC. The first example is rather simple, and, in particular, it satisfies the
MPCC-LICQ (4.4). Together with the SOSC (4.3), this means that other methods
(such as slightly modified SQP) can also be used in that case. We include this example
mainly because it is standard in the MPEC literature, e.g., [36], and because it is easier
to follow its development. The second example is a modification of [25, Example 4.2].
Here, MPCC-LICQ is not satisfied, and so this better serves to illustrate the power
of the approach presented in this paper.

Example 4.1. Let n = 2, l = m = 0, s = 1, f(x) = a1x1 +a2x2, where a1, a2 > 0,
H1(x) = x1, H2(x) = x2. Obviously, x̄ = 0 is a solution of (4.1), and

Ȳ = {(µ̄1, µ̄2, ν) | µ̄1 = a1, µ̄
2 = a2, ν ∈ R}.

We further have that I0 = I1 = I2 = {1}, and

K̄ = {ξ ∈ R2 | a1ξ1 + a2ξ2 ≤ 0, ξ1 ≥ 0, ξ2 ≥ 0} = {0}.

Hence, the SOSC (4.3) is satisfied automatically.
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On the initialization step of Algorithm 3.1, for (x̃, µ̃1, µ̃2, ν̃) close enough to
(x̄, a1, a2, ν̄) with some ν̄ ∈ R, it is correctly identified that both inequality con-
straints are active at the solution; that is, Ī = I(x̃, µ̃1, µ̃2, ν̃) = {1, 2}. Hence,
problem (3.4) takes the form

minimize a1x1 + a2x2

subject to F̃ (x) = (x1, x2, x1x2) = 0.

As is easy to see, Π̄ is the orthogonal projector onto

ker(F̃ ′(x̄))T = ker

(

1 0 0
0 1 0

)

= {y ∈ R3 | y1 = y2 = 0},

i.e.,

Π̄y = (0, 0, y3), y ∈ R3.

On the initialization step of Algorithm 2.1, it is correctly identified that r(x̃, µ̃1,
µ̃2, ν̃) = 2. Then Π(x̃, µ̃1, µ̃2, ν̃) is taken as some operator approximating Π̄.

Suppose, for a moment, that Π(x̃, µ̃1, µ̃2, ν̃) = Π̄. Then the corresponding regu-
larized system (2.6) takes the form

a1 − µ1 + νx2 = 0,
a2 − µ2 + νx1 = 0,

x1 = 0, x2 = 0,
x1x2 + ν − ν̃ = 0.

Evidently, this system has a solution of the form (x̄, a1, a2, ν̃). The Jacobian of this
system at this solution is the matrix

⎛

⎜

⎜

⎜

⎜

⎝

0 ν̃ −1 0 0
ν̃ 0 0 −1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎠

,

which is nonsingular for any choice of ν̃. Hence, the Newton method applied to this
system is locally quadratically convergent to this solution.

Obviously, if Π(x̃, µ̃1, µ̃2, ν̃) is close enough to Π̄, then we obtain a small pertur-
bation of the above system of equations, and thus the same conclusions hold.

We next present an example where MPCC-LICQ (4.4) does not hold. The authors
are not aware of any approaches which lead to a local algorithm with superlinear
convergence for this example, except for the one presented here and in [43].

Example 4.2. Let n = 3, l = m = 0, s = 2, f(x) = x1 + x2 + x2
1 + x2

2 + (x3 − 1)2,
H1(x) = (x1 + x2, x

2
1 − (x3 − 1)2), H2(x) = (x2, x3).

As is easy to see, x̄ = (0, 0, 1) is the solution of (4.1). We also have that I1 =
{1, 2}, I2 = {1}, I0 = {1}.

Note that MPCC-LICQ (4.4) is clearly violated, since

H ′
1(x̄) =

(

1 1 0
0 0 0

)

.
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In fact, any other “standard” MPEC CQ is violated in this example. On the other
hand, the constraints of this problem satisfy the special 2-regularity condition [25],
and thus the corresponding (directional) optimality conditions hold. For some critical
directions, those conditions can be reduced to the form considered in this section. (Of
course, one can just verify the latter directly.) In particular, we have that

Ȳ = {(µ1, µ̄2, ν) | µ1
1 = 1, µ1

2 ≥ 0, µ̄2 = 0, ν ∈ R}.

