
DUNN, FRAHM : NEXT BEST VIEW PLANNING FOR ACTIVE MODEL IMPROVEMENT 1

Next best view planning for active model

improvement

Enrique Dunn

dunn@cs.unc.edu

Jan-Michael Frahm

jmf@cs.unc.edu

Department of Computer Science

University of North Carolina

Chapel Hill, USA

Abstract

We propose a novel approach to determining the Next Best View (NBV) for the task

of efficiently building highly accurate 3D models from images. Our proposed method

deploys a hierarchical uncertainty driven model refinement process designed to select

vantage viewpoints based on the model’s covariance structure and appearance, as well

as the camera characteristics. The developed NBV planning system incrementally builds

a sensing strategy by sequentially finding the single camera placement, which best re-

duces an existing model’s 3D uncertainty. The generic nature of our system’s design and

internal data representation makes it well suited to be applied to a wide variety of 3D

modeling algorithms. It can be used within active computer vision systems as well as

for optimized view selection from the set of available views. Experimental results are

presented to illustrate the effectiveness and versatility of our approach.

1 Introduction

One of the major areas of computer vision is the reconstruction of dense geometry from

video. There now exists a variety of stereo methods to estimate the dense geometry [3],[21].

Recently, performance improvements lead to the ability of efficient reconstruction from large

video data or photo-collections [16],[4]. In contrast to the traditional stereo approach, for

these applications we face a view selection problem to deploy the most beneficial views for

the multi-view stereo process to achieve the highest possible accuracy and with the smallest

number of views. There are many instances where the input data or images are either insuffi-

cient for the algorithm to meet the specified coverage or accuracy requirements or are in fact

redundant and inefficient to process, even sometimes leading to performance degradation.

Sensor planning systems strive to determine the pose and settings of a vision sensor to un-

dertake a vision task usually requiring several views [1]. The next best view problem (NBV)

seeks a single additional sensor placement in order to improve an existing scene reconstruc-

tion derived from the current imaging configuration. Depending on the context, NBV can be

seen as an incremental approach to building a camera network, designing a sensing strategy

for autonomous exploration or selecting an input image dataset for multiview reconstruction.

Active 3D model improvement is considered in this work to be the sequential process of

systematically increasing the precision and completeness of the estimated 3D model. Our
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proposed NBV planning approach uses adaptive planar patches as the basic element of struc-

ture representation and the covariance matrices of these patches as the representation for the

3D reconstruction uncertainty. We combine these elements along with the object’s texture

properties to propose a novel viewpoint selection criterion seeking a balance between the

reduction of geometric uncertainty and the attainment of reliable image measurements. We

procure such balance by developing our criterion around three inherent object and camera

properties involved in optical 3D reconstruction: 1) structure estimation uncertainty, 2) the

projection properties of the object in the current view and 3) the surface texture appearance.

We strive to develop a general NBV planner by decoupling the internal data representations

used for our viewpoint discrimination criteria from the representations used in the deployed

3D reconstruction algorithm. Moreover, the developed approach is aimed at dense 3D re-

constructions, which commonly output millions of surface points even for simple scenes.

Accordingly, scalability and efficiency are major concerns when developing a viewpoint se-

lection algorithm in this context. We propose a data parallel hierarchical approach that can

efficiently deploy commodity parallel architectures like GPUs or multi-core processors.

The remainder of the paper is organized as follows. First, in Section 2 we review related

work. Next, we present a system overview in Section 3. The model update process and

adaptive structure representation utilized by our approach are described in Section 4. This

is followed by the development of our camera selection criterion in Section 5. Afterwards,

Section 6 includes experimental results.

2 Related work

The challenge of automatic viewpoint selection has been widely studied in robotics, com-

puter vision and photogrammetry. Surveys that span from early approaches in this field to

recent advances, were published by Newman et al. [12], Tarabanis et al. [17] and Scott et al.

[15]. Recently, Chen et al. [1] provided a broad coverage of multiple research areas within

sensor planning. We restrict our discussion to a subset of approaches, which are closely

related to our proposed active 3D model improvement task.

