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We study the axisymmetric stretching of a thin sheet of viscous fluid driven by a
centrifugal body force. Time-dependent simulations show that the sheet radius R(t)
tends to infinity in finite time. As time t approaches the critical time t∗, the sheet
becomes partitioned into a very thin central region and a relatively thick rim. A net
momentum and mass balance in the rim leads to a prediction for the sheet radius
near the singularity that agrees with the numerical simulations. By asymptotically
matching the dynamics of the sheet with the rim, we find that the thickness h in
the central region is described by a similarity solution of the second kind, with
h ∝ (t∗ − t)α where the exponent α satisfies a nonlinear eigenvalue problem. Finally,
for non-zero surface tension, we find that the exponent increases rapidly to infinity at
a critical value of the rotational Bond number B = 1/4. For B > 1/4, surface tension
defeats the centrifugal force, causing the sheet to retract rather than to stretch, with
the limiting behaviour described by a similarity solution of the first kind.
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1. Introduction
Numerous processes in industry and nature depend on stretching thin sheets of

viscous liquid. Specific industrial applications include polymer film casting and the
float glass process (see e.g. Pearson 1985 and the references therein). On a much
larger scale, the Earth’s lithosphere behaves as a thin viscous sheet over geological
time scales (England & McKenzie 1982). Though the stretching of liquid sheets in
many industrial applications is essentially unidirectional, two-dimensional stretching
is also used in practice (Pilkington 1969), as recently modelled by Scheid et al. (2009).
In either case, the main driving force is set by the boundary conditions, though
gravity if aligned with the stretching direction can also contribute to the thinning
process (Cao, Khayat & Puskas 2005). In this paper, we investigate the use of
centrifugal force to stretch a thin circular viscous sheet, inspired by the example of
a chef spinning pizza dough around his hand. For simplicity, we limit our study to
incompressible Newtonian fluid, although pizza dough is in reality both viscoelastic
and shear-thinning (Ng, McKinley & Padmanabhan 2006).

† Email address for correspondence: bscheid@ulb.ac.be
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The radial expansion of circular sheets has been widely studied in the context of
atomization since the pioneering work by Savart (1833) and later Taylor (1959a, b)
and Huang (1970). An axisymmetric liquid sheet may be formed by letting a round
liquid jet impact a flat circular surface. As the sheet expands, the fluid collects in a
rim around the edge, which eventually breaks up into small droplets (e.g. Eggers &
Villermaux 2008). The surface-tension-driven radial retraction of fluid sheets is also
an active research topic in the context of spray formation as well as in the rupture of a
soap film or a liquid curtain (e.g. Savva & Bush 2009). The theoretical framework for
modelling thin viscous sheets can been found, for instance, in Buckmaster, Nachman &
Ting (1975), Howell (1996) or Ribe (2002).

The topic of finite-time rupture has been treated by many authors, such as Erneux &
Davis (1993), Ida & Miksis (1996) and Vaynblat, Lister & Witelski (2001a) for viscous
sheets and Papageorgiou (1995), Eggers (1997) and Renardy (2001) for viscous threads.
Vaynblat, Lister & Witelski (2001b) have shown that lubrication models for van der
Waals driven rupture of a sheet and capillary driven rupture of a thread both give
rise to families of first-kind similarity solutions. Similarity solution of the second
kind – i.e. with non-rational scaling exponents as classified by Barenblatt (1996) –
was suggested in a study of sheet rupture by Ida & Miksis (1996) in a transient
regime where van der Waals and viscous forces dominate the evolution. However,
Vaynblat et al. (2001a) demonstrated that the eventual asymptotic dynamical balance
is between van der Waals forces, viscosity and inertia, which then gives rise to a
symmetric first-kind similarity solution. Vaynblat et al. (2001b) reached the same
conclusion for the breakup of a viscous thread, though in this case the first-kind
similarity solution is asymmetric. By neglecting inertia, Papageorgiou (1995) found
similarity solutions of the second kind valid as the radius of a viscous thread tends to
zero after a finite time. Similarly, we will show that a spinning viscous sheet stretches
to infinity in finite time, with the ultimate behaviour described by a similarity solution
of the second kind. We will find that the centrifugal force sends the sheet thickness
to zero everywhere simultaneously, in contrast with van der Waals interaction (in the
case of a sheet) and capillary stress (in the case of a thread), both of which cause
finite-time rupture at a single point.

In § 2 we pose the mathematical formulation and perform time-dependent
simulations of a spinning viscous sheet. In § 3 we undertake small-time asymptotics to
understand the early stages of the expansion. In § 4 we show that a similarity solution
of the first kind cannot satisfy all the boundary conditions and therefore fails to
describe the limiting behaviour. In § 5 we describe an asymptotic decomposition into
a flat central region and a thicker rim, which occurs at later times of the expansion.
This approach motivates us to perform in § 6 an asymptotic analysis of each region
separately and thus determine the matching conditions. We show that the central
region is described by a similarity solution of the second kind, in which the exponent
is found by satisfying the matching conditions with the rim. In § 7 we generalize our
results to include surface tension. Our conclusions are presented in § 8.

2. Problem formulation
2.1. Stress balance

We consider a circular viscous sheet of time-dependent radius R(t) spinning at angular
rate Ω and with constant density ρ and viscosity µ. A cylindrical (r, θ, z) coordinate
system is chosen with the origin at the centre of the sheet, as sketched in figure 1.
The flow is assumed extensional and axisymmetric, and is therefore fully described
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Figure 1. Sketch of a spinning viscous sheet.

by the radial velocity u = u(r, t) and the sheet thickness h = h(r, t). This description
remains valid as long as h � R and prior to any azimuthal instability.

