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Abstract
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boundary condition. For the pipe and the channel it is shown that the results with the nonlinear Navier
boundary condition may be obtained from a pseudo linear Navier boundary condition but with a modified
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chosen sign of the normal derivative of the velocity at each solid boundary. Closer examination reveals
that although the generalized Navier boundary condition is highly nonlinear, in terms of the assumed form
of solution the integration constants obtained are still unique for the three simple pressure-driven flows
presented here, provided that care is taken in its application and noting that the multiplicity of solutions
obtained for the annulus arise as a consequence of adopting different signs for the normal derivatives of
velocity at the boundaries.
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Newtonian flow with nonlinear Navier boundary
condition

M. T. Matthews and J. M. Hill, Wollongong, New South Wales

Summary. The generalized nonlinear Navier boundary condition advocated by Thompson and Troian in
the journal Narure, and motivated from molecular dynamical simulations, is applied to the conventional
continuum mechanical description of fluid flow for three simple pressure-driven flows through a pipe, a
channel and an annulus, with a view to examining possible non-uniqueness arising from the nonlinear
nature of the boundary condition. For the pipe and the channel it is shown that the results with the
nonlinear Navier boundary condition may be obtained from a pseudo linear Navier boundary condition
but with a modified slip length. For the annulus, two sets of physically acceptable solutions are obtained
corresponding to the chosen sign of the normal derivative of the velocity at each solid boundary. Closer
examination reveals that although the generalized Navier boundary condition is highly nonlinear, in terms
of the assumed form of solution the integration constants obtained are still unique for the three simple
pressure-driven flows presented here, provided that care is taken in its application and noting that the
multiplicity of solutions obtained for the annulus arise as a consequence of adopting different signs for the
normal derivatives of velocity at the boundaries.

1 Introduction

One of the major themes in science and technology during the past half century has been
miniaturization down to the micro and nano scale. The area of micro and nanofluidics is
fundamentally important due to the necessity of understanding the nature of fluid flow at this
scale [1]. Micro and nanofluidics may be broadly interpreted as the study of mass and
momentum transfer, heat transfer, and reactive processes coupled with transport in micro or
nano scale systems or around micro or nano sized objects. The first question that must be
answered is, “What happens when a liquid film thickness is comparable to the size of the
molecules themselves? It has been demonstrated that the mechanical properties cannot be
understood by extrapolating known properties of the bulk fluid [2}-[4]. One of the main reasons
for this is that when devices are scaled down, the surface-to-volume ratio increases dramatically
so that surface-related phenomena become increasingly dominant. Hence some qualitatively
new features emerge when mechanical structures become sufficiently small, and it becomes
important to understand the various types of interactions in the flow and the underlying
physical mechanisms, such as the interaction between the constituents of the flow and their
interaction with solid boundaries. These interactions are not well understood and are the
subject of current fundamental research.



An example of the breakdown of conventional macroscopic ideas at small scales is the no-slip
boundary condition between a fluid and a solid, which is a fundamental notion in fluid
mechanics [S]H{7]. However, the boundary condition of how momentum is transferred during
flow can vary from stick (that is, no slip) to slip, which saves energy in response to physical
chemical properties of the solid surface [3], [8}H{14]. Without sufficient knowledge of these
phenomena, one cannot systematically design nanofluidic devices or control their operation.

The traditional Navier-Stokes model of fluid flow with a no-slip boundary condition at a
fluid-solid interface demands two conditions for its validity [15]:

(i) the fluid is a continuum, which is always satisfied since there are more than one million
molecules in the smallest volume in which appreciable macroscopic changes take place;

(i) the flow is near thermodynamic equilibrium, which is satisfied if there is a sufficient number
of molecular encounters during a time period small compared to the smallest time-scale for
flow changes. During this time period a molecule would have moved a distance small
compared to the smallest flow length scale.

