
1

Newtop: A Fault-Tolerant Group Communication Protocol
Paul D Ezhilchelvan†, Raimundo A Macêdo‡ and Santosh K Shrivastava†

†Department of Computing Science, University of Newcastle upon Tyne
Newcastle upon Tyne NE1 7RU, UK

‡Federal University of Bahia, CDC/DCC, Campus de Ondina,
40.170-110, Salvador, Bahia, Brazil

Abstract: A general purpose group communication
protocol suite called Newtop is described. It is assumed
that processes can simultaneously belong to many groups,
group size could be large, and processes could be
communicating over the Internet. Asynchronous
communication environment is therefore assumed where
message transmission times cannot be accurately
estimated, and the underlying network may well get
partitioned, preventing functioning processes from
communicating with each other. Newtop can provide
causality preserving total order delivery to members of a
group, ensuring that total order delivery is preserved for
multi-group processes. Both symmetric and asymmetric
order protocols are supported, permitting a process to use
say symmetric version in one group and asymmetric
version in other.
Key words: group communication, group membership,
fault tolerance, network protocol, multicast protocol,
causal order, total order.

1. Introduction

Many fault-tolerant distributed applications can be
structured as one or more groups of processes that
cooperate by multicasting messages to each other. The
building of such applications is considerably simplified if
the members of a group have a mutually consistent view
of the order in which events (such as message delivery,
process failures) have taken place. Design and development
of fault-tolerant group communication protocols for
distributed systems satisfying certain order properties has
been therefore an active area of research (e.g.,
[4][6]12][17]). We present a contribution to this area that
makes use of the concept of logical clocks [10].

We begin by describing the motivation behind our
work and describe the novel features. In section three we
present the basic system model and definitions and in the
fourth section we develop the main concepts behind the
total order protocol Newtop (NEWcastle Total Order
Protocol) by considering a static failure-free environment
where group membership changes do not occur. We then
remove this restriction in section five and describe ways of
making Newtop dynamic and fault-tolerant in the presence
of process crashes, departures and arrivals and network

partitions. In section six we compare and contrast our
approach with some of the best known fault-tolerant
multicast protocols. Section seven concludes the paper.

2. Motivation

We are interested in a general purpose protocol suite
that is suitable in a variety of settings. We assume that
processes can simultaneously belong to many groups,
group size could be large, and processes could be
communicating over the Internet. We therefore model the
communication environment as asynchronous, where
message transmission times cannot be accurately
estimated, and the underlying network may well get
partitioned, preventing functioning processes from
communicating with each other.

A multicast made by a process can be interrupted due
to the crash of that process; this can result in some
connected destinations not receiving the message. Process
crashes should ideally be handled by a fault tolerant
protocol in the following manner: when a process does
crash, all functioning processes must promptly observe
that crash event and agree on the order of that event
relative to other events in the system. In an asynchronous
environment this is impossible to achieve: when processes
are prone to failures, it is impossible to guarantee that all
non-faulty processes will reach agreement in finite time
[8]. This impossibility stems from the inability of a
process to distinguish slow processes from crashed ones.
Asynchronous protocols can circumvent this impossibility
result by permitting processes to suspect process crashes
[5] and by reaching agreement only among those processes
which they do not suspect to have crashed. Despite efforts
to minimise incorrect suspicions by processes, it is
possible for a subgroup of mutually unsuspecting
processes to wrongly agree (though rare it may be in
practice) on a functioning and connected process as a
crashed one, leading to a 'virtual' partition. Thus, there is
always a possibility for a group of processes to partition
themselves (either due to virtual or real network
partitioning) into several subgroups of mutually
unsuspecting processes.

 A multicast protocol that delivers messages in a
causality preserving total order to all functioning members

of a group is an important component of the underlying
communication system. Further, like other researchers, we
believe that applications will benefit if member processes
are permitted simultaneously to belong to multiple groups
[4, 9]. We give an example below (another example is
given in the fuller version of this paper [7]).
Online server migration: Replica management is a well
known application of total order protocols. Assume that it
is necessary to migrate a member of a replicated server
group to some other machine. The task is complicated
because each server replica maintains substantial amount
of state (say several megabytes of data), but it is required
that the migration process must not cause any noticeable
disruption in service or compromise availability. A
possible solution will work as follows. Assume group g1
(fig. 1(a)) to be the server group, and P2 is to be migrated.
A server process P3 is created at the intended location.
This process initiates the formation of a new group, g2,
containing P1, P2 and itself (fig. 1 (b)). Within g2, P1
and P2 use some specific protocol for updating the state of
P3 (e.g., P1 updates the state, but if P1 fails, P2 takes
over); at the same time, P1 and P2 remain responsive to
clients by servicing requests directed to g1; eventually P1
departs from g1, and P2 departs from both g1 and g2,
leaving g2 to be the surviving group with P1 and P3* .
This specific solution also suggests the possibility of
using multiple groups for developing a general approach
for performing online software upgrades in a system (e.g.,
replace component P2 by P3).

P1
P3

g1

g2 P3

g1

(a) (b)

P2

P1

P2

Fig. 1: Multiple groups
The observations concerning failures and network

partitions made earlier have motivated us to develop a
membership service for Newtop that can support
concurrent existence of multiple subgroups, leaving it to
applications to decide on the eventual fate of such
subgroups. Newtop provides causality preserving total
order delivery to members of a group, and permits
processes to belong to many groups, ensuring that total
order delivery is preserved even for such processes. It
permits a multi-group process to use both symmetric and
asymmetric total order protocols in different groups.

* It is assumed that communication level changes in
group names can be hidden from applications.

Despite this, Newtop is not complex; it offers a very
simple method for dealing with multiple process groups
and has low message space overhead (the protocol related
information contained in a multicast message is small). If
order is not required, Newtop can provide just atomic
delivery, ensuring that all the functioning members of a
group are delivered a multicast. In addition, Newtop
supports dynamic formation of new groups. This
formation protocol exploits the fact that processes are
permitted to belong to several groups. This in turn means
that there is no need for supporting an explicit facility for
joining a group (as similar effect can be obtained by
processes forming a new group and exiting the previous
ones).

Existing protocols do not simultaneously meet all the
facilities outlined above. This has motivated us to develop
Newtop.