For a radial extensional flow, the radial and azimuthal stresses are given respectively
by

σrr = −p + 2µ
∂u

∂r
and σθθ = −p + 2µ

u

r
. (2.1)

The pressure p is obtained from the vanishing of the transverse stress σzz, which leads
to

p = −2µ

r

∂(ru)

∂r
. (2.2)

If we ignore inertia, surface tension and intermolecular forces, then a balance
between extensional and centrifugal stresses averaged across the thickness of the sheet
gives

1

r

∂(rhσrr )

∂r
− hσθθ

r
= −ρΩ2r h. (2.3)

Here we have neglected all fluid inertia, including Coriolis effects, but retained the
centrifugal acceleration. This assumption is valid provided the rotational Reynolds
number ρΩR2/µ is small. Although the use of a Newtonian constitutive relation is
questionable for pizza dough, we can use the results of Ng et al. (2006) to estimate
a typical value of the viscosity µ ≈ 104 Pa s. Hence, with ρ ≈ 103 kg m−3, Ω ≈ 2π s−1

and R ≈ 0.15 m for a 12 in. pizza, we find that ρΩR2/µ ≈ 0.014.

2.2. Dimensionless equations

Defining the characteristic timescale τ̄ = µ/ρΩ2R̄2 over which the stress balance (2.3)
takes place, and using the initial radius R̄ and the average initial thickness h̄, the
non-dimensionalization is performed through the transformations

r → R̄r, R → R̄R, t → τ̄ t, h → h̄h, u → R̄

τ̄
u and σ → µ

τ̄
σ . (2.4)

The dimensionless stress balance (2.3) then becomes

∂

∂r
(rhσrr ) − hσθθ = −hr2 , (2.5)

and use of (2.2) reduces the dimensionless constitutive relations (2.1) to

σrr = 4
∂u

∂r
+ 2

u

r
and σθθ = 2

∂u

∂r
+ 4

u

r
. (2.6)
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Figure 2. Numerical results for the sheet thickness profile h(r, t) versus radial coordinate r for
two different initial conditions (thick lines); time interval �t = 1.0 (‘drop’), �t = 0.6 (‘box’).
(a) ‘Drop’ condition : h0(r) = 2

(
1 − r2

)
; (b) ‘box’ condition: h0(r) = 1.

Substituting (2.6) into (2.5) yields

4
∂

∂r

(
h

r

∂(ru)

∂r

)
− 2

u

r

∂h

∂r
= −rh. (2.7)

The system is closed by the mass conservation equation

∂

∂t
(rh) +

∂

∂r
(rhu) = 0, (2.8)

and by symmetry, kinematic and zero-stress boundary conditions:

u(0, t) = 0, u(R(t), t) = Ṙ(t) and σrr (R(t), t) = 0, (2.9)

where the dot denotes the time derivative. This problem description has no
dimensionless parameters and so is completely determined by the initial conditions

h(r, 0) = h0(r) and R(0) = 1. (2.10)

The edge r = R(t) will be rounded by a meniscus whose aspect ratio is O(1), so it
is not captured by our long-wavelength model. Net mass and stress balances on this
meniscus give rise to the effective boundary conditions (2.9b,c). The stress balance
(2.9c) will be generalized in § 7 to account for surface tension, which introduces a
rotational Bond number into the formulation.

2.3. Numerical simulations

We first look at time-dependent solutions of the system (2.7)–(2.10), performed by the
finite element method using Comsol. The computations are facilitated by performing
a Lagrangian transformation, as described in the Appendix, to map the moving
domain onto a fixed interval. The mesh size is refined down to 10−8 in the central
region to resolve the singularity in the system of equations as r → 0.

Because the system is parameter free, the only tunable quantity is the initial thickness
profile h0(r). We consider two illustrative examples: a ‘drop’ initial condition with
h0(r) = 2

(
1 − r2

)
and a ‘box’ condition with h0(r) = 1. The numerical results are

plotted in figure 2, which shows thickness profiles for regular time intervals from
t = 0 (thick lines) until a time close to the critical time t = t∗ at which the sheet
radius R(t) tends to infinity and the middle thickness h(0, t) tends to zero (within the
limits of numerical accuracy).
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These simulations show that for either initial condition two different regimes in the
time evolution may be identified. Initially, the film thins at an essentially constant
rate, with the radius still close to R ∼ 1. At later times, the fluid accumulates in a
thick rim, leaving a very thin film in the centre, while the radius expands to infinity
in finite time. We will show below how these observations can be explained using
asymptotic analysis.

3. Small-time asymptotics
To investigate the early stages of the sheet evolution, we seek a small-t expansion

of the form

h(r, t) ∼ h0(r) + th1(r) + · · · , u(r, t) ∼ u0(r) + tu1(r) + · · · , R(t) ∼ 1 + tR1 + · · · .

(3.1)

The initial thickness h0(r) is specified, while the momentum equation (2.7) leads to
an ordinary differential equation (ODE) for the initial velocity u0(r), namely

u′′
0 +

(
1

r
+

h′
0

h0

)
u′

0 +

(
h′

0

2rh0

− 1

r2

)
u0 = − r

4
, (3.2)

subject to the boundary conditions

u0(0) = 0 and 4u′
0(1) + 2u0(1) = 0, (3.3)

where a prime denotes the r-derivative. The first-order thickness correction h1(r) is
then found from (2.8) to be given by

h1 = −1

r
(rh0u0)

′ , (3.4)

while the kinematic boundary condition (2.9b) determines the initial rim velocity as

R1 = u0(1). (3.5)

Analytical solution of even the leading-order equation (3.2) is unlikely to be feasible
unless h0(r) takes a reasonably simple form. The most straightforward case is the
‘box’ initial condition h0(r) ≡ 1, for which the solution of (3.2) and (3.3) is

u0(r) =
r(7 − 3r2)

96
. (3.6)

From (3.4) and (3.5), we then easily find

h1(r) = − (7 − 6r2)

48
and R1 =

1

24
. (3.7)

The procedure may be continued to find the higher-order corrections:

u(r, t) ∼ r(7 − 3r2)

96
+

7r(26 − 9r2 + 3r4)t

18432
+

7r(885 − 270r2 + 64r4 − 19r6)t2

4718592
+ · · · ,

(3.8)

h(r, t) ∼ 1 − (7 − 6r2)t

48
+

(14 − 378r2 + 153r4)t2

18432
+ · · · , (3.9)

R(t) ∼ 1 +
t

24
+

31t2

9216
+ · · · . (3.10)
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Figure 3. Comparison between the simulation (solid line) and the small-time expansion
(3.9)–(3.10) (dashed line) for the ‘box’ initial condition; t∗ ≈ 7.8878 indicates the critical time
at which R tends to infinity.