The task of designing a viewing configuration for precise 3D reconstruction is known in

photogrammetry as the photogrammetric network design (PND) problem. Fraser [2] early on

identified the analytical difficulties of designing an optimal imaging geometry in the context

of rigorous photogrammetric 3D measurements. His work identified the high non-linearity

and multi-modality, which makes the PND problem ill-suited for canonical optimization

methods. Mason [10] adopted an expert systems approach based on generic networks to

achieve strong viewing configurations for model based PND. The developed system used a

CAD model as input and followed a series of predetermined rules for each CAD element

in order to design an imaging geometry. Olague & Mohr [13] addressed the PND problem

by developing a criterion based on forward covariance propagation of image measurement

uncertainty. The goal is to minimize the maximum element along the diagonal of the recon-

struction’s covariance matrix. To this end, the authors used a genetic algorithm to search for

an optimum in the space of possible multi-camera viewing configurations. It is important

to note that the aforementioned PND systems were designed to generate sets of multiple

viewpoints used for highly precise 3D reconstruction tasks carried out in well controlled

and customized environments (i.e. fiducial markers, high accuracy calibration patterns, etc.).

Moreover, they mainly address the geometric aspects of 3D reconstruction omitting consid-

erations on the role of texture saliency in the image measurement process.
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Robot vision researchers have studied the sensor placement in which a controlled camera

can be best used to achieve accurate 3D reconstructions. Whaite and Ferrie [20] developed a

3D modeling system that used parametric modeling of scene elements and used the internal

model uncertainty to determine sensing actions. Marchand and Chaumette [9] developed

a system for structured scene reconstruction by developing optimal strategies for survey-

ing a set of volumetric primitives. We note that, while these systems successfully achieved

autonomous operation, they used simple parametric models to represent scene elements,

whereas our approach does not place any restrictions on the observed geometry and addi-

tionally considers the appearance of the object’s surface. Accordingly, our approach is better

suited to perform over a large variety of scenes.

In the computer vision community camera placement and configuration has recently re-

ceived renewed interest [18],[14]. Wenhardt et al. [19] proposed a 3D reconstruction based

on a probabilistic state estimation framework and the next best view is determined by a

metric of the state estimation’s uncertainty. The authors propose the use of three different

metrics, which correspond to the concepts of D-, E- and T-Optimality found in the opti-

mal experimental design literature. Results indicate variability of the attained configurations

with respect to the optimality criterion proposed. Hornung et al. [6] propose an image se-

lection scheme for multi-view stereo, which selects images in order to improve the coverage

of a voxel based proxy. Their approach strives to achieve sufficient sampling of the entire

object’s surface while identifying regions with poor photo-consistency for additional redun-

dant sampling. While these approaches address pertinent aspects of the 3D reconstruction

process they are strongly coupled with the reconstruction algorithm being deployed. Our

proposal strives for algorithm independence by decoupling the internal representation used

for planning from that of the reconstruction algorithm. Accordingly, our approach is better

suited to be integrated to a larger variety of reconstruction approaches.

3 System overview and notation

The operation of our NBV planner can be described as an iterative process consisting of the

following sequential stages:

1. A partial input 3D model with uncertainty information is transformed into a 3D mesh.

2. Adaptive planar patches are extracted from the 3D mesh.

3. Candidate viewpoints are evaluated using patch 3D uncertainty and surface texture.

4. Image acquisition is performed according to the NBV selection.

5. An independent 3D reconstruction algorithm is deployed.

6. 3D mesh structure and uncertainty are updated after each sensing action.

7. Repeat until target accuracy is reached.

We represent scene structure by an adaptive 3D triangular mesh Mi locally approxi-

mated through a planar patch considering the current reconstruction uncertainties. Hence,

our model can represent general scene geometry by using patches as small as a planar sur-

face of the size of a pixel at the scene distance, while efficiently representing larger planes

through a single model patch. Each patch is parameterized by

Pi = [Xi,ni,Σi,Si j] : {Xi,ni,∈ R3
,Σi ∈ R3×3

,Si j ∈ Rp×p}, (1)

where Xi is the 3D position of the patch, ni is the patch normal vector, Σi is the 3D covariance