3. Basic Concepts

A group is defined as a collection of distributed
processes in which a member process communicates with
other members only by multicasting to the full
membership of the group. A given process can be a
member of more than one group. We assume that a
process execution consists of a sequence of events, each
event corresponding to the execution of an action by a
process. We will adopt sendi (m), receivei (m) and
deliveryi(m) to denote the events of sending, receiving and
delivering a message m by a process Pi respectively. (We
will drop suffix i if the identity of the process executing
the action is not important.) We distinguish the event of
receiving a multicast message from the event of delivery,
since a received message may have to be delayed before
delivery in order to satisfy some ordering constraint. We
will use the happened before relation [10], denoted as '→',
on send and delivery events in a given set of system
events. (If send(m) → send(m') then sendi(m) → sendi(m')
for some Pi or delivery(m) → send(m')). For simplicity,
we will denote send(m) → send(m') as m → m'.

We assume that processes fail only by crashing, i.e.,
by stopping to function. Communication failures could
lead to network partitions causing the members of a group
to be split into disjoint subgroups, with the functioning
members in one subgroup unable to communicate with
the functioning members in the other sub-groups. We
assume the existence of a message transport layer
permitting uncorrupted and sequenced message
transmission between a sender and destination processes, if
the processes are alive and the destination processes are not
partitioned from the sender. We assume an asynchronous
communication environment, so no assumption about
message transmission time will be made.

Let Gi be the set of groups Pi belongs to: Gi = {gx |
Pi ∈ gx}. Let us consider the membership of Pi in a given
group gx, gx ∈ Gi and let gx be initially made up of

processes P1, P2, ... Pn. When Pi multicasts (or delivers)
a message m with m.g = gx, it actually does so only to
(or from) those processes which it views as functioning
members of gx. Pi delivers its own messages also by
executing the protocol in operation. When gx is initially

formed, each functioning Pi installs an initial view V0x,i,

say, V0
x, i = {P1, P2, ... Pn}. If Pi is unable to

communicate with some Pk ∈ V0
x,i (this could be

because Pk has crashed or disconnected or departed from
gx), it installs a new view that does not include Pk. Let

V0
x,i, V

1
x,i, V

2
x,i,... V

r
x,i be the series of views Pi has

thus sequentially installed over a period of time, until it
crashes or leaves the group gx. (Note that once Pi leaves
gx, it maintains no membership view for gx.) Newtop
provides each Pi with a group-view process, denoted as
GVx,i, for each gx, gx ∈ Gi. The group-view process
GVx,i makes judicious use of timeouts for suspecting the
absence of member processes; it executes a membership
protocol with other members of the group to reach
agreement on these suspicions, which if confirmed lead to
an update of membership view (installation of a new view)
of Pi for group gx.

In Newtop, a new view will always be a proper subset
of the old view(s) since processes do not join the group
they have departed. Processes wishing to join their former
co-members do so by forming a new group. A process can
take part in the formation of a new group while retaining
its existing memberships. Newtop thus eliminates the
need to support an explicit facility for process joins as
provided in current group communication protocols.
Former members creating a new group in Newtop is
equivalent to the former processes of a group rejoining the
same group with new identifiers.

The Newtop membership protocol maintains view
consistency in the presence of (real or virtual) partitions
by permitting a group of processes to partition themselves
into two or more sub-groups of connected processes with
the property that: (i) the functioning processes within any
given subgroup will have identical views about the
membership; and (ii) the views of processes belonging to
different subgroups are guaranteed to stabilise into non-
intersecting ones.

When a group partitions into subgroups, members of
every subgroup will consider themselves as the sole
surviving members of the original (unpartitioned) group,
and will not know the existence of other subgroups and
their memberships. Newtop leaves it to applications to
decide whether or not the applications should continue to
maintain more than one subgroup. This flexibility makes
Newtop different from 'primary-partition' protocols [14,
18] that can guarantee continued group operation only
when the group partitions in such a way that exactly one
subgroup can be uniquely identified as the primary. This

in turn requires at least a majority of processes in the
group to remain operational and connected; this
requirement may not always be possible to meet.

View updates must satisfy certain conditions so that
message delivery can be 'atomic' with respect to view
updates. In Newtop, view updates performed by processes
of a group gx satisfy the following view consistency (VC)
properties:

VC1: The sequence of views installed by any two
member processes of gx that never crash nor suspect each
other are identical (validity).

VC2: If a Pk ∈ Vr
x,i leaves gx or crashes or gets

disconnected from Pi and if Pi does not crash, then Pi will

eventually install Vr'x,i such that r' > r and Pk ∉ Vr'
x,i

(liveness).
VC3: any two member processes of gx that never

crash, deliver the same set of messages between two
consecutive views that are identical. That is, Vr

x,i ≡ Vr
x,j

and Vr+1
x,i ≡ Vr+1

x,j ⇒ the set of m, m.g = gx,

delivered by Pi and Pj in Vr
x are identical. VC3 states that

the delivery of a message to the members of a group must
be atomic with respect to a view update by the members.
This atomic property has been called virtual synchrony in
the ISIS system [4].

Virtual synchrony provided by Newtop is different to
that of ISIS. Consider Pi multicasting m in view Vr

x,i.
Let this event be denoted as sendi(m,r). Suppose that Pi
delivers m in view Vr'

x,i, for some r' ≥ r; denote this
event as deliveryi(m,r'). The virtual synchrony model of
ISIS guarantees r' = r. Newtop can be modified to provide
this closure property, but only at the necessary expense of
performance, by blocking send operations when a new
view is being installed (this blocking occurs in ISIS as
well).

In the presence of member crashes and departures,
Newtop has the following message delivery (MD)
properties for all m and m' multicast with m.g = m'.g =
gx (in stating them the suffix x will be dropped when only
the group gx is considered). We will use the notation m.s
to denote the sender of m .

MD1 (validity): for any m and r ≥ 0: deliveryi(m,r)

⇒ m.s ∈ Vr
i. In words: a process will deliver a message

m in view Vr, only if the sender of m is in Vr.
MD2 (liveness): for any m and r' ≥ r ≥ 0: sendi(m,r)

⇒ either sendi(m,r) → deliveryi(m,r') or sendi(m,r) →
departure of Pi from gx. In words: if a Pi sends m in view

Vri, then provided it continues to function as a member of

gx, it will eventually deliver m in some view Vr'i, r' ≥ r.

MD3 (atomicity): ∀ Pi, Pj s.t. Vr
i ≡ Vr

j ∧ Vr+1
i ≡

Vr+1
j : deliveryi(m,r) ⇔ deliveryj(m,r). This property is

equivalent to VC3.

Properties MD1 to MD3 together ensure live, atomic
delivery in the presence of dynamic membership changes.
The additional property MD4 (and its extension for
multiple groups, MD4') ensure causality preserving total
order message deliveries:

MD4 (total order, single group): ∀ Pi, Pj s.t. Vr
i ≡

Vr
j ∧ Vr+1

i ≡ Vr+1
j: deliveryi(m,r) → deliveryi(m',r) ⇔

deliveryj(m,r) → deliveryj(m',r); if deliveryi(m,r) and
deliveryi(m',r') occur for a given Pi then m → m' ⇒
deliveryi(m,r) → deliveryi(m',r').