Traditionally the no-slip condition at a fluid-solid interface is enforced in the momentum
conservation equations. In other words, the fluid velocity is zero relative to a solid boundary.
However, this boundary condition is only valid if condition (ii) given above is satisfied, that is
the fluid flow adjacent to the solid surface is in thermodynamic equilibrium. For this to be true,
an infinitely high frequency of collisions between the fluid and the solid surface is required. For
fluid flow in small scale systems the collision frequency is not high enough to ensure thermo-
dynamic equilibrium, thus a certain degree of tangential velocity slip must be allowed.

Of course, there are many problems at the macro scale where the no-slip boundary con-
dition is clearly inapplicable. The moving contact line where a liquid spreads on a solid
surface is a classical example of when a slip flow must be allowed to avoid singular/unrealistic
behavior in the Navier-Stokes solutions [16}-{19]. Other examples where slip flow must be
allowed include corner flows [20]-{22] and the extrusion of polymer melts from capillary tubes
[23]. These and many other paradoxes in fluid mechanics may possibly be an artefact of the
no-slip boundary condition, and some fundamentally important paradoxes are reviewed
thoroughly in [24].

The nature of boundary conditions in fluid mechanics was widely debated in the 19th century
by many of the great names including Bernoulli, Euler, Coulomb, Darcy, Navier, Helmholtz,
Poisson, Poiseuille, Stokes, Hagen, Couette, Maxwell, Prandtl and Taylor. Navier [25] intro-
duced the linear boundary condition, later proposed independently by Maxwell [26], which
remains the standard characterization of slip used today; namely the component of the fluid
velocity tangential to the surface is assumed proportional to the tangential stress, and the
constant of proportionality is called the slip length [27]. There have been many attempts to
extend this boundary condition to more general flows; in particular it has been extended to
include the effects of multiple phases [28}-[34].

Molecular dynamical simulations have also done their part in casting doubt on the applica-
bility of the no-slip boundary condition. Molecular dynamical simulations recognize that a
fluid is made up of discrete particles; namely molecules, atoms, ions and electrons, and the
position, velocity and state of all the particles at all times are tracked using the laws of classical
mechanics. Thompson and Troian [35] provide molecular dynamical simulations to quantify the
slip-flow boundary condition dependence on the shear rate. The aim of their simulations was to
determine the degree of slip at a solid-liquid interface as the interfacial parameters and the shear
rate are varied. At low shear rate the slip length behavior is consistent with the Navier model, but
at high shear rates the Navier condition breaks down as the slip length increases rapidly with the



shear rate. Their proposed boundary condition is thus highly nonlinear, even though the fluid is
still considered to be Newtonian. That is, the slip length becomes nonlinear and becomes sin-
gular at a critical value of the shear rate, well below the shear rate at which the linear stress
relation fails, and this deviation from linearity is not gradual, but singular. Based on these results
Thompson and Troian [35] proposed a universal boundary condition at a solid-liquid interface.

In this paper the universal nonlinear boundary condition proposed by Thompson and Troian
[35] from their molecular dynamical simulations is applied to the continuum mechanical for-
mulation of Newtonian fluid mechanics for three simple pressure-driven flows — in a pipe,
between infinite parallel plates and through an annulus. In general the replacement of a simple
linear boundary condition (that is, the no-slip boundary condition) by a highly nonlinear one in
a continuum mechanical formulation might result in non-uniqueness and interesting behavior,
such as multiple solutions which are both mathematically and physically acceptable. The aim of
the present analysis is to investigate the effects of the highly nonlinear boundary condition on
the well-known solutions of three simple pressure-driven flows. In the following Section the
nonlinear Navier boundary condition is described. In the subsequent Sections the pressure-
driven flow through a pipe, a channel and an annulus are analyzed for both the linear and
nonlinear Navier boundary conditions. Finally, we present a discussion of the results and
concluding remarks.