matrix and Si j is the square set of p× p (p is a user defined integer value) neighboring
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image pixels to the projection of Pi onto a reference image j. Viewpoint configurations are

parameterized in terms of sensor position and orientation angles,

ν j = [x j,θ j] : {x j ∈ R3
,θ j ∈ SO(3)}, (2)

where SO(3) is the special orthogonal group in three dimensions. The geometric structure of

the 3D uncertainty of the input model is captured by the eigenvectors and the eigenvalues of

the patch covariance matrix Σ. Namely, in Euclidian 3D space the eigenvectors ek|k = 1 . . .3

convey the orientation of the 3D uncertainty, while the eigenvalues λk specify the magnitude

in each direction. We define Ψ to be the matrix of eigenvectors scaled by their corresponding

eigenvalue,

Ψ = [λ1e1 λ2e2 λ3e3] . (3)

The planning approach presented here jointly uses the information contained in Ψ and the

surface texture saliency as the guide for viewpoint selection.

4 Mesh update and 3D patch adaptation

Our triangular mesh representation can be readily extracted from typical 3D outputs such as

depth maps, volumetric grids or point clouds. We assume mesh vertices to represent actual

scene measurements and rely on the availability of vertex wise 3D uncertainty estimates for

the input 3D mesh. Our NBV planner is independent from the procedure by which vertex-

wise covariance estimates are obtained. In this work, we update covariance estimates for

each patch with an extended Kalman filter based on triangulation [5] and the viewing geom-

etry used during modeling. A recursive estimation approach is adopted in order to achieve

scalable performance with respect to the number of input images. Covariance initialization

for each vertex is obtained by estimating the 3D uncertainty of vertex triangulation of the first

two viewpoints from which the vertex was sampled. Image measurements are assumed to be

perturbed with Gaussian noise. Subsequent individual measurements of the same vertex are

processed under an EKF framework in order to update structure and covariance estimates.

Image capture is to be performed at the selected NBV (see details of the selection in Sec-

tion 5) and the acquired data is processed by an independent reconstruction algorithm. Once

the reconstruction algorithm has been deployed, we obtain a new 3D model M+
i , which must

be reconciled with our current structure representation Mi. Regions of mesh intersection are

identified efficiently on the GPU through detection of image based overlap of the existing

and the novel mesh. The correspondence between vertices in the overlapping regions is per-

formed by the 3D Mahalanobis distance proximity defined by the existing vertex covariance

matrix Σ. Once all vertices in the intersection region of the novel mesh are associated, their

positions and uncertainties (e.g. X and Σ) are fused using an EKF framework, which takes

into account the displacement among vertices and the camera parameters used for sensing.

Regions of the novel mesh M+
i not previously reconstructed are appended directly to the up-

dated triangle mesh and their uncertainties are estimated incorporating all cameras observing

each triangle.

After the uncertainty estimation, the 3D mesh is transformed into a set of 3D patches,

which are deployed to determine the NBV. For each vertex we define a circular plane parallel

to the best fit plane of the neighboring set of vertices and a radius equal to their average

distance. Hence, our approach provides a planar proxy of the surface at each vertex, which

is augmented with a 3D uncertainty estimate used in the evaluation of our NBV criterion.
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Neighboring patches are merged based on their uncertainties and their plane parame-

ters. A sphere is defined around a given seed patch with a radius r = 3
√

λ1 proportional

to the largest eigenvalue of the covariance matrix corresponding to the patch. All patches

whose center lies within the sphere are merged into a single aggregate patch. The patch

parameters (2) assigned to the merged patch are those of the seed patch. Accordingly, the

extent of a merged patch approximates the 3D reconstruction uncertainty of the surface el-

ement it represents. The process of merging 3D patches is performed in a greedy fashion.

Once the uncertainty of a patch is reduced through additional sensing actions, the geometry

is represented on a finer level by multiple disjoint patches. The partition is performed by

disassociating merged patches and applying the merging procedure with the updated mesh

uncertainty and position estimates. Using adaptive patches, the current surface topology and

uncertainty are represented by a dynamic structure that evolves during the sequential recon-

struction process. Moreover, it is possible to manipulate the process of patch merging and

partitioning in order to accommodate different computational requirements by limiting the

number of patches considered by the NBV planner.