Newtop extends the above delivery order also for
messages multicast in different groups, ensuring a total
delivery order when the same messages are delivered to
processes that simultaneously belong to multiple groups.
Let µ be a message with µ.g = gy and ρ ≥ 0 be an integer:

MD4' (total order, multiple groups): ∀ Pi, Pj s.t.

Vr
x,i ≡ Vr

x,j ∧ Vr+1
x,i ≡ Vr+1

x,j ∧ Vρ
y,i ≡ Vρ

y,j ∧
Vρ+1

y,i ≡ Vρ+1
y,j: deliveryi(m,r) → deliveryi(µ,ρ) ⇔

deliveryj(m,r) → deliveryj(µ,ρ); if deliveryi(m,r) and
deliveryi (µ ,ρ) occur for a given Pi then m → µ ⇒
deliveryi(m,r) → deliveryi(µ,ρ).

For a given delivered m', MD5 and MD5' state the
situations in which the delivery of a causally precedent m,
m → m', is guaranteed by Newtop:

MD5 (causal prefix, single group): for any m and m'
s.t. m → m': deliveryi(m',r') ⇒ deliveryi(m, r).

In words: if m' is delivered to Pi in view Vr'i then
every m, m → m' and m.g=m'.g, is delivered to Pi in

some view Vr i . (Note that MD4 implies that
deliveryi(m,r) → deliveryi(m',r').)

In extending MD5 to messages that are multicast in
different groups, we use the notation Vx,iΞei to denote the
view V of a process Pi for gx when the event ei occurred
in the execution sequence of Pi . For example,

Vx,iΞdeliveryi(m,r) will be Vrx,i if deliveryi(m,r) has
occurred and m.g = gx. Let µ be a message with µ.g = gy
and ρ ≥ 0 be an integer.

MD5' (causal prefix, multiple groups): for any m
and µ s.t. m → µ : deliveryi (µ ,ρ) ∧ m.s ∈
Vm.g,iΞdeliveryi(µ,ρ) ⇒ deliveryi(m)→ deliveryi(µ).

In words: if µ is delivered to Pi then this delivery is
guaranteed to have happened after the delivery of every m,
m → µ, that was sent by a process in υ, where υ is Pi's
view for m.g when µ is delivered to Pi.*

To explain MD5' and its importance, we will use the
scenario depicted in fig. 2 which shows a causal message
chain, m1 → m2 → m3 → m4, with m1 and m4 having
a common destination Pi.

* When µ.g = m.g, MD5' is implied by MD5.

Pk

PlPq

Ps

Pj

Pi
g1

g2

g3

g4 m2

m1

m3

m4

g3

Fig.2: Causal chain of messages.
Suppose that a network partition disconnects Pk from

Pi and Pj while m1 is being multicast, and consequently
Pi and Pj do not receive m1. Say Ps and Pi a r e
functioning processes that never suspect each other, and
m4 is delivered to Ps. MD3 requires that m4 be delivered
to Pi as well. Meeting MD5' will then require any one of
the following: (a) m1 is somehow retrieved and delivered
to Pi before m4 is delivered; (b) if m1 cannot be retrieved
(because, say the partition is permanent) then Pk should
be excluded from Pi's view for g1, before m4 is delivered
to Pi. In the latter case, the network failure that actually
occurred during the multicast of m1, is perceived by Pi to
have happened before the multicast; the total ordering of
events by Pi would indicate that Pk was excluded from
Pi's view of g1 before m1 was multicast.

The situation where m4 must be delivered and any
causally preceding m1 cannot be retrieved, has arisen
because of multiple overlapping groups; it would not have
happened had all processes been communicating within a
single group: the irretrievable loss of m1 would then mean
that Pk, Pl, and Pq are disconnected from the rest, and m4
becomes an orphan message that is "erased" off the system
(see example 1 in section 5 and [4] for more examples).
This situation can be avoided by piggybacking every
multicast with all causally preceding and unstable
messages. (A message is stable, if the process knows that
the message has been received by the intended
destinations). With piggybacking, receiving m4 will
enable Pi to obtain m1. Newtop does not adopt this
expensive mechanism, preferring to use option (b) above.
Consequently, it has the advantage of low message space
overhead (which is even smaller than the overhead of ISIS
vector clocks). MD5' specifies how situations such as
depicted in fig. 4 are handled in Newtop: when the process
is delivered a message, it is guaranteed that all causally
preceding m have have been delivered, if m.s is currently
in the process's view for m.g.

Transport Layer

Membership Service Logical Clock System

View Installation

Total Order Delivery

Atomic
Delivery

 Fig. 3: System architecture
Fig. 3 shows the basic system architecture of

Newtop, depicting the abstraction hierarchy. The logical
clock system, to be described in the next section, assigns
sequence numbers to messages and is used for message
ordering (note: strictly speaking, the logical clock system
can be bypassed for providing just atomic delivery).

4. Newtop without failures

We first consider a static, failure-free environment
where membership changes do not occur. In such an
environment, the functionality provided by the transport
layer will be that of atomic delivery, so we need only
concentrate on the provision of total order delivery.

4.1 Symmetric total order version

To start with, we will consider only a single group,
gx = {P1, P2, ... , Pn} and as stated above, assume that
no Pi, 1 ≤ i ≤ n, ever fails or leaves gx. This means that
the initial membership view of Pi is gx and that Pi
installs no other view. So, if Vx,i denotes the (current)
membership view of Pi at any given time, then Vx,i =

V0x,i = gx. Each Pi maintains a logical clock (a counter)
denoted as LCi, that is used for numbering messages as in
[10]:

CA1 (Counter Advance during sendi(m)): Before
sending m, Pi increments LCi by one, and assigns the
incremented value to the message number field m.c; and,

CA2 (Counter Advance during receivei(m)): When Pi
receives m, it sets LCi = max{LCi, m.c}.

Based on CA1 and CA2, the following two properties
can be stated:
pr1: sendi(m) → sendi(m') ⇒ m.c < m'.c; and

pr2 : for any m, Pj ∈ m.g: deliveryj(m) → sendj(m'') ⇒
m.c < m''.c.
Together these two properties imply that for any

distinct m, m': send(m)→ send(m') ⇒ m.c < m'.c [10].