2 The nonlinear Navier boundary condition

The standard no-slip boundary condition is replaced by the nonlinear Navier boundary con-
dition, where the slip velocity is assumed to be proportional to the tangential viscous stress and
the degree of slip is measured by a non-constant slip length. For an incompressible Newtonian
fluid the viscous portion of the stress tensor or the extra stress is given by § = 2uD, where p is
the viscosity, and the rate of deformation tensor is

D= % [Vv* + (Vv*)T], (2.1)

i.e.’S o< D. At a solid surface the tangential component of velocity is assumed to satisfy the
Navier boundary condition {25], [26],

’U" = ZZ*D", (2.2)

where ¢* is the slip length with the same sign as Dy, since in this study it is always assumed that
the tangential component of velocity vy is positive in the direction of flow. Note that at the
surface the normal component of velocity is v, = 0, and hence all of its derivatives are zero (see
[36]), so that D will only involve v and its derivatives. For the nonlinear Navier boundary
condition it is assumed that the slip length ¢* depends on the tangential viscous stress at the
solid surface via the following relation [35]:

¢ =o' (1-28D))7%, 2.3)
where
B = [2D||critical]_l (2.4)

is some critical (maximum) shear rate with the same sign as D and the value is such that the
inverse square root does not become negative. Note that when f* = 0 we have £* = o*, that is o*
corresponds to the constant slip length of the Navier boundary condition.



3 Flow through an infinite pipe

Consider the steady flow of an incompressible Newtonian fluid through an infinite pipe with
radius R. The flow is driven by a pressure difference Py — Py, acting over a distance L parallel to
the pipe. A cylindrical coordinate system (r*,6,2*) will be used, where »* is measured in the
radial direction and z* is measured in the axial direction positive in the direction of flow. A
velocity distribution of the form

w=0, v3=0, v=v}{r) (3.1)
is assumed such that the mass conservation equation is automatically satisfied and the
momentum conservation equation is given by (see [7])

2-component:
oP* u d dv;
- 22 [ 2
0= % " rar (T dr*)’ (3.2)
while the r* and 6* components yield 8P*/or* = 0 = HP* /50"; thus the 2* component may be
written

i (r* d“). (3.3)

de* redr\ dr
Since the left hand side of the above equation is a function of 2* only and the right hand side is
a function of »* only, we have

A erind <r* d’“*), (3.4)

dz* rdr\| dr
where A is a constant. By applying the boundary conditions P* = Py at 2* = 0 and P* = Py, at
2* =L, we find that

Py - Py,

P =-Az"+P;,, A= i3 >0, (3.5)
hence

* /% A 2 * »
vy(r) = —@r' +Ci+Csln7?, (3.6)

where C} and Cj} are integration constants to be found. For the solution to be bounded at the
centerline of the pipe it is required that C3 = 0. By introducing the dimensionless variables

4”,0* ,r*
v, = AR;\’ r= 5 (3.7)
we have simply
vy(r) = - +C1. (3.8)
Note that
dv,
el —2. (3.9)

With a no-slip boundary condition at the inner surface of the pipe we have v, = 0 whenr =1
so that Eq. (3.8) becomes

vp(r) =172, (3.10)

which is the standard parabolic profile shown in Fig. 1.
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Fig. 1. Velocity profiles for pipe and channel flow, Egs. (3.10), (3.12), (3.14), (4.11), (4.14) and (4.21)

With the linear Navier boundary condition at the inner surface of the pipe we have

dv,
=1 =/, 1
r v, £ ar (3.11)
where £ = £*/R > O is a constant dimensionless slip length and the negative sign in front of £is a

reflection of Eq. (3.9), so that Eq. (3.8) becomes
v(r)=1—72 420 (3.12)

This profile is illustrated in Fig. 1 for £ = 0.5.
With the nonlinear Navier boundary condition for the case where @ > 0 and § > 0 at the
inner surface of the pipe we have

_1
2dv,
dr’

r=1, vzz—zx[l-kﬂ%]

I (3.13)

where o = o* /R and B = 4uf* /AR and the negative sign in front of « and the positive sign in
front of B is a reflection of Eq. (3.9). Hence Eq. (3.8) becomes
2a
[1 . 2 B)
which implies 0 < § < 1/2. This profile is illustrated in Fig. 1 for « = 0.5 and f=0.1 and
f=04.

v(ry=1-7"+ (3.14)