5 A novel next best view criterion

A novel viewpoint sought by our planner should achieve a balance between the reduction

of geometric uncertainty and the attainment of reliable image measurements. We leverage

the 3D uncertainty information contained in the scaled eigenvector matrix Ψ (3) obtained

from each patch positional covariance structure as well as the patch projected image texture.

Instead of optimizing an experimental design criterion as in [19], we define a criterion based

on three reconstruction goals, which contribute to systematically reducing the uncertainty of

the estimated 3D patch. The first reconstruction goal addressed is to achieve an adequate

incidence with respect to a patch 3D uncertainty. The second reconstruction goal under

consideration is to obtain a favorable imaging resolution for the projected texture of a given

3D patch. The third goal incorporated into our criterion is to condition the relevance of

imaging resolution on the texture of the observed surface.

5.1 Incorporating the uncertainty of 3D reconstruction estimates

Let Xi denote the estimated 3D position of a primitive Pi. The goal is to find the viewpoint

ν j with camera center x j such that the unit length viewing direction

v =
Xi −x j

‖Xi −x j‖2
(4)

best reduces the 3D uncertainty contained in Ψi. Given an estimate of a 3D point with non

isotropic 3D uncertainty, the viewing rays v for minimizing triangulation uncertainty are

the ones orthogonal to the main uncertainty direction vector. Accordingly, for 3D estimates

where the majority of the uncertainty is found along a single direction e1 (e.g. the eigenvector

with the largest associated eigenvalue), a viewing ray orthogonal to this vector corresponds

to a solution of the product equation vT e1 = 0. However, a more general criterion is desired

for arbitrary covariance structures. We propose to find the viewing ray, which minimizes

f (P,ν) = ‖vT
[

λ1ei
1 λ2ei

2 λ3ei
3

]

‖2 = ‖vT Ψi‖2. (5)
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The minimization of (5) considers 3D reconstruction as a merely geometric task, not tak-

ing into account practical aspects such as robustness of image measurements and matching

saliency. We incorporate these aspects into our approach by also considering the effects of

varying a viewpoint’s incidence and proximity with respect to a given 3D primitive.

5.2 Incorporating camera projection properties

3D reconstruction estimates the position of the points located on a 3D supporting surface. It

is typically the visual appearance of this supporting surface, which allows the identification

and measurement of the projection of a given set of 3D points in multiple image planes.

Better accuracy in image measurements can be obtained as the imaging resolution increases.

Given knowledge of the camera’s intrinsic parameters, the main factors in determining a

surface’s projection are the viewing angle and the distance from a given 3D surface. We

combine both incidence and proximity by measuring a single quantity: the area of projection

of a 3D surface onto the image plane. It is straightforward to compute this quantity analyti-

cally for simple geometric primitives like our planar patches. We measure the projected area

with high efficiency in a GPU by using rendering. The benefits of using a GPU computation

are that resolution, field of view and occlusions are handled by the graphics engine.

At this point we have defined geometric relationships, which favor the suitable observa-

tion of a generic surface. The motivation behind such definitions is to attain reliable image

measurements. The next subsection incorporates texture saliency to model the ability to

make reliable image measurements.

5.3 Incorporating surface texture appearance

Visual saliency of a scene surface is a requirement for accurate matching across images in

feature based reconstruction. Accordingly, textureless scene regions present a major diffi-

culty in the application of these algorithms. On the other hand, contour based approaches do

not rely on texture saliency to estimate bounding volumes, but instead favor tangent views of

the scene surface. In our approach, we strive for oblique views only for textureless regions.

Note that the motivation behind measuring the projected area of a 3D primitive is to consider

jointly a viewpoint’s incidence and proximity. Taking into account that the projected area

of a perpendicularly observed planar surface is null, the relevance of the projected area of a

primitive is conditioned on its texture. This relevance factor is modeled by a continuous step

function with transition at a given texture threshold. We propose to use a modification of the

Gauss error function (encountered by integrating the normal distribution) of the form

er f (x) =
1

γπ

∫ x

0
e

(t−τ)2

γ dt +
1

2
(6)

where x is the texture measure estimated for a given primitive, τ is the texture threshold value

and γ is a decay factor controlling the slope of the transition in the step function. The error

function may be substituted by a logistic function. Using Eq. (6) we can obtain a value in the

range [0,1] to describe the relevance of the projected area of a given primitive. The measure

used to quantify texture saliency is described next.