Each Pi maintains a vector called the Receive Vector,
denoted as RVx,i. This vector has one integer field for
every Pj ∈ Vx,i; this field records the counter value of the
latest message received from Pj. Let Dx,i denote the
minimum value in RVx,i: Dx,i = min{RVx,i[j] | Pj ∈
V x,i }. As Vx,i includes Pi, Dx,i ≤ LCi at any given
time. Recall that messages from a given process are sent
with increasing numbers and are received in FIFO order
(transport layer assumption). Therefore, Dx,i ≤ LCj for all
Pj ∈ Vx,i and Pi is guaranteed not to receive any new m
such that m.c ≤ Dx,i. So Pi can 'safely' deliver all received
m, m.c ≤ Dx,i. Bearing in mind that Pi is not a member
of any other group, the message delivery conditions for Pi
in gx are stated below:
safe1: a received m, m.g = gx, is deliverable if m.c ≤
Dx,i;
safe2: deliverable messages are delivered in the non-
decreasing order of their numbers; a fixed pre-determined
delivery order is imposed on deliverable messages of equal
number.

The two safety conditions ensure that the received
messages are delivered in total order provided they become
deliverable. A received message can be guaranteed to
become deliverable, only if processes in Vx,i remain
lively by sending messages so that Dx,i increases with
time. Newtop provides each process with a simple
mechanism, called the time-silence, that enables a process
to remain lively by sending null messages during those
periods it is not generating computational messages. We
assume that this mechanism for a given Pi prompts Pi to
send a null message, if no (null or non-null) message was
sent by Pi in the past interval of a fixed length, say, ω.
Null messages contain only protocol related information
(such as number, destination group identifiers etc.). When
a null message is sent or received by Pi, LCi is advanced
as per CA1 and CA2; however, when it is due for delivery,
it is not supplied for processing.

The time-silence mechanism can increase the message
overhead of the protocol. However, such a mechanism or
some equivalent one (such as periodic exchange of 'I am
alive' or 'synchronise' messages by processes) is essential
for ensuring the liveness of any symmetric total order
protocol (e.g., see [15, 16]). Also, more importantly, it is
essential for the detection of process crashes without
which a (synchronous or asynchronous) membership
service cannot be built (irrespective of the total order
protocol being symmetric or asymmetric).

We will now remove the single group assumption and
permit Pi to be a member of more than one group. Let Gi
be the set of groups Pi belongs to: Gi = {gx | Pi ∈ gx},
|Gi| > 1. Each process in the system maintains only one
LC, irrespective of the number of groups it belongs to;
further, this LC is advanced as per CA1 and CA2
irrespective of the group in which that process sends or

receives (null or non-null) messages. Therefore the
properties pr1 and pr2 will be true for all messages in the
system. A process Pi maintains a distinct receive vector
RVx,i for each group gx in Gi, representing m.c of the
last m received from every Pj ∈ Vx,i. Let Di be the
minimum of all Dx,i computed for every gx in Gi: Di =
min{D x,i | ∀ gx ∈ Gi}. Then, it is only necessary to
modify the delivery condition safe1 to:
safe1': a received m is deliverable if m.c ≤ Di.

The time-silence mechanism of Pi will operate
independently for each gx in Gi, prompting Pi to send a
null message in a given group gx, if no (null or non-null)
message was sent by Pi in that group gx for the past ω
time units. This ensures that Dx,i of different gx in Gi
advance independent of each other and that the value of Di
increases with time, ensuring that any received m will
eventually become deliverable.

Conditions safe1' and safe2 ensure that a received m
becomes deliverable for Pi only after a m', m'.c ≥ m.c, is
received from every Pj ∈ Vx,i and for all gx in Gi. These
conditions, together with the time-silence mechanism can
therefore cope with arbitrarily complex group structures.

4.2 Asymmetric total order version

The asymmetric version of Newtop uses one of the
members of a group as a sequencer for ordering messages.
Though the main idea behind the protocol for single group
members has been known for a long time, Newtop extends
this idea to overlapping groups with great ease and
simplicity. Specifically, unlike [9], it does not require that
a common sequencer be chosen for overlapping groups nor
that the sequencers of different overlapping groups
coordinate their sequencing activities. Further, as we show
in the next sub-section, Newtop permits a multi-group
member process to execute asymmetric version in one
group and symmetric version in another group.

We first consider the case of a process Pi belonging
only to one group gx (recall that in a failure-free and
static-membership environment, each Pi ∈ gx has an

identical view Vx,i = V0x,i = gx). To multicast a message
m in gx, Pi unicasts it to a member process, called the
sequencer, which Pi selects out of the processes in its
(current) membership view of gx using a deterministic
algorithm (so processes that have the same view are
guaranteed to choose the same sequencer). The sequencer
multicasts the unicast messages it receives to all processes
in its view in the received order and Pi delivers messages
(including its own) in the order they are received from the
sequencer process. (A process that also happens to be the
sequencer will logically follow the same procedure,
unicasting to itself, and then multicasting.) Each process
maintains the logical clock according to the rules CA1 and
CA2; sending and receiving of unicasts update the logical

clock exactly in the same manner as multicasts do. This
ensures that the messages that were consecutively unicast
by a given process will be multicast by the sequencer with
increasing message numbers. So, when Pi receives a
multicast message m, it will no longer receive a message
with number smaller than m.c and hence Pi can be
delivered m straightaway.

Before extending the above scheme to the case where
Pi can belong to multiple groups, we will observe that
when Pi is not the sequencer, it disseminates its message
m to the group members (not by a direct multicast as in
symmetric version, but) indirectly through another
process. When the sequencer multicasts m, it assigns a
new m.c which will be different from, and larger than, the
number Pi assigned to m in its unicast. Pi cannot know
the new m.c of its own m until it receives m from the
sequencer. Therefore Pi observes the following blocking
rule when it is a member of multiple groups:
Send Blocking Rule: A multi-group member process
Pi must delay unicasting of a message m (to the
sequencer), until it has received (from the relevant
sequencers) all the previous m', m'.g ≠ m.g, which it has
unicast.

The above rule ensures that the number given to m by
Pi (and therefore by the sequencer of m.g) will be larger
than the number given to m' by the sequencer of m'.g.
That is, consecutive messages disseminated by Pi in
different groups are guaranteeed to be multicast by
respective sequencers with increasing numbers.

Let Gi = {gx | Pi ∈ gx} and |Gi| ≥ 1. Pi does not
maintain a receive vector as it can compute Dx,i simply as
the number of the last received message from the sequencer
of gx. It computes Di exactly as in the symmetric version,
ie., Di = min{Dx,i | ∀ gx ∈ Gi}, and uses conditions
safe1' and safe2 for delivery.

It is necessary for only the sequencer of a group to
operate the time-silence mechanism for that group. This
will ensure that the value of Di increases with time and
the protocol is live.