4 Flow through an infinite channel

Consider the flow of an incompressible Newtonian fluid between two parallel planes of infinite
extent separated by a distance 2h. The flow is driven by a pressure difference Pp — P, acting
over a distance L parallel to the planes. A cartesian coordinate system (z*,y*,2*) will be used,
where 2* is measured from the midpoint between the two planes normal to the planes, while z*
is measured parallel to the planes positive in the direction of flow. A velocity distribution of the
form



vi=0, =0, v}=vi"), (4.1)

is assumed such that the mass conservation equation is automatically satisfied and the
momentum conservation equation is given by (see [7])

2-component:

P N d?v;
oz " M

while the #* and y* components yield AP*/8x* = 0 = 8P* /8y*; thus the 2* component may be

written

apP*  d%u;

de  Mar

Since the left hand side of the above equation is a function of 2* only and the right hand side is

a function of z* only, we have
2, %

where A is a constant. By applying the boundary conditions P* = Py at 2* = 0 and P* = Py, at

2* =L, we find that

0=

(4.2)

(4.3)

(4.4)

P = —A2" + Py, A=P°;PL>0, (4.5)
hence

Py A *2 .k *
vi(x") = —ﬂx' + Ciz* + C3, (4.6)

where C; and Cj are integration constants to be found. By introducing the dimensionless
variables

_ 2 N
Vy = A2 x—ﬁ, (4.7)
we have
V(%) = —2® 4+ C1x + C3. _ (4.8)
Note that
dv,
—) - 4,
dr lz=+1 F2+C, &)

that is, the sign of the derivative at each solid boundary depends on the value of the as yet
unknown value of the integration constant C;. There are four cases in total to consider:

av, dv,
I —= -2<C 2
Case 1 dx‘x=1<0,da$'z=—l>0’=> <br<s
Case 2z 2| 50 P2l S0 sc 2
ax lz=1 dx lz=-1
p 4 (4.10)
Vs Vs
== : -2
Case 3 d I:1<0, e z=_1<0, =C; < -2,
dv av
Case 4: —= = Ci1>2, Cy < —2.
ase d.xz=1>0’dxrz=—1<0’:> 1>2, 01 <

Obviously, the fourth case is impossible and need not be considered.



With a no-slip boundary condition at each solid plane we have v, = 0 when 2 = +1 so that
Eq. (4.8) becomes

va(x) =1 — 22, (4.11)

and again this is the standard parabolic profile shown in Fig. 1.

4.1 Solution with linear Navier boundary condition

a. Case 1

With the linear Navier boundary condition for the case where £* assumes contant and equal
values at each solid plane we have

g=tl, v, =502 (4.12)

where £ = ¢*/h > 0 is a constant dimensionless slip length, so that

C1=0, Cy=1+2¢ (4.13)
which clearly satisfies the requirement of Eq. (4.10), so that Eq. (4.8) becomes

vp(x) =1 — 2% + 22 (4.14)
This profile is illustrated in Fig. 1 for £ =0.5.

b. Case 2
For this case we have
dv
x =+l vzzé—d;z, (4.15)
so that
Cr=-2, Cp=1-2¢ (4.16)

which clearly does not satisfy the requirement of Eq. (4.10) for £ > 0.

¢. Case 3
For this case we have
dv,

=41 =_ 4.17
Z ) 'Uz Z dx 3 ( )
so that
Ci=20, Cy=1-2¢ (4.18)

which clearly does not satisfy the requirement of Eq. (4.10) for £ > 0.

4.2 Solution with nonlinear Navier boundary condition

a. Case 1

With the nonlinear Navier boundary condition for the case where & > 0 and # > 0 at each solid
plane are equal we have



(4.19)

dvs] v,

dx 3
where o« = o*/h and B = 2uf* /Ah. Substituting the general solution (4.8) into the boundary
conditions and solving for Cy yields

x = +1, 'uz—:Fac[lﬂ:ﬁ

@1 =i = &y _M,
Vv1+B(C1-2) (4.20)
G140+ 0142

VI=BC +2)
These two expressions are equivalent, so that subtracting one from the other gives an equation

equal to zero, which must be solved for |C;| < 2. It is obvious that C; = 0 is a solution, and for
this case Eq. (4.8) becomes