These series appear to converge rapidly, and figure 3 confirms that the minimum
thickness h(0, t) and sheet radius R(t) are indeed well approximated as linear functions
of t . However, the approximation obviously fails to describe the singular behaviour
of the radius R(t) as t approaches the critical time t∗, which is investigated in the
subsequent sections.

4. Failure of the first-kind similarity solution
The simulation results shown in figure 2 indicate that the sheet radius tends to

infinity, while the thickness tends to zero, as t approaches some finite time t∗. We
would expect the solution in the neighbourhood of such a singularity to be self-similar.
We easily find that the ansatz

h = (t∗ − t)αf (η), u = (t∗ − t)−3/2g(η), R = (t∗ − t)−1/2
, (4.1)

where η = r
√

t∗ − t is the similarity coordinate, balances all the terms in the governing
equations (2.7) and (2.8), for any value of the exponent α. The net mass-conservation
condition ∫ R(t)

0

h(r, t)r dr = (t∗ − t)α−1

∫ 


0

f (η)η dη =
1

2
(4.2)

(the value 1/2 following from our non-dimensionalization of h) requires us to choose
α = 1, and by imposing the condition g(0) = 0 we quickly obtain the solution

f (η) =
e−η2/6

6(1 − e−
2/6)
, g(η) =

η

2
. (4.3)

There are several problems with this similarity solution. First, all of our numerical
simulations indicate that the sheet thickness is minimized at the centre as t → t∗,
while (4.3) gives a maximum in h(r, t) at r = 0. In addition, the radial stress
corresponding to (4.3), namely σrr = 3/ (t∗ − t), does not satisfy the zero-stress
boundary condition at the edge r = R(t). Finally, we note that our numerical
solutions suggest h(0, t) ∝ (t∗ − t)α with α ≈ 4 (see § 6.5), not α = 1.

The similarity solution (4.3) is of the first kind, following the classification by
Barenblatt (1996), with rational scaling exponents chosen to balance all the terms
in the equations and to conserve mass globally. Thus, we have found that no such
solution exists that satisfies the stress-free condition at r = R(t), and a more careful
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Figure 4. Asymptotic decomposition effective as t approaches the critical time t∗; A(t) is the
cross-sectional area of the rim.

analysis is therefore required to determine the correct scaling behaviour in the limit
t → t∗.

5. Asymptotic decomposition
Our simulations show that, as the critical time t∗ is approached, the fluid sheet

deforms into two distinct domains, as shown schematically in figure 4. We denote the
very thin flat sheet in the centre as the ‘central region’ and the relatively thick lobe
near the edge as the ‘rim’. For the sake of clarity, the equations and variables in this
section are given in dimensional terms, unless specified otherwise.

As the rim expands (with radius R(t)), it experiences an extensional strain rate of
Ṙ/R. This gives rise to an azimuthal or hoop tension

T =
3µAṘ

R
, (5.1)

where A(t) is the cross-sectional area, and the factor 3 is the Trouton ratio for the
drawing of a viscous thread (Pearson 1985). Meanwhile, the radial stress in the central
region is given by

σrr = −3µḣ

h
, (5.2)

where we approximate the sheet thickness h as a function only of t . A net balance
between the centrifugal force, radial stress and hoop tension acting on the rim leads
to

T

R
+ σrrh = ρΩ2RA. (5.3)

Net mass conservation gives us one more equation, namely

2πRA + πR2h = V, (5.4)

where V = πR̄2h̄ is the constant total volume of the sheet.
In (5.1)–(5.4) we have just four equations for the five unknowns T , σrr , A, R and h,

so more information is needed. We can make progress by supposing that the stress σrr

exerted by the central region on the rim is negligible; this assumption will be justified
a posteriori. In this limit, (5.1) and (5.3) reduce to the differential equation

Ṙ

R3
=

ρΩ2

3µ
, (5.5)



8 P. D. Howell, B. Scheid and H. A. Stone

1 110 10
1

10

102

10–4 10–3 10–2 102 10310–1

R

t* − t

‘Box’

‘Drop’

Eq. (5.7)

0.1

1

h m
ax

R

‘Box’‘Drop’

–1/2

(b)(a)

Figure 5. Numerical results (solid and dotted lines) for the sheet radius R(t) and maximum
thickness hmax (t) compared with the asymptotic predictions (5.7) and (5.9) (dashed lines).

whose solution is

R(t) =

(
3µ

2ρΩ2 (t∗ − t)

)1/2

. (5.6)

In figure 5(a), we compare the prediction (5.6), rewritten in dimensionless form as

R(t) =

(
3

2 (t∗ − t)

)1/2

, (5.7)

with our numerical results for both the ‘box’ and the ‘drop’ initial conditions. In either
case the agreement as t → t∗ is excellent, and this allows us to estimate the critical
time t∗ with high accuracy. We obtain t∗ ≈ 7.8878 for the ‘box’ and t∗ ≈ 14.0975 for
the ‘drop’.