Take µ̄1 = (1, 0), ν̄ = 0. It can be verified that

∂2L

∂x2
(x̄, µ̄1, µ̄2, ν̄) = 2E,

where E is the identity matrix. It follows that the SOSC (4.3) holds for this solution.
Suppose we have a point (x̃, µ̃1, µ̃2, ν̃) close enough to this (x̄, µ̄1, µ̄2, ν̄). Then

on the initialization step of Algorithm 3.1, it is correctly identified that Ī =
I(x̃, µ̃1, µ̃2, ν̃) = {1, 2, 3}. Therefore, problem (3.4) takes the form

minimize f(x)

subject to F̃ (x) = 0,

where

F̃ (x) =

⎛

⎜

⎜

⎝

x1 + x2

x2
1 − (x3 − 1)2

x2

x2(x1 + x2) + x3(x
2
1 − (x3 − 1)2)

⎞

⎟

⎟

⎠

.

We further have that Π̄ is the orthogonal projector onto

ker(F̃ ′(x̄))T = ker

⎛

⎝

1 0 0 0
1 0 1 0
0 0 0 0

⎞

⎠ = {y ∈ R4 | y1 = y3 = 0},

i.e.,

Π̄y = (0, y2, 0, y4), y ∈ R4.

On the initialization step of Algorithm 2.1, it is correctly identified that r(x̃, µ̃1, µ̃2
1, ν̃)

= 2. Then Π(x̃, µ̃1, µ̃2
1, ν̃) is taken as some operator approximating Π̄. Suppose for a

moment that Π(x̃, µ̃1, µ̃2
1, ν̃) = Π̄. Then the corresponding regularized system (2.6)

takes the form

1 + 2x1 − µ1
1 − 2µ1

2x1 + ν(x2 + 2x1x3) = 0,

1 + 2x2 − µ1
1 − µ2

1 + ν(x1 + 2x2) = 0,

2(x3 − 1) + 2µ1
2(x3 − 1) + ν(x2

1 − 3x2
3 + 4x3 − 1) = 0,

x1 + x2 = 0,

x2
1 − (x3 − 1)2 + µ1

2 − µ̃1
2 = 0,

x2 = 0,

x2(x1 + x2) + x3(x
2
1 − (x3 − 1)2) + ν − ν̃ = 0.
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It can be easily seen that this system has a solution (x̄, (1, µ̃1
2), 0, ν̃), and the Jacobian

of this system at this solution is
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2(1 − µ̃1
2 + ν̃) ν̃ 0 −1 0 0 0

ν̃ 2(1 + ν̃) 0 −1 0 −1 0
0 0 2(1 + µ̃1

2 − ν̃) 0 0 0 0
1 1 0 0 0 0 0
0 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

which is nonsingular (in fact, even well conditioned) for all µ̃1
2 and ν̃ close enough to

µ̄1
2 and ν̄, respectively. Hence, the Newton method applied to this system is locally

quadratically convergent to this solution.
If Π(x̃, µ̃1, µ̃2

1, ν̃) is close enough to Π̄, then we obtain a small perturbation of
the above system of equations, and thus the same conclusions hold.

5. Comparisons with other approaches. In this section, we briefly review
some recent work on Newton-type methods for optimization problems, where CQs are
relaxed or removed. We note that a direct complete comparison of different approaches
is in most cases impossible. Below, we discuss some advantages and disadvantages,
making comparisons where possible.