2a

/'1 — 2 g b}

which implies 0 < B < 1/2. This profile is illustrated in Fig. 1 for « = 0.5 and f=0.1 and
p=04

To investigate if there are other solutions, we subtract Eqgs. (4.20) from each other and solve
for « > 0, which gives for C; # 0

V() =1-2%+ (4.21)

{201\/144301 2)/1 - ,3(01+2}/[c1( 1+ B(C: —

—B(C+2)) +2(VI+BCi-2) - VI-B(Ci +9))). (4.22)

Now, we require the square roots and the terms inside the square roots to be positive, which
implies 0 < B < 1/(2+4|C1]). If 0 < C; < 2 then we have

V14 B(C1 —2) - /1 - B(C1 +2) >0, (4.23)

so that both the numerator and denominator of Eq. (4.22) are positive, and hence « < 0, which
is a contradiction. If —2 < C; < 0 then we have

VI+B(Ci-2)— /T-B(Ci +2) <0, (4.24)

so that both the numerator and denominator of Eq. (4.22) are negative, and hence o < 0, which
is again a contradiction. Hence C; = 0 is the only valid solution.

b. Case 2

For this case we have

(4.25)

dv, _’:’dvz
dz| dx’

Substituting the general solution (4.8) into the boundary conditions and solving for Cj yields

xr ==l vzza[l—ﬂ

%(Cy —2)

1—B(C: —2)’
«Cy +2)
—B(C,+2)

Ca=1-0C1+
(4.26)
Ce=14+0C) +



These two expressions are equivalent, so that subtracting one from the other gives an equation
equal to zero, which must be solved for C; > 2. Solving for o > 0 gives

a:—[ZCl\/l—ﬂ(Cl—2)\/1—,8(Cl+2)]/[c1( 1 - B(Cy —2)

~VI=BCi+2)) +2(VI—BCi -2 + VI BCi +2)) . (4.27)

Now, again we require the square roots and the terms inside the square roots to be positive,
which implies 0 < f < 1/(2 + C1). For C; > 2 we have

V/1-B(C; —-2)—+/1-B(C1 +2) >0, (4.28)

so that both the numerator and denominator of Eq. (4.27) are positive, and hence « < 0, which
is a contradiction. Hence there are no valid solutions for this case.

¢. Case 3

For this case we have

(4.29)

dv,] v,
dr| dx’
Substituting the general solution Eq. (4.8) into the boundary conditions and solving for Cy
yields

xr =+l vzz—a[l-l—ﬂ

szl—Cl——M
VI+B(Ci=2) (4.30)
Cr=140 ——X01+2)

V1+B(C1 +2).

These two expressions are equivalent, so that subtracting one from the other gives an equation
equal to zero, which must be solved for C; < —2. Solving for a > 0 gives

@ =—[2(=C1)/T+ B(C1 +2)V/1+ B(C1 — 2)) / (e (VI+BCi+2)

~VI+B(Ci—2)) + 2(\/1 +B(Cr +2) + 1+ B(Cr — z))]_ (4.31)

Again, we require the square roots and the terms inside the square roots to be positive, which
implies 0 < f < 1/(2 — C}). For C; < —2 we have

V1I+B(C1+2)—/1+B(Cr—-2) >0, (4.32)

so that both the numerator and denominator of Eq. (4.31) are positive, and hence o < 0, which
is a contradiction. Hence there are no valid solutions for this case.

5 Flow through an infinite annulus

Consider the steady flow of an incompressible Newtonian fluid through the annular region
between two infinite coaxial pipes of radii R and xR, where 0 < k < 1. The flow is driven by a



pressure difference Py — P, acting over a distance L parallel to the two pipes. A cylindrical
coordinate system (7*, 8,2*) will be used, where r* is measured in the radial direction and 2* is
measured in the axial direction positive in the direction of flow. A velocity distribution of the
form in Sect. 3 is assumed, so that the general solution is given by

V(1) = —* + C1 + C3 1nr. (5.1)
Note that

dv, dv, Cs

it S = _ et} 2
dr lr=1 : it CZ’ dar lr=« i . K ! (5 )

that is, the sign of the derivative at each solid boundary depends on the value of the as yet
unknown value of the integration constant Cy. There are four cases in total to consider: -