Next, if we also neglect the contribution of the central region to the net mass of
the sheet, then (5.4) determines the cross-sectional area of the rim as

A =
V

2πR
∝ (t∗ − t)1/2. (5.8)

It is well known (see e.g. Dewynne, Ockendon & Wilmott 1992) that the cross-sectional
aspect ratio of a Newtonian viscous thread is preserved as it stretches. It follows that
both the height and the width of the rim must scale as (t∗ − t)1/4 as t → t∗, and we
deduce from (5.7) and (5.8) that the thickness of the rim should vary as R−1/2.

This result can be verified from numerical simulations by plotting the scaled
maximum sheet thickness hmax versus the scaled radius R, as shown in figure 5(b) for
the two initial conditions considered in § 2.3. For the ‘box’ initial condition, the result

hmax = R−1/2 (5.9)

is exact, as explained in the Appendix. For the ‘drop’ initial condition, the trend at
large R also matches the −1/2 power law, although now with a pre-factor that is
determined numerically.

Finally, we can check a posteriori whether the simplifying assumptions that we
made are justified. Our simulations indicate that the thickness in the central region
follows a power-law behaviour, with h ∝ (t∗ − t)α as t → t∗. It is easily verified that
the terms that we neglected in (5.3) and (5.4) are indeed small if and only if α > 1.
As shown in § 4, the choice α = 1 leads to a similarity solution that conserves mass
and momentum throughout the sheet but cannot satisfy the zero-stress boundary
condition. Our numerical solutions suggest α ≈ 4, in which case the contributions
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Figure 6. Summary of the scalings resulting from the asymptotic decomposition
in the limit t → t∗.

of the central region to (5.3) and (5.4) are certainly negligible and we can therefore
expect the approximations employed in this section to be valid.

Our predicted scaling laws are summarized in figure 6. Notice that the exponent α

for the scaling of the thickness in the central region remains unknown thus far. We
will show below how α may be determined by performing a more careful analysis of
the asymptotic limit t → t∗.

6. Asymptotic analysis near the critical time
6.1. Analysis of the central region

The asymptotic analysis is facilitated by introducing a small ordering parameter ε � 1
characterizing the time remaining until the critical time t∗. Thus we define a new time
variable τ using

t = t∗ + ετ, (6.1)

while the remaining variables in the central region are scaled according to

h = εαh̃, r = ε−1/2r̃ , u = ε−3/2ũ, σ = ε−1σ̃ . (6.2)

These scalings parameterize the symmetry that led to the similarity ansatz (4.1), and
therefore exactly preserve the governing equations (2.5), (2.6) and (2.8), which are
transformed to

∂

∂τ
(r̃ h̃) +

∂

∂r̃
(r̃ h̃ũ) = 0, (6.3)

∂

∂r̃
(r̃ h̃σ̃rr ) − h̃σ̃θθ = −h̃r̃2, (6.4)

σ̃rr = 4
∂ũ

∂r̃
+ 2

ũ

r̃
, (6.5)

σ̃θθ = 2
∂ũ

∂r̃
+ 4

ũ

r̃
. (6.6)

6.2. Analysis of the rim

We examine the rim near the edge r = R(t) by performing rescalings deduced from
the scalings summarized in figure 6, namely

h = ε1/4ĥ, r = R(t) + ε1/4r̂ , R(t) = ε−1/2R̂(τ ), u = Ṙ(t) + ε−3/4û, σ = ε−1σ̂ .

(6.7)
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To leading order in ε, the governing equations (2.5)–(2.8) reduce to

∂

∂τ
(ĥR̂) +

∂

∂r̂
(ĥR̂û) = 0, (6.8)

∂

∂r̂
(R̂ĥσ̂rr ) = 0, (6.9)

σ̂rr = 4
∂û

∂r̂
+ 2

˙̂
R

R̂
, (6.10)

σ̂θθ = 2
∂û

∂r̂
+ 4

˙̂
R

R̂
. (6.11)

From (6.9) and the boundary condition σ̂rr = 0 at r̂ = 0 we deduce that σ̂rr ≡ 0. It
follows from (6.10) and the kinematic condition û = 0 at r̂ = 0 that

û = −
˙̂
Rr̂

2R̂
, (6.12)

and the hoop stress is thus given by

σ̂θθ =
3

˙̂
R

R̂
. (6.13)

The mass conservation equation (6.8) takes the form

∂ĥ

∂τ
−

(
˙̂
Rr̂

2R̂

)
∂ĥ

∂r̂
= −

(
˙̂
R

2R̂

)
ĥ. (6.14)

This hyperbolic partial differential equation (PDE) has the general solution

ĥ =
F (χ)√

R̂
with χ = r̂

√
R̂, (6.15)

where the function F is arbitrary, and may be determined only by numerical solution
of an initial-value problem. We expect ĥ to decay as r̂ → −∞, to match with the
central region. If we suppose that F varies according to

F (χ) ∼ C1

(−χ)m
as χ → −∞, (6.16)

for some constant C1, then matching of the thickness between the central and rim
regions provides the condition

εαh̃ ∼ ε(3m+1)/4C1

R̂(m+1)/2(R̂ − r̃)m
as r̃ → R̂. (6.17)

This result tells us that the exponents m and α must be related by

m =
4α − 1

3
. (6.18)

Since we have found that σ̂rr is zero to leading order in ε, we can seek the first
perturbation by performing the rescaling σ̂rr = ε3/4σ̂rr1. Then we find that σ̂rr1 satisfies

∂

∂r̂
(R̂ĥσ̂rr1) = ĥ(σ̂θθ − R̂2), (6.19)
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and the solution, subject to σ̂rr1 = 0 at r̂ = 0, is

σ̂rr1 =
3

˙̂
R − R̂3

R̂5/2F (χ)

∫ χ

0

F (χ ′) dχ ′. (6.20)

If the area of the rim is finite, then we can set
∫ χ

0
F (χ ′) dχ ′ → Â as χ → −∞ and

thus, using (6.16),

σ̂rr1 ∼ (3
˙̂
R − R̂3)Â

C1R̂5/2
(−r̂

√
R̂)m as r̂ → −∞. (6.21)