4.3. Generic total order version

We now present the generic version of Newtop for a
process Pi that can execute the symmetric protocol version
in one group (say gy) and the asymmetric protocol version
in another (say gz). Let Gi = {gx | Pi ∈ gx} and |Gi| ≥ 1.
Such mixed-mode working is made possible because both
the protocols use the same message numbering scheme.
The asymmetric blocking rule needs to be modified as
follows:
Mixed-mode Blocking Rule: A multi-group member
process Pi must delay unicasting or multicasting of a
message m, until it has received (from the relevant

sequencers) all the previous m', m'.g ≠ m.g, which it has
unicast.

In addition, Pi will operate the time-silence
mechanism and compute Dx,i for each gx ∈ Gi as
discussed in sub-section 4.1 or 4.2, depending on whether
symmetric or asymmetric version is being run in gx. It
computes Di as Di = min{Dx,i | ∀ gx ∈ Gi} and uses
conditions safe1' and safe2 for delivery.

5. Fault-tolerant, Dynamic Newtop

We now describe how to extend Newtop to make it
dynamic and fault-tolerant: ordering and liveness is
preserved even if membership changes occur due to
(suspected) process failures, voluntary process departures
and new group formations. This requires every process to
operate the timesilence mechanism independently in every
group in which the process is a member. This is necessary
even if simple atomic delivery of messages is sufficient,
since failures cannot be detected otherwise. As stated
earlier, Newtop provides each Pi with a group-view
process, denoted as GVx,i, for each gx, gx ∈ Gi. GVx,i is
responsible for maintaining Pi 's view of the group
membership of gx. Informally, this extension has the
following aspects: (i) GVx,i uses timeouts to suspect a
failure of some remote process (Pj) that does not seem to
be responding; (ii) in which case GVx,i can initiate a
membership agreement on Pj, the outcome of which is
that either processes agree to eliminate Pj from the group
view, with an agreement on the last message sent by Pj,
or Pj continues to be a member and Pi is able to retrieve
missing messages of Pj.

In the rest of the section, in order to save space, we
will consider only the symmetric version of Newtop. The
modifications necessary to make the mechanisms presented
here applicable to the generic version and just for atomic
delivery are discussed in the full version of this paper [7].

5.1 Message Stability

It is necessary to ensure that a process can always
retrieve a missing message from another functioning
member process. This in turn means that Newtop needs a
mechanism that enables a process to safely discard a
received message. To develop such a mechanism, we will
first define the concept of message stability:

Message Stability: A message m becomes stable in
Pi if Pi knows that all processes in the current view of
m.g have received m.

In Newtop (as in other published protocols), message
stability information is piggybacked on the transmitted
messages. That is, when a message m, m.g = gx, is
transmitted by Pi, a field m.ldn (ldn: largest deliverable
message number) will have the current value of Dx,i. To

identify stable messages, Pi maintains a vector called
SVx,i (Stability Vector) for each gx. At process Pi,
SVx,i[j] represents the latest m.ldn value received from Pj.
If min(SVx,i) represents the minimum value in SVx,i,
then all m, m.c ≤ min(SVx,i) will be stable. A process
can safely discard stable messages after delivery.

5.2 Managing Group Membership

Group-view process GVx,i of Pi works as if Pi is not
a member of any other group. So, we can ignore the fact
that Pi can be a member of more than one group, and will
describe the GVx,i of Pi for a given gx, dropping for
convenience suffix x when no confusion is likely.

GVi uses a communication primitive called mcast(m)
to transmit its message m to all GV processes of Pj ∈
Vx,i and the messages are delivered (by the transport layer)
to (functioning and connected) destination GV processes in
the sent order. GVi has a failure suspector module, Si,
which monitors the liveliness of every Pj, j ≠ i and Pj ∈
Vx,i. If Si observes that no multicast message has been
received from Pj for a period Ω > ω (ω = the time-
silence timeout duration) then it suspects the crash of Pj
and notifies GVi of its suspicion. In practice, Ω should be
tuned to a value that minimises the possibility of
unfounded suspicions.

The event driven algorithm for GVi is given below,
dropping the suffix i for all the set variables used
exclusively by GVi; these set variables are initialised to
empty and a Boolean variable consensus is initialised to
false, when the group gx is formed. The algorithm
describes the steps taken by GVi, once a certain condition
holds. The algorithm for GVi has two components,
membership agreement (for reaching agreement on
processes suspected to have failed) and view installation.
The membership agreement component is based on the
approach used in Psync [14, 15], adapted to the context of
logical clocks.

Membership Agreement:
(i) notification {Pk, ln} received from Si: suspicions :=
suspicions ∪ {Pk, ln}; mcast(i, suspect, {Pk, ln});
(ii) (j, suspect, {Pk, ln}) received: if Pk ≠ Pi then record
the suspicion {Pk, ln} of GVj in gossip; if Pk = Pi then
discard the received message;
(iii) suspicion {Pk, ln} of GVj is recorded in gossip ∧
(m, m.c > ln, is received from Pk): mcast(i, refute, {Pk,
ln}); /* Pi has received a message from Pk numbered > ln,
so refute GVj's suspicion of Pk; all received m of Pk, m.c
> ln, can be piggybacked on the refute message */

(iv) (j, refute, {Pk, ln}) received ∧ {Pk, ln} ∈ suspicions:
suspicions := suspicions − {Pk, ln}; recover the missing
m, m.c > ln of Pk; mcast(i, refute, {Pk, ln});
(v) for every {Pk, ln}∈ suspicions, suspect messages
received from every GVj of Pj ∈ V - {{Pk | {Pk, ln} ∈
suspicions} ∪ failed}: detection := suspicions; suspicions
:= {}; mcast(i, confirmed, detection); consensus := true;
(vi) (j, confirmed, detectionj) received ∧ detectionj ⊆
suspicions: detection := detectionj ; suspicions :=
suspicions - detectionj; mcast(i, confirmed, detection);
consensus := true;
(vii) (j, confirmed, detectionj) received ∧ (Pi , ln}∈
detectionj for some ln: force S to suspect Pj; /*Pj has
succeeded in suspecting Pi, so reciprocate by suspecting Pj
*/

A notification from Si to GVi will be of the form
{Pk, ln} - indicating that Pk is suspected to have crashed
and ln is the number of the last message Pi has received
from Pk . GVi maintains a set suspicionsi where
notifications from Si are entered. GVi also multicasts a
suspect message (i, suspect, {Pk, ln}) to GV processes of
all processes (including GVk) that are in its current
membership view Vi. If GVi receives confirmation that all
other unsuspected members in Vi also suspect each {Pk,
ln} in its suspicionsi , it decides to treat each Pk of
suspicionsi as having failed and Pk is added to a set called
failedi. Pi discards any messages received from Pk and
GVk, if either Pk ∈ failedi or Pk ∉ Vi . Also, once
suspicion {Pk, ln} has been added to suspicionsi, GVi will
keep the messages received from Pk and GVk as pending.
If suspicion {Pk, ln} is subsequently refuted, the pending
messages will be assumed to have been just received, and
will be handled appropriately; if, however, suspicion {Pk,
ln} is confirmed as a failure, then the pending messages of
Pk and GVk are discarded.