Case 1: 22 <0, dvs >0, =22 <C <2,

d'r r=1 ar lr=«

L du, dv,
Case 2: I lret 0, o >0,=Cy > 2,
(5.3)

Case 3: dvs <0, dvs <0,= Cy < 22,

dr lr=1 dr lr=x

a
Cased: 22| 50 Pz 0 50> 2 G <2t

dr lr=1 ar lr=x :

Obviously, the fourth case is impossible and need not be considered.
With a no-slip boundary condition at the inner surface of the outer pipe and outer surface of
the inner pipe we have v, = 0 when » = x and r = 1 so that Eq. (5.1) becomes

L (5.4)

Ve(r)=1—-72 +ln(x—1)

This profile is illustrated in Fig. 2 for x = 0.5.

107
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Fig. 2. Velocity profiles for annulus flow, Egs. (5.4) and (5.7)



5.1 Solution with linear Navier boundary condition

a. Case 1

With the linear Navier boundary condition at the inner surface of the outer pipe and outer
surface of the inner pipe we have

r= 1) V: = _ecf;:_z )
(6.5)
r=K, Uy= Zdvz
— M Rz d'f ]
where £ = £*/R > 0 is a constant dimensionless slip length, so that
s [kIn(x?) + €] (1 + 26) + & (x — 2¢)
. xIn(x1) + £(1 + x) ’
(5.6)

k(14 K)[1 —x+2f
27 kIn(k V) + 61 + &)

)

which satisfies the requirement of Eq. (5.3) as illustrated in Figs. 3and 4 for {=05and £ =1,
respectively, so that Eq. (5.1) becomes

[xIn(x™1) + €] (1 + 2£) + £ (xc — 2) 2
xIn(x1) + £(1 + x) B

V(1) =

k(1 +x)[1 — x4+ 24 ,
kln(e=') + 61 +x) "

(5.7)

This profile is illustrated in Fig. 2 for k = 0.5 and £=0.5and £ =1.
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b. Case 2

For this case we have

r=1, v,= é%vf,
(5.8)
r=K Up= Z%
— M 2 dr L]
so that
e [eln(x~) + £} (1 — 26) — &P (x — 20)
=l k(1) + £(1 — x) :
(56.9)

w1l —k)[1 4 x — 24
T rln(k ) + (1 - k)’

Cs

which does not satisfy the requirement of Eq. (5.3) for all £ > 0 and 0 < x < 1, an example of
which is shown in Fig. 5 for £ = 0.5.

c. Case 3

For this case we have

r=1, vz=—£(3):,
(5.10)
dv,
r=x, Vy=-—¢

dr’
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so that
= [In(xt) — £](1 + 26) + & (x + 24)

e xIn(x~1) — £(1 — k) ¥

(5.11)
k(1 ~x)[1+x+2f

2T kIn(x ) — (1 — )’
for
; ;é%":). (5.12)
Since
0< @ <1, (6.13)

for 0 < x < 1, for £ > 1 the requirement of Eq. (5.3) will always be satisfied, while for 0 < £ < 1
the requirement of Eq. (5.3) will only be satisfied for a particular range of «. This is iltustrated
in Fig. 6, which plots the integration constants Cy and Cy for £ = 0.5. For this case

1 -1
% =05 = x = 0.285, (5.14)
so that for 0 < x < 0.285, Cy < 2«2. Figure 7 plots the integration constants C; and Cy for
¢ =2, demonstrating that Cy < 2x?2 for all x. The velocity profile is thus given by

 [reln(x) — 41+ 28) + &P (xc + 20)
va(r) = xIn(x-1) — £(1 — x) -7

’(1— )1+ K+ 24
k(') — €1 — k)