Hence the matching condition for the stress in the central region is

ε3(m−1)/4σ̃rr ∼ Â(3
˙̂
R − R̂3)

C1R̂(5−m)/2
(R̂ − r̃)m as r̃ → R̂. (6.22)

A balance in (6.22) is achieved by choosing m = 1, which corresponds to α = 1.
As we have seen in § 4, this choice is unsatisfactory since it neither leads to a sensible
similarity solution in the central region nor agrees with the simulations. Numerical
evidence suggests that α > 1, in which case m > 1 and the left-hand side of (6.22) is
negligible to leading order in ε. To avoid a contradiction, we must choose

3
˙̂
R = R̂3, (6.23)

and hence

R̂(τ ) =

(
3

−2τ

)1/2

, (6.24)

which is equivalent to (5.6).

6.3. Similarity solution in the central region

The analysis carried out in § 5 indicates that the mass of the sheet becomes
concentrated in the rim as t → t∗. Hence mass need not be conserved in the
central region, and we can seek a more general similarity solution than in § 4, with
the exponent α �= 1. The similarity ansatz (4.1) is equivalent to

h̃ = (−τ )αf (η), ũ = (−τ )−3/2g(η), (6.25a)

σ̃rr = (−τ )−1S(η), R̂ = (−τ )−1/2
, (6.25b)

in our rescaled variables, with η = r̃
√

−τ the similarity coordinate. From (5.6) and
(6.24), we have 
 =

√
3/2. Substituting σ̃θθ = σ̃rr/2 + 3ũ/r̃ , we reduce the governing

equations (6.3)–(6.5) to the ODEs

d

dη

(
ηf

(
g − η

2

))
= (α − 1)ηf, (6.26a)

η
d

dη
(f S) + f

(
6
dg

dη
− S

)
= −η2f, (6.26b)

S = 4
dg

dη
+ 2

g

η
. (6.26c)
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These equations can be rearranged into a first-order system

dg

dη
=

S

4
− g

2η
, (6.27a)

dS

dη
=

3g

η2
+

4ηg − 2η2 + S(4α − 1 − S)

2(η − 2g)
(6.27b)

for g and S, while f satisfies the decoupled equation

1

f

df

dη
=

2g − 4αη + ηS

2η(η − 2g)
. (6.27c)

The free exponent α allows us to impose the correct boundary conditions, which
was found in § 4 to be impossible when α = 1. At the centre, we have zero velocity
so g(0) = 0, and the homogeneity in f allows us to set f (0) = 1 without loss of
generality. At the edge r̃ = R̂(τ ), leading-order matching conditions inferred from
§ 6.2 imply the kinematic and zero-stress boundary conditions

ũ(R̂(τ ), τ ) =
˙̂
R(τ ) and σ̃rr (R̂(τ ), τ ) = 0, (6.28)

which imply that

g(
) =



2
and S(
) = 0. (6.29)

Reassuringly, by integrating (6.27c), we find that these lead to

f (η) ∼ constant

(
 − η)m
as η → 
, (6.30)

where m = (4α − 1)/3, which is consistent with (6.18).

6.4. Limiting behaviour and general solutions

As η → 0, the system (6.27) is singular and we find that there is an analytic and a
non-analytic contribution, namely

g(η) ∼ αη

2
+

(1 − α)η3

8(α − 4)
+ · · · + kηβ, (6.31a)

S(η) ∼ 3α +
7(1 − α)η2

4(α − 4)
+ · · · + 2(1 + 2β)kηβ−1, (6.31b)

where k is an arbitrary constant and

β =
5α − 2

2(α − 1)
. (6.32)

We recall that α is expected to be greater than 1, and it follows that β > 5/2.
We solve (6.27) numerically, starting from η = 0 and using k as a shooting parameter

to satisfy the boundary conditions (6.29). We find that apparently legitimate solutions
exist for all values of α greater than 1. In figure 7, we show the profiles of f , g and
S corresponding to α = 1.5, 2.0, 2.5, 3.0, 3.5.

6.5. Selection of α

One way to select α is to insist that the solution be analytic at η = 0, so that k is
set to zero and α may then assume the role of a shooting parameter to satisfy the
boundary conditions (6.29). In this case we have a similarity solution of the second
kind, as classified by Barenblatt (1996), in which the exponent is selected by solving a
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) versus similarity exponent α. The curves
intersect at α = 4.1236.

nonlinear eigenvalue problem, rather than being dictated by the governing equations
alone. A more detailed analysis of the central region, to be reported separately, both
justifies the condition k = 0 and shows that α must be greater than the critical value
of 4. As shown in figure 8, we find that both boundary conditions (6.29) are satisfied at
a unique value of α ≈ 4.1236. The corresponding plot of f (η) is shown in figure 9(a).
We observe the anticipated structure of a thin, flat central region matching to a thick
rim, with f → ∞ as η → 
 =

√
3/2. As shown in figure 9(b), the behaviour of f (η)

as η → 
 is consistent with (6.30), with

m =
4α − 1

3
≈ 5.1648. (6.33)

The scaled velocity g(η) and stress S(η) at the selected value of α are plotted in
figure 10. We see that the velocity (g) increases linearly from the centre of the sheet,
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Figure 10. Scaled radial velocity g(η) (a) and radial stress S(η) (b) for the selected value of
the exponent α ≈ 4.1236.

as expected. However, the condition of zero stress at the edge causes the velocity
to achieve an interior maximum before decreasing towards the rim. As shown in
figure 10, the scaled stress S(η) decreases from a maximum value 3α at the centre of
the sheet to zero at the edge.