Suppose that GVj receives the message (i, suspect,
{Pk, ln}) from GVi. If {Pk, ln} is already in suspicionsj,
GVj regards GVi as yet another process that holds the
same suspicion as itself; if however {Pk, ln} is not in
suspicionsj, it records this suspicion from Pi in gossipj,
but suspends judgement on it pending confirmation from
its own Sj. If in the mean time Pj receives a message m
from Pk with m.c > ln, then GVj removes {Pk, ln} from
gossipj and multicasts a refute message (j, refute, {Pk,
ln}) . When GVi receives this refute message, it stops
suspecting Pk for ln, and removes {Pk, ln} f r o m
suspicionsi ; it also initiates an attempt to recover the
missing messages of Pk (a missing m can be piggybacked
in the refute message; by definition any missing m is

unstable, so would not have been discarded by Pj; Pj can
therefore always piggyback m.). After recovery of the
missing message, Pi multicasts (i, refute, {Pk, ln})
message. If GVi ever receives a message (k, suspect, {Pi,
ln}) , it takes no action in the hope that some GVj will
refute that suspicion. When GVi confirms all of its
suspicions (condition (v)) or a subset of them (condition
(vi)) into agreed failure detection, it sets the Boolean
consensus to true. Functioning members that hold
identical views and do not suspect each other, will confirm
identical detection sets in an identical order. (A proof of
this can be seen in [14].) Every agreement on a new
detection set leads to the installation of new view that
excludes the processes in the detection set.

View Installation:

(viii) (consensus = true): failed := {Pk | Pk ∈ {Pk, ln}∈
detection}; lnmn := min{ln | {Pk, ln}∈ detection}; for
every Pk ∈ failed do instruct Pi to discard any m received
from Pk with m.c > lnmn od; update_view(failed, lnmn);
for every Pk ∈ failed do RV[k] := ∞; SV[k] := ∞; od;
failed := { }; consensus:=false;

The view installation component assumes the use of a
primitive update-view(F, N) which, upon being invoked,
will be executed asynchronously and will install a new
view before any m, m.c ≥ N+1, is delivered to Pi. The
algorithm is as follows:

update_view(F: set_of_processes; N: integer):
{ wait until Pi is delivered the last m, m.c ≤ N; V:=

V- F; }
Absent or rejected messages from suspected processes

in the detection set prevents D from increasing beyond
lnmn and any received m, m > lnmn, of any group will be
blocked from delivery. Setting RV[k] := SV[k] := ∞ will
allow D to increase more than lnmn and message delivery
to resume if the value of D has been stuck at lnmn. Before
setting RV[k] and SV[k] to infinity, a message m of a
failed Pk with m.c > lnmn is discarded, even though it has
been agreed that m was sent before Pk failed. This is a
safety measure, necessary to preserve MD5 (see example
1).

After treating all the processes in a given set
detectioni as having failed "together" and ignoring their
messages with m.c > lnmn, GVi calls the primitive
update_view (failedi, lnmn) to install the new view, V-
failedi , just before any m, m.c ≥ lnmn+1, is to be
delivered to Pi. RV and SV are also updated to reflect the
new view. As new view is installed only after the last m,
m.c < lnmn+1, is delivered, m.s will be in the current
view for any m delivered in group gx (MD1 is met).
Example 1: Suppose that functioning Pi and Pj hold
identical views and never permanently suspect each other.

Let Pr crash during the multicast of m, such that only Ps
receives m. Let Ps deliver m (possible, if the arrival of m
from Pr causes m to become deliverable), multicast m'
that is received by Pi and Pj, and crash before it could
refute the suspicion {Pr, ln} for some ln < m.c, held by
GVi and GVj. Pr and Ps will be detected together by GVi
and GVj , and m', m → m', is guaranteed not to be
delivered when m cannot be delivered. Pi and Pj confirm
identical detection sets in identical order; they will execute
update_view() for identical parameter values in identical
order. This ensures that MD3, MD4 and MD4' are met.
Example 2: To see that MD5' is met, consider the
scenario depicted in fig. 1. Let Pi and Pj get (permanently)
partitioned from Pk while m1 was being multicast, and let
them not receive m1 at all. Since m1 → m4, m4.c >
m1.c and Pi cannot be delivered m4 until D1,i increases
beyond m1.c which will not happen until Pk is detected to
have failed. The prolonged silence of Pk will cause GVi to
suspect {Pk, lnk} for some lnk < m1.c, and then to reach
agreement with GVj on that suspicion. Pk will be
removed from V1,i before any m, m.c ≥ lnk +1, is
delivered. Thus, when m4, m1 → m4, is being delivered
to Pi, m1.s is guaranteed not be in V1,i, if m1 cannot be
delivered to Pi at all. So, MD5' is will not be violated.

The final example is intended to show that the
concurrent group views stabilise into non-intersecting
ones.
Example 3: Consider a group g = {Pi, Pj, Pk, Pl, Pm}
in which each functioning member holds the initial view
V0 = g. Assume Pi and Pj never suspect each other and
also, Pk and Pl never suspect each other. Let GVi, GVj,
GVk and GVl suspect Pm for the same lnm, and send to
each other the suspect message (*, suspect, {Pm, lnm}) .
Let a network failure occur, partitioning Pi and Pj from
Pk and Pl after the suspect messages of GVi and GVj have
been received by GVk and GVl, but before the suspect
messages of GVk and GVl can be received by GVi and
GVj. After four (*, suspect, {Pm, lnm}) messages are

received - one from GV of each process in V0 - {Pm} -,

GVk (also GVl) will install the new view V1 = { Pi, Pj,

Pk, Pl} = V0 - {Pm} after all received m, m.c ≤ lnm, are

delivered. (Thus, in view V0, Pk and Pl would have
delivered an identical set of non-null m that were multicast
in g.)

GVi and GVj, on the other hand will not receive any
suspect messages from GVk and GVl, so will not succeed

in installing the view V0 - {Pm}; they will however start
suspecting Pk and Pl, eventually agree and form detectioni
= detectionj = {{Pm, lnm}, {P k, lnk}, {P l , lnl }} =
detectionij (say) and failedi = failedj = {Pm, Pk, Pl} =

failedij (say), and will update their view to V1 = {Pi, Pj} =

V0 - failedij after all received m, m.c ≤ min {lnm, lnk,
lnl}, are delivered.