First, we comment on the standard SQP algorithm. As already mentioned above,
in the case of equality constraints, the superlinear convergence of SQP requires LICQ
and SOSC. By contrast, our approach needs SOSC only. Of course, this does not
come without a computational price—singular-value decomposition of the Jacobian
of the constraints is used to set up the modified optimality system. Similarly, for
mixed constraints, the SQP method needs the strict MFCQ (which is equivalent to
the uniqueness of the multiplier) and SOSC, while for our proposal based on the iden-
tification of active constraints, SOSC is sufficient. Additionally, subproblems in our
method are systems of linear equations, which are simpler than quadratic programs
in SQP. On the other hand, it should be kept in mind that SQP is certainly easier to
globalize, as some well-developed globalization strategies are readily available.

SQP with nonunique multipliers has been analyzed in [1, 4], which assumes MFCQ
and some second-order sufficiency conditions. Global convergence based on linesearch
using a nonsmooth penalty function is established. The algorithm is primal: No
approximation of the Hessian of the Lagrangian function is used. Thus, the rate of
convergence is only linear, of course.

The so-called stabilized SQP and related algorithms [40, 20, 16, 17, 41, 42, 33]
employ regularization techniques, with smart choices of regularization parameters
based on error bounds for the primal-dual solution of the problem. Most of the
cited literature deals with the case of inequality constraints only, but perhaps the
analysis could be extended to mixed constraints. In [42, Theorem 8], local superlinear
convergence of an algorithm of this kind to the set {x̄}×Ȳ is established under MFCQ
and the SOSC (2.13) (the latter is supposed to be satisfied for all µ̄ ∈ Ȳ ). In [17,
Theorem 8], local superlinear convergence to (x̄, µ̂) for some µ̂ ∈ Ȳ close to µ̄ is
established under the strong SOSC, that is, (2.13) with

K̄ = {ξ ∈ Rn | G′
Ī+

(x̄)ξ = 0}, Ī+ = {i ∈ I | µ̄i > 0}.

In [33], the stabilized version of SQP [40] is combined with active-set strategies, and
convergence is established under a certain relaxed CQ assumption and the strong
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SOSC. To our knowledge, [20, 17, 33] are the only papers on stabilized SQP, where
MFCQ is not assumed to be satisfied. Compared, e.g., to [42], we do not assume
any CQ. Compared to [20, 17, 33], we need a weaker SOSC. Thus, conditions for
local superlinear convergence in our approach are weaker than those for stabilized
versions of SQP. Additionally, each iteration of a stabilized SQP method typically
requires more than just solving a QP (in [33] linear equations are solved instead of
QPs, but the number of equations to be solved per iteration can be more than one). It
should also be noted that the stabilized SQP shares the common (at least conceptual)
drawback of regularization methods: Its subproblems become more ill-conditioned
(and more difficult to solve) as the method approaches an irregular solution and the
regularization parameter tends to zero. Our approach is free from this drawback. On
the other hand, comments above concerning globalization still apply.

Another approach which has recently received some attention is the so-called se-
quential quadratically constrained quadratic programming (SQCQP), which employs
subproblems based on the quadratic approximation of both the objective function
and the constraints. The overall behavior may be quite favorable, provided an effec-
tive method to solve subproblems is available. In [5], for purely inequality-constrained
problems, it is shown that the SQCQP algorithm is locally superlinearly convergent to
a local solution satisfying MFCQ and the quadratic growth condition. (Under MFCQ,
the latter is equivalent to a weaker form of SOSC, that is, (2.13) with µ̄ replaced by
some µ(ξ) ∈ Ȳ .) Globalization issues are considered in [19, 39]. Of course, SQCQP
subproblems are more complex than quadratic programs (as in SQP) or linear sys-
tems of equations (as in our approach). In the convex case, SQCQP subproblems can
be solved rather efficiently (after formulating them as second-order cone programs)
by the interior points techniques. But in the nonconvex case, the situation is not so
clear. Also, we note that an extension to the nonlinear equality-constrained problems
seems problematic, as the subproblems would very likely be infeasible (even locally).

We next mention [2], which suggests an approach for transforming a problem with
violated MFCQ into a problem satisfying MFCQ. It should be noted, though, that
this approach relies on some strong “quadratic growth condition,” i.e., an estimate
of the distance to the given solution from all (not only feasible) points close enough
to this solution. Under MFCQ, this is equivalent to the standard quadratic growth
condition, but without MFCQ, it is much stronger, and some regularity of constraints
is implicitly subsumed in this condition.