Finally, we compare our analytical predictions to the simulations performed with
the ‘box’ initial condition. Figure 11 shows in solid lines the minimum thickness of
the sheet h(0, t) versus the sheet radius R(t) and the reverse time variable t∗ − t ,
with the critical time t∗ ≈ 7.8878. As t → t∗, we have superimposed in dashed lines
the asymptotic behaviour using the selected value of α, namely h(0, t) ∝ (t∗ − t)4.1236,
which is equivalent to h(0, t) ∝ R−8.2472. The visual agreement is convincing though
we were only able to assess the value of α up to the second decimal due to numerical
limitations.

7. Incorporation of surface tension
7.1. Modified boundary condition

We now show briefly how our model problem of a radially stretching spinning viscous
sheet may be generalized to account for surface tension. At leading order, surface
tension enters our model only through the boundary condition at the edge r = R(t).
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Figure 11. Simulations results with the ‘box’ initial condition showing the minimum film
thickness h(0, t) versus the sheet radius R(t) and the reverse time variable t∗ − t .

Instead of being zero, the radial stress is balanced by an inward force due to the
surface tension γ on each of the interfaces, so that

hσrr = −2γ (7.1)

in dimensional variables. When we non-dimensionalize according to (2.4) and use the
constitutive relation (2.6), we arrive at the boundary condition

2
∂u

∂r
+

u

r
= −B

h
at r = R(t), (7.2)

where B is a rotational Bond number, characterizing the relative importance of
capillary to centrifugal stresses and defined by

B =
γ

ρΩ2R̄2h̄
. (7.3)

7.2. Small-time asymptotics and simulations

We investigate the initial effects of surface tension by performing a small-time
expansion following the procedure in § 3, but using (7.2) rather than the zero-stress
boundary condition. We report here only the first term in the expansion, namely

u(r, t) ∼ r(7 − 32B − 3r2)

96
, h(r, t) ∼ 1 − (7 − 32B − 6r2)t

48
, R(t) ∼ 1 +

(1 − 8B)t

24
,

(7.4)

which leads to the following results, appropriate to the limit t → 0:

h(R(t), t) ∼ 1 − (1 − 32B)t

48
, u(R(t), t) ∼ 1 − 8B

24
, h(0, t) ∼ 1 − (7 − 32B)t

48
. (7.5)

It clearly appears that the evolution in each of these quantities experiences a reverse
trend at a given value of the rotational Bond number, respectively, B = 1/32, 1/8
and 7/32.

We next show in figure 12 the results of time-dependent simulations for the ‘box’
initial condition and four different values of the parameter B . As anticipated from
(7.5a), for B = 0.1 > 1/32, the maximum thickness at the rim r = R(t) increases
at early times, before decreasing. Figure 12(b) shows the corresponding behaviour
when B = 0.2 > 1/8, and we observe the sheet radius retracting initially before
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Figure 12. Simulation results showing thickness profiles for four different values of the
rotational Bond number. The dotted line is the locus of hmax and the time interval is �t = 1 for
B =0.1 (a), �t =5 for B = 0.2 (b), �t =41 for B =0.23 (c) and �t = 1000 for B = 0.26 (d ).

expanding. Equation (7.5c) shows that for B > 7/32 the early retraction causes the
minimum thickness to increase initially, as illustrated in figure 12(c), where we set
B = 0.23 > 7/32. Finally, figure 12(d ) shows that if B is sufficiently large, in this
case B = 0.26, surface tension defeats the centrifugal force and the radius continues
to retract indefinitely, eventually invalidating our assumption of small aspect ratio
h/R � 1. In both of these final examples, the centrifugal and capillary forces are
very nearly balanced, so we have to take large time intervals to observe significant
variations in h.

These possible behaviours are summarized in figure 13, where we plot the maximum
sheet thickness, achieved at the edge r = R(t), versus the sheet radius R(t). As B

is varied, the resulting curves (equivalent to the dotted curves in figure 12) sweep
out a sector of phase space between hmax = R−1/2 when B = 0 and hmax = R−2

when B → ∞. The phase paths corresponding to B = 1/32, 1/8, 7/32, 1/4 divide
this sector into five regions in which each of the possible behaviours identified above
occurs. In region I, the behaviour is qualitatively similar to the behaviour with zero
surface tension: the centrifugal force dominates, causing the sheet to stretch and thin
throughout the evolution. In region II, surface tension causes an initial increase in
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Figure 13. Simulation results showing the maximum thickness hmax versus the sheet radius
R for various values of the rotational Bond number B . These divide the phase space into five
regions where distinct generic behaviours occur. I: sheet stretches and thins throughout; II: rim
thickness increases initially, before decreasing; III: radius retracts initially, before expanding;
IV: entire sheet thickens initially, before thinning; V: sheet retracts and thickens throughout.

hmax before centrifugal effects take over. A further increase in surface tension causes
an initial retraction of the radius in region III and eventually an initial thickening even
at the centre of the sheet in region IV. At higher values of B , the sheet experiences
ever larger transient retraction before eventually succumbing to centrifugal stretching.
Finally, when B � 1/4 surface tension dominates, and the sheet retracts indefinitely
(region V).

Figure 13 applies specifically to the ‘box’ initial condition. However, the
simulations performed in § 2.3 demonstrate that the qualitative large-time behaviour is
independent of the initial data. We can thus expect the phase space corresponding to
any other initial condition, for example the ‘drop’ from § 2.3, to be similar to figure 13,
although it will not be possible in general to locate the boundaries analytically.