Let Si denote the image region corresponding to the projection of patch Pi in a reference

view. We describe texture saliency by measuring the entropy of the autocorrelation function

A(Si) for patch Pi. This is motivated by the fact that homogeneous texture regions will

display "flat" profiles for A(Si), leading to high entropy. On the other hand, surfaces with
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salient texture will provide a well localized "peak" on the autocorrelation function landscape,

leading to low entropy. For an image region of size p× p, the A(Si) will output a 2p−1 ×
2p−1 matrix with values ai in the range [−1,1]. The matrix values are normalized and used

to evaluate Shannon entropy. We empirically determined a texture threshold value τ for our

step function (6), as well as the decay value γ . Hence, we obtain a function h(·) of the form

h(Pi) = 1− er f

(

− ∑
ai∈A(Si)

p(ai) log p(ai)

)

. (7)

The proposed function (7) measures the quality of a correlation match given the local

appearance. It does not include currently any correction for the texture frequency reduction

due to potential projective distortions. This can easily be integrated into the computation of

the auto-correlation. We found that in practice it does not change the results significantly,

but the simpler measurement (7) is more efficient to compute since it is a constant for a given

model and does not depend on the location of the new camera.

5.4 The aggregate criterion

In developing our criterion we seek to attain a trade-off between two (typically conflicting)

objectives involved in depth estimation. These objective are: 1) maximizing the visibility of

a given patch on the novel image, 2) aligning the camera viewing direction to the direction of

smallest uncertainty for the considered 3D primitive Pi. We propose the following function

to evaluate the contribution of a viewpoint ν for a single 3D primitive P:

C(ν ,P) =
g(ν ,P)h(P)

f (ν ,P)
(8)

where g(ν ,P) denotes the computed projection area of the 3D primitive, while h(P) and

f (ν ,P) are defined in Eqs. (7) and (5) respectively. The function (8) is evaluated for each

patch Pi and combined through a weighted sum to define our NBV criterion

F(ν) =
N

∑
i=0

wi C(ν ,Pi). (9)

We define the weight wi = λ i
1 of a patch to be equal to the largest eigenvalue associated

with its covariance matrix. Accordingly, patches with larger uncertainty are given more

attention in the viewpoint search process. It is important to note that the weight value could

alternatively be defined in terms of more specific experimental design criteria (as presented

in [19]) in order to favor the reduction of a particular uncertainty metric.

5.5 Criterion optimization

The function defined by our criterion (9) is a multimodal search space for selecting the

NBV. The main obstacle for attaining an analytical (or closed form) solution of our criterion

optimization problem consists on modeling object self occlusions. For our online planning

module, we seek to balance the number of function evaluations utilized to find the NBV and

the quality of the obtained solution. Robust planning behavior was observed by using the

Nelder-Mead simplex algorithm for continuous optimization [11]. The algorithm belongs
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to the general class of direct search methods [8], since it uses only function values at some

points in the search space and does not try to form an approximate gradient at any of these

points. The algorithm operation defines a simplex of n+1 points in the Rn search space and

deterministically follows a set of geometric transformations to the simplex, which directs

it towards the optimum of the specified nonlinear unconstrained function. We incorporate

viewpoint selection constraints implicitly in our viewpoint parametrization as well as by

explicitly penalizing the evaluation of (9) for invalid viewpoints.