Inr (5.15)

and is illustrated in Fig. 8 for x = 0.25 and ¢ = 0.5 and £ = 2.
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5.2 Solution with nonlinear Navier boundary condition

a. Case 1

With the nonlinear Navier boundary condition for the case where o > 0 and § > 0 at the inner
surface of the outer pipé and outer surface of the inner pipe we have
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1 L
b _ dv,| dv,
r=1 v,= a[1+ﬁdr] ar 10
z —%d'uz

r=K, 'uzza[l—ﬂd—i] o

where o« = «* /R and B = 4uf* /AR. Substituting the general solution (5.1) into the boundary
conditions and solving for C; yields
(X(Cz . 2)

 J/1+BCz-2)

= +Coln(x7") +

Ci =

—_ (5.17)

VKl — B(Cz — 23)]
which must be solved for 2i2 < Cs < 2. For the terms inside the square roots to remain positive
we require

1
for 2% < Cy < 2k, and
K
B< Ca — 212 (56.19)

for 2k < Cs < 2. Solutions are found by generating plots of C; versus Cy for given values of x, &
and B for each expression. It is found that there is only one solution for each set of «, « and B.
The results for k = 0.5, « =1 and f=0.25 are shown in Fig. 9, which has the solution
C; = 1.01 and Cp; = 2.14.

By subtracting Eqs. (5.17) from each other we obtain an expression free of C;, which may be
solved for set values of x and a and varying 8 up to the maximum value of 8, 8., as given by
Egs. (5.18) and (5.19) (whichever is smaller). Figure 10 shows a plot of the solutions for C; and
C, for k = 0.5 and a = 1 for f ranging from 0 to f,,, = 1. Figure 11 plots the velocity profiles
for x =0.5, « =1 and B = 0.25, 0.5 and 0.75.
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b. Case 2
For this case we have
1
3 _ dv,| idv,
T—].‘ Uz—a[l—ﬂd—r] dr,
. (5.20)
dv,| dv
- —a|l - BZE| =2,
resial L a[ B dr] dr
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Substituting the general solution (5.1) into the boundary conditions and solving for C; yields
a!(Cz == 2)

V1-PB(C:-2)

€ =¥ +Cyln(x

Ci=1+

(G — 24 (5.21)

)+ ‘
Vil — B(Cz — 267)]
which must be solved for Cy > 2. For the terms inside the square roots to remain positive we
require
K

b<o o

for Cz > 2. Solutions are found by generating plots of C; versus Cy for given values of «, « and
B for each expression. It is found that there are no solutions for each set of «, « and B. The
results for ¥ = 0.5, « = 1 and § = 0.1 are shown in Fig. 12.

(5.22)
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Fig. 12. Integration constants for annulus flow, Eq. (5.21) for Cz > 2 and x = 0.5, a = land §=0.1



¢. Case 3

For this case we have

1
dv,| v,
r=1, vz=—ot[1+ﬂdr} e
X (5.23)
_ _ dv,| dv,
r=K, U= a[l+‘8dr] I

Substituting the general solution Eq. (5.1) into the boundary conditions and solving for C,
yields

o(Cy — 2)

VIFBC: =2y

C, = Kz + Cy ln(K_l) —

Ci=1-

(G — 24%) (5.24)

VKK + B(C2 —25)]
which must be solved for Cz < 2i2. For the terms inside the square roots to remain positive we
require

1

for —2x < Cy < 2k, and
K

for C3 < —2x. Solutions are found by generating plots of C; versus Cy for given values of x, «
and B for each expression. It is found that there is only one solution for each set of x, & and .
Recall that for the linear case for £ < 1, that is « < 1, solutions were only generated for a
particular range of x. The results for ¥ = 0.5, « = 0.5 and § = 0.1 are shown in Fig. 13, which
has solution C; = 4.52 and C, = —2.99.

Fig. 13. Integration constants for annulus flow, Eq. (5.24) for C» < 2x% and x = 0.5, a = 0.5 and
=01



By subtracting Egs. (5.24) from each other we obtain an expression free of C;, which may be
solved for set values of x and « and varying § up to the maximum value of B, f,.,,, as given by
Egs. (5.25) and (5.26) (whichever is smaller). Figure 14 shows a plot of the solutions for C; and
C, for ¥ = 0.5 and « = 0.5 for B ranging from 0 to 8, = 0.15. Figure 15 plots the velocity
profiles for k = 0.5 and « = 0.5.