7.3. Asymptotic decomposition

As in the case of no surface tension, the simulations shown in figure 12 suggest that
an asymptotic decomposition applies once the sheet has significantly expanded. Let
us thus decompose the fluid into central and rim regions, as in § 5. We can incorporate
surface tension into the net momentum balance (5.3), which yields

T

R
+ σrrh = ρΩ2RA − 2γ. (7.6)

Recall that A denotes the cross-sectional area of the rim, and that the hoop tension
T is given by the constitutive relation (5.1). As in § 5, we neglect the volume of fluid
contained in the central region, so the net volume V of the sheet is given by

V = πR̄2h̄ = 2πRA. (7.7)
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When we also neglect the tension σrr exerted on the rim by the central region, we find
that (7.6) reduces to the first-order differential equation(

3µ

ρΩ2

)
1

R3

dR

dt
= 1 − 4B. (7.8)

The solution of (7.8) is

R =

(
3µ

2ρΩ2 (1 − 4B) (t∗ − t)

)1/2

, (7.9)

which evidently reduces to (5.6) when B = 0. Hence, provided B < 1/4, the sheet
radius still tends to infinity at some finite time t∗, which depends both on B and on
the initial conditions. In figure 14 we show that the critical time t∗ obtained from
simulations for the ‘box’ initial condition is an increasing function of B , tending to
infinity as B → 1/4. This result agrees with the physical expectation that surface
tension should oppose the stretching of the sheet.

Having found the asymptotic behaviour of the rim, we can find the corresponding
solution in the central region by following the approach of § 6.3. We again expect a
second-kind similarity solution in which the thickness h scales with (t∗ − t)α , where
α is to be determined numerically. We recall that this leads to the ODEs (6.27a)
and (6.27b) subject to the limiting behaviour (6.31) as η → 0. We again insist that
the solution is analytic at η = 0 and therefore set k = 0, then use α as a shooting
parameter to satisfy the boundary conditions (6.29). This procedure is identical to
that used in § 6.3, the only effect of surface tension being to modify 
: we infer from
(7.9) the expression


 =

√
3

2 (1 − 4B)
. (7.10)
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The result is plotted in figure 15. We see that α is an increasing function of B ,
starting at the value 4.1236 found previously when B = 0 and approaching infinity
as B → 1/4. The agreement with the simulations (crosses) is excellent.

7.4. B > 1/4: similarity solution of the first kind

If B > 1/4, (7.8) suggests that surface tension overcomes the centrifugal force and
causes the sheet radius to shrink over time. However, if this happens, then the
hypothesized asymptotic decomposition does not arise, so the assumptions that gave
rise to (7.8) are no longer valid. Instead, we find that a shrinking sheet can be
described by a similarity solution of the first kind, with

h = (t0 + t) f (η), u = (t0 + t)−3/2 g(η), R = (t0 + t)−1/2 
, (7.11)

where t0 is arbitrary and the similarity coordinate is now η = r
√

t0 + t . Analogously
to (4.3), we find that the only such solution satisfying g(0) = 0 is

f =
eη2/6

6(e
2/6 − 1)
, g = −η

2
. (7.12)

In terms of our similarity variables, the stress boundary condition (7.2) reads

2
dg

dη
+

g

η
= −B

f
at η = 
. (7.13)

Substituting for f and g from (7.12) leads to an equation for the scaled radius 
,
which is easily solved to give


 =

√
6 log

(
4B

4B − 1

)
. (7.14)

Evidently this first-kind similarity solution successfully describes a uniformly
retracting sheet provided B > 1/4. Also, by evaluating f at η = 
 and using (7.14),
we find that the maximum sheet thickness is given by

hmax ≡ h(R, t) =

(
4B log

(
4B

4B − 1

))
R−2 , (7.15)
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which tends to hmax = R−2 as B → ∞, exactly as observed from numerical simulations
in figure 13.

8. Conclusions
In this paper, we focused on the model problem of purely radial stretching of a

circular viscous sheet by a centrifugal body force. Our model consists of coupled PDEs
for the sheet thickness h(r, t), radial velocity u(r, t) and stress components σrr (r, t)
and σθθ (r, t). Numerical simulations show that, regardless of the initial conditions,
the sheet evolves into an expanding rim attached to a very thin central film. The
simulations also show that the sheet radius tends to infinity, and the thickness to zero,
at some finite time t = t∗. Though we can expect the limiting behaviour of the sheet
to be self-similar, it is impossible to find a similarity solution of the first kind that
both conserves mass and satisfies the stress balance at the boundary.

On the other hand, we found that net mass and momentum balances in the rim
enable us to explain the rim behaviour observed in numerical simulations, but do
not provide information about the film thickness in the central region. To resolve
this indeterminacy, we performed a formal asymptotic analysis in the limit t → t∗.
Local analysis of the rim reproduces the results of our ad hoc balance arguments and
provides boundary conditions for the central region. The governing equations in the
central region admit similarity solutions with h ∝ (t∗ − t)α for any α. By insisting
that the solution be analytic at r = 0 we obtained a unique value of α, which is
confirmed by numerical simulations. This is a similarity solution of the second kind,
in which the exponent is found by solving a nonlinear eigenvalue problem. This result
can occur because the governing PDE for h(r, t) is hyperbolic, and hence remembers
features of the initial conditions. In particular, it can be shown that the solution must
remain analytic at r = 0 if it is so initially, and this justifies our criterion for selecting
the similarity exponent.

Future development of this problem includes analysis of the stability of the
stretching sheet to azimuthal perturbations. Indeed, the analogous problem of spin
coating is known to be susceptible to a fingering instability, and the radially expanding
sheet formed by the impact of a jet on a flat substrate is known to break up. One can
also include non-Newtonian effects, which may help to stabilize the system and are
obviously important if materials such as bread doughs (pizza) are to be modelled.

In this paper, we neglected the contribution of acceleration to the fluid inertia,
while retaining the centrifugal body force. This approximation is valid provided the
rotational Reynolds number ρΩR2/µ is small. Hence, as the radius R increases, the
acceleration terms must eventually become significant, and one can show that they
act to cut off the finite-time blow-up predicted by our model, leading instead to rapid
exponential growth.