Very recently, another method for solving degenerate problems has been pro-
posed in [43]. In the case of inequality or mixed constraints, it reduces the problem
to the purely equality-constrained case using the same technique to identify active
constraints that is employed in our approach. Local superlinear rate of convergence is
obtained under essentially the same assumptions as ours (but unlike in our method,
the quadratic rate is not achieved). One system of linear equations is solved at each
iteration, but the system itself is different from ours. The advantage of [43] when
compared to our approach is that singular-value decomposition is not needed and the
linear system to be solved is closer in structure to systems that arise in the SQP
or primal-dual interior point methods (in particular, it preserves sparsity). The dis-
advantage is that it involves a regularization parameter which tends to zero with
convergence, which means that close to the solution subproblems are ill-conditioned
(in the absence of CQs).

We now turn our attention to Newton-type methods for MPEC. Inevitable viola-
tion of MFCQ in (4.1) leads to numerous difficulties in theoretical justification of those
methods. One of the most significant difficulties is the following: SQP subproblems
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can be simply infeasible arbitrarily close to a solution. In [3], the special elastic mode
is assumed to be used by a QP solver in order to overcome the infeasibility problem.
On the other hand, it was recognized recently that even the behavior of rather ba-
sic SQP algorithms (without complex modifications) turns out to be quite favorable
in many examples of MPCC. In [18], the authors give a theoretical explanation for
this phenomenon. They prove local superlinear convergence under the MPCC-LICQ
(4.4), the SOSC (4.3) with K̄ defined in (4.2), and some additional assumptions on
the multipliers and on the properties of a QP solver. The problem is supposed to be
reformulated using slacks, and the authors assume that SQP subproblems are feasible
(unless the starting point satisfies an additional complementarity condition). It should
be pointed out, however, that under the assumptions of [18], SQP subproblems are
consistent for some important special cases. For example, this is the case when there
are only complementarity constraints in (4.1), i.e., there are no additional equality and
inequality constraints (see [18, Lemma 6.1]). In the approach described in section 4,
we need only strong stationarity and the SOSC (4.3). We do not assume MPCC-LICQ,
and our approach is QP-free. That said, comments on globalization again apply.

To complete this discussion, we briefly examine the examples presented in [18].
All these examples are taken from MacMPEC, a collection of MPECs [32]. In jr* and
s14, the SOSC (4.3) holds with any choice of the multipliers. In scholtes4, strong
stationarity does not hold, i.e., Ȳ = ∅. Finally, in ralph2, the SOSC (4.3) holds with
the appropriate choice of multipliers. Similarly to section 4, it can be shown that our
approach is applicable to all those examples, except for scholtes4 (which also cannot
be efficiently handled by any of the other known methods).

Summarizing, our approach requires weaker assumptions for local superlinear
convergence than the alternatives, where any exist (the exception to this comment is
the subsequent paper [43], which needs the same assumptions). Of course, this does
not come for free. The computational price to pay is the singular-value decomposition
of the Jacobian of the constraints. Arguably, this is not a very serious drawback,
because (in theory) this computation has to be done only once, at the initialization
stage of the local method. And it should be kept in mind that once it is done,
the subproblems to be solved are just linear equations, which are simpler than in
(most) alternatives. A more serious drawback is that the presented local algorithm
does not come with a natural globalization procedure. The subject of globalization
is an issue of current research. At this time, we can prove that the local algorithm
can be globalized using the so-called hybrid strategy, in the spirit of methods in the
complementarity literature, e.g., [11, 15, 12, 28]. Of course, within the hybrid strategy
in general, the singular-value decomposition would need to be computed more than
once, until the identification in (2.15) and (3.3) becomes correct. This is a clear
numerical disadvantage. We are looking for other (better) alternatives. As already
mentioned above, a number of questions still need to be resolved before the proposed
approach can be implemented and its numerical potential evaluated.
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