The results for k=2, « =0.5 and B =0.2 are shown in Fig. 16, which has solution
C; = 11.85 and C, = —1.23. Figure 17 shows a plot of the solutions for C; and Cj for k = 0.5
and « = 2 for f ranging from 0 to B,,,, = 0.33. Figure 15 plots the velocity profiles for x = 0.5
and o = 0.5.
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0< B < Brax =015

1.0

+r 0.5

-r —0.5

-1.0* ' . ,
4 6 8 10 12

Fig. 15. Velocity profiles for annulus flow, Eq. (5.1) for k = 0.5



20 1.0
4 0.8
15
: 0.6
C, 10 I ﬂmax
r 0.4
s
0.2
/C2=—2x=—l
0 L : S B \ == 0.0
-2.0 -1.5 -1.0 -0.5 0.0 0.5
G

Fig. 16. Integration constants for annulus flow, Eq. (5.24) for C; < 2«% and x = 0.5, = 2and § = 0.2

25

20

15

10

L= S R LSS B S B BRG]

L S

x=0.5
a=2
Brax = 0.33

POV Vol ) L Sy

TERE, ST ST T S| ST QN W SNDUTY SSy Gty SUPY U T L U VR YU U (A T

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Brax

Fig. 17. Integration constants for annulus flow, Eq. (5.24) for C2 < 2x% and x =05, ¢ =2 and
0< B < B =033

6 Results and conclusions

Although the boundary condition proposed by Thompson and Troian [35] is highly nonlinear
and possibly singular, the results presented here for three simple pressure-driven flows through
a pipe, 2 channel and an annulus suggest that in terms of the assumed form of the solution the
integration constants obtained are still unique when care is taken concerning the sign of



the normal derivative of velocity at the boundary. When there is only one boundary on which
the condition is applied, as for the flow through a pipe, the results are simple and are seen to be
unique immediately.

When there are two boundaries on which the condition is applied, as with the flow
through a channel and an annulus, complicated transcendental equations are obtained for
the integration constants, which on first inspection may appear to offer multiple solutions.
However; careful delineation of the various signs of the constants involved in the nonlinear
Navier boundary condition suggests that for the assumed form of the solution uniqueness is
maintained.

For the flow through the pipe and channel, a careful examination of the sign of the normal
derivative of velocity at the boundary and of the constants involved in the nonlinear Navier
boundary condition indicates that there is only one acceptable solution of the assumed form,
which for these one-dimensional problems behave like a modified slip length, £, say, in the
Navier boundary condition; that is if £, is defined via

b = =z (6.1)

where o and B are the non-dimensional constants associated with the nonlinear Navier
boundary condition. If this definition of the slip length is applied to the linear Navier
boundary condition (which may no longer be of small magnitude, since £, — oo as
B — 1/2), then the solutions obtained agree with those for the nonlinear Navier boundary
condition.

The solutions for the pressure-driven flow through an annulus are quite different to those
for the pipe and the channel. Two distinct cases for the sign of the normal derivative of
velocity at each boundary are obtained, which produce two solutions for both the linear
and nonlinear Navier boundary conditions which are mathematically and physically
acceptable. One set of these solutions corresponds to the standard parabolic profile with an
increased maximum for positive values of the slip length (for the linear case) and positive
constants (for the nonlinear Navier boundary condition). The other solution is for the case
where the normal derivative of velocity at each boundary is negative. Here the predicted
profile is monotone and predicts that the slip velocity is much greater at the outer surface
of the inner pipe than at the inner surface of the outer pipe. For the linear Navier
boundary condition the results demonstrate that when the slip length £> 1 solutions may
be found for the whole range of x, which is the ratio of the radius of the smaller pipe to
that of the larger pipe, while for £ < 1 solutions are found for a range of x from zero to the
solution of

£(1—x)—xln(x) =0. (6.2)

For the nonlinear Navier boundary condition the same situation arises for « > 1 and < 1, but
thé range of x for o < 1 increases as § increases from zero.
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