6 Experiments

Experiments on real images were performed using the Middlebury dino dome dataset. Our

method determines the NBV and selects the closest available camera on the dataset. The

viewpoint parameterization (2) was modified to spherical coordinates with constant radius c,

in order to enforce the camera placement restrictions imposed by the dome viewing config-

uration. In this way, for two rotation angles φ ∈ [0,π] and κ ∈ [0,2π], we have

ν j = [x j(φ ,κ,c),θ j(φ ,κ)] : {x j(·) : R3 → R3
,θ j(·) : R2 → SO(3)}. (10)

In this experiment, the model update phase is performed using the algorithm developed by

Furukawa & Ponce [3], which offers robust performance for multiview stereo reconstruc-

tions. The reconstruction algorithm of [3] was executed for each novel viewpoint selected

by our planner. Similarly to [6], we compared the performance of our NBV planner against

an evenly distributed set of cameras. A total of 48 evenly distributed cameras comprising the

base of the hemisphere of the dataset were selected. The obtained 3D model was compared

against models generated from configurations of 16 and 32 viewpoints designed by our NBV

planner. The resulting accuracy and coverage can be seen in Figure 1. We used parameters

comparable to [3] for all our experiments. The deviating performance numbers to [3] can

be explained by the different procedure used to transform the oriented point cloud into a 3D

mesh [7], as well as the choice of the algorithm operating parameters. The two configura-

tions generated by our planning approach significantly outperform 48 evenly selected views

in terms of coverage (93.5% and 95.4% against 91.1%) and reconstruction error (0.87mm.

and 0.74mm. against 0.94mm.). It is noteworthy that the algorithm converges systemati-

cally towards full object coverage even though our criterion in Eq. (9) does not incorporate

coverage. This is a result of the fact that the most uncertain regions are at the border of

the mesh given the small number of observations of those points. This naturally drives the

optimization to new views covering this area and hence extending the mesh at the border.

The next experiment considers NBV planning for an autonomous agent capable of per-

forming arbitrary sensing actions. To achieve online performance, we adopt a SfM approach

to markerless camera pose estimation/tracking and deploy an efficient GPU based global

depth map fusion technique [21]. To estimate depth maps for the NBV, intermediate view-

points between the NBV and the current sensing position are interpolated. We consider an

object centered scene and adopt a viewing sphere camera placement. The goal of our NBV

planner is to achieve a precision of 0.002% units with respect to the sphere viewing distance

of 35 cm. Our termination criteria validates that 95% of all mesh vertices fulfill our precision

requirements and that the k = 3 most recent NBV specifications have failed to either increase

the coverage of the mesh or to reduce the uncertainty of the sensed regions.

All experiments were carried out on an Intel Centrino laptop equipped with 2GB RAM

and an Nvidia 570M graphics card. While the generated 3D models were in the order of
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16 Planned Views 32 Planned Views 48 Regular Views

(0.87mm. , 93.5%) ( 0.74mm. , 95.4%) (0.94mm. , 91.1%)

Figure 1: Experimentation on the Middlebury dino dataset. Evaluation benchmarks describe

3D reconstruction error and object coverage.

500K vertices, the adaptive patch merging and partition process was controlled to limit the

maximum number of patches to 20K. This allows us to achieve a viewpoint evaluation per-

formance of 60Hz. The simplex search for the NBV was limited to 100 iterations in order to

obtain planning results within 2 seconds of completing the model update phase. Model up-

date latency varies between 350ms to 2 seconds depending on the number of known vertices

and the object region observed by the previous NBV.

7 Conclusions and future work

We presented a new NBV planning approach for active 3D model improvement. The pro-

posed approach selects viewpoints to reduce the 3D uncertainty of an incrementally obtained

scene model. In contrast to previously presented approaches, our novel approach considers

the measurement uncertainties of the model and the appearance of the scene. This enables us

to balance the contradicting paradigms of geometric uncertainty reduction and matchability

in the image. Our experiments on different NBV planning scenarios illustrated the generic

nature of our approach. Future research paths include experimentation on open scenes and

the integration of our planner in an autonomous robotic exploration system.
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Viewpoint Object Average

Coverage Uncertainty

0 33% 0.783860

1 34% 0.314736

2 36% 0.121641

4 63% 0.011238

6 71% 0.001754

8 83% 0.001193

10 99% 0.000970

14 99% 0.000766

18 99% 0.000707

20 99% 0.000673

Figure 2: Planning for image capture. On the left, planned viewing configuration used to

reconstruct object. On the right, reconstruction statistics.
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