Our selected value of the exponent α ≈ 4.1236 corresponds to h(0, t) ∼ R−8.2472,
which explains why the central region becomes extremely thin for moderately large
values of R. To obtain accurate estimates of α, we pushed our simulations (see e.g.
figure 11) down to unphysically small values of h. In reality, other physical effects
not included in our model, for example, inertia or non-Newtonian rheology, would
probably become important long before the sheet becomes so thin. Eventually, if the
thickness decreases to 100 nm or so, intermolecular effects may come into play and
cause the sheet to rupture in the central region. In this case, a process of outward
sheet retraction should take place, as recently studied by Savva & Bush (2009).



Spinning a viscous sheet 21

The second-kind similarity solution found in the present problem seems to occur
because of a degeneracy which precludes a similarity solution that both conserves mass
and satisfies the stress boundary condition. Among other problems where similarity
solutions of the second kind are encountered for similar reasons, we mention: the
spreading groundwater mound of liquid in a porous medium (Wagner 2005); the
spreading of insoluble surfactant at the free surface of a deep fluid layer (Jensen
1995); dynamics and rupture of planar electrified liquid sheets (Tilley, Petropoulos &
Papageorgiou 2001); the flow in a cylindrical container with a rotating end wall
(Muite 2004); the problem of rotary honing (a two-dimensional variant of the Taylor
paint-scraper problem) where a similarity solution of the second kind is contained
within a similarity solution of the first kind (Hills & Moffatt 2000).

Examples of rupture events previously studied in the literature, like the pinching
of a thread (Papageorgiou 1995; Renardy 2001) or the line rupture of a sheet (e.g.
Vaynblat et al. 2001a) are qualitatively quite different from the behaviour we observed
in the present paper. Both van der Waals sheet rupture and capillary thread rupture
are ‘local’, with the thickness tending to zero generically at a single point. In contrast,
centrifugal breakup is ‘non-local’, in that the entire central region thins at the same
rate until it breaks up everywhere simultaneously, at the same critical time t∗.
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Magnard for technical support with Comsol. We also thank John Bush for suggesting
the inclusion of surface tension and forwarding a preprint of Savva & Bush (2009).
P.D.H. gratefully acknowledges the hospitality of the Harvard School of Engineering
and Applied Sciences, where he was on sabbatical during this project. B.S. thanks the
Brussels Region for the funding through the programme ‘Brains Back to Brussels’.

Appendix. Transformation to Lagrangian variables
To facilitate both asymptotic analysis and numerical simulations, it is helpful to

transform the problem to Lagrangian variables that move with the stretching sheet.
We seek solutions for h and the Eulerian variable r as functions of t and a Lagrangian
spatial variable ξ defined by

∂

∂t
(r(ξ, t)) = u(r(ξ, t), t), r(ξ, 0) = ξ. (A 1)

One advantage of this approach is that the moving domain r ∈ [0, R(t)] is mapped
to a fixed domain ξ ∈ [0, 1].

We discover from the mass-conservation equation (2.8) that

∂

∂t

(
rh

∂r

∂ξ

)
= 0, (A 2)

and from the initial conditions we deduce that

∂r

∂ξ
=

ξh0(ξ )

rh
. (A 3)

Thus r(ξ, t) is determined instantaneously, given the initial condition h0(ξ ) and the
boundary condition

r(0, t) = 0. (A 4)
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In terms of the Lagrangian variables, the momentum equation (2.5) may be written
in the form

∂

∂t

(√
r
∂h

∂ξ

)
=

ξh0(ξ )

4

√
r. (A 5)

This inhomogeneous wave equation for h(ξ, t) requires one initial condition, namely

h(ξ, 0) = h0(ξ ), (A 6)

and one boundary condition. To obtain this, we note that the radial stress may be
written as

σrr = −2
∂

∂t
(log(rh2)). (A 7)

Hence the imposition of zero stress at the edge leads to the boundary condition

h(1, t) =
h0(1)√
r(1, t)

, (A 8)

which explains the exact agreement of (5.9) with the ‘box’ simulations.
The coupled partial differential equations (A 3) and (A 5), along with the boundary

conditions (A 4), (A 6) and (A 8), determine h and r as functions of ξ and t , and
therefore give us a parametric description of the sheet thickness at each instant. The
velocity and stress are then given by (A 1) and (A 7), while the radius of the sheet
may be inferred a posteriori from

R(t) = r(1, t). (A 9)
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Savart, F. 1833 Mémoire sur le choc d’une veine liquide lancée contre un plan circulaire. Ann. Chim.
54, 56–87.

Savva, N. & Bush, J. W. M. 2009 Viscous sheet retraction. J. Fluid Mech. 626, 211–240.

Scheid, B., Quiligotti, S., Tran, B. & Stone, H. 2009 Lateral shaping and stability of a stretching
viscous sheet. Eur. Phys. J. B 68, 487–494.

Taylor, G. I. 1959a The dynamics of thin sheets of fluid. Part II. Waves on fluid sheets. Proc. R.
Soc. Lond. A 253, 296–312.

Taylor, G. I. 1959b The dynamics of thin sheets of fluid. Part III. Disintegration of fluid sheets.
Proc. R. Soc. Lond. A 253, 313–321.

Tilley, B. S., Petropoulos, P. G. & Papageorgiou, D. T. 2001 Dynamics and rupture of planar
electrified liquid sheets. Phys. Fluids 13, 3547–3563.

Vaynblat, D., Lister, J. R. & Witelski, T. P. 2001a Rupture of thin viscous films by van der Waals
forces: evolution and self-similarity. Phys. Fluids 13, 1130–1140.

Vaynblat, D., Lister, J. R. & Witelski, T. P. 2001b Symmetry and self-similarity in rupture and
pinchoff: a geometric bifurcation. Eur. J. Appl. Math. 12, 209–232.

Wagner, B. 2005 An asymptotic approach to second-kind similarity solutions of the modified
porous-medium equation. J. Engng Math. 53, 201–220.