The existence of intersecting concurrent views is,
however, short lived as GVk and GVl must subsequently
suspect Pi and Pj: either by receiving (i (or j), confirmed,
{Pm Pk, Pl}) and executing step (vii) if the network
partition is transient, or by being notified from the local
suspector if the network partition is long lived. GVk and

GVl will therefore eventually update their views to V2 =
{Pk, Pl }. The temporary existence of intersecting
concurrent views occurred due to multiple failures - failure
of Pm and network partition - which was perceived to have
occurred 'simultaneously' by Pi and Pj, and in succession
by Pk and Pl.

5.3. Group Formation

We now describe the main aspects of the group
formation protocol of Newtop. We assume that the
formation of a new group can be initiated by any process.
Selection of such a process and the names of other
processes that should belong to the group are dictated by
higher level applications; we therefore assume that a
process Pi (initiator) has the names of the intended
members of a new group gn. Pi must not be a member of
any gx such that Vx,i = gn. The protocol given below has
the following characteristics. A two phase protocol is used
(with Pi as the coordinator) to form the group (steps 1-3).
If this succeeds, then a member process uses time-silence
and group view process to monitor liveliness of other
processes (step 4); the first message Pk sends in the new
group gn is a special message start-group that is
multicast for reaching agreement (in step 5) on the
minimum value for message number (m.c) with which
application-related computational messages are to be
multicast in gn.
Step1: Pi sends 'form group gn' message to each intended
member of gn, inviting them to form a group; the
message contains the process-ids of the intended members
of gn.
Step2: When a Pj, j ≠ i, receives an invitation to form gn,
it diffuses this message to each intended member of gn,
piggybacking its 'yes' or 'no' decision.
Step3: A 'no' message acts as a 'veto'; Pi sends its 'yes'
message if it receives a 'yes ' from the rest within some
time duration, else it sends a 'no'.
Step4: If a Pk ∈ gn receives an 'yes' message from every
proposed member of gn, it activates the time-silence
mechanism and a process GVn,k for the newly-formed gn;

the initial view V0n,k is set to gn and RVn,k is initialised
to 0. The first message Pk sends in the new group is a
special message start-group which contains an integer

field called the start-number that is set to the m.c of the
message. This number indicates Pk's proposed minimum
value for message number with which application-related
computational messages are to be multicast in gn.
Step5: Pk waits for the following condition to be satisfied
before it can send any application related, computational
message in gn: receive a start-group message from every
Pj in its current view Vn,k. (Note that the current view

need not be V0n,k due to view updates by GVn,k which is
executing in parallel; also, Pk is not blocked from sending
null messages in gn when prompted by the time-silence).
While Pk is waiting for the condition to become true,
Dn,k is not allowed to be modified except when Pk
receives a start-group message with start-number larger
than Dn,k, in which case Dn,k is increased to the proposed
start-number of the incoming message. Once all the
required start-group messages are received, Pk sets Dn,k to
start-number-max = the maximum of start-numbers
proposed by all Pj in view Vn,k; LCk is set to start-
number-max if start-number-max is larger; Pk then starts
sending and delivering application-related computational
messages of gn.

To see the correctness of the group formation
protocol, suppose that Pk is already a member of one or
more groups when it is attempting to form a new gn.
While it is waiting for the condition of step 5 to become
true, the value of Dn,k is incremented cautiously so that
Pk is not delivered any m, m.c > start-number-max, until
that condition becomes true. Any computational message
that was multicast in gn will have m.c > start-number-
max. This ensures that Pk can be delivered the messages
multicast in gn together with those multicast in other
groups, in a non-decreasing order of message numbers.

6. Comparison with Related Work

Psync/Consul [15, 17] is one of the best known
protocol suite that implements causal and symmetric total
delivery protocols; however, it has no support for multiple
(overlapping) process groups. The Trans and Transis
family of protocols [1, 6, 12] use elegant symmetric
solutions for providing total order delivery, but are not
quite general purpose, as they rely on network level
broadcast communication; further, like Psync/Consul, the
issue of a process belonging to multiple process groups
has not been addressed. ISIS was the first system to
include support for multiple groups; however the vector
clock based protocols of ISIS [4] become quite difficult
and expensive to implement for arbitrary group structures
(e.g., cyclic groups, such as shown in fig. 2)). All
previously published symmetric total order protocols
require multicast messages to contain explicit information
about causally preceding messages, and represent the
received messages in a directed acyclic graph. The task of
maintaining such a graph is much more complicated -

especially for multiple groups - than the simple approach
of using receive vectors adopted in Newtop. Newtop is
able to offer this advantage because it does not attempt to
precisely represent the absence of causal relation among
multicasts as this is not essential for total order message
delivery. The net effect is that Newtop has low and
bounded message space overhead (the protocol related
information contained in a multicast message is small) and
is relatively easy to implement even when process groups
overlap in an arbitrary manner. Further, Newtop has the
capability, not available on any existing protocols, of
supporting both symmetric and asymmetric protocols.

As explained with respect to fig. 3, virtual synchrony
provided by Newtop is more flexible than that of ISIS. In
this respect, Newtop has the same functionality as other
modern group communication systems, such as Transis
and Relacs [3].

The membership algorithm of Newtop is based on the
approach used in Psync/Consul, adapted to the context of
logical clocks and extended to coordinate view updates
with message delivery. Our protocol maintains view
consistency in the presence of (real or virtual) partitions
by permitting a group of processes to partition themselves
into two or more sub-groups of connected processes with
the property that: (i) the functioning processes within any
given subgroup will have identical views about the
membership; and (ii) the views of processes belonging to
different subgroups are guaranteed to stabilise into non-
intersecting ones. This makes Newtop more powerful than
many other protocols [14, 18] that can guarantee continued
group operation only when the group partitions in such a
way that exactly one subgroup can be uniquely identified
as the primary. The membership service of Newtop is
essentially similar in functionality to those of Transis [2],
the protocols of [12, 19] and Relacs [3]. Below we briefly
examine [19].

In the protocol of [19], concurrent views are always
non-intersecting (considering example 3 of the previous
section, the situation where V1 of Pk and Pl intersect with

V 1 of Pi and Pj will not occur). Never-intersecting
concurrent views are guaranteed in [19] essentially by
defining a process view as a set of process signatures,
where a signature is a tuple: {process-id, sequence-
number}. It is possible to adapt this approach in Newtop.
Let GVi replace Vi by ϑi = {{Pj, ei} | ∀ Pj ∈ Vi}, where
ei is the total number of processes GVi has excluded from

the initial view; ei=ej, if Vir=Vjr for every r≥0. Thus, in

the example, ϑ0={{P i, 0}, {Pj, 0}, {Pk, 0},{Pl, 0},{Pm,
0}} for all functioning processes of g. After partitioning,
ϑi1= ϑj1={{P i, 3}, {Pj, 3}} which do not intersect with

ϑk1=ϑ l1={{P i , 1}, {Pj , 1}, {Pk, 1},{Pl , 1}}; after

stabilising, ϑk2=ϑl2={{P k,3},{Pl,3}}.
Finally, unlike other protocols, Newtop supports

dynamic formation of new groups. The formation protocol
exploits the fact that processes are permitted to belong to

several groups. The group formation facility is more
powerful than 'joining an existing group' facility of
current protocols, as the effect of joining a group can be
obtained by processes forming a new group and exiting the
previous ones.

7. Concluding Remarks

Newtop is a general purpose protocol suite that is
suitable in a variety of settings: processes can
simultaneously belong to many groups, group size could
be large, and processes could be geographically widely
separated, communicating over the Internet. It supports
both symmetric and asymmetric ordering protocols,
allowing a multi-group process to use both. Newtop offers
this flexibility for a small price: new multicast in a given
group is blocked only if any multicast made in a different
asymmetric group is awaiting distribution by the
sequencer. If only symmetric version is used, Newtop is
totally non-blocking on send operations. Newtop is
however not complex, as it offers a very simple method
for dealing with multiple process groups and has low
message space overhead. The membership service of
Newtop supports concurrent existence of multiple
subgroups, leaving it to applications to decide on the
eventual fate of such subgroups. In addition, Newtop
supports dynamic formation of new groups. We have also
designed and implemented a flow control mechanism that
ensures that a sender process does not cause buffers to
overflow at any of the functioning destination processes.
The interested reader is referred to [11] for details.

Acknowledgements: This work has been supported in
part by grants from the UK MOD and the Engineering and
Physical Sciences Research Council (Grant no. GR/H1078),
ESPRIT basic research project 6360 (BROADCAST) and
CNPq/Brazil. Comments from and Discussions with Michel
Raynal, Ozalp Babaoglu, Dalia Malki and Sam Toueg clarified
our understanding. Colin Low hinted at the possibility of
using overlapping groups for solving the problem of online
server migration.

References

[1] Amir, Y., et al, "Transis: A Communication Sub-system
for High Availability", Digest of Papers, FTCS-22, Boston,
July 1992, pp. 76-84.
[2] Amir, Y., Dolev, D., Kramer, S., and Malki, D.,
"Membership Algorithm for Multicast Communication
Groups", Proc. of 6th Intl. Workshop on Dist. Algorithms,
pp 292-312, November 1992.
[3] Babaoglu, O., Baker, M., Davoli, R., and Gianchini, L.,
"Relacs: a Communications Infrastructure for Constructing
Reliable Applications in Large-Scale Distributed Systems",
BROADCAST Project deliverable report, October 1994
(available from Dept. of Computing Science, University of
Newcastle upon Tyne, UK).

[4] Birman, K., Schiper, A. and Stephenson, P.,"Lightweight
Causal and Atomic Group Multicast", ACM Transactions On
Computer Systems, Vol. 9, No. 3, August 1991, pp. 272-314.
[5] Chandra, C.T. and S.Toueg, “Unreliable Failure Detectors
for Asynchronous Systems” Proc. of 10th ACM Symp. on
Principles of Dist. Comp., Montreal, , August 1991, pp. 257-
272.
[6] Dolev, D., Kramer, S. and Malki, D., "Early Delivery
Totally Ordered Multicast in Asynchronous Environment",
Digest of Papers, FTCS-23, Toulouse, pp. 544-553, June
1993.
[7] Ezhilchelvan, P.E., Macedo, R. A., and Shrivastava, S. K.,
"Newtop: A Fault-tolerant Group Communication Protocol",
BROADCAST Project deliverable report, October 1994
(available from Dept. of Computing Science, University of
Newcastle upon Tyne, UK).
[8] Fischer, M., Lynch N., and Paterson, M., "Impossibility
of Distributed Consensus with One Faulty Process", J. ACM,
32, April 1985, pp 374-382.
[9] Garcia-Molina, H., and Spauster, A., "Ordered and Reliable
Multicast Communication", ACM Transactions On Computer
Systems, Vol. 9, No. 3, August 1991, pp. 242-271.
[10] Lamport, L., "Time, clocks, and ordering of events in a
distributed system", Commun. of ACM, 21, 7, July 1978, pp.
558-565.
[11] Macedo, R. A., "Fault-tolerant Group Communication
Protocols for Asynchronous Systems", Ph. D. thesis, 1994,
University of Newcastle upon Tyne.
[12] Melliar-Smith, P. M., Moser L.E., and Agarwala, V.,
"Broadcast Protocols For Distributed Systems", IEEE
Transactions on Parallel and Distributed Systems, Vol. 1, No.
1, January 1990, pp. 17-25.
[13] Melliar-Smith, P.M., Moser L.E., and Agarwala, V.,
"Membership Algorithms for Asynchronous Distributed
Systems", Proc. of 12th Intl. Conf. on Distributed Comp.
Systems, pp. 480-488, May 1991.
[14] Mishra, S., Peterson L., and Schlichting, R., "A
membership Protocol Based on Partial Order", Proc. IFIP
Conf. on Dependable Computing For Critical Applications,
Tuscon, Feb. 1991, pp 137-145.
[15] Mishra, S., Peterson L., and Schlichting, R., "Consul: a
Communications Substrate for Fault-Tolerant Distributed
Programs", Distributed Systems Engineering, 1 (1993), pp.
87-103.
[16] Mostefaoui, A., Raynal, M., "Causal Multicasts in
Overlapping Groups: Towards a Low Cost Approach",
Research Report, IRISA Campus de Beaulieu -35042 RENNES,
France.
[17] Peterson, L. L., Bucholz, N. C. and Schlichting, R.,
"Preserving and Using Context Information in Interprocess
Communication", ACM Transactions on Computer Systems,
7 (3), August 1989, pp. 217-246.
[18] Ricciardi, A.M., and Birman, K., "Using Process Groups
to Implement Failure Detection in Asynchronous
Environments", Proc. of Annual ACM symposium on PoDC,
pp. 341-352, August 1991.
[19] Schiper, A., and Ricciardi, A.M., "Virtually
Synchronous Communication based on a Weak Failure
Suspector", Digest of Papers, FTCS-23, Toulouse, pp. 534-
543, June 1